blob: 1b0200e2c78528144963c8c6ebc10641dcbd58c6 [file] [log] [blame]
/****************************************************************************
* *
* GNAT COMPILER COMPONENTS *
* *
* D E C L *
* *
* C Implementation File *
* *
* Copyright (C) 1992-2004, Free Software Foundation, Inc. *
* *
* GNAT is free software; you can redistribute it and/or modify it under *
* terms of the GNU General Public License as published by the Free Soft- *
* ware Foundation; either version 2, or (at your option) any later ver- *
* sion. GNAT is distributed in the hope that it will be useful, but WITH- *
* OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
* for more details. You should have received a copy of the GNU General *
* Public License distributed with GNAT; see file COPYING. If not, write *
* to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, *
* MA 02111-1307, USA. *
* *
* GNAT was originally developed by the GNAT team at New York University. *
* Extensive contributions were provided by Ada Core Technologies Inc. *
* *
****************************************************************************/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "toplev.h"
#include "convert.h"
#include "ggc.h"
#include "obstack.h"
#include "ada.h"
#include "types.h"
#include "atree.h"
#include "elists.h"
#include "namet.h"
#include "nlists.h"
#include "repinfo.h"
#include "snames.h"
#include "stringt.h"
#include "uintp.h"
#include "fe.h"
#include "sinfo.h"
#include "einfo.h"
#include "ada-tree.h"
#include "gigi.h"
/* Setting this to 1 suppresses hashing of types. */
extern int debug_no_type_hash;
/* Provide default values for the macros controlling stack checking.
This is copied from GCC's expr.h. */
#ifndef STACK_CHECK_BUILTIN
#define STACK_CHECK_BUILTIN 0
#endif
#ifndef STACK_CHECK_PROBE_INTERVAL
#define STACK_CHECK_PROBE_INTERVAL 4096
#endif
#ifndef STACK_CHECK_MAX_FRAME_SIZE
#define STACK_CHECK_MAX_FRAME_SIZE \
(STACK_CHECK_PROBE_INTERVAL - UNITS_PER_WORD)
#endif
#ifndef STACK_CHECK_MAX_VAR_SIZE
#define STACK_CHECK_MAX_VAR_SIZE (STACK_CHECK_MAX_FRAME_SIZE / 100)
#endif
/* These two variables are used to defer recursively expanding incomplete
types while we are processing a record or subprogram type. */
static int defer_incomplete_level = 0;
static struct incomplete
{
struct incomplete *next;
tree old_type;
Entity_Id full_type;
} *defer_incomplete_list = 0;
static tree substitution_list (Entity_Id, Entity_Id, tree, int);
static int allocatable_size_p (tree, int);
static struct attrib *build_attr_list (Entity_Id);
static tree elaborate_expression (Node_Id, Entity_Id, tree, int, int, int);
static int is_variable_size (tree);
static tree elaborate_expression_1 (Node_Id, Entity_Id, tree, tree, int, int);
static tree make_packable_type (tree);
static tree maybe_pad_type (tree, tree, unsigned int, Entity_Id, const char *,
int, int, int);
static tree gnat_to_gnu_field (Entity_Id, tree, int, int);
static void components_to_record (tree, Node_Id, tree, int, int, tree *,
int, int);
static int compare_field_bitpos (const PTR, const PTR);
static Uint annotate_value (tree);
static void annotate_rep (Entity_Id, tree);
static tree compute_field_positions (tree, tree, tree, tree, unsigned int);
static tree validate_size (Uint, tree, Entity_Id, enum tree_code, int, int);
static void set_rm_size (Uint, tree, Entity_Id);
static tree make_type_from_size (tree, tree, int);
static unsigned int validate_alignment (Uint, Entity_Id, unsigned int);
static void check_ok_for_atomic (tree, Entity_Id, int);
/* Given GNAT_ENTITY, an entity in the incoming GNAT tree, return a
GCC type corresponding to that entity. GNAT_ENTITY is assumed to
refer to an Ada type. */
tree
gnat_to_gnu_type (Entity_Id gnat_entity)
{
tree gnu_decl;
/* Convert the ada entity type into a GCC TYPE_DECL node. */
gnu_decl = gnat_to_gnu_entity (gnat_entity, NULL_TREE, 0);
if (TREE_CODE (gnu_decl) != TYPE_DECL)
gigi_abort (101);
return TREE_TYPE (gnu_decl);
}
/* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada
entity, this routine returns the equivalent GCC tree for that entity
(an ..._DECL node) and associates the ..._DECL node with the input GNAT
defining identifier.
If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its
initial value (in GCC tree form). This is optional for variables.
For renamed entities, GNU_EXPR gives the object being renamed.
DEFINITION is nonzero if this call is intended for a definition. This is
used for separate compilation where it necessary to know whether an
external declaration or a definition should be created if the GCC equivalent
was not created previously. The value of 1 is normally used for a non-zero
DEFINITION, but a value of 2 is used in special circumstances, defined in
the code. */
tree
gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, int definition)
{
tree gnu_entity_id;
tree gnu_type = 0;
/* Contains the gnu XXXX_DECL tree node which is equivalent to the input
GNAT tree. This node will be associated with the GNAT node by calling
the save_gnu_tree routine at the end of the `switch' statement. */
tree gnu_decl = 0;
/* Nonzero if we have already saved gnu_decl as a gnat association. */
int saved = 0;
/* Nonzero if we incremented defer_incomplete_level. */
int this_deferred = 0;
/* Nonzero if we incremented force_global. */
int this_global = 0;
/* Nonzero if we should check to see if elaborated during processing. */
int maybe_present = 0;
/* Nonzero if we made GNU_DECL and its type here. */
int this_made_decl = 0;
struct attrib *attr_list = 0;
int debug_info_p = (Needs_Debug_Info (gnat_entity)
|| debug_info_level == DINFO_LEVEL_VERBOSE);
Entity_Kind kind = Ekind (gnat_entity);
Entity_Id gnat_temp;
unsigned int esize
= ((Known_Esize (gnat_entity)
&& UI_Is_In_Int_Range (Esize (gnat_entity)))
? MIN (UI_To_Int (Esize (gnat_entity)),
IN (kind, Float_Kind)
? fp_prec_to_size (LONG_DOUBLE_TYPE_SIZE)
: IN (kind, Access_Kind) ? POINTER_SIZE * 2
: LONG_LONG_TYPE_SIZE)
: LONG_LONG_TYPE_SIZE);
tree gnu_size = 0;
int imported_p
= ((Is_Imported (gnat_entity) && No (Address_Clause (gnat_entity)))
|| From_With_Type (gnat_entity));
unsigned int align = 0;
/* Since a use of an Itype is a definition, process it as such if it
is not in a with'ed unit. */
if (! definition && Is_Itype (gnat_entity)
&& ! present_gnu_tree (gnat_entity)
&& In_Extended_Main_Code_Unit (gnat_entity))
{
/* Ensure that we are in a subprogram mentioned in the Scope
chain of this entity, our current scope is global,
or that we encountered a task or entry (where we can't currently
accurately check scoping). */
if (current_function_decl == 0
|| DECL_ELABORATION_PROC_P (current_function_decl))
{
process_type (gnat_entity);
return get_gnu_tree (gnat_entity);
}
for (gnat_temp = Scope (gnat_entity);
Present (gnat_temp); gnat_temp = Scope (gnat_temp))
{
if (Is_Type (gnat_temp))
gnat_temp = Underlying_Type (gnat_temp);
if (Ekind (gnat_temp) == E_Subprogram_Body)
gnat_temp
= Corresponding_Spec (Parent (Declaration_Node (gnat_temp)));
if (IN (Ekind (gnat_temp), Subprogram_Kind)
&& Present (Protected_Body_Subprogram (gnat_temp)))
gnat_temp = Protected_Body_Subprogram (gnat_temp);
if (Ekind (gnat_temp) == E_Entry
|| Ekind (gnat_temp) == E_Entry_Family
|| Ekind (gnat_temp) == E_Task_Type
|| (IN (Ekind (gnat_temp), Subprogram_Kind)
&& present_gnu_tree (gnat_temp)
&& (current_function_decl
== gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0))))
{
process_type (gnat_entity);
return get_gnu_tree (gnat_entity);
}
}
/* gigi abort 122 means that the entity "gnat_entity" has an incorrect
scope, i.e. that its scope does not correspond to the subprogram
in which it is declared */
gigi_abort (122);
}
/* If this is entity 0, something went badly wrong. */
if (gnat_entity == 0)
gigi_abort (102);
/* If we've already processed this entity, return what we got last time.
If we are defining the node, we should not have already processed it.
