blob: 081a8f5cd8cb916316ca5e77dde0868a161b08f0 [file] [log] [blame]
// powerpc.cc -- powerpc target support for gold.
// Copyright 2008, 2009 Free Software Foundation, Inc.
// Written by David S. Miller <davem@davemloft.net>
// and David Edelsohn <edelsohn@gnu.org>
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include "elfcpp.h"
#include "parameters.h"
#include "reloc.h"
#include "powerpc.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "errors.h"
#include "gc.h"
namespace
{
using namespace gold;
template<int size, bool big_endian>
class Output_data_plt_powerpc;
template<int size, bool big_endian>
class Target_powerpc : public Sized_target<size, big_endian>
{
public:
typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
Target_powerpc()
: Sized_target<size, big_endian>(&powerpc_info),
got_(NULL), got2_(NULL), toc_(NULL),
plt_(NULL), rela_dyn_(NULL),
copy_relocs_(elfcpp::R_POWERPC_COPY),
dynbss_(NULL), got_mod_index_offset_(-1U)
{
}
// Process the relocations to determine unreferenced sections for
// garbage collection.
void
gc_process_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Scan the relocations to look for symbol adjustments.
void
scan_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Finalize the sections.
void
do_finalize_sections(Layout*, const Input_objects*);
// Return the value to use for a dynamic which requires special
// treatment.
uint64_t
do_dynsym_value(const Symbol*) const;
// Relocate a section.
void
relocate_section(const Relocate_info<size, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr view_address,
section_size_type view_size,
const Reloc_symbol_changes*);
// Scan the relocs during a relocatable link.
void
scan_relocatable_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs*);
// Relocate a section during a relocatable link.
void
relocate_for_relocatable(const Relocate_info<size, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
off_t offset_in_output_section,
const Relocatable_relocs*,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size);
// Return whether SYM is defined by the ABI.
bool
do_is_defined_by_abi(const Symbol* sym) const
{
return strcmp(sym->name(), "___tls_get_addr") == 0;
}
// Return the size of the GOT section.
section_size_type
got_size()
{
gold_assert(this->got_ != NULL);
return this->got_->data_size();
}
private:
// The class which scans relocations.
class Scan
{
public:
Scan()
: issued_non_pic_error_(false)
{ }
inline void
local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
Sized_relobj<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym);
inline void
global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
Sized_relobj<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
Symbol* gsym);
private:
static void
unsupported_reloc_local(Sized_relobj<size, big_endian>*,
unsigned int r_type);
static void
unsupported_reloc_global(Sized_relobj<size, big_endian>*,
unsigned int r_type, Symbol*);
static void
generate_tls_call(Symbol_table* symtab, Layout* layout,
Target_powerpc* target);
void
check_non_pic(Relobj*, unsigned int r_type);
// Whether we have issued an error about a non-PIC compilation.
bool issued_non_pic_error_;
};
// The class which implements relocation.
class Relocate
{
public:
// Do a relocation. Return false if the caller should not issue
// any warnings about this relocation.
inline bool
relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
Output_section*, size_t relnum,
const elfcpp::Rela<size, big_endian>&,
unsigned int r_type, const Sized_symbol<size>*,
const Symbol_value<size>*,
unsigned char*,
typename elfcpp::Elf_types<size>::Elf_Addr,
section_size_type);
private:
// Do a TLS relocation.
inline void
relocate_tls(const Relocate_info<size, big_endian>*,
Target_powerpc* target,
size_t relnum, const elfcpp::Rela<size, big_endian>&,
unsigned int r_type, const Sized_symbol<size>*,
const Symbol_value<size>*,
unsigned char*,
typename elfcpp::Elf_types<size>::Elf_Addr,
section_size_type);
};
// A class which returns the size required for a relocation type,
// used while scanning relocs during a relocatable link.
class Relocatable_size_for_reloc
{
public:
unsigned int
get_size_for_reloc(unsigned int, Relobj*);
};
// Get the GOT section, creating it if necessary.
Output_data_got<size, big_endian>*
got_section(Symbol_table*, Layout*);
Output_data_space*
got2_section() const
{
gold_assert (this->got2_ != NULL);
return this->got2_;
}
// Get the TOC section.
Output_data_space*
toc_section() const
{
gold_assert (this->toc_ != NULL);
return this->toc_;
}
// Create a PLT entry for a global symbol.
void
make_plt_entry(Symbol_table*, Layout*, Symbol*);
// Create a GOT entry for the TLS module index.
unsigned int
got_mod_index_entry(Symbol_table* symtab, Layout* layout,
Sized_relobj<size, big_endian>* object);
// Get the PLT section.
const Output_data_plt_powerpc<size, big_endian>*
plt_section() const
{
gold_assert(this->plt_ != NULL);
return this->plt_;
}
// Get the dynamic reloc section, creating it if necessary.
Reloc_section*
rela_dyn_section(Layout*);
// Copy a relocation against a global symbol.
void
copy_reloc(Symbol_table* symtab, Layout* layout,
Sized_relobj<size, big_endian>* object,
unsigned int shndx, Output_section* output_section,
Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
{
this->copy_relocs_.copy_reloc(symtab, layout,
symtab->get_sized_symbol<size>(sym),
object, shndx, output_section,
reloc, this->rela_dyn_section(layout));
}
// Information about this specific target which we pass to the
// general Target structure.
static Target::Target_info powerpc_info;
// The types of GOT entries needed for this platform.
enum Got_type
{
GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
};
// The GOT section.
Output_data_got<size, big_endian>* got_;
// The GOT2 section.
Output_data_space* got2_;
// The TOC section.
Output_data_space* toc_;
// The PLT section.
Output_data_plt_powerpc<size, big_endian>* plt_;
// The dynamic reloc section.
Reloc_section* rela_dyn_;
// Relocs saved to avoid a COPY reloc.
Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
// Space for variables copied with a COPY reloc.
