| /* |
| * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers |
| * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. |
| * Copyright (c) 1998-1999 by Silicon Graphics. All rights reserved. |
| * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved. |
| * |
| * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED |
| * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. |
| * |
| * Permission is hereby granted to use or copy this program |
| * for any purpose, provided the above notices are retained on all copies. |
| * Permission to modify the code and to distribute modified code is granted, |
| * provided the above notices are retained, and a notice that the code was |
| * modified is included with the above copyright notice. |
| */ |
| |
| /* #define DEBUG */ |
| #include <stdio.h> |
| #include "private/gc_priv.h" |
| |
| GC_bool GC_use_entire_heap = 0; |
| |
| /* |
| * Free heap blocks are kept on one of several free lists, |
| * depending on the size of the block. Each free list is doubly linked. |
| * Adjacent free blocks are coalesced. |
| */ |
| |
| |
| # define MAX_BLACK_LIST_ALLOC (2*HBLKSIZE) |
| /* largest block we will allocate starting on a black */ |
| /* listed block. Must be >= HBLKSIZE. */ |
| |
| |
| # define UNIQUE_THRESHOLD 32 |
| /* Sizes up to this many HBLKs each have their own free list */ |
| # define HUGE_THRESHOLD 256 |
| /* Sizes of at least this many heap blocks are mapped to a */ |
| /* single free list. */ |
| # define FL_COMPRESSION 8 |
| /* In between sizes map this many distinct sizes to a single */ |
| /* bin. */ |
| |
| # define N_HBLK_FLS (HUGE_THRESHOLD - UNIQUE_THRESHOLD)/FL_COMPRESSION \ |
| + UNIQUE_THRESHOLD |
| |
| struct hblk * GC_hblkfreelist[N_HBLK_FLS+1] = { 0 }; |
| |
| #ifndef USE_MUNMAP |
| |
| word GC_free_bytes[N_HBLK_FLS+1] = { 0 }; |
| /* Number of free bytes on each list. */ |
| |
| /* Is bytes + the number of free bytes on lists n .. N_HBLK_FLS */ |
| /* > GC_max_large_allocd_bytes? */ |
| # ifdef __GNUC__ |
| __inline__ |
| # endif |
| static GC_bool GC_enough_large_bytes_left(bytes,n) |
| word bytes; |
| int n; |
| { |
| int i; |
| for (i = N_HBLK_FLS; i >= n; --i) { |
| bytes += GC_free_bytes[i]; |
| if (bytes > GC_max_large_allocd_bytes) return TRUE; |
| } |
| return FALSE; |
| } |
| |
| # define INCR_FREE_BYTES(n, b) GC_free_bytes[n] += (b); |
| |
| # define FREE_ASSERT(e) GC_ASSERT(e) |
| |
| #else /* USE_MUNMAP */ |
| |
| # define INCR_FREE_BYTES(n, b) |
| # define FREE_ASSERT(e) |
| |
| #endif /* USE_MUNMAP */ |
| |
| /* Map a number of blocks to the appropriate large block free list index. */ |
| int GC_hblk_fl_from_blocks(blocks_needed) |
| word blocks_needed; |
| { |
| if (blocks_needed <= UNIQUE_THRESHOLD) return blocks_needed; |
| if (blocks_needed >= HUGE_THRESHOLD) return N_HBLK_FLS; |
| return (blocks_needed - UNIQUE_THRESHOLD)/FL_COMPRESSION |
| + UNIQUE_THRESHOLD; |
| |
| } |
| |
| # define PHDR(hhdr) HDR(hhdr -> hb_prev) |
| # define NHDR(hhdr) HDR(hhdr -> hb_next) |
| |
| # ifdef USE_MUNMAP |