In that case, we will abort below when we try to save a new GCC tree for
this object. We also need to handle the case of getting a dummy type
when a Full_View exists. */
if (present_gnu_tree (gnat_entity)
&& (! definition
|| (Is_Type (gnat_entity) && imported_p)))
{
gnu_decl = get_gnu_tree (gnat_entity);
if (TREE_CODE (gnu_decl) == TYPE_DECL
&& TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
&& IN (kind, Incomplete_Or_Private_Kind)
&& Present (Full_View (gnat_entity)))
{
gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity),
NULL_TREE, 0);
save_gnu_tree (gnat_entity, NULL_TREE, 0);
save_gnu_tree (gnat_entity, gnu_decl, 0);
}
return gnu_decl;
}
/* If this is a numeric or enumeral type, or an access type, a nonzero
Esize must be specified unless it was specified by the programmer. */
if ((IN (kind, Numeric_Kind) || IN (kind, Enumeration_Kind)
|| (IN (kind, Access_Kind)
&& kind != E_Access_Protected_Subprogram_Type
&& kind != E_Access_Subtype))
&& Unknown_Esize (gnat_entity)
&& ! Has_Size_Clause (gnat_entity))
gigi_abort (109);
/* Likewise, RM_Size must be specified for all discrete and fixed-point
types. */
if (IN (kind, Discrete_Or_Fixed_Point_Kind)
&& Unknown_RM_Size (gnat_entity))
gigi_abort (123);
/* Get the name of the entity and set up the line number and filename of
the original definition for use in any decl we make. */
gnu_entity_id = get_entity_name (gnat_entity);
set_lineno (gnat_entity, 0);
/* If we get here, it means we have not yet done anything with this
entity. If we are not defining it here, it must be external,
otherwise we should have defined it already. */
if (! definition && ! Is_Public (gnat_entity)
&& ! type_annotate_only
&& kind != E_Discriminant && kind != E_Component
&& kind != E_Label
&& ! (kind == E_Constant && Present (Full_View (gnat_entity)))
#if 1
&& !IN (kind, Type_Kind)
#endif
)
gigi_abort (116);
/* For cases when we are not defining (i.e., we are referencing from
another compilation unit) Public entities, show we are at global level
for the purpose of computing sizes. Don't do this for components or
discriminants since the relevant test is whether or not the record is
being defined. */
if (! definition && Is_Public (gnat_entity)
&& ! Is_Statically_Allocated (gnat_entity)
&& kind != E_Discriminant && kind != E_Component)
force_global++, this_global = 1;
/* Handle any attributes. */
if (Has_Gigi_Rep_Item (gnat_entity))
attr_list = build_attr_list (gnat_entity);
switch (kind)
{
case E_Constant:
/* If this is a use of a deferred constant, get its full
declaration. */
if (! definition && Present (Full_View (gnat_entity)))
{
gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity),
gnu_expr, definition);
saved = 1;
break;
}
/* If we have an external constant that we are not defining,
get the expression that is was defined to represent. We
may throw that expression away later if it is not a
constant.
Do not retrieve the expression if it is an aggregate, because
in complex instantiation contexts it may not be expanded */
if (! definition
&& Present (Expression (Declaration_Node (gnat_entity)))
&& ! No_Initialization (Declaration_Node (gnat_entity))
&& Nkind (Expression (Declaration_Node (gnat_entity)))
!= N_Aggregate)
gnu_expr = gnat_to_gnu (Expression (Declaration_Node (gnat_entity)));
/* Ignore deferred constant definitions; they are processed fully in the
front-end. For deferred constant references, get the full
definition. On the other hand, constants that are renamings are
handled like variable renamings. If No_Initialization is set, this is
not a deferred constant but a constant whose value is built
manually. */
if (definition && gnu_expr == 0
&& ! No_Initialization (Declaration_Node (gnat_entity))
&& No (Renamed_Object (gnat_entity)))
{
gnu_decl = error_mark_node;
saved = 1;
break;
}
else if (! definition && IN (kind, Incomplete_Or_Private_Kind)
&& Present (Full_View (gnat_entity)))
{
gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity),
NULL_TREE, 0);
saved = 1;
break;
}
goto object;
case E_Exception:
/* If this is not a VMS exception, treat it as a normal object.
Otherwise, make an object at the specific address of character
type, point to it, and convert it to integer, and mask off
the lower 3 bits. */
if (! Is_VMS_Exception (gnat_entity))
goto object;
/* Allocate the global object that we use to get the value of the
exception. */
gnu_decl = create_var_decl (gnu_entity_id,
(Present (Interface_Name (gnat_entity))
? create_concat_name (gnat_entity, 0)
: NULL_TREE),
char_type_node, NULL_TREE, 0, 0, 1, 1,
0);
/* Now return the expression giving the desired value. */
gnu_decl
= build_binary_op (BIT_AND_EXPR, integer_type_node,
convert (integer_type_node,
build_unary_op (ADDR_EXPR, NULL_TREE,
gnu_decl)),
build_unary_op (NEGATE_EXPR, integer_type_node,
build_int_2 (7, 0)));
save_gnu_tree (gnat_entity, gnu_decl, 1);
saved = 1;
break;
case E_Discriminant:
case E_Component:
{
/* The GNAT record where the component was defined. */
Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity));
/* If the variable is an inherited record component (in the case of
extended record types), just return the inherited entity, which
must be a FIELD_DECL. Likewise for discriminants.
For discriminants of untagged records which have explicit
stored discriminants, return the entity for the corresponding
stored discriminant. Also use Original_Record_Component
if the record has a private extension. */
if ((Base_Type (gnat_record) == gnat_record
|| Ekind (Scope (gnat_entity)) == E_Private_Subtype
|| Ekind (Scope (gnat_entity)) == E_Record_Subtype_With_Private
|| Ekind (Scope (gnat_entity)) == E_Record_Type_With_Private)
&& Present (Original_Record_Component (gnat_entity))
&& Original_Record_Component (gnat_entity) != gnat_entity)
{
gnu_decl
= gnat_to_gnu_entity (Original_Record_Component (gnat_entity),
gnu_expr, definition);
saved = 1;
break;
}
/* If the enclosing record has explicit stored discriminants,
then it is an untagged record. If the Corresponding_Discriminant
is not empty then this must be a renamed discriminant and its
Original_Record_Component must point to the corresponding explicit
stored discriminant (i.e., we should have taken the previous
branch). */
else if (Present (Corresponding_Discriminant (gnat_entity))
&& Is_Tagged_Type (gnat_record))
{
/* A tagged record has no explicit stored discriminants. */
if (First_Discriminant (gnat_record)
!= First_Stored_Discriminant (gnat_record))
gigi_abort (119);
gnu_decl
= gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity),
gnu_expr, definition);
saved = 1;
break;
}
/* If the enclosing record has explicit stored discriminants,
then it is an untagged record. If the Corresponding_Discriminant
is not empty then this must be a renamed discriminant and its
Original_Record_Component must point to the corresponding explicit
stored discriminant (i.e., we should have taken the first
branch). */
else if (Present (Corresponding_Discriminant (gnat_entity))
&& (First_Discriminant (gnat_record)
!= First_Stored_Discriminant (gnat_record)))
gigi_abort (120);
/* Otherwise, if we are not defining this and we have no GCC type
for the containing record, make one for it. Then we should
have made our own equivalent. */
else if (! definition && ! present_gnu_tree (gnat_record))
{
/* ??? If this is in a record whose scope is a protected
type and we have an Original_Record_Component, use it.
This is a workaround for major problems in protected type
handling. */
Entity_Id Scop = Scope (Scope (gnat_entity));
if ((Is_Protected_Type (Scop)
|| (Is_Private_Type (Scop)
&& Present (Full_View (Scop))
&& Is_Protected_Type (Full_View (Scop))))
&& Present (Original_Record_Component (gnat_entity)))
{
gnu_decl
= gnat_to_gnu_entity (Original_Record_Component
(gnat_entity),
gnu_expr, definition);
saved = 1;
break;
}
gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, 0);
gnu_decl = get_gnu_tree (gnat_entity);
saved = 1;
break;
}
/* Here we have no GCC type and this is a reference rather than a
definition. This should never happen. Most likely the cause is a
reference before declaration in the gnat tree for gnat_entity. */
else
gigi_abort (103);
}
case E_Loop_Parameter:
case E_Out_Parameter:
case E_Variable:
/* Simple variables, loop variables, OUT parameters, and exceptions. */
object:
{
int used_by_ref = 0;
int const_flag
= ((kind == E_Constant || kind == E_Variable)
&& ! Is_Statically_Allocated (gnat_entity)
&& Is_True_Constant (gnat_entity)
&& (((Nkind (Declaration_Node (gnat_entity))
== N_Object_Declaration)
&& Present (Expression (Declaration_Node (gnat_entity))))
|| Present (Renamed_Object (gnat_entity))));
int inner_const_flag = const_flag;
int static_p = Is_Statically_Allocated (gnat_entity);
tree gnu_ext_name = NULL_TREE;
if (Present (Renamed_Object (gnat_entity)) && ! definition)
{
if (kind == E_Exception)
gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity),
NULL_TREE, 0);
else
gnu_expr = gnat_to_gnu (Renamed_Object (gnat_entity));
}
/* Get the type after elaborating the renamed object. */
gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
/* If this is a loop variable, its type should be the base type.