Output_data_space* dynbss_;
// Offset of the GOT entry for the TLS module index;
unsigned int got_mod_index_offset_;
};
template<>
Target::Target_info Target_powerpc<32, true>::powerpc_info =
{
32, // size
true, // is_big_endian
elfcpp::EM_PPC, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
'\0', // wrap_char
"/usr/lib/ld.so.1", // dynamic_linker
0x10000000, // default_text_segment_address
64 * 1024, // abi_pagesize (overridable by -z max-page-size)
4 * 1024, // common_pagesize (overridable by -z common-page-size)
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0 // large_common_section_flags
};
template<>
Target::Target_info Target_powerpc<32, false>::powerpc_info =
{
32, // size
false, // is_big_endian
elfcpp::EM_PPC, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
'\0', // wrap_char
"/usr/lib/ld.so.1", // dynamic_linker
0x10000000, // default_text_segment_address
64 * 1024, // abi_pagesize (overridable by -z max-page-size)
4 * 1024, // common_pagesize (overridable by -z common-page-size)
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0 // large_common_section_flags
};
template<>
Target::Target_info Target_powerpc<64, true>::powerpc_info =
{
64, // size
true, // is_big_endian
elfcpp::EM_PPC64, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
'\0', // wrap_char
"/usr/lib/ld.so.1", // dynamic_linker
0x10000000, // default_text_segment_address
64 * 1024, // abi_pagesize (overridable by -z max-page-size)
8 * 1024, // common_pagesize (overridable by -z common-page-size)
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0 // large_common_section_flags
};
template<>
Target::Target_info Target_powerpc<64, false>::powerpc_info =
{
64, // size
false, // is_big_endian
elfcpp::EM_PPC64, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
'\0', // wrap_char
"/usr/lib/ld.so.1", // dynamic_linker
0x10000000, // default_text_segment_address
64 * 1024, // abi_pagesize (overridable by -z max-page-size)
8 * 1024, // common_pagesize (overridable by -z common-page-size)
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0 // large_common_section_flags
};
template<int size, bool big_endian>
class Powerpc_relocate_functions
{
private:
// Do a simple relocation with the addend in the relocation.
template<int valsize>
static inline void
rela(unsigned char* view,
unsigned int right_shift,
elfcpp::Elf_Xword dst_mask,
typename elfcpp::Swap<size, big_endian>::Valtype value,
typename elfcpp::Swap<size, big_endian>::Valtype addend)
{
typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
Valtype reloc = ((value + addend) >> right_shift);
val &= ~dst_mask;
reloc &= dst_mask;
elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
}
// Do a simple relocation using a symbol value with the addend in
// the relocation.
template<int valsize>
static inline void
rela(unsigned char* view,
unsigned int right_shift,
elfcpp::Elf_Xword dst_mask,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<valsize, big_endian>::Valtype addend)
{
typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
Valtype reloc = (psymval->value(object, addend) >> right_shift);
val &= ~dst_mask;
reloc &= dst_mask;
elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
}
// Do a simple relocation using a symbol value with the addend in
// the relocation, unaligned.
template<int valsize>
static inline void
rela_ua(unsigned char* view, unsigned int right_shift,
elfcpp::Elf_Xword dst_mask,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<size, big_endian>::Valtype addend)
{
typedef typename elfcpp::Swap_unaligned<valsize,
big_endian>::Valtype Valtype;
unsigned char* wv = view;
Valtype val = elfcpp::Swap_unaligned<valsize, big_endian>::readval(wv);
Valtype reloc = (psymval->value(object, addend) >> right_shift);
val &= ~dst_mask;
reloc &= dst_mask;
elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv, val | reloc);
}
// Do a simple PC relative relocation with a Symbol_value with the
// addend in the relocation.
template<int valsize>
static inline void
pcrela(unsigned char* view, unsigned int right_shift,
elfcpp::Elf_Xword dst_mask,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<size, big_endian>::Valtype addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
Valtype reloc = ((psymval->value(object, addend) - address)
>> right_shift);
val &= ~dst_mask;
reloc &= dst_mask;
elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
}
template<int valsize>
static inline void
pcrela_unaligned(unsigned char* view,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Swap<size, big_endian>::Valtype addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
typedef typename elfcpp::Swap_unaligned<valsize,
big_endian>::Valtype Valtype;
unsigned char* wv = view;
Valtype reloc = (psymval->value(object, addend) - address);
elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv, reloc);
}
typedef Powerpc_relocate_functions<size, big_endian> This;
typedef Relocate_functions<size, big_endian> This_reloc;
public:
// R_POWERPC_REL32: (Symbol + Addend - Address)
static inline void
rel32(unsigned char* view,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{ This_reloc::pcrela32(view, object, psymval, addend, address); }
// R_POWERPC_REL24: (Symbol + Addend - Address) & 0x3fffffc
static inline void
rel24(unsigned char* view,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This::template pcrela<32>(view, 0, 0x03fffffc, object,
psymval, addend, address);
}
// R_POWERPC_REL14: (Symbol + Addend - Address) & 0xfffc
static inline void
rel14(unsigned char* view,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This::template pcrela<32>(view, 0, 0x0000fffc, object,
psymval, addend, address);
}
// R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
static inline void
addr16(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{ This_reloc::rela16(view, value, addend); }
static inline void
addr16(unsigned char* view,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{ This_reloc::rela16(view, object, psymval, addend); }
// R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
static inline void
addr16_ds(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This::template rela<16>(view, 0, 0xfffc, value, addend);
}
// R_POWERPC_ADDR16_LO: (Symbol + Addend) & 0xffff
static inline void
addr16_lo(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{ This_reloc::rela16(view, value, addend); }
static inline void
addr16_lo(unsigned char* view,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{ This_reloc::rela16(view, object, psymval, addend); }
// R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
static inline void
addr16_hi(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This::template rela<16>(view, 16, 0xffff, value, addend);
}
static inline void
addr16_hi(unsigned char* view,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
This::template rela<16>(view, 16, 0xffff, object, psymval, addend);
}
// R_POWERPC_ADDR16_HA: Same as R_POWERPC_ADDR16_HI except that if the
// final value of the low 16 bits of the
// relocation is negative, add one.