| # define IS_MAPPED(hhdr) (((hhdr) -> hb_flags & WAS_UNMAPPED) == 0) |
| # else /* !USE_MMAP */ |
| # define IS_MAPPED(hhdr) 1 |
| # endif /* USE_MUNMAP */ |
| |
| # if !defined(NO_DEBUGGING) |
| void GC_print_hblkfreelist() |
| { |
| struct hblk * h; |
| word total_free = 0; |
| hdr * hhdr; |
| word sz; |
| int i; |
| |
| for (i = 0; i <= N_HBLK_FLS; ++i) { |
| h = GC_hblkfreelist[i]; |
| # ifdef USE_MUNMAP |
| if (0 != h) GC_printf1("Free list %ld (Total size %ld):\n", |
| (unsigned long)i); |
| # else |
| if (0 != h) GC_printf2("Free list %ld (Total size %ld):\n", |
| (unsigned long)i, |
| (unsigned long)GC_free_bytes[i]); |
| # endif |
| while (h != 0) { |
| hhdr = HDR(h); |
| sz = hhdr -> hb_sz; |
| GC_printf2("\t0x%lx size %lu ", (unsigned long)h, (unsigned long)sz); |
| total_free += sz; |
| if (GC_is_black_listed(h, HBLKSIZE) != 0) { |
| GC_printf0("start black listed\n"); |
| } else if (GC_is_black_listed(h, hhdr -> hb_sz) != 0) { |
| GC_printf0("partially black listed\n"); |
| } else { |
| GC_printf0("not black listed\n"); |
| } |
| h = hhdr -> hb_next; |
| } |
| } |
| if (total_free != GC_large_free_bytes) { |
| GC_printf1("GC_large_free_bytes = %lu (INCONSISTENT!!)\n", |
| (unsigned long) GC_large_free_bytes); |
| } |
| GC_printf1("Total of %lu bytes on free list\n", (unsigned long)total_free); |
| } |
| |
| /* Return the free list index on which the block described by the header */ |
| /* appears, or -1 if it appears nowhere. */ |
| int free_list_index_of(wanted) |
| hdr * wanted; |
| { |
| struct hblk * h; |
| hdr * hhdr; |
| int i; |
| |
| for (i = 0; i <= N_HBLK_FLS; ++i) { |
| h = GC_hblkfreelist[i]; |
| while (h != 0) { |
| hhdr = HDR(h); |
| if (hhdr == wanted) return i; |
| h = hhdr -> hb_next; |
| } |
| } |
| return -1; |
| } |
| |
| void GC_dump_regions() |
| { |
| unsigned i; |
| ptr_t start, end; |
| ptr_t p; |
| size_t bytes; |
| hdr *hhdr; |
| for (i = 0; i < GC_n_heap_sects; ++i) { |
| start = GC_heap_sects[i].hs_start; |
| bytes = GC_heap_sects[i].hs_bytes; |
| end = start + bytes; |
| /* Merge in contiguous sections. */ |
| while (i+1 < GC_n_heap_sects && GC_heap_sects[i+1].hs_start == end) { |
| ++i; |
| end = GC_heap_sects[i].hs_start + GC_heap_sects[i].hs_bytes; |
| } |
| GC_printf2("***Section from 0x%lx to 0x%lx\n", start, end); |
| for (p = start; p < end;) { |
| hhdr = HDR(p); |
| GC_printf1("\t0x%lx ", (unsigned long)p); |
| if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) { |
| GC_printf1("Missing header!!\n", hhdr); |
| p += HBLKSIZE; |
| continue; |
| } |
| if (HBLK_IS_FREE(hhdr)) { |
| int correct_index = GC_hblk_fl_from_blocks( |
| divHBLKSZ(hhdr -> hb_sz)); |
| int actual_index; |
| |
| GC_printf1("\tfree block of size 0x%lx bytes", |
| (unsigned long)(hhdr -> hb_sz)); |
| if (IS_MAPPED(hhdr)) { |
| GC_printf0("\n"); |
| } else { |
| GC_printf0("(unmapped)\n"); |
| } |
| actual_index = free_list_index_of(hhdr); |
| if (-1 == actual_index) { |
| GC_printf1("\t\tBlock not on free list %ld!!\n", |
| correct_index); |
| } else if (correct_index != actual_index) { |