This is because the code for processing a loop determines whether
a normal loop end test can be done by comparing the bounds of the
loop against those of the base type, which is presumed to be the
size used for computation. But this is not correct when the size
of the subtype is smaller than the type. */
if (kind == E_Loop_Parameter)
gnu_type = get_base_type (gnu_type);
/* Reject non-renamed objects whose types are unconstrained arrays or
any object whose type is a dummy type or VOID_TYPE. */
if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
&& No (Renamed_Object (gnat_entity)))
|| TYPE_IS_DUMMY_P (gnu_type)
|| TREE_CODE (gnu_type) == VOID_TYPE)
{
if (type_annotate_only)
return error_mark_node;
else
gigi_abort (104);
}
/* If we are defining the object, see if it has a Size value and
validate it if so. If we are not defining the object and a Size
clause applies, simply retrieve the value. We don't want to ignore
the clause and it is expected to have been validated already. Then
get the new type, if any. */
if (definition)
gnu_size = validate_size (Esize (gnat_entity), gnu_type,
gnat_entity, VAR_DECL, 0,
Has_Size_Clause (gnat_entity));
else if (Has_Size_Clause (gnat_entity))
gnu_size = UI_To_gnu (Esize (gnat_entity), bitsizetype);
if (gnu_size != 0)
{
gnu_type
= make_type_from_size (gnu_type, gnu_size,
Has_Biased_Representation (gnat_entity));
if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0))
gnu_size = 0;
}
/* If this object has self-referential size, it must be a record with
a default value. We are supposed to allocate an object of the
maximum size in this case unless it is a constant with an
initializing expression, in which case we can get the size from
that. Note that the resulting size may still be a variable, so
this may end up with an indirect allocation. */
if (No (Renamed_Object (gnat_entity))
&& CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
{
if (gnu_expr != 0 && kind == E_Constant)
{
gnu_size = TYPE_SIZE (TREE_TYPE (gnu_expr));
if (CONTAINS_PLACEHOLDER_P (gnu_size))
gnu_size = build (WITH_RECORD_EXPR, bitsizetype,
gnu_size, gnu_expr);
}
/* We may have no GNU_EXPR because No_Initialization is
set even though there's an Expression. */
else if (kind == E_Constant
&& (Nkind (Declaration_Node (gnat_entity))
== N_Object_Declaration)
&& Present (Expression (Declaration_Node (gnat_entity))))
gnu_size
= TYPE_SIZE (gnat_to_gnu_type
(Etype
(Expression (Declaration_Node (gnat_entity)))));
else
gnu_size = max_size (TYPE_SIZE (gnu_type), 1);
}
/* If the size is zero bytes, make it one byte since some linkers have
trouble with zero-sized objects. If the object will have a
template, that will make it nonzero so don't bother. Also avoid
doing that for an object renaming or an object with an address
clause, as we would lose useful information on the view size
(e.g. for null array slices) and we are not allocating the object
here anyway. */
if (((gnu_size != 0 && integer_zerop (gnu_size))
|| (TYPE_SIZE (gnu_type) != 0
&& integer_zerop (TYPE_SIZE (gnu_type))))
&& (! Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
|| ! Is_Array_Type (Etype (gnat_entity)))
&& ! Present (Renamed_Object (gnat_entity))
&& ! Present (Address_Clause (gnat_entity)))
gnu_size = bitsize_unit_node;
/* If an alignment is specified, use it if valid. Note that
exceptions are objects but don't have alignments. */
if (kind != E_Exception && Known_Alignment (gnat_entity))
{
if (No (Alignment (gnat_entity)))
gigi_abort (125);
align
= validate_alignment (Alignment (gnat_entity), gnat_entity,
TYPE_ALIGN (gnu_type));
}
/* If this is an atomic object with no specified size and alignment,
but where the size of the type is a constant, set the alignment to
the lowest power of two greater than the size, or to the
biggest meaningful alignment, whichever is smaller. */
if (Is_Atomic (gnat_entity) && gnu_size == 0 && align == 0
&& TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST)
{
if (! host_integerp (TYPE_SIZE (gnu_type), 1)
|| 0 <= compare_tree_int (TYPE_SIZE (gnu_type),
BIGGEST_ALIGNMENT))
align = BIGGEST_ALIGNMENT;
else
align = ((unsigned int) 1
<< (floor_log2 (tree_low_cst
(TYPE_SIZE (gnu_type), 1) - 1)
+ 1));
}
/* If the object is set to have atomic components, find the component
type and validate it.
??? Note that we ignore Has_Volatile_Components on objects; it's
not at all clear what to do in that case. */
if (Has_Atomic_Components (gnat_entity))
{
tree gnu_inner
= (TREE_CODE (gnu_type) == ARRAY_TYPE
? TREE_TYPE (gnu_type) : gnu_type);
while (TREE_CODE (gnu_inner) == ARRAY_TYPE
&& TYPE_MULTI_ARRAY_P (gnu_inner))
gnu_inner = TREE_TYPE (gnu_inner);
check_ok_for_atomic (gnu_inner, gnat_entity, 1);
}
/* Now check if the type of the object allows atomic access. Note
that we must test the type, even if this object has size and
alignment to allow such access, because we will be going
inside the padded record to assign to the object. We could fix
this by always copying via an intermediate value, but it's not
clear it's worth the effort. */
if (Is_Atomic (gnat_entity))
check_ok_for_atomic (gnu_type, gnat_entity, 0);
/* If this is an aliased object with an unconstrained nominal subtype,
make a type that includes the template. */
if (Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
&& Is_Array_Type (Etype (gnat_entity))
&& ! type_annotate_only)
{
tree gnu_fat
= TREE_TYPE (gnat_to_gnu_type (Base_Type (Etype (gnat_entity))));
tree gnu_temp_type
= TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_fat))));
gnu_type
= build_unc_object_type (gnu_temp_type, gnu_type,
concat_id_with_name (gnu_entity_id,
"UNC"));
}
#ifdef MINIMUM_ATOMIC_ALIGNMENT
/* If the size is a constant and no alignment is specified, force
the alignment to be the minimum valid atomic alignment. The
restriction on constant size avoids problems with variable-size
temporaries; if the size is variable, there's no issue with
atomic access. Also don't do this for a constant, since it isn't
necessary and can interfere with constant replacement. Finally,
do not do it for Out parameters since that creates an
size inconsistency with In parameters. */
if (align == 0 && MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type)
&& ! FLOAT_TYPE_P (gnu_type)
&& ! const_flag && No (Renamed_Object (gnat_entity))
&& ! imported_p && No (Address_Clause (gnat_entity))
&& kind != E_Out_Parameter
&& (gnu_size != 0 ? TREE_CODE (gnu_size) == INTEGER_CST
: TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST))
align = MINIMUM_ATOMIC_ALIGNMENT;
#endif
/* Make a new type with the desired size and alignment, if needed. */
gnu_type = maybe_pad_type (gnu_type, gnu_size, align,
gnat_entity, "PAD", 0, definition, 1);
/* Make a volatile version of this object's type if we are to
make the object volatile. Note that 13.3(19) says that we
should treat other types of objects as volatile as well. */
if ((Treat_As_Volatile (gnat_entity)
|| Is_Exported (gnat_entity)
|| Is_Imported (gnat_entity)
|| Present (Address_Clause (gnat_entity)))
&& ! TYPE_VOLATILE (gnu_type))
gnu_type = build_qualified_type (gnu_type,
(TYPE_QUALS (gnu_type)
| TYPE_QUAL_VOLATILE));
/* Convert the expression to the type of the object except in the
case where the object's type is unconstrained or the object's type
is a padded record whose field is of self-referential size. In
the former case, converting will generate unnecessary evaluations
of the CONSTRUCTOR to compute the size and in the latter case, we
want to only copy the actual data. */
if (gnu_expr != 0
&& TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
&& ! CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
&& ! (TREE_CODE (gnu_type) == RECORD_TYPE
&& TYPE_IS_PADDING_P (gnu_type)
&& (CONTAINS_PLACEHOLDER_P
(TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
gnu_expr = convert (gnu_type, gnu_expr);
/* See if this is a renaming. If this is a constant renaming,
treat it as a normal variable whose initial value is what
is being renamed. We cannot do this if the type is
unconstrained or class-wide.
Otherwise, if what we are renaming is a reference, we can simply
return a stabilized version of that reference, after forcing
any SAVE_EXPRs to be evaluated. But, if this is at global level,
we can only do this if we know no SAVE_EXPRs will be made.