static inline void
addr16_ha(unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr value,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
typename elfcpp::Elf_types<size>::Elf_Addr reloc;
reloc = value + addend;
if (reloc & 0x8000)
reloc += 0x10000;
reloc >>= 16;
elfcpp::Swap<16, big_endian>::writeval(view, reloc);
}
static inline void
addr16_ha(unsigned char* view,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend)
{
typename elfcpp::Elf_types<size>::Elf_Addr reloc;
reloc = psymval->value(object, addend);
if (reloc & 0x8000)
reloc += 0x10000;
reloc >>= 16;
elfcpp::Swap<16, big_endian>::writeval(view, reloc);
}
// R_PPC_REL16: (Symbol + Addend - Address) & 0xffff
static inline void
rel16(unsigned char* view,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{ This_reloc::pcrela16(view, object, psymval, addend, address); }
// R_PPC_REL16_LO: (Symbol + Addend - Address) & 0xffff
static inline void
rel16_lo(unsigned char* view,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{ This_reloc::pcrela16(view, object, psymval, addend, address); }
// R_PPC_REL16_HI: ((Symbol + Addend - Address) >> 16) & 0xffff
static inline void
rel16_hi(unsigned char* view,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
This::template pcrela<16>(view, 16, 0xffff, object,
psymval, addend, address);
}
// R_PPC_REL16_HA: Same as R_PPC_REL16_HI except that if the
// final value of the low 16 bits of the
// relocation is negative, add one.
static inline void
rel16_ha(unsigned char* view,
const Sized_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval,
typename elfcpp::Elf_types<size>::Elf_Addr addend,
typename elfcpp::Elf_types<size>::Elf_Addr address)
{
typename elfcpp::Elf_types<size>::Elf_Addr reloc;
reloc = (psymval->value(object, addend) - address);
if (reloc & 0x8000)
reloc += 0x10000;
reloc >>= 16;
elfcpp::Swap<16, big_endian>::writeval(view, reloc);
}
};
// Get the GOT section, creating it if necessary.
template<int size, bool big_endian>
Output_data_got<size, big_endian>*
Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
Layout* layout)
{
if (this->got_ == NULL)
{
gold_assert(symtab != NULL && layout != NULL);
this->got_ = new Output_data_got<size, big_endian>();
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
this->got_);
// Create the GOT2 or TOC in the .got section.
if (size == 32)
{
this->got2_ = new Output_data_space(4, "** GOT2");
layout->add_output_section_data(".got2", elfcpp::SHT_PROGBITS,
elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE,
this->got2_);
}
else
{
this->toc_ = new Output_data_space(8, "** TOC");
layout->add_output_section_data(".toc", elfcpp::SHT_PROGBITS,
elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE,
this->toc_);
}
// Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
this->got_,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
}
return this->got_;
}
// Get the dynamic reloc section, creating it if necessary.
template<int size, bool big_endian>
typename Target_powerpc<size, big_endian>::Reloc_section*
Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
{
if (this->rela_dyn_ == NULL)
{
gold_assert(layout != NULL);
this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->rela_dyn_);
}
return this->rela_dyn_;
}
// A class to handle the PLT data.
template<int size, bool big_endian>
class Output_data_plt_powerpc : public Output_section_data
{
public:
typedef Output_data_reloc<elfcpp::SHT_RELA, true,
size, big_endian> Reloc_section;
Output_data_plt_powerpc(Layout*);
// Add an entry to the PLT.
void add_entry(Symbol* gsym);
// Return the .rela.plt section data.
const Reloc_section* rel_plt() const
{
return this->rel_;
}
protected:
void do_adjust_output_section(Output_section* os);
private:
// The size of an entry in the PLT.
static const int base_plt_entry_size = (size == 32 ? 16 : 24);
// Set the final size.
void
set_final_data_size()
{
unsigned int full_count = this->count_ + 4;
this->set_data_size(full_count * base_plt_entry_size);
}
// Write out the PLT data.
void
do_write(Output_file*);
// The reloc section.
Reloc_section* rel_;
// The number of PLT entries.
unsigned int count_;
};
// Create the PLT section. The ordinary .got section is an argument,
// since we need to refer to the start.
template<int size, bool big_endian>
Output_data_plt_powerpc<size, big_endian>::Output_data_plt_powerpc(Layout* layout)
: Output_section_data(size == 32 ? 4 : 8), count_(0)
{
this->rel_ = new Reloc_section(false);
layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
elfcpp::SHF_ALLOC, this->rel_);
}
template<int size, bool big_endian>
void
Output_data_plt_powerpc<size, big_endian>::do_adjust_output_section(Output_section* os)
{
os->set_entsize(0);
}
// Add an entry to the PLT.