| GC_printf2("\t\tBlock on list %ld, should be on %ld!!\n", |
| actual_index, correct_index); |
| } |
| p += hhdr -> hb_sz; |
| } else { |
| GC_printf1("\tused for blocks of size 0x%lx bytes\n", |
| (unsigned long)WORDS_TO_BYTES(hhdr -> hb_sz)); |
| p += HBLKSIZE * OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz); |
| } |
| } |
| } |
| } |
| |
| # endif /* NO_DEBUGGING */ |
| |
| /* Initialize hdr for a block containing the indicated size and */ |
| /* kind of objects. */ |
| /* Return FALSE on failure. */ |
| static GC_bool setup_header(hhdr, sz, kind, flags) |
| register hdr * hhdr; |
| word sz; /* object size in words */ |
| int kind; |
| unsigned char flags; |
| { |
| register word descr; |
| |
| /* Add description of valid object pointers */ |
| if (!GC_add_map_entry(sz)) return(FALSE); |
| hhdr -> hb_map = GC_obj_map[sz > MAXOBJSZ? 0 : sz]; |
| |
| /* Set size, kind and mark proc fields */ |
| hhdr -> hb_sz = sz; |
| hhdr -> hb_obj_kind = kind; |
| hhdr -> hb_flags = flags; |
| descr = GC_obj_kinds[kind].ok_descriptor; |
| if (GC_obj_kinds[kind].ok_relocate_descr) descr += WORDS_TO_BYTES(sz); |
| hhdr -> hb_descr = descr; |
| |
| /* Clear mark bits */ |
| GC_clear_hdr_marks(hhdr); |
| |
| hhdr -> hb_last_reclaimed = (unsigned short)GC_gc_no; |
| return(TRUE); |
| } |
| |
| #define FL_UNKNOWN -1 |
| /* |
| * Remove hhdr from the appropriate free list. |
| * We assume it is on the nth free list, or on the size |
| * appropriate free list if n is FL_UNKNOWN. |
| */ |
| void GC_remove_from_fl(hhdr, n) |
| hdr * hhdr; |
| int n; |
| { |
| int index; |
| |
| GC_ASSERT(((hhdr -> hb_sz) & (HBLKSIZE-1)) == 0); |
| # ifndef USE_MUNMAP |
| /* We always need index to mainatin free counts. */ |
| if (FL_UNKNOWN == n) { |
| index = GC_hblk_fl_from_blocks(divHBLKSZ(hhdr -> hb_sz)); |
| } else { |
| index = n; |
| } |
| # endif |
| if (hhdr -> hb_prev == 0) { |
| # ifdef USE_MUNMAP |
| if (FL_UNKNOWN == n) { |
| index = GC_hblk_fl_from_blocks(divHBLKSZ(hhdr -> hb_sz)); |
| } else { |
| index = n; |
| } |
| # endif |
| GC_ASSERT(HDR(GC_hblkfreelist[index]) == hhdr); |
| GC_hblkfreelist[index] = hhdr -> hb_next; |
| } else { |
| hdr *phdr; |
| GET_HDR(hhdr -> hb_prev, phdr); |
| phdr -> hb_next = hhdr -> hb_next; |
| } |
| INCR_FREE_BYTES(index, - (signed_word)(hhdr -> hb_sz)); |
| FREE_ASSERT(GC_free_bytes[index] >= 0); |
| if (0 != hhdr -> hb_next) { |
| hdr * nhdr; |
| GC_ASSERT(!IS_FORWARDING_ADDR_OR_NIL(NHDR(hhdr))); |
| GET_HDR(hhdr -> hb_next, nhdr); |
| nhdr -> hb_prev = hhdr -> hb_prev; |
| } |
| } |
| |
| /* |
| * Return a pointer to the free block ending just before h, if any. |
| */ |
| struct hblk * GC_free_block_ending_at(h) |
| struct hblk *h; |
| { |
| struct hblk * p = h - 1; |
| hdr * phdr; |
| |
| GET_HDR(p, phdr); |
| while (0 != phdr && IS_FORWARDING_ADDR_OR_NIL(phdr)) { |
| p = FORWARDED_ADDR(p,phdr); |
| phdr = HDR(p); |
| } |
| if (0 != phdr) { |
| if(HBLK_IS_FREE(phdr)) { |
| return p; |
| } else { |
| return 0; |
| } |
| } |
| p = GC_prev_block(h - 1); |