Otherwise, make this into a constant pointer to the object we are
to rename. */
if (Present (Renamed_Object (gnat_entity)))
{
/* If the renamed object had padding, strip off the reference
to the inner object and reset our type. */
if (TREE_CODE (gnu_expr) == COMPONENT_REF
&& (TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
== RECORD_TYPE)
&& (TYPE_IS_PADDING_P
(TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))))
{
gnu_expr = TREE_OPERAND (gnu_expr, 0);
gnu_type = TREE_TYPE (gnu_expr);
}
if (const_flag
&& TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
&& TYPE_MODE (gnu_type) != BLKmode
&& Ekind (Etype (gnat_entity)) != E_Class_Wide_Type
&& !Is_Array_Type (Etype (gnat_entity)))
;
/* If this is a declaration or reference, we can just use that
declaration or reference as this entity. */
else if ((DECL_P (gnu_expr)
|| TREE_CODE_CLASS (TREE_CODE (gnu_expr)) == 'r')
&& ! Materialize_Entity (gnat_entity)
&& (! global_bindings_p ()
|| (staticp (gnu_expr)
&& ! TREE_SIDE_EFFECTS (gnu_expr))))
{
set_lineno (gnat_entity, ! global_bindings_p ());
gnu_decl = gnat_stabilize_reference (gnu_expr, 1);
save_gnu_tree (gnat_entity, gnu_decl, 1);
saved = 1;
if (! global_bindings_p ())
expand_expr_stmt (build1 (CONVERT_EXPR, void_type_node,
gnu_decl));
break;
}
else
{
inner_const_flag = TREE_READONLY (gnu_expr);
const_flag = 1;
gnu_type = build_reference_type (gnu_type);
gnu_expr = build_unary_op (ADDR_EXPR, gnu_type, gnu_expr);
gnu_size = 0;
used_by_ref = 1;
}
}
/* If this is an aliased object whose nominal subtype is unconstrained,
the object is a record that contains both the template and
the object. If there is an initializer, it will have already
been converted to the right type, but we need to create the
template if there is no initializer. */
else if (definition && TREE_CODE (gnu_type) == RECORD_TYPE
&& (TYPE_CONTAINS_TEMPLATE_P (gnu_type)
/* Beware that padding might have been introduced
via maybe_pad_type above. */
|| (TYPE_IS_PADDING_P (gnu_type)
&& TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
== RECORD_TYPE
&& TYPE_CONTAINS_TEMPLATE_P
(TREE_TYPE (TYPE_FIELDS (gnu_type)))))
&& gnu_expr == 0)
{
tree template_field
= TYPE_IS_PADDING_P (gnu_type)
? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type)))
: TYPE_FIELDS (gnu_type);
gnu_expr
= gnat_build_constructor
(gnu_type,
tree_cons
(template_field,
build_template (TREE_TYPE (template_field),
TREE_TYPE (TREE_CHAIN (template_field)),
NULL_TREE),
NULL_TREE));
}
/* If this is a pointer and it does not have an initializing
expression, initialize it to NULL, unless the obect is
imported. */
if (definition
&& (POINTER_TYPE_P (gnu_type) || TYPE_FAT_POINTER_P (gnu_type))
&& !Is_Imported (gnat_entity)
&& gnu_expr == 0)
gnu_expr = integer_zero_node;
/* If we are defining the object and it has an Address clause we must
get the address expression from the saved GCC tree for the
object if the object has a Freeze_Node. Otherwise, we elaborate
the address expression here since the front-end has guaranteed
in that case that the elaboration has no effects. Note that
only the latter mechanism is currently in use. */
if (definition && Present (Address_Clause (gnat_entity)))
{
tree gnu_address
= (present_gnu_tree (gnat_entity) ? get_gnu_tree (gnat_entity)
: gnat_to_gnu (Expression (Address_Clause (gnat_entity))));
save_gnu_tree (gnat_entity, NULL_TREE, 0);
/* Ignore the size. It's either meaningless or was handled
above. */
gnu_size = 0;
gnu_type = build_reference_type (gnu_type);
gnu_address = convert (gnu_type, gnu_address);
used_by_ref = 1;
const_flag = ! Is_Public (gnat_entity);
/* If we don't have an initializing expression for the underlying
variable, the initializing expression for the pointer is the
specified address. Otherwise, we have to make a COMPOUND_EXPR
to assign both the address and the initial value. */
if (gnu_expr == 0)
gnu_expr = gnu_address;
else
gnu_expr
= build (COMPOUND_EXPR, gnu_type,
build_binary_op
(MODIFY_EXPR, NULL_TREE,
build_unary_op (INDIRECT_REF, NULL_TREE,
gnu_address),
gnu_expr),
gnu_address);
}
/* If it has an address clause and we are not defining it, mark it
as an indirect object. Likewise for Stdcall objects that are
imported. */
if ((! definition && Present (Address_Clause (gnat_entity)))
|| (Is_Imported (gnat_entity)
&& Convention (gnat_entity) == Convention_Stdcall))
{
gnu_type = build_reference_type (gnu_type);
gnu_size = 0;
used_by_ref = 1;
}
/* If we are at top level and this object is of variable size,
make the actual type a hidden pointer to the real type and
make the initializer be a memory allocation and initialization.
Likewise for objects we aren't defining (presumed to be
external references from other packages), but there we do
not set up an initialization.
If the object's size overflows, make an allocator too, so that
Storage_Error gets raised. Note that we will never free
such memory, so we presume it never will get allocated. */
if (! allocatable_size_p (TYPE_SIZE_UNIT (gnu_type),
global_bindings_p () || ! definition
|| static_p)
|| (gnu_size != 0
&& ! allocatable_size_p (gnu_size,
global_bindings_p () || ! definition
|| static_p)))
{
gnu_type = build_reference_type (gnu_type);
gnu_size = 0;
used_by_ref = 1;
const_flag = 1;
/* Get the data part of GNU_EXPR in case this was a
aliased object whose nominal subtype is unconstrained.
In that case the pointer above will be a thin pointer and
build_allocator will automatically make the template and
constructor already made above. */
if (definition)
{
tree gnu_alloc_type = TREE_TYPE (gnu_type);
if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE
&& TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type))
{
gnu_alloc_type
= TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_alloc_type)));
gnu_expr
= build_component_ref
(gnu_expr, NULL_TREE,
TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr))), 0);
}
if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST
&& TREE_CONSTANT_OVERFLOW (TYPE_SIZE_UNIT (gnu_alloc_type))
&& ! Is_Imported (gnat_entity))
post_error ("Storage_Error will be raised at run-time?",
gnat_entity);
gnu_expr = build_allocator (gnu_alloc_type, gnu_expr,
gnu_type, 0, 0, gnat_entity);
}
else
{
gnu_expr = 0;
const_flag = 0;
}
}
/* If this object would go into the stack and has an alignment
larger than the default largest alignment, make a variable
to hold the "aligning type" with a modified initial value,
if any, then point to it and make that the value of this
variable, which is now indirect. */
if (! global_bindings_p () && ! static_p && definition
&& ! imported_p && TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT)
{
tree gnu_new_type
= make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type),
TYPE_SIZE_UNIT (gnu_type));
tree gnu_new_var;
set_lineno (gnat_entity, 1);
gnu_new_var
= create_var_decl (create_concat_name (gnat_entity, "ALIGN"),
NULL_TREE, gnu_new_type, gnu_expr,
0, 0, 0, 0, 0);
if (gnu_expr != 0)
expand_expr_stmt
(build_binary_op
(MODIFY_EXPR, NULL_TREE,
build_component_ref (gnu_new_var, NULL_TREE,
TYPE_FIELDS (gnu_new_type), 0),
gnu_expr));
gnu_type = build_reference_type (gnu_type);
gnu_expr
= build_unary_op
(ADDR_EXPR, gnu_type,
build_component_ref (gnu_new_var, NULL_TREE,
TYPE_FIELDS (gnu_new_type), 0));
gnu_size = 0;
used_by_ref = 1;
const_flag = 1;
}
/* Convert the expression to the type of the object except in the
case where the object's type is unconstrained or the object's type
is a padded record whose field is of self-referential size. In
the former case, converting will generate unnecessary evaluations
of the CONSTRUCTOR to compute the size and in the latter case, we
want to only copy the actual data. */
if (gnu_expr != 0
&& TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
&& ! CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
&& ! (TREE_CODE (gnu_type) == RECORD_TYPE
&& TYPE_IS_PADDING_P (gnu_type)
&& (CONTAINS_PLACEHOLDER_P
(TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
gnu_expr = convert (gnu_type, gnu_expr);
/* This name is external or there was a name specified, use it.
Don't use the Interface_Name if there is an address clause.
(see CD30005). */
if ((Present (Interface_Name (gnat_entity))
&& No (Address_Clause (gnat_entity)))
|| (Is_Public (gnat_entity)
&& (! Is_Imported (gnat_entity) || Is_Exported (gnat_entity))))
gnu_ext_name = create_concat_name (gnat_entity, 0);
if (const_flag)
gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type)
| TYPE_QUAL_CONST));
/* If this is constant initialized to a static constant and the
object has an aggregrate type, force it to be statically
allocated. */
if (const_flag && gnu_expr && TREE_CONSTANT (gnu_expr)
&& host_integerp (TYPE_SIZE_UNIT (gnu_type), 1)
&& (AGGREGATE_TYPE_P (gnu_type)
&& ! (TREE_CODE (gnu_type) == RECORD_TYPE
&& TYPE_IS_PADDING_P (gnu_type))))
static_p = 1;
set_lineno (gnat_entity, ! global_bindings_p ());
gnu_decl = create_var_decl (gnu_entity_id, gnu_ext_name, gnu_type,
gnu_expr, const_flag,
Is_Public (gnat_entity),
imported_p || !definition,
static_p, attr_list);
DECL_BY_REF_P (gnu_decl) = used_by_ref;
DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag;
if (definition && DECL_SIZE (gnu_decl) != 0
&& gnu_block_stack != 0
&& TREE_VALUE (gnu_block_stack) != 0
&& (TREE_CODE (DECL_SIZE (gnu_decl)) != INTEGER_CST
|| (flag_stack_check && ! STACK_CHECK_BUILTIN
&& 0 < compare_tree_int (DECL_SIZE_UNIT (gnu_decl),
STACK_CHECK_MAX_VAR_SIZE))))
update_setjmp_buf (TREE_VALUE (gnu_block_stack));
/* If this is a public constant or we're not optimizing and we're not
making a VAR_DECL for it, make one just for export or debugger
use. Likewise if the address is taken or if the object or type is
aliased. */
if (definition && TREE_CODE (gnu_decl) == CONST_DECL
&& (Is_Public (gnat_entity)
|| optimize == 0
|| Address_Taken (gnat_entity)
|| Is_Aliased (gnat_entity)
|| Is_Aliased (Etype (gnat_entity))))
SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl,
create_var_decl (gnu_entity_id, gnu_ext_name, gnu_type,
gnu_expr, 0, Is_Public (gnat_entity), 0,
static_p, 0));
/* If this is declared in a block that contains an block with an
exception handler, we must force this variable in memory to
suppress an invalid optimization. */
if (Has_Nested_Block_With_Handler (Scope (gnat_entity))
&& Exception_Mechanism != GCC_ZCX)
{
gnat_mark_addressable (gnu_decl);
flush_addressof (gnu_decl);
}
/* Back-annotate the Alignment of the object if not already in the
tree. Likewise for Esize if the object is of a constant size.