template<int size, bool big_endian>
void
Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
{
gold_assert(!gsym->has_plt_offset());
unsigned int index = this->count_+ + 4;
section_offset_type plt_offset;
if (index < 8192)
plt_offset = index * base_plt_entry_size;
else
gold_unreachable();
gsym->set_plt_offset(plt_offset);
++this->count_;
gsym->set_needs_dynsym_entry();
this->rel_->add_global(gsym, elfcpp::R_POWERPC_JMP_SLOT, this,
plt_offset, 0);
}
static const unsigned int addis_11_11 = 0x3d6b0000;
static const unsigned int addis_11_30 = 0x3d7e0000;
static const unsigned int addis_12_12 = 0x3d8c0000;
static const unsigned int addi_11_11 = 0x396b0000;
static const unsigned int add_0_11_11 = 0x7c0b5a14;
static const unsigned int add_11_0_11 = 0x7d605a14;
static const unsigned int b = 0x48000000;
static const unsigned int bcl_20_31 = 0x429f0005;
static const unsigned int bctr = 0x4e800420;
static const unsigned int lis_11 = 0x3d600000;
static const unsigned int lis_12 = 0x3d800000;
static const unsigned int lwzu_0_12 = 0x840c0000;
static const unsigned int lwz_0_12 = 0x800c0000;
static const unsigned int lwz_11_11 = 0x816b0000;
static const unsigned int lwz_11_30 = 0x817e0000;
static const unsigned int lwz_12_12 = 0x818c0000;
static const unsigned int mflr_0 = 0x7c0802a6;
static const unsigned int mflr_12 = 0x7d8802a6;
static const unsigned int mtctr_0 = 0x7c0903a6;
static const unsigned int mtctr_11 = 0x7d6903a6;
static const unsigned int mtlr_0 = 0x7c0803a6;
static const unsigned int nop = 0x60000000;
static const unsigned int sub_11_11_12 = 0x7d6c5850;
static const unsigned int addis_r12_r2 = 0x3d820000; /* addis %r12,%r2,xxx@ha */
static const unsigned int std_r2_40r1 = 0xf8410028; /* std %r2,40(%r1) */
static const unsigned int ld_r11_0r12 = 0xe96c0000; /* ld %r11,xxx+0@l(%r12) */
static const unsigned int ld_r2_0r12 = 0xe84c0000; /* ld %r2,xxx+8@l(%r12) */
/* ld %r11,xxx+16@l(%r12) */
// Write out the PLT.
template<int size, bool big_endian>
void
Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
{
const off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
unsigned char* pov = oview;
memset(pov, 0, base_plt_entry_size * 4);
pov += base_plt_entry_size * 4;
unsigned int plt_offset = base_plt_entry_size * 4;
const unsigned int count = this->count_;
if (size == 64)
{
for (unsigned int i = 0; i < count; i++)
{
}
}
else
{
for (unsigned int i = 0; i < count; i++)
{
elfcpp::Swap<32, true>::writeval(pov + 0x00,
lwz_11_30 + plt_offset);
elfcpp::Swap<32, true>::writeval(pov + 0x04, mtctr_11);
elfcpp::Swap<32, true>::writeval(pov + 0x08, bctr);
elfcpp::Swap<32, true>::writeval(pov + 0x0c, nop);
pov += base_plt_entry_size;
plt_offset += base_plt_entry_size;
}
}
gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
of->write_output_view(offset, oview_size, oview);
}
// Create a PLT entry for a global symbol.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
Layout* layout,
Symbol* gsym)
{
if (gsym->has_plt_offset())
return;
if (this->plt_ == NULL)
{
// Create the GOT section first.
this->got_section(symtab, layout);
this->plt_ = new Output_data_plt_powerpc<size, big_endian>(layout);
layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR
| elfcpp::SHF_WRITE),
this->plt_);
// Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
this->plt_,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
}
this->plt_->add_entry(gsym);
}
// Create a GOT entry for the TLS module index.
template<int size, bool big_endian>
unsigned int
Target_powerpc<size, big_endian>::got_mod_index_entry(Symbol_table* symtab,
Layout* layout,
Sized_relobj<size, big_endian>* object)
{
if (this->got_mod_index_offset_ == -1U)
{
gold_assert(symtab != NULL && layout != NULL && object != NULL);
Reloc_section* rela_dyn = this->rela_dyn_section(layout);
Output_data_got<size, big_endian>* got;
unsigned int got_offset;
got = this->got_section(symtab, layout);
got_offset = got->add_constant(0);
rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
got_offset, 0);
got->add_constant(0);
this->got_mod_index_offset_ = got_offset;
}
return this->got_mod_index_offset_;
}
// Optimize the TLS relocation type based on what we know about the
// symbol. IS_FINAL is true if the final address of this symbol is
// known at link time.
static tls::Tls_optimization
optimize_tls_reloc(bool /* is_final */, int r_type)
{
// If we are generating a shared library, then we can't do anything
// in the linker.
if (parameters->options().shared())
return tls::TLSOPT_NONE;
switch (r_type)
{
// XXX
default:
gold_unreachable();
}
}
// Report an unsupported relocation against a local symbol.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
Sized_relobj<size, big_endian>* object,
unsigned int r_type)
{
gold_error(_("%s: unsupported reloc %u against local symbol"),
object->name().c_str(), r_type);
}
// We are about to emit a dynamic relocation of type R_TYPE. If the
// dynamic linker does not support it, issue an error.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
unsigned int r_type)
{
gold_assert(r_type != elfcpp::R_POWERPC_NONE);
// These are the relocation types supported by glibc for both 32-bit
// and 64-bit powerpc.
switch (r_type)
{
case elfcpp::R_POWERPC_RELATIVE:
case elfcpp::R_POWERPC_GLOB_DAT:
case elfcpp::R_POWERPC_DTPMOD:
case elfcpp::R_POWERPC_DTPREL:
case elfcpp::R_POWERPC_TPREL:
case elfcpp::R_POWERPC_JMP_SLOT:
case elfcpp::R_POWERPC_COPY:
case elfcpp::R_POWERPC_ADDR32:
case elfcpp::R_POWERPC_ADDR24:
case elfcpp::R_POWERPC_REL24:
return;
default:
break;
}
if (size == 64)
{
switch (r_type)
{
// These are the relocation types supported only on 64-bit.