| if (0 != p) { |
| phdr = HDR(p); |
| if (HBLK_IS_FREE(phdr) && (ptr_t)p + phdr -> hb_sz == (ptr_t)h) { |
| return p; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Add hhdr to the appropriate free list. |
| * We maintain individual free lists sorted by address. |
| */ |
| void GC_add_to_fl(h, hhdr) |
| struct hblk *h; |
| hdr * hhdr; |
| { |
| int index = GC_hblk_fl_from_blocks(divHBLKSZ(hhdr -> hb_sz)); |
| struct hblk *second = GC_hblkfreelist[index]; |
| hdr * second_hdr; |
| # ifdef GC_ASSERTIONS |
| struct hblk *next = (struct hblk *)((word)h + hhdr -> hb_sz); |
| hdr * nexthdr = HDR(next); |
| struct hblk *prev = GC_free_block_ending_at(h); |
| hdr * prevhdr = HDR(prev); |
| GC_ASSERT(nexthdr == 0 || !HBLK_IS_FREE(nexthdr) || !IS_MAPPED(nexthdr)); |
| GC_ASSERT(prev == 0 || !HBLK_IS_FREE(prevhdr) || !IS_MAPPED(prevhdr)); |
| # endif |
| GC_ASSERT(((hhdr -> hb_sz) & (HBLKSIZE-1)) == 0); |
| GC_hblkfreelist[index] = h; |
| INCR_FREE_BYTES(index, hhdr -> hb_sz); |
| FREE_ASSERT(GC_free_bytes[index] <= GC_large_free_bytes) |
| hhdr -> hb_next = second; |
| hhdr -> hb_prev = 0; |
| if (0 != second) { |
| GET_HDR(second, second_hdr); |
| second_hdr -> hb_prev = h; |
| } |
| GC_invalidate_map(hhdr); |
| } |
| |
| #ifdef USE_MUNMAP |
| |
| /* Unmap blocks that haven't been recently touched. This is the only way */ |
| /* way blocks are ever unmapped. */ |
| void GC_unmap_old(void) |
| { |
| struct hblk * h; |
| hdr * hhdr; |
| word sz; |
| unsigned short last_rec, threshold; |
| int i; |
| # define UNMAP_THRESHOLD 6 |
| |
| for (i = 0; i <= N_HBLK_FLS; ++i) { |
| for (h = GC_hblkfreelist[i]; 0 != h; h = hhdr -> hb_next) { |
| hhdr = HDR(h); |
| if (!IS_MAPPED(hhdr)) continue; |
| threshold = (unsigned short)(GC_gc_no - UNMAP_THRESHOLD); |
| last_rec = hhdr -> hb_last_reclaimed; |
| if (last_rec > GC_gc_no |
| || last_rec < threshold && threshold < GC_gc_no |
| /* not recently wrapped */) { |
| sz = hhdr -> hb_sz; |
| GC_unmap((ptr_t)h, sz); |
| hhdr -> hb_flags |= WAS_UNMAPPED; |
| } |
| } |
| } |
| } |
| |
| /* Merge all unmapped blocks that are adjacent to other free */ |
| /* blocks. This may involve remapping, since all blocks are either */ |
| /* fully mapped or fully unmapped. */ |
| void GC_merge_unmapped(void) |
| { |
| struct hblk * h, *next; |
| hdr * hhdr, *nexthdr; |
| word size, nextsize; |
| int i; |
| |
| for (i = 0; i <= N_HBLK_FLS; ++i) { |
| h = GC_hblkfreelist[i]; |
| while (h != 0) { |
| GET_HDR(h, hhdr); |
| size = hhdr->hb_sz; |
| next = (struct hblk *)((word)h + size); |
| GET_HDR(next, nexthdr); |
| /* Coalesce with successor, if possible */ |
| if (0 != nexthdr && HBLK_IS_FREE(nexthdr)) { |
| nextsize = nexthdr -> hb_sz; |
| if (IS_MAPPED(hhdr)) { |
| GC_ASSERT(!IS_MAPPED(nexthdr)); |
| /* make both consistent, so that we can merge */ |
| if (size > nextsize) { |
| GC_remap((ptr_t)next, nextsize); |
| } else { |
| GC_unmap((ptr_t)h, size); |
| hhdr -> hb_flags |= WAS_UNMAPPED; |
| } |
| } else if (IS_MAPPED(nexthdr)) { |
| GC_ASSERT(!IS_MAPPED(hhdr)); |