But if the "object" is actually a pointer to an object, the
alignment and size are the same as teh type, so don't back-annotate
the values for the pointer. */
if (! used_by_ref && Unknown_Alignment (gnat_entity))
Set_Alignment (gnat_entity,
UI_From_Int (DECL_ALIGN (gnu_decl) / BITS_PER_UNIT));
if (! used_by_ref && Unknown_Esize (gnat_entity)
&& DECL_SIZE (gnu_decl) != 0)
{
tree gnu_back_size = DECL_SIZE (gnu_decl);
if (TREE_CODE (TREE_TYPE (gnu_decl)) == RECORD_TYPE
&& TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (gnu_decl)))
gnu_back_size
= TYPE_SIZE (TREE_TYPE (TREE_CHAIN
(TYPE_FIELDS (TREE_TYPE (gnu_decl)))));
Set_Esize (gnat_entity, annotate_value (gnu_back_size));
}
}
break;
case E_Void:
/* Return a TYPE_DECL for "void" that we previously made. */
gnu_decl = void_type_decl_node;
break;
case E_Enumeration_Type:
/* A special case, for the types Character and Wide_Character in
Standard, we do not list all the literals. So if the literals
are not specified, make this an unsigned type. */
if (No (First_Literal (gnat_entity)))
{
gnu_type = make_unsigned_type (esize);
break;
}
/* Normal case of non-character type, or non-Standard character type */
{
/* Here we have a list of enumeral constants in First_Literal.
We make a CONST_DECL for each and build into GNU_LITERAL_LIST
the list to be places into TYPE_FIELDS. Each node in the list
is a TREE_LIST node whose TREE_VALUE is the literal name
and whose TREE_PURPOSE is the value of the literal.
Esize contains the number of bits needed to represent the enumeral
type, Type_Low_Bound also points to the first literal and
Type_High_Bound points to the last literal. */
Entity_Id gnat_literal;
tree gnu_literal_list = NULL_TREE;
if (Is_Unsigned_Type (gnat_entity))
gnu_type = make_unsigned_type (esize);
else
gnu_type = make_signed_type (esize);
TREE_SET_CODE (gnu_type, ENUMERAL_TYPE);
for (gnat_literal = First_Literal (gnat_entity);
Present (gnat_literal);
gnat_literal = Next_Literal (gnat_literal))
{
tree gnu_value = UI_To_gnu (Enumeration_Rep (gnat_literal),
gnu_type);
tree gnu_literal
= create_var_decl (get_entity_name (gnat_literal),
0, gnu_type, gnu_value, 1, 0, 0, 0, 0);
save_gnu_tree (gnat_literal, gnu_literal, 0);
gnu_literal_list = tree_cons (DECL_NAME (gnu_literal),
gnu_value, gnu_literal_list);
}
TYPE_FIELDS (gnu_type) = nreverse (gnu_literal_list);
/* Note that the bounds are updated at the end of this function
because to avoid an infinite recursion when we get the bounds of
this type, since those bounds are objects of this type. */
}
break;
case E_Signed_Integer_Type:
case E_Ordinary_Fixed_Point_Type:
case E_Decimal_Fixed_Point_Type:
/* For integer types, just make a signed type the appropriate number
of bits. */
gnu_type = make_signed_type (esize);
break;
case E_Modular_Integer_Type:
/* For modular types, make the unsigned type of the proper number of
bits and then set up the modulus, if required. */
{
enum machine_mode mode;
tree gnu_modulus;
tree gnu_high = 0;
if (Is_Packed_Array_Type (gnat_entity))
esize = UI_To_Int (RM_Size (gnat_entity));
/* Find the smallest mode at least ESIZE bits wide and make a class
using that mode. */
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
GET_MODE_BITSIZE (mode) < esize;
mode = GET_MODE_WIDER_MODE (mode))
;
gnu_type = make_unsigned_type (GET_MODE_BITSIZE (mode));
TYPE_PACKED_ARRAY_TYPE_P (gnu_type)
= Is_Packed_Array_Type (gnat_entity);
/* Get the modulus in this type. If it overflows, assume it is because
it is equal to 2**Esize. Note that there is no overflow checking
done on unsigned type, so we detect the overflow by looking for
a modulus of zero, which is otherwise invalid. */
gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type);
if (! integer_zerop (gnu_modulus))
{
TYPE_MODULAR_P (gnu_type) = 1;
SET_TYPE_MODULUS (gnu_type, gnu_modulus);
gnu_high = fold (build (MINUS_EXPR, gnu_type, gnu_modulus,
convert (gnu_type, integer_one_node)));
}
/* If we have to set TYPE_PRECISION different from its natural value,
make a subtype to do do. Likewise if there is a modulus and
it is not one greater than TYPE_MAX_VALUE. */
if (TYPE_PRECISION (gnu_type) != esize
|| (TYPE_MODULAR_P (gnu_type)
&& ! tree_int_cst_equal (TYPE_MAX_VALUE (gnu_type), gnu_high)))
{
tree gnu_subtype = make_node (INTEGER_TYPE);
TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT");
TREE_TYPE (gnu_subtype) = gnu_type;
TYPE_MIN_VALUE (gnu_subtype) = TYPE_MIN_VALUE (gnu_type);
TYPE_MAX_VALUE (gnu_subtype)
= TYPE_MODULAR_P (gnu_type)
? gnu_high : TYPE_MAX_VALUE (gnu_type);
TYPE_PRECISION (gnu_subtype) = esize;
TREE_UNSIGNED (gnu_subtype) = 1;
TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
TYPE_PACKED_ARRAY_TYPE_P (gnu_subtype)
= Is_Packed_Array_Type (gnat_entity);
layout_type (gnu_subtype);
gnu_type = gnu_subtype;
}
}
break;
case E_Signed_Integer_Subtype:
case E_Enumeration_Subtype:
case E_Modular_Integer_Subtype:
case E_Ordinary_Fixed_Point_Subtype:
case E_Decimal_Fixed_Point_Subtype:
/* For integral subtypes, we make a new INTEGER_TYPE. Note
that we do not want to call build_range_type since we would
like each subtype node to be distinct. This will be important
when memory aliasing is implemented.
The TREE_TYPE field of the INTEGER_TYPE we make points to the
parent type; this fact is used by the arithmetic conversion
functions.