case elfcpp::R_PPC64_ADDR64:
case elfcpp::R_PPC64_TPREL16_LO_DS:
case elfcpp::R_PPC64_TPREL16_DS:
case elfcpp::R_POWERPC_TPREL16:
case elfcpp::R_POWERPC_TPREL16_LO:
case elfcpp::R_POWERPC_TPREL16_HI:
case elfcpp::R_POWERPC_TPREL16_HA:
case elfcpp::R_PPC64_TPREL16_HIGHER:
case elfcpp::R_PPC64_TPREL16_HIGHEST:
case elfcpp::R_PPC64_TPREL16_HIGHERA:
case elfcpp::R_PPC64_TPREL16_HIGHESTA:
case elfcpp::R_PPC64_ADDR16_LO_DS:
case elfcpp::R_POWERPC_ADDR16_LO:
case elfcpp::R_POWERPC_ADDR16_HI:
case elfcpp::R_POWERPC_ADDR16_HA:
case elfcpp::R_POWERPC_ADDR30:
case elfcpp::R_PPC64_UADDR64:
case elfcpp::R_POWERPC_UADDR32:
case elfcpp::R_POWERPC_ADDR16:
case elfcpp::R_POWERPC_UADDR16:
case elfcpp::R_PPC64_ADDR16_DS:
case elfcpp::R_PPC64_ADDR16_HIGHER:
case elfcpp::R_PPC64_ADDR16_HIGHEST:
case elfcpp::R_PPC64_ADDR16_HIGHERA:
case elfcpp::R_PPC64_ADDR16_HIGHESTA:
case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
case elfcpp::R_POWERPC_REL32:
case elfcpp::R_PPC64_REL64:
return;
default:
break;
}
}
else
{
switch (r_type)
{
// These are the relocation types supported only on 32-bit.
default:
break;
}
}
// This prevents us from issuing more than one error per reloc
// section. But we can still wind up issuing more than one
// error per object file.
if (this->issued_non_pic_error_)
return;
gold_assert(parameters->options().output_is_position_independent());
object->error(_("requires unsupported dynamic reloc; "
"recompile with -fPIC"));
this->issued_non_pic_error_ = true;
return;
}
// Scan a relocation for a local symbol.
template<int size, bool big_endian>
inline void
Target_powerpc<size, big_endian>::Scan::local(
Symbol_table* symtab,
Layout* layout,
Target_powerpc<size, big_endian>* target,
Sized_relobj<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc,
unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym)
{
switch (r_type)
{
case elfcpp::R_POWERPC_NONE:
case elfcpp::R_POWERPC_GNU_VTINHERIT:
case elfcpp::R_POWERPC_GNU_VTENTRY:
break;
case elfcpp::R_PPC64_ADDR64:
case elfcpp::R_POWERPC_ADDR32:
case elfcpp::R_POWERPC_ADDR16_HA:
case elfcpp::R_POWERPC_ADDR16_LO:
// If building a shared library (or a position-independent
// executable), we need to create a dynamic relocation for
// this location.
if (parameters->options().output_is_position_independent())
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
check_non_pic(object, r_type);
if (lsym.get_st_type() != elfcpp::STT_SECTION)
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
rela_dyn->add_local(object, r_sym, r_type, output_section,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
gold_assert(lsym.get_st_value() == 0);
rela_dyn->add_local_relative(object, r_sym, r_type,
output_section, data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend());
}
}
break;
case elfcpp::R_POWERPC_REL24:
case elfcpp::R_PPC_LOCAL24PC:
case elfcpp::R_POWERPC_REL32:
case elfcpp::R_PPC_REL16_LO:
case elfcpp::R_PPC_REL16_HA:
break;
case elfcpp::R_POWERPC_GOT16:
case elfcpp::R_POWERPC_GOT16_LO:
case elfcpp::R_POWERPC_GOT16_HI:
case elfcpp::R_POWERPC_GOT16_HA:
case elfcpp::R_PPC64_TOC16:
case elfcpp::R_PPC64_TOC16_LO:
case elfcpp::R_PPC64_TOC16_HI:
case elfcpp::R_PPC64_TOC16_HA:
case elfcpp::R_PPC64_TOC16_DS:
case elfcpp::R_PPC64_TOC16_LO_DS:
{
// The symbol requires a GOT entry.
Output_data_got<size, big_endian>* got;
unsigned int r_sym;
got = target->got_section(symtab, layout);
r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
// If we are generating a shared object, we need to add a
// dynamic relocation for this symbol's GOT entry.
if (parameters->options().output_is_position_independent())
{
if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
unsigned int off;
off = got->add_constant(0);
object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
rela_dyn->add_local_relative(object, r_sym,
elfcpp::R_POWERPC_RELATIVE,
got, off, 0);
}
}
else
got->add_local(object, r_sym, GOT_TYPE_STANDARD);
}
break;
case elfcpp::R_PPC64_TOC:
// We need a GOT section.
target->got_section(symtab, layout);
break;
// These are relocations which should only be seen by the
// dynamic linker, and should never be seen here.
case elfcpp::R_POWERPC_COPY:
case elfcpp::R_POWERPC_GLOB_DAT:
case elfcpp::R_POWERPC_JMP_SLOT:
case elfcpp::R_POWERPC_RELATIVE:
case elfcpp::R_POWERPC_DTPMOD:
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
default:
unsupported_reloc_local(object, r_type);
break;
}
}
// Report an unsupported relocation against a global symbol.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
Sized_relobj<size, big_endian>* object,
unsigned int r_type,
Symbol* gsym)
{
gold_error(_("%s: unsupported reloc %u against global symbol %s"),
object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
// Scan a relocation for a global symbol.
template<int size, bool big_endian>
inline void
Target_powerpc<size, big_endian>::Scan::global(
Symbol_table* symtab,
Layout* layout,
Target_powerpc<size, big_endian>* target,
Sized_relobj<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rela<size, big_endian>& reloc,
unsigned int r_type,
Symbol* gsym)
{
switch (r_type)
{
case elfcpp::R_POWERPC_NONE:
case elfcpp::R_POWERPC_GNU_VTINHERIT:
case elfcpp::R_POWERPC_GNU_VTENTRY:
break;
case elfcpp::R_PPC_PLTREL24:
// If the symbol is fully resolved, this is just a PC32 reloc.