| if (size > nextsize) { |
| GC_unmap((ptr_t)next, nextsize); |
| } else { |
| GC_remap((ptr_t)h, size); |
| hhdr -> hb_flags &= ~WAS_UNMAPPED; |
| } |
| } else { |
| /* Unmap any gap in the middle */ |
| GC_unmap_gap((ptr_t)h, size, (ptr_t)next, nexthdr -> hb_sz); |
| } |
| /* If they are both unmapped, we merge, but leave unmapped. */ |
| GC_remove_from_fl(hhdr, i); |
| GC_remove_from_fl(nexthdr, FL_UNKNOWN); |
| hhdr -> hb_sz += nexthdr -> hb_sz; |
| GC_remove_header(next); |
| GC_add_to_fl(h, hhdr); |
| /* Start over at beginning of list */ |
| h = GC_hblkfreelist[i]; |
| } else /* not mergable with successor */ { |
| h = hhdr -> hb_next; |
| } |
| } /* while (h != 0) ... */ |
| } /* for ... */ |
| } |
| |
| #endif /* USE_MUNMAP */ |
| |
| /* |
| * Return a pointer to a block starting at h of length bytes. |
| * Memory for the block is mapped. |
| * Remove the block from its free list, and return the remainder (if any) |
| * to its appropriate free list. |
| * May fail by returning 0. |
| * The header for the returned block must be set up by the caller. |
| * If the return value is not 0, then hhdr is the header for it. |
| */ |
| struct hblk * GC_get_first_part(h, hhdr, bytes, index) |
| struct hblk *h; |
| hdr * hhdr; |
| word bytes; |
| int index; |
| { |
| word total_size = hhdr -> hb_sz; |
| struct hblk * rest; |
| hdr * rest_hdr; |
| |
| GC_ASSERT((total_size & (HBLKSIZE-1)) == 0); |
| GC_remove_from_fl(hhdr, index); |
| if (total_size == bytes) return h; |
| rest = (struct hblk *)((word)h + bytes); |
| rest_hdr = GC_install_header(rest); |
| if (0 == rest_hdr) return(0); |
| rest_hdr -> hb_sz = total_size - bytes; |
| rest_hdr -> hb_flags = 0; |
| # ifdef GC_ASSERTIONS |
| /* Mark h not free, to avoid assertion about adjacent free blocks. */ |
| hhdr -> hb_map = 0; |
| # endif |
| GC_add_to_fl(rest, rest_hdr); |
| return h; |
| } |
| |
| /* |
| * H is a free block. N points at an address inside it. |
| * A new header for n has already been set up. Fix up h's header |
| * to reflect the fact that it is being split, move it to the |
| * appropriate free list. |
| * N replaces h in the original free list. |
| * |
| * Nhdr is not completely filled in, since it is about to allocated. |
| * It may in fact end up on the wrong free list for its size. |
| * (Hence adding it to a free list is silly. But this path is hopefully |
| * rare enough that it doesn't matter. The code is cleaner this way.) |
| */ |
| void GC_split_block(h, hhdr, n, nhdr, index) |
| struct hblk *h; |
| hdr * hhdr; |
| struct hblk *n; |
| hdr * nhdr; |
| int index; /* Index of free list */ |
| { |
| word total_size = hhdr -> hb_sz; |
| word h_size = (word)n - (word)h; |
| struct hblk *prev = hhdr -> hb_prev; |
| struct hblk *next = hhdr -> hb_next; |
| |
| /* Replace h with n on its freelist */ |
| nhdr -> hb_prev = prev; |
| nhdr -> hb_next = next; |
| nhdr -> hb_sz = total_size - h_size; |
| nhdr -> hb_flags = 0; |
| if (0 != prev) { |
| HDR(prev) -> hb_next = n; |
| } else { |
| GC_hblkfreelist[index] = n; |
| } |