We elaborate the Ancestor_Subtype if it is not in the current
unit and one of our bounds is non-static. We do this to ensure
consistent naming in the case where several subtypes share the same
bounds by always elaborating the first such subtype first, thus
using its name. */
if (definition == 0
&& Present (Ancestor_Subtype (gnat_entity))
&& ! In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
&& (! Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
|| ! Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity),
gnu_expr, definition);
gnu_type = make_node (INTEGER_TYPE);
if (Is_Packed_Array_Type (gnat_entity))
{
esize = UI_To_Int (RM_Size (gnat_entity));
TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = 1;
}
TYPE_PRECISION (gnu_type) = esize;
TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
TYPE_MIN_VALUE (gnu_type)
= convert (TREE_TYPE (gnu_type),
elaborate_expression (Type_Low_Bound (gnat_entity),
gnat_entity,
get_identifier ("L"), definition, 1,
Needs_Debug_Info (gnat_entity)));
TYPE_MAX_VALUE (gnu_type)
= convert (TREE_TYPE (gnu_type),
elaborate_expression (Type_High_Bound (gnat_entity),
gnat_entity,
get_identifier ("U"), definition, 1,
Needs_Debug_Info (gnat_entity)));
/* One of the above calls might have caused us to be elaborated,
so don't blow up if so. */
if (present_gnu_tree (gnat_entity))
{
maybe_present = 1;
break;
}
TYPE_BIASED_REPRESENTATION_P (gnu_type)
= Has_Biased_Representation (gnat_entity);
/* This should be an unsigned type if the lower bound is constant
and non-negative or if the base type is unsigned; a signed type
otherwise. */
TREE_UNSIGNED (gnu_type)
= (TREE_UNSIGNED (TREE_TYPE (gnu_type))
|| (TREE_CODE (TYPE_MIN_VALUE (gnu_type)) == INTEGER_CST
&& TREE_INT_CST_HIGH (TYPE_MIN_VALUE (gnu_type)) >= 0)
|| TYPE_BIASED_REPRESENTATION_P (gnu_type)
|| Is_Unsigned_Type (gnat_entity));
layout_type (gnu_type);
if (Is_Packed_Array_Type (gnat_entity) && BYTES_BIG_ENDIAN)
{
tree gnu_field_type = gnu_type;
tree gnu_field;
TYPE_RM_SIZE_INT (gnu_field_type)
= UI_To_gnu (RM_Size (gnat_entity), bitsizetype);
gnu_type = make_node (RECORD_TYPE);
TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "LJM");
TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_field_type);
TYPE_PACKED (gnu_type) = 1;
gnu_field = create_field_decl (get_identifier ("OBJECT"),
gnu_field_type, gnu_type, 1, 0, 0, 1),
finish_record_type (gnu_type, gnu_field, 0, 0);
TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_type) = 1;
SET_TYPE_ADA_SIZE (gnu_type, bitsize_int (esize));
}
break;
case E_Floating_Point_Type:
/* If this is a VAX floating-point type, use an integer of the proper
size. All the operations will be handled with ASM statements. */
if (Vax_Float (gnat_entity))
{
gnu_type = make_signed_type (esize);
TYPE_VAX_FLOATING_POINT_P (gnu_type) = 1;
SET_TYPE_DIGITS_VALUE (gnu_type,
UI_To_gnu (Digits_Value (gnat_entity),
sizetype));
break;
}
/* The type of the Low and High bounds can be our type if this is
a type from Standard, so set them at the end of the function. */
gnu_type = make_node (REAL_TYPE);
TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
layout_type (gnu_type);
break;
case E_Floating_Point_Subtype:
if (Vax_Float (gnat_entity))
{
gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
break;
}
{
if (definition == 0
&& Present (Ancestor_Subtype (gnat_entity))
&& ! In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
&& (! Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
|| ! Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity),
gnu_expr, definition);
gnu_type = make_node (REAL_TYPE);
TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
TYPE_MIN_VALUE (gnu_type)
= convert (TREE_TYPE (gnu_type),
elaborate_expression (Type_Low_Bound (gnat_entity),
gnat_entity, get_identifier ("L"),
definition, 1,
Needs_Debug_Info (gnat_entity)));
TYPE_MAX_VALUE (gnu_type)
= convert (TREE_TYPE (gnu_type),
elaborate_expression (Type_High_Bound (gnat_entity),
gnat_entity, get_identifier ("U"),
definition, 1,
Needs_Debug_Info (gnat_entity)));
/* One of the above calls might have caused us to be elaborated,
so don't blow up if so. */
if (present_gnu_tree (gnat_entity))
{
maybe_present = 1;
break;
}
layout_type (gnu_type);
}
break;
/* Array and String Types and Subtypes
Unconstrained array types are represented by E_Array_Type and
constrained array types are represented by E_Array_Subtype. There
are no actual objects of an unconstrained array type; all we have
are pointers to that type.
The following fields are defined on array types and subtypes:
Component_Type Component type of the array.
Number_Dimensions Number of dimensions (an int).
First_Index Type of first index. */
case E_String_Type:
case E_Array_Type:
{
tree gnu_template_fields = NULL_TREE;
tree gnu_template_type = make_node (RECORD_TYPE);
tree gnu_ptr_template = build_pointer_type (gnu_template_type);
tree gnu_fat_type = make_node (RECORD_TYPE);
int ndim = Number_Dimensions (gnat_entity);
int firstdim
= (Convention (gnat_entity) == Convention_Fortran) ? ndim - 1 : 0;
int nextdim
= (Convention (gnat_entity) == Convention_Fortran) ? - 1 : 1;
tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree *));
tree *gnu_temp_fields = (tree *) alloca (ndim * sizeof (tree *));
tree gnu_comp_size = 0;
tree gnu_max_size = size_one_node;
tree gnu_max_size_unit;
int index;
Entity_Id gnat_ind_subtype;
Entity_Id gnat_ind_base_subtype;
tree gnu_template_reference;
tree tem;
TYPE_NAME (gnu_template_type)
= create_concat_name (gnat_entity, "XUB");
TYPE_NAME (gnu_fat_type) = create_concat_name (gnat_entity, "XUP");
TYPE_IS_FAT_POINTER_P (gnu_fat_type) = 1;
TREE_READONLY (gnu_template_type) = 1;
/* Make a node for the array. If we are not defining the array
suppress expanding incomplete types and save the node as the type
for GNAT_ENTITY. */
gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE);
if (! definition)
{
defer_incomplete_level++;
this_deferred = this_made_decl = 1;
gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list,
! Comes_From_Source (gnat_entity),
debug_info_p);
save_gnu_tree (gnat_entity, gnu_decl, 0);
saved = 1;
}
/* Build the fat pointer type. Use a "void *" object instead of
a pointer to the array type since we don't have the array type
yet (it will reference the fat pointer via the bounds). */
tem = chainon (chainon (NULL_TREE,
create_field_decl (get_identifier ("P_ARRAY"),
ptr_void_type_node,
gnu_fat_type, 0, 0, 0, 0)),
create_field_decl (get_identifier ("P_BOUNDS"),
gnu_ptr_template,
gnu_fat_type, 0, 0, 0, 0));
/* Make sure we can put this into a register. */
TYPE_ALIGN (gnu_fat_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE);
finish_record_type (gnu_fat_type, tem, 0, 1);
/* Build a reference to the template from a PLACEHOLDER_EXPR that
is the fat pointer. This will be used to access the individual
fields once we build them. */
tem = build (COMPONENT_REF, gnu_ptr_template,
build (PLACEHOLDER_EXPR, gnu_fat_type),
TREE_CHAIN (TYPE_FIELDS (gnu_fat_type)));
gnu_template_reference
= build_unary_op (INDIRECT_REF, gnu_template_type, tem);
TREE_READONLY (gnu_template_reference) = 1;
/* Now create the GCC type for each index and add the fields for
that index to the template. */
for (index = firstdim, gnat_ind_subtype = First_Index (gnat_entity),
gnat_ind_base_subtype
= First_Index (Implementation_Base_Type (gnat_entity));
index < ndim && index >= 0;
index += nextdim,
gnat_ind_subtype = Next_Index (gnat_ind_subtype),
gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
{
char field_name[10];
tree gnu_ind_subtype
= get_unpadded_type (Base_Type (Etype (gnat_ind_subtype)));
tree gnu_base_subtype
= get_unpadded_type (Etype (gnat_ind_base_subtype));
tree gnu_base_min
= convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
tree gnu_base_max
= convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
tree gnu_min_field, gnu_max_field, gnu_min, gnu_max;
/* Make the FIELD_DECLs for the minimum and maximum of this
type and then make extractions of that field from the
template. */
set_lineno (gnat_entity, 0);
sprintf (field_name, "LB%d", index);
gnu_min_field = create_field_decl (get_identifier (field_name),
gnu_ind_subtype,
gnu_template_type, 0, 0, 0, 0);
field_name[0] = 'U';
gnu_max_field = create_field_decl (get_identifier (field_name),
gnu_ind_subtype,
gnu_template_type, 0, 0, 0, 0);
gnu_temp_fields[index] = chainon (gnu_min_field, gnu_max_field);
/* We can't use build_component_ref here since the template
type isn't complete yet. */
gnu_min = build (COMPONENT_REF, gnu_ind_subtype,
gnu_template_reference, gnu_min_field);
gnu_max = build (COMPONENT_REF, gnu_ind_subtype,
gnu_template_reference, gnu_max_field);
TREE_READONLY (gnu_min) = TREE_READONLY (gnu_max) = 1;
/* Make a range type with the new ranges, but using
the Ada subtype. Then we convert to sizetype. */
gnu_index_types[index]
= create_index_type (convert (sizetype, gnu_min),
convert (sizetype, gnu_max),
build_range_type (gnu_ind_subtype,
gnu_min, gnu_max));
/* Update the maximum size of the array, in elements. */
gnu_max_size
= size_binop (MULT_EXPR, gnu_max_size,
size_binop (PLUS_EXPR, size_one_node,
size_binop (MINUS_EXPR, gnu_base_max,
gnu_base_min)));
TYPE_NAME (gnu_index_types[index])
= create_concat_name (gnat_entity, field_name);
}
for (index = 0; index < ndim; index++)
gnu_template_fields
= chainon (gnu_template_fields, gnu_temp_fields[index]);
/* Install all the fields into the template. */
finish_record_type (gnu_template_type, gnu_template_fields, 0, 0);
TREE_READONLY (gnu_template_type) = 1;
/* Now make the array of arrays and update the pointer to the array
in the fat pointer. Note that it is the first field. */
tem = gnat_to_gnu_type (Component_Type (gnat_entity));
/* Get and validate any specified Component_Size, but if Packed,
ignore it since the front end will have taken care of it. */
gnu_comp_size
= validate_size (Component_Size (gnat_entity), tem,
gnat_entity,
(Is_Bit_Packed_Array (gnat_entity)
? TYPE_DECL : VAR_DECL), 1,
Has_Component_Size_Clause (gnat_entity));
if (Has_Atomic_Components (gnat_entity))
check_ok_for_atomic (tem, gnat_entity, 1);
/* If the component type is a RECORD_TYPE that has a self-referential
size, use the maxium size. */
if (gnu_comp_size == 0 && TREE_CODE (tem) == RECORD_TYPE
&& CONTAINS_PLACEHOLDER_P (TYPE_SIZE (tem)))
gnu_comp_size = max_size (TYPE_SIZE (tem), 1);
if (! Is_Bit_Packed_Array (gnat_entity) && gnu_comp_size != 0)
{
tem = make_type_from_size (tem, gnu_comp_size, 0);
tem = maybe_pad_type (tem, gnu_comp_size, 0, gnat_entity,
"C_PAD", 0, definition, 1);
}
if (Has_Volatile_Components (gnat_entity))
tem = build_qualified_type (tem,
TYPE_QUALS (tem) | TYPE_QUAL_VOLATILE);
/* If Component_Size is not already specified, annotate it with the
size of the component. */
if (Unknown_Component_Size (gnat_entity))
Set_Component_Size (gnat_entity, annotate_value (TYPE_SIZE (tem)));
gnu_max_size_unit = size_binop (MAX_EXPR, size_zero_node,
size_binop (MULT_EXPR, gnu_max_size,
TYPE_SIZE_UNIT (tem)));
gnu_max_size = size_binop (MAX_EXPR, bitsize_zero_node,
size_binop (MULT_EXPR,
convert (bitsizetype,
gnu_max_size),
TYPE_SIZE (tem)));
for (index = ndim - 1; index >= 0; index--)
{
tem = build_array_type (tem, gnu_index_types[index]);
TYPE_MULTI_ARRAY_P (tem) = (index > 0);
/* ??? For now, we say that any component of aggregate type is
addressable because the front end may take 'Reference of it.