// Otherwise we need a PLT entry.
if (gsym->final_value_is_known())
break;
// If building a shared library, we can also skip the PLT entry
// if the symbol is defined in the output file and is protected
// or hidden.
if (gsym->is_defined()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible())
break;
target->make_plt_entry(symtab, layout, gsym);
break;
case elfcpp::R_POWERPC_ADDR16:
case elfcpp::R_POWERPC_ADDR16_LO:
case elfcpp::R_POWERPC_ADDR16_HI:
case elfcpp::R_POWERPC_ADDR16_HA:
case elfcpp::R_POWERPC_ADDR32:
case elfcpp::R_PPC64_ADDR64:
{
// Make a PLT entry if necessary.
if (gsym->needs_plt_entry())
{
target->make_plt_entry(symtab, layout, gsym);
// Since this is not a PC-relative relocation, we may be
// taking the address of a function. In that case we need to
// set the entry in the dynamic symbol table to the address of
// the PLT entry.
if (gsym->is_from_dynobj() && !parameters->options().shared())
gsym->set_needs_dynsym_value();
}
// Make a dynamic relocation if necessary.
if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
{
if (gsym->may_need_copy_reloc())
{
target->copy_reloc(symtab, layout, object,
data_shndx, output_section, gsym, reloc);
}
else if ((r_type == elfcpp::R_POWERPC_ADDR32
|| r_type == elfcpp::R_PPC64_ADDR64)
&& gsym->can_use_relative_reloc(false))
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
rela_dyn->add_global_relative(gsym, elfcpp::R_POWERPC_RELATIVE,
output_section, object,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
else
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
check_non_pic(object, r_type);
if (gsym->is_from_dynobj()
|| gsym->is_undefined()
|| gsym->is_preemptible())
rela_dyn->add_global(gsym, r_type, output_section,
object, data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend());
else
rela_dyn->add_global_relative(gsym, r_type,
output_section, object,
data_shndx,
reloc.get_r_offset(),
reloc.get_r_addend());
}
}
}
break;
case elfcpp::R_POWERPC_REL24:
case elfcpp::R_PPC_LOCAL24PC:
case elfcpp::R_PPC_REL16:
case elfcpp::R_PPC_REL16_LO:
case elfcpp::R_PPC_REL16_HI:
case elfcpp::R_PPC_REL16_HA:
{
if (gsym->needs_plt_entry())
target->make_plt_entry(symtab, layout, gsym);
// Make a dynamic relocation if necessary.
int flags = Symbol::NON_PIC_REF;
if (gsym->type() == elfcpp::STT_FUNC)
flags |= Symbol::FUNCTION_CALL;
if (gsym->needs_dynamic_reloc(flags))
{
if (gsym->may_need_copy_reloc())
{
target->copy_reloc(symtab, layout, object,
data_shndx, output_section, gsym,
reloc);
}
else
{
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
check_non_pic(object, r_type);
rela_dyn->add_global(gsym, r_type, output_section, object,
data_shndx, reloc.get_r_offset(),
reloc.get_r_addend());
}
}
}
break;
case elfcpp::R_POWERPC_GOT16:
case elfcpp::R_POWERPC_GOT16_LO:
case elfcpp::R_POWERPC_GOT16_HI:
case elfcpp::R_POWERPC_GOT16_HA:
case elfcpp::R_PPC64_TOC16:
case elfcpp::R_PPC64_TOC16_LO:
case elfcpp::R_PPC64_TOC16_HI:
case elfcpp::R_PPC64_TOC16_HA:
case elfcpp::R_PPC64_TOC16_DS:
case elfcpp::R_PPC64_TOC16_LO_DS:
{
// The symbol requires a GOT entry.
Output_data_got<size, big_endian>* got;
got = target->got_section(symtab, layout);
if (gsym->final_value_is_known())
got->add_global(gsym, GOT_TYPE_STANDARD);
else
{
// If this symbol is not fully resolved, we need to add a
// dynamic relocation for it.
Reloc_section* rela_dyn = target->rela_dyn_section(layout);
if (gsym->is_from_dynobj()
|| gsym->is_undefined()
|| gsym->is_preemptible())
got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
elfcpp::R_POWERPC_GLOB_DAT);
else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
{
unsigned int off = got->add_constant(0);
gsym->set_got_offset(GOT_TYPE_STANDARD, off);
rela_dyn->add_global_relative(gsym, elfcpp::R_POWERPC_RELATIVE,
got, off, 0);
}
}
}
break;
case elfcpp::R_PPC64_TOC:
// We need a GOT section.
target->got_section(symtab, layout);
break;
case elfcpp::R_POWERPC_GOT_TPREL16:
case elfcpp::R_POWERPC_TLS:
// XXX TLS
break;
// These are relocations which should only be seen by the
// dynamic linker, and should never be seen here.
case elfcpp::R_POWERPC_COPY:
case elfcpp::R_POWERPC_GLOB_DAT:
case elfcpp::R_POWERPC_JMP_SLOT:
case elfcpp::R_POWERPC_RELATIVE:
case elfcpp::R_POWERPC_DTPMOD:
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
default:
unsupported_reloc_global(object, r_type, gsym);
break;
}
}
// Process relocations for gc.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::gc_process_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj<size, big_endian>* object,
unsigned int data_shndx,
unsigned int,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
typedef Target_powerpc<size, big_endian> Powerpc;
typedef typename Target_powerpc<size, big_endian>::Scan Scan;
gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
// Scan relocations for a section.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::scan_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
typedef Target_powerpc<size, big_endian> Powerpc;
typedef typename Target_powerpc<size, big_endian>::Scan Scan;
static Output_data_space* sdata;
if (sh_type == elfcpp::SHT_REL)
{
gold_error(_("%s: unsupported REL reloc section"),
object->name().c_str());
return;
}
// Define _SDA_BASE_ at the start of the .sdata section.
if (sdata == NULL)
{
// layout->find_output_section(".sdata") == NULL
sdata = new Output_data_space(4, "** sdata");
Output_section* os = layout->add_output_section_data(".sdata", 0,
elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE,
sdata);
symtab->define_in_output_data("_SDA_BASE_", NULL,
os,
32768, 0,
elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
}
gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
// Finalize the sections.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::do_finalize_sections(
Layout* layout,
const Input_objects*)
{
// Fill in some more dynamic tags.