| if (0 != next) { |
| HDR(next) -> hb_prev = n; |
| } |
| INCR_FREE_BYTES(index, -(signed_word)h_size); |
| FREE_ASSERT(GC_free_bytes[index] > 0); |
| # ifdef GC_ASSERTIONS |
| nhdr -> hb_map = 0; /* Don't fail test for consecutive */ |
| /* free blocks in GC_add_to_fl. */ |
| # endif |
| # ifdef USE_MUNMAP |
| hhdr -> hb_last_reclaimed = GC_gc_no; |
| # endif |
| hhdr -> hb_sz = h_size; |
| GC_add_to_fl(h, hhdr); |
| GC_invalidate_map(nhdr); |
| } |
| |
| struct hblk * GC_allochblk_nth(); |
| |
| /* |
| * Allocate (and return pointer to) a heap block |
| * for objects of size sz words, searching the nth free list. |
| * |
| * NOTE: We set obj_map field in header correctly. |
| * Caller is responsible for building an object freelist in block. |
| * |
| * Unlike older versions of the collectors, the client is responsible |
| * for clearing the block, if necessary. |
| */ |
| struct hblk * |
| GC_allochblk(sz, kind, flags) |
| word sz; |
| int kind; |
| unsigned flags; /* IGNORE_OFF_PAGE or 0 */ |
| { |
| word blocks = OBJ_SZ_TO_BLOCKS(sz); |
| int start_list = GC_hblk_fl_from_blocks(blocks); |
| int i; |
| for (i = start_list; i <= N_HBLK_FLS; ++i) { |
| struct hblk * result = GC_allochblk_nth(sz, kind, flags, i); |
| if (0 != result) { |
| return result; |
| } |
| } |
| return 0; |
| } |
| /* |
| * The same, but with search restricted to nth free list. |
| */ |
| struct hblk * |
| GC_allochblk_nth(sz, kind, flags, n) |
| word sz; |
| int kind; |
| unsigned char flags; /* IGNORE_OFF_PAGE or 0 */ |
| int n; |
| { |
| register struct hblk *hbp; |
| register hdr * hhdr; /* Header corr. to hbp */ |
| register struct hblk *thishbp; |
| register hdr * thishdr; /* Header corr. to hbp */ |
| signed_word size_needed; /* number of bytes in requested objects */ |
| signed_word size_avail; /* bytes available in this block */ |
| |
| size_needed = HBLKSIZE * OBJ_SZ_TO_BLOCKS(sz); |
| |
| /* search for a big enough block in free list */ |
| hbp = GC_hblkfreelist[n]; |
| for(; 0 != hbp; hbp = hhdr -> hb_next) { |
| GET_HDR(hbp, hhdr); |
| size_avail = hhdr->hb_sz; |
| if (size_avail < size_needed) continue; |
| if (!GC_use_entire_heap |
| && size_avail != size_needed |
| && USED_HEAP_SIZE >= GC_requested_heapsize |
| && !TRUE_INCREMENTAL && GC_should_collect()) { |
| # ifdef USE_MUNMAP |
| continue; |
| # else |
| /* If we have enough large blocks left to cover any */ |
| /* previous request for large blocks, we go ahead */ |
| /* and split. Assuming a steady state, that should */ |
| /* be safe. It means that we can use the full */ |
| /* heap if we allocate only small objects. */ |
| if (!GC_enough_large_bytes_left(GC_large_allocd_bytes, n)) { |
| continue; |
| } |
| /* If we are deallocating lots of memory from */ |
| /* finalizers, fail and collect sooner rather */ |
| /* than later. */ |
| if (GC_finalizer_mem_freed > (GC_heapsize >> 4)) { |
| continue; |
| } |
| # endif /* !USE_MUNMAP */ |
| } |
| /* If the next heap block is obviously better, go on. */ |
| /* This prevents us from disassembling a single large block */ |