But we have to make it addressable if it must be passed by
reference or it that is the default. */
TYPE_NONALIASED_COMPONENT (tem)
= (! Has_Aliased_Components (gnat_entity)
&& ! AGGREGATE_TYPE_P (TREE_TYPE (tem)));
}
/* If an alignment is specified, use it if valid. But ignore it for
types that represent the unpacked base type for packed arrays. */
if (No (Packed_Array_Type (gnat_entity))
&& Known_Alignment (gnat_entity))
{
if (No (Alignment (gnat_entity)))
gigi_abort (124);
TYPE_ALIGN (tem)
= validate_alignment (Alignment (gnat_entity), gnat_entity,
TYPE_ALIGN (tem));
}
TYPE_CONVENTION_FORTRAN_P (tem)
= (Convention (gnat_entity) == Convention_Fortran);
TREE_TYPE (TYPE_FIELDS (gnu_fat_type)) = build_pointer_type (tem);
/* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the
corresponding fat pointer. */
TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type)
= TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type;
TYPE_MODE (gnu_type) = BLKmode;
TYPE_ALIGN (gnu_type) = TYPE_ALIGN (tem);
SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type);
/* If the maximum size doesn't overflow, use it. */
if (TREE_CODE (gnu_max_size) == INTEGER_CST
&& ! TREE_OVERFLOW (gnu_max_size))
TYPE_SIZE (tem)
= size_binop (MIN_EXPR, gnu_max_size, TYPE_SIZE (tem));
if (TREE_CODE (gnu_max_size_unit) == INTEGER_CST
&& ! TREE_OVERFLOW (gnu_max_size_unit))
TYPE_SIZE_UNIT (tem)
= size_binop (MIN_EXPR, gnu_max_size_unit,
TYPE_SIZE_UNIT (tem));
create_type_decl (create_concat_name (gnat_entity, "XUA"),
tem, 0, ! Comes_From_Source (gnat_entity),
debug_info_p);
rest_of_type_compilation (gnu_fat_type, global_bindings_p ());
/* Create a record type for the object and its template and
set the template at a negative offset. */
tem = build_unc_object_type (gnu_template_type, tem,
create_concat_name (gnat_entity, "XUT"));
DECL_FIELD_OFFSET (TYPE_FIELDS (tem))
= size_binop (MINUS_EXPR, size_zero_node,
byte_position (TREE_CHAIN (TYPE_FIELDS (tem))));
DECL_FIELD_OFFSET (TREE_CHAIN (TYPE_FIELDS (tem))) = size_zero_node;
DECL_FIELD_BIT_OFFSET (TREE_CHAIN (TYPE_FIELDS (tem)))
= bitsize_zero_node;
SET_TYPE_UNCONSTRAINED_ARRAY (tem, gnu_type);
TYPE_OBJECT_RECORD_TYPE (gnu_type) = tem;
/* Give the thin pointer type a name. */
create_type_decl (create_concat_name (gnat_entity, "XUX"),
build_pointer_type (tem), 0,
! Comes_From_Source (gnat_entity), debug_info_p);
}
break;
case E_String_Subtype:
case E_Array_Subtype:
/* This is the actual data type for array variables. Multidimensional
arrays are implemented in the gnu tree as arrays of arrays. Note
that for the moment arrays which have sparse enumeration subtypes as
index components create sparse arrays, which is obviously space
inefficient but so much easier to code for now.
Also note that the subtype never refers to the unconstrained
array type, which is somewhat at variance with Ada semantics.
First check to see if this is simply a renaming of the array
type. If so, the result is the array type. */
gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
if (! Is_Constrained (gnat_entity))
break;
else
{
int index;
int array_dim = Number_Dimensions (gnat_entity);
int first_dim
= ((Convention (gnat_entity) == Convention_Fortran)
? array_dim - 1 : 0);
int next_dim
= (Convention (gnat_entity) == Convention_Fortran) ? -1 : 1;
Entity_Id gnat_ind_subtype;
Entity_Id gnat_ind_base_subtype;
tree gnu_base_type = gnu_type;
tree *gnu_index_type = (tree *) alloca (array_dim * sizeof (tree *));
tree gnu_comp_size = 0;
tree gnu_max_size = size_one_node;
tree gnu_max_size_unit;
int need_index_type_struct = 0;
int max_overflow = 0;
/* First create the gnu types for each index. Create types for
debugging information to point to the index types if the
are not integer types, have variable bounds, or are
wider than sizetype. */
for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity),
gnat_ind_base_subtype
= First_Index (Implementation_Base_Type (gnat_entity));
index < array_dim && index >= 0;
index += next_dim,
gnat_ind_subtype = Next_Index (gnat_ind_subtype),
gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
{
tree gnu_index_subtype
= get_unpadded_type (Etype (gnat_ind_subtype));
tree gnu_min
= convert (sizetype, TYPE_MIN_VALUE (gnu_index_subtype));
tree gnu_max
= convert (sizetype, TYPE_MAX_VALUE (gnu_index_subtype));
tree gnu_base_subtype
= get_unpadded_type (Etype (gnat_ind_base_subtype));
tree gnu_base_min
= convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
tree gnu_base_max
= convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
tree gnu_base_type = get_base_type (gnu_base_subtype);
tree gnu_base_base_min
= convert (sizetype, TYPE_MIN_VALUE (gnu_base_type));
tree gnu_base_base_max
= convert (sizetype, TYPE_MAX_VALUE (gnu_base_type));
tree gnu_high;
tree gnu_this_max;
/* If the minimum and maximum values both overflow in
SIZETYPE, but the difference in the original type
does not overflow in SIZETYPE, ignore the overflow
indications. */
if ((TYPE_PRECISION (gnu_index_subtype)
> TYPE_PRECISION (sizetype))
&& TREE_CODE (gnu_min) == INTEGER_CST
&& TREE_CODE (gnu_max) == INTEGER_CST
&& TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max)
&& (! TREE_OVERFLOW
(fold (build (MINUS_EXPR, gnu_index_subtype,
TYPE_MAX_VALUE (gnu_index_subtype),
TYPE_MIN_VALUE (gnu_index_subtype))))))
TREE_OVERFLOW (gnu_min) = TREE_OVERFLOW (gnu_max)
= TREE_CONSTANT_OVERFLOW (gnu_min)
= TREE_CONSTANT_OVERFLOW (gnu_max) = 0;
/* Similarly, if the range is null, use bounds of 1..0 for
the sizetype bounds. */
else if ((TYPE_PRECISION (gnu_index_subtype)
> TYPE_PRECISION (sizetype))
&& TREE_CODE (gnu_min) == INTEGER_CST
&& TREE_CODE (gnu_max) == INTEGER_CST
&& (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max))
&& tree_int_cst_lt (TYPE_MAX_VALUE (gnu_index_subtype),
TYPE_MIN_VALUE (gnu_index_subtype)))
gnu_min = size_one_node, gnu_max = size_zero_node;
/* Now compute the size of this bound. We need to provide
GCC with an upper bound to use but have to deal with the
"superflat" case. There are three ways to do this. If we
can prove that the array can never be superflat, we can
just use the high bound of the index subtype. If we can
prove that the low bound minus one can't overflow, we
can do this as MAX (hb, lb - 1). Otherwise, we have to use
the expression hb >= lb ? hb : lb - 1. */
gnu_high = size_binop (MINUS_EXPR, gnu_min, size_one_node);
/* See if the base array type is already flat. If it is, we
are probably compiling an ACVC test, but it will cause the
code below to malfunction if we don't handle it specially. */
if (TREE_CODE (gnu_base_min) == INTEGER_CST
&& TREE_CODE (gnu_base_max) == INTEGER_CST
&& ! TREE_CONSTANT_OVERFLOW (gnu_base_min)
&& ! TREE_CONSTANT_OVERFLOW (gnu_base_max)
&& tree_int_cst_lt (gnu_base_max, gnu_base_min))
gnu_high = size_zero_node, gnu_min = size_one_node;
/* If gnu_high is now an integer which overflowed, the array
cannot be superflat. */
else if (TREE_CODE (gnu_high) == INTEGER_CST
&& TREE_OVERFLOW (gnu_high))
gnu_high = gnu_max;
else if (TREE_UNSIGNED (gnu_base_subtype)
|| TREE_CODE (gnu_high) == INTEGER_CST)
gnu_high = size_binop (MAX_EXPR, gnu_max, gnu_high);
else
gnu_high
= build_cond_expr
(sizetype, build_binary_op (GE_EXPR, integer_type_node,
gnu_max, gnu_min),
gnu_max, gnu_high);
gnu_index_type[index]
= create_index_type (gnu_min, gnu_high, gnu_index_subtype);
/* Also compute the maximum size of the array. Here we
see if any constraint on the index type of the base type
can be used in the case of self-referential bound on
the index type of the subtype. We look for a non-"infinite"
and non-self-referential bound from any type involved and
handle each bound separately. */
if ((TREE_CODE (gnu_min) == INTEGER_CST
&& ! TREE_OVERFLOW (gnu_min)
&& ! operand_equal_p (gnu_min, gnu_base_base_min, 0))
|| ! CONTAINS_PLACEHOLDER_P (gnu_min))
gnu_base_min = gnu_min;
if ((TREE_CODE (gnu_max) == INTEGER_CST
&& ! TREE_OVERFLOW (gnu_max)
&& ! operand_equal_p (gnu_max, gnu_base_base_max, 0))
|| ! CONTAINS_PLACEHOLDER_P (gnu_max))
gnu_base_max = gnu_max;
if ((TREE_CODE (gnu_base_min) == INTEGER_CST
&& TREE_CONSTANT_OVERFLOW (gnu_base_min))
|| operand_equal_p (gnu_base_min, gnu_base_base_min, 0)
|| (TREE_CODE (gnu_base_max) == INTEGER_CST
&& TREE_CONSTANT_OVERFLOW (gnu_base_max))
|| operand_equal_p (gnu_base_max, gnu_base_base_max, 0))
max_overflow = 1;
gnu_base_min = size_binop (MAX_EXPR, gnu_base_min, gnu_min);
gnu_base_max = size_binop (MIN_EXPR, gnu_base_max, gnu_max);
gnu_this_max
= size_binop (MAX_EXPR,
size_binop (PLUS_EXPR, size_one_node,
size_binop (MINUS_EXPR, gnu_base_max,
gnu_base_min)),
size_zero_node);
if (TREE_CODE (gnu_this_max) == INTEGER_CST
&& TREE_CONSTANT_OVERFLOW (gnu_this_max))
max_overflow = 1;
gnu_max_size
= size_binop (MULT_EXPR, gnu_max_size, gnu_this_max);
if (! integer_onep (TYPE_MIN_VALUE (gnu_index_subtype))
|| (TREE_CODE (TYPE_MAX_VALUE (gnu_index_subtype))
!= INTEGER_CST)
|| TREE_CODE (gnu_index_subtype) != INTEGER_TYPE
|| (TREE_TYPE (gnu_index_subtype) != 0
&& (TREE_CODE (TREE_TYPE (gnu_index_subtype))
!= INTEGER_TYPE))
|| TYPE_BIASED_REPRESENTATION_P (gnu_index_subtype)
|| (TYPE_PRECISION (gnu_index_subtype)
> TYPE_PRECISION (sizetype)))
need_index_type_struct = 1;
}
/* Then flatten: create the array of arrays. */
gnu_type = gnat_to_gnu_type (Component_Type (gnat_entity));
/* One of the above calls might have caused us to be elaborated,
so don't blow up if so. */
if (present_gnu_tree (gnat_entity))
{
maybe_present = 1;
break;
}
/* Get and validate any specified Component_Size, but if Packed,
ignore it since the front end will have taken care of it. */
gnu_comp_size
= validate_size (Component_Size (gnat_entity), gnu_type,
gnat_entity,
(Is_Bit_Packed_Array (gnat_entity)
? TYPE_DECL : VAR_DECL),
1, Has_Component_Size_Clause (gnat_entity));
/* If the component type is a RECORD_TYPE that has a self-referential
size, use the maxium size. */
if (gnu_comp_size == 0 && TREE_CODE (gnu_type) == RECORD_TYPE
&& CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
gnu_comp_size = max_size (TYPE_SIZE (gnu_type), 1);
if (! Is_Bit_Packed_Array (gnat_entity) && gnu_comp_size != 0)
{
gnu_type = make_type_from_size (gnu_type, gnu_comp_size, 0);
gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, 0,
gnat_entity, "C_PAD", 0,
definition, 1);
}
if (Has_Volatile_Components (Base_Type (gnat_entity)))
gnu_type = build_qualified_type (gnu_type,
(TYPE_QUALS (gnu_type)
| TYPE_QUAL_VOLATILE));
gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size,
TYPE_SIZE_UNIT (gnu_type));
gnu_max_size = size_binop (MULT_EXPR,
convert (bitsizetype, gnu_max_size),
TYPE_SIZE (gnu_type));
/* We don't want any array types shared for two reasons: first,
we want to keep differently-named types distinct; second,
setting TYPE_MULTI_ARRAY_TYPE of one type can clobber
another. */
debug_no_type_hash = 1;
for (index = array_dim - 1; index >= 0; index --)
{
gnu_type = build_array_type (gnu_type, gnu_index_type[index]);
TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0);
/* ??? For now, we say that any component of aggregate type is
addressable because the front end may take 'Reference.
But we have to make it addressable if it must be passed by
reference or it that is the default. */
TYPE_NONALIASED_COMPONENT (gnu_type)
= (! Has_Aliased_Components (gnat_entity)
&& ! AGGREGATE_TYPE_P (TREE_TYPE (gnu_type)));
}
/* If we are at file level and this is a multi-dimensional array, we
need to make a variable corresponding to the stride of the
inner dimensions. */
if (global_bindings_p () && array_dim > 1)
{
tree gnu_str_name = get_identifier ("ST");
tree gnu_arr_type;
for (gnu_arr_type = TREE_TYPE (gnu_type);
TREE_CODE (gnu_arr_type) == ARRAY_TYPE;
gnu_arr_type = TREE_TYPE (gnu_arr_type),
gnu_str_name = concat_id_with_name (gnu_str_name, "ST"))
{
TYPE_SIZE (gnu_arr_type)
= elaborate_expression_1 (gnat_entity, gnat_entity,
TYPE_SIZE (gnu_arr_type),
gnu_str_name, definition, 0);
TYPE_SIZE_UNIT (gnu_arr_type)
= elaborate_expression_1
(gnat_entity, gnat_entity, TYPE_SIZE_UNIT (gnu_arr_type),
concat_id_with_name (gnu_str_name, "U"), definition, 0);
}
}
/* If we need to write out a record type giving the names of
the bounds, do it now. */
if (need_index_type_struct && debug_info_p)
{
tree gnu_bound_rec_type = make_node (RECORD_TYPE);
tree gnu_field_list = 0;
tree gnu_field;
TYPE_NAME (gnu_bound_rec_type)
= create_concat_name (gnat_entity, "XA");
for (index = array_dim - 1; index >= 0; index--)
{
tree gnu_type_name
= TYPE_NAME (TYPE_INDEX_TYPE (gnu_index_type[index]));
if (TREE_CODE (gnu_type_name) == TYPE_DECL)
gnu_type_name = DECL_NAME (gnu_type_name);
gnu_field = create_field_decl (gnu_type_name,
integer_type_node,
gnu_bound_rec_type,
0, NULL_TREE, NULL_TREE, 0);
TREE_CHAIN (gnu_field) = gnu_field_list;
gnu_field_list = gnu_field;
}
finish_record_type (gnu_bound_rec_type, gnu_field_list, 0, 0);
}
debug_no_type_hash = 0;
TYPE_CONVENTION_FORTRAN_P (gnu_type)
= (Convention (gnat_entity) == Convention_Fortran);
TYPE_PACKED_ARRAY_TYPE_P (gnu_type)
= Is_Packed_Array_Type (gnat_entity);
/* If our size depends on