Output_data_dynamic* const odyn = layout->dynamic_data();
if (odyn != NULL)
{
if (this->plt_ != NULL)
{
const Output_data* od = this->plt_->rel_plt();
odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
odyn->add_section_address(elfcpp::DT_JMPREL, od);
odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
odyn->add_section_address(elfcpp::DT_PLTGOT, this->plt_);
}
if (this->rela_dyn_ != NULL)
{
const Output_data* od = this->rela_dyn_;
odyn->add_section_address(elfcpp::DT_RELA, od);
odyn->add_section_size(elfcpp::DT_RELASZ, od);
odyn->add_constant(elfcpp::DT_RELAENT,
elfcpp::Elf_sizes<size>::rela_size);
}
if (!parameters->options().shared())
{
// The value of the DT_DEBUG tag is filled in by the dynamic
// linker at run time, and used by the debugger.
odyn->add_constant(elfcpp::DT_DEBUG, 0);
}
}
// Emit any relocs we saved in an attempt to avoid generating COPY
// relocs.
if (this->copy_relocs_.any_saved_relocs())
this->copy_relocs_.emit(this->rela_dyn_section(layout));
}
// Perform a relocation.
template<int size, bool big_endian>
inline bool
Target_powerpc<size, big_endian>::Relocate::relocate(
const Relocate_info<size, big_endian>* relinfo,
Target_powerpc* target,
Output_section*,
size_t relnum,
const elfcpp::Rela<size, big_endian>& rela,
unsigned int r_type,
const Sized_symbol<size>* gsym,
const Symbol_value<size>* psymval,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr address,
section_size_type /* view_size */)
{
const unsigned int toc_base_offset = 0x8000;
typedef Powerpc_relocate_functions<size, big_endian> Reloc;
// Pick the value to use for symbols defined in shared objects.
Symbol_value<size> symval;
if (gsym != NULL
&& gsym->use_plt_offset(r_type == elfcpp::R_POWERPC_REL24
|| r_type == elfcpp::R_PPC_LOCAL24PC
|| r_type == elfcpp::R_PPC_REL16
|| r_type == elfcpp::R_PPC_REL16_LO
|| r_type == elfcpp::R_PPC_REL16_HI
|| r_type == elfcpp::R_PPC_REL16_HA))
{
elfcpp::Elf_Xword value;
value = target->plt_section()->address() + gsym->plt_offset();
symval.set_output_value(value);
psymval = &symval;
}
const Sized_relobj<size, big_endian>* object = relinfo->object;
elfcpp::Elf_Xword addend = rela.get_r_addend();
// Get the GOT offset if needed. Unlike i386 and x86_64, our GOT
// pointer points to the beginning, not the end, of the table.
// So we just use the plain offset.
bool have_got_offset = false;
unsigned int got_offset = 0;
unsigned int got2_offset = 0;
switch (r_type)
{
case elfcpp::R_PPC64_TOC16:
case elfcpp::R_PPC64_TOC16_LO:
case elfcpp::R_PPC64_TOC16_HI:
case elfcpp::R_PPC64_TOC16_HA:
case elfcpp::R_PPC64_TOC16_DS:
case elfcpp::R_PPC64_TOC16_LO_DS:
// Subtract the TOC base address.
addend -= target->toc_section()->address() + toc_base_offset;
/* FALLTHRU */
case elfcpp::R_POWERPC_GOT16:
case elfcpp::R_POWERPC_GOT16_LO:
case elfcpp::R_POWERPC_GOT16_HI:
case elfcpp::R_POWERPC_GOT16_HA:
case elfcpp::R_PPC64_GOT16_DS:
case elfcpp::R_PPC64_GOT16_LO_DS:
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
got_offset = gsym->got_offset(GOT_TYPE_STANDARD);
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
}
have_got_offset = true;
break;
// R_PPC_PLTREL24 is rather special. If non-zero,
// the addend specifies the GOT pointer offset within .got2.
case elfcpp::R_PPC_PLTREL24:
if (addend >= 32768)
{
Output_data_space* got2;
got2 = target->got2_section();
got2_offset = got2->offset();
addend += got2_offset;
}
have_got_offset = true;
break;
default:
break;
}
switch (r_type)
{
case elfcpp::R_POWERPC_NONE:
case elfcpp::R_POWERPC_GNU_VTINHERIT:
case elfcpp::R_POWERPC_GNU_VTENTRY:
break;
case elfcpp::R_POWERPC_REL32:
Reloc::rel32(view, object, psymval, addend, address);
break;
case elfcpp::R_POWERPC_REL24:
Reloc::rel24(view, object, psymval, addend, address);
break;
case elfcpp::R_POWERPC_REL14:
Reloc::rel14(view, object, psymval, addend, address);
break;
case elfcpp::R_PPC_PLTREL24:
Reloc::rel24(view, object, psymval, addend, address);
break;
case elfcpp::R_PPC_LOCAL24PC:
Reloc::rel24(view, object, psymval, addend, address);
break;
case elfcpp::R_PPC64_ADDR64:
if (!parameters->options().output_is_position_independent())
Relocate_functions<size, big_endian>::rela64(view, object,
psymval, addend);
break;
case elfcpp::R_POWERPC_ADDR32:
if (!parameters->options().output_is_position_independent())
Relocate_functions<size, big_endian>::rela32(view, object,
psymval, addend);
break;
case elfcpp::R_POWERPC_ADDR16_LO:
Reloc::addr16_lo(view, object, psymval, addend);
break;
case elfcpp::R_POWERPC_ADDR16_HI:
Reloc::addr16_hi(view, object, psymval, addend);
break;
case elfcpp::R_POWERPC_ADDR16_HA:
Reloc::addr16_ha(view, object, psymval, addend);
break;
case elfcpp::R_PPC_REL16_LO:
Reloc::rel16_lo(view, object, psymval, addend, address);
break;
case elfcpp::R_PPC_REL16_HI:
Reloc::rel16_lo(view, object, psymval, addend, address);
break;
case elfcpp::R_PPC_REL16_HA:
Reloc::rel16_ha(view, object, psymval, addend, address);
break;
case elfcpp::R_POWERPC_GOT16:
Reloc::addr16(view, got_offset, addend);
break;
case elfcpp::R_POWERPC_GOT16_LO:
Reloc::addr16_lo(view, got_offset, addend);
break;
case elfcpp::R_POWERPC_GOT16_HI:
Reloc::addr16_hi(view, got_offset, addend);
break;
case elfcpp::R_POWERPC_GOT16_HA:
Reloc::addr16_ha(view, got_offset, addend);
break;
case elfcpp::R_PPC64_TOC16:
Reloc::addr16(view, got_offset, addend);
break;
case elfcpp::R_PPC64_TOC16_LO:
Reloc::addr16_lo(view, got_offset, addend);
break;
case elfcpp::R_PPC64_TOC16_HI:
Reloc::addr16_hi(view, got_offset, addend);
break;
case elfcpp::R_PPC64_TOC16_HA:
Reloc::addr16_ha(view, got_offset, addend);
break;
case elfcpp::R_PPC64_TOC16_DS:
case elfcpp::R_PPC64_TOC16_LO_DS:
Reloc::addr16_ds(view, got_offset, addend);
break;
case elfcpp::R_PPC64_TOC:
{
elfcpp::Elf_types<64>::Elf_Addr value;
value = target->toc_section()->address() + toc_base_offset;
Relocate_functions<64, false>::rela64(view, value, addend);
}
break;
case elfcpp::R_POWERPC_COPY:
case elfcpp::R_POWERPC_GLOB_DAT:
case elfcpp::R_POWERPC_JMP_SLOT:
case elfcpp::R_POWERPC_RELATIVE:
// This is an outstanding tls reloc, which is unexpected when
// linking.