| /* to get tiny blocks. */ |
| { |
| signed_word next_size; |
| |
| thishbp = hhdr -> hb_next; |
| if (thishbp != 0) { |
| GET_HDR(thishbp, thishdr); |
| next_size = (signed_word)(thishdr -> hb_sz); |
| if (next_size < size_avail |
| && next_size >= size_needed |
| && !GC_is_black_listed(thishbp, (word)size_needed)) { |
| continue; |
| } |
| } |
| } |
| if ( !IS_UNCOLLECTABLE(kind) && |
| (kind != PTRFREE || size_needed > MAX_BLACK_LIST_ALLOC)) { |
| struct hblk * lasthbp = hbp; |
| ptr_t search_end = (ptr_t)hbp + size_avail - size_needed; |
| signed_word orig_avail = size_avail; |
| signed_word eff_size_needed = ((flags & IGNORE_OFF_PAGE)? |
| HBLKSIZE |
| : size_needed); |
| |
| |
| while ((ptr_t)lasthbp <= search_end |
| && (thishbp = GC_is_black_listed(lasthbp, |
| (word)eff_size_needed)) |
| != 0) { |
| lasthbp = thishbp; |
| } |
| size_avail -= (ptr_t)lasthbp - (ptr_t)hbp; |
| thishbp = lasthbp; |
| if (size_avail >= size_needed) { |
| if (thishbp != hbp && |
| 0 != (thishdr = GC_install_header(thishbp))) { |
| /* Make sure it's mapped before we mangle it. */ |
| # ifdef USE_MUNMAP |
| if (!IS_MAPPED(hhdr)) { |
| GC_remap((ptr_t)hbp, hhdr -> hb_sz); |
| hhdr -> hb_flags &= ~WAS_UNMAPPED; |
| } |
| # endif |
| /* Split the block at thishbp */ |
| GC_split_block(hbp, hhdr, thishbp, thishdr, n); |
| /* Advance to thishbp */ |
| hbp = thishbp; |
| hhdr = thishdr; |
| /* We must now allocate thishbp, since it may */ |
| /* be on the wrong free list. */ |
| } |
| } else if (size_needed > (signed_word)BL_LIMIT |
| && orig_avail - size_needed |
| > (signed_word)BL_LIMIT) { |
| /* Punt, since anything else risks unreasonable heap growth. */ |
| if (++GC_large_alloc_warn_suppressed |
| >= GC_large_alloc_warn_interval) { |
| WARN("Repeated allocation of very large block " |
| "(appr. size %ld):\n" |
| "\tMay lead to memory leak and poor performance.\n", |
| size_needed); |
| GC_large_alloc_warn_suppressed = 0; |
| } |
| size_avail = orig_avail; |
| } else if (size_avail == 0 && size_needed == HBLKSIZE |
| && IS_MAPPED(hhdr)) { |
| if (!GC_find_leak) { |
| static unsigned count = 0; |
| |
| /* The block is completely blacklisted. We need */ |
| /* to drop some such blocks, since otherwise we spend */ |
| /* all our time traversing them if pointerfree */ |
| /* blocks are unpopular. */ |
| /* A dropped block will be reconsidered at next GC. */ |
| if ((++count & 3) == 0) { |
| /* Allocate and drop the block in small chunks, to */ |
| /* maximize the chance that we will recover some */ |
| /* later. */ |
| word total_size = hhdr -> hb_sz; |
| struct hblk * limit = hbp + divHBLKSZ(total_size); |
| struct hblk * h; |
| struct hblk * prev = hhdr -> hb_prev; |
| |
| GC_words_wasted += total_size; |
| GC_large_free_bytes -= total_size; |
| GC_remove_from_fl(hhdr, n); |
| for (h = hbp; h < limit; h++) { |
| if (h == hbp || 0 != (hhdr = GC_install_header(h))) { |
| (void) setup_header( |
| hhdr, |
| BYTES_TO_WORDS(HBLKSIZE), |
| PTRFREE, 0); /* Cant fail */ |
| if (GC_debugging_started) { |