case elfcpp::R_POWERPC_DTPMOD:
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unexpected reloc %u in object file"),
r_type);
break;
default:
gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
_("unsupported reloc %u"),
r_type);
break;
}
return true;
}
// Perform a TLS relocation.
template<int size, bool big_endian>
inline void
Target_powerpc<size, big_endian>::Relocate::relocate_tls(
const Relocate_info<size, big_endian>* relinfo,
Target_powerpc<size, big_endian>* target,
size_t relnum,
const elfcpp::Rela<size, big_endian>& rela,
unsigned int r_type,
const Sized_symbol<size>* gsym,
const Symbol_value<size>* psymval,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr address,
section_size_type)
{
Output_segment* tls_segment = relinfo->layout->tls_segment();
typedef Powerpc_relocate_functions<size, big_endian> Reloc;
const Sized_relobj<size, big_endian>* object = relinfo->object;
const elfcpp::Elf_Xword addend = rela.get_r_addend();
typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(object, 0);
const bool is_final =
(gsym == NULL
? !parameters->options().output_is_position_independent()
: gsym->final_value_is_known());
const tls::Tls_optimization optimized_type
= optimize_tls_reloc(is_final, r_type);
switch (r_type)
{
// XXX
}
}
// Relocate section data.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::relocate_section(
const Relocate_info<size, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr address,
section_size_type view_size,
const Reloc_symbol_changes* reloc_symbol_changes)
{
typedef Target_powerpc<size, big_endian> Powerpc;
typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
gold_assert(sh_type == elfcpp::SHT_RELA);
gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
Powerpc_relocate>(
relinfo,
this,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
address,
view_size,
reloc_symbol_changes);
}
// Return the size of a relocation while scanning during a relocatable
// link.
template<int size, bool big_endian>
unsigned int
Target_powerpc<size, big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
unsigned int,
Relobj*)
{
// We are always SHT_RELA, so we should never get here.
gold_unreachable();
return 0;
}
// Scan the relocs during a relocatable link.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::scan_relocatable_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs* rr)
{
gold_assert(sh_type == elfcpp::SHT_RELA);
typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
Relocatable_size_for_reloc> Scan_relocatable_relocs;
gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
Scan_relocatable_relocs>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols,
rr);
}
// Relocate a section during a relocatable link.
template<int size, bool big_endian>
void
Target_powerpc<size, big_endian>::relocate_for_relocatable(
const Relocate_info<size, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
off_t offset_in_output_section,
const Relocatable_relocs* rr,
unsigned char* view,
typename elfcpp::Elf_types<size>::Elf_Addr view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size)
{
gold_assert(sh_type == elfcpp::SHT_RELA);
gold::relocate_for_relocatable<size, big_endian, elfcpp::SHT_RELA>(
relinfo,
prelocs,
reloc_count,
output_section,
offset_in_output_section,
rr,
view,
view_address,
view_size,
reloc_view,
reloc_view_size);
}
// Return the value to use for a dynamic which requires special
// treatment. This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
template<int size, bool big_endian>
uint64_t
Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
{
gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
return this->plt_section()->address() + gsym->plt_offset();
}
// The selector for powerpc object files.
template<int size, bool big_endian>
class Target_selector_powerpc : public Target_selector
{
public:
Target_selector_powerpc()
: Target_selector(elfcpp::EM_NONE, size, big_endian,
(size == 64 ?
(big_endian ? "elf64-powerpc" : "elf64-powerpcle") :
(big_endian ? "elf32-powerpc" : "elf32-powerpcle")))
{ }
Target* do_recognize(int machine, int, int)
{
switch (size)
{
case 64:
if (machine != elfcpp::EM_PPC64)
return NULL;
break;
case 32:
if (machine != elfcpp::EM_PPC)
return NULL;
break;
default:
return NULL;
}
return this->instantiate_target();
}
Target* do_instantiate_target()
{ return new Target_powerpc<size, big_endian>(); }
};
Target_selector_powerpc<32, true> target_selector_ppc32;
Target_selector_powerpc<32, false> target_selector_ppc32le;
Target_selector_powerpc<64, true> target_selector_ppc64;
Target_selector_powerpc<64, false> target_selector_ppc64le;
} // End anonymous namespace.