| BZERO(h, HBLKSIZE); |
| } |
| } |
| } |
| /* Restore hbp to point at free block */ |
| hbp = prev; |
| if (0 == hbp) { |
| return GC_allochblk_nth(sz, kind, flags, n); |
| } |
| hhdr = HDR(hbp); |
| } |
| } |
| } |
| } |
| if( size_avail >= size_needed ) { |
| # ifdef USE_MUNMAP |
| if (!IS_MAPPED(hhdr)) { |
| GC_remap((ptr_t)hbp, hhdr -> hb_sz); |
| hhdr -> hb_flags &= ~WAS_UNMAPPED; |
| } |
| # endif |
| /* hbp may be on the wrong freelist; the parameter n */ |
| /* is important. */ |
| hbp = GC_get_first_part(hbp, hhdr, size_needed, n); |
| break; |
| } |
| } |
| |
| if (0 == hbp) return 0; |
| |
| /* Add it to map of valid blocks */ |
| if (!GC_install_counts(hbp, (word)size_needed)) return(0); |
| /* This leaks memory under very rare conditions. */ |
| |
| /* Set up header */ |
| if (!setup_header(hhdr, sz, kind, flags)) { |
| GC_remove_counts(hbp, (word)size_needed); |
| return(0); /* ditto */ |
| } |
| |
| /* Notify virtual dirty bit implementation that we are about to write. */ |
| /* Ensure that pointerfree objects are not protected if it's avoidable. */ |
| GC_remove_protection(hbp, divHBLKSZ(size_needed), |
| (hhdr -> hb_descr == 0) /* pointer-free */); |
| |
| /* We just successfully allocated a block. Restart count of */ |
| /* consecutive failures. */ |
| { |
| extern unsigned GC_fail_count; |
| |
| GC_fail_count = 0; |
| } |
| |
| GC_large_free_bytes -= size_needed; |
| |
| GC_ASSERT(IS_MAPPED(hhdr)); |
| return( hbp ); |
| } |
| |
| struct hblk * GC_freehblk_ptr = 0; /* Search position hint for GC_freehblk */ |
| |
| /* |
| * Free a heap block. |
| * |
| * Coalesce the block with its neighbors if possible. |
| * |
| * All mark words are assumed to be cleared. |
| */ |
| void |
| GC_freehblk(hbp) |
| struct hblk *hbp; |
| { |
| struct hblk *next, *prev; |
| hdr *hhdr, *prevhdr, *nexthdr; |
| signed_word size; |
| |
| |
| GET_HDR(hbp, hhdr); |
| size = hhdr->hb_sz; |
| size = HBLKSIZE * OBJ_SZ_TO_BLOCKS(size); |
| GC_remove_counts(hbp, (word)size); |
| hhdr->hb_sz = size; |
| |
| /* Check for duplicate deallocation in the easy case */ |
| if (HBLK_IS_FREE(hhdr)) { |
| GC_printf1("Duplicate large block deallocation of 0x%lx\n", |
| (unsigned long) hbp); |
| ABORT("Duplicate large block deallocation"); |
| } |
| |
| GC_ASSERT(IS_MAPPED(hhdr)); |
| GC_invalidate_map(hhdr); |
| next = (struct hblk *)((word)hbp + size); |
| GET_HDR(next, nexthdr); |
| prev = GC_free_block_ending_at(hbp); |
| /* Coalesce with successor, if possible */ |
| if(0 != nexthdr && HBLK_IS_FREE(nexthdr) && IS_MAPPED(nexthdr)) { |
| GC_remove_from_fl(nexthdr, FL_UNKNOWN); |
| hhdr -> hb_sz += nexthdr -> hb_sz; |
| GC_remove_header(next); |
| } |
| /* Coalesce with predecessor, if possible. */ |
| if (0 != prev) { |
| prevhdr = HDR(prev); |
| if (IS_MAPPED(prevhdr)) { |
| GC_remove_from_fl(prevhdr, FL_UNKNOWN); |
| prevhdr -> hb_sz += hhdr -> hb_sz; |
| GC_remove_header(hbp); |
| hbp = prev; |
| hhdr = prevhdr; |
| } |
| } |
| |
| GC_large_free_bytes += size; |
| GC_add_to_fl(hbp, hhdr); |
| } |
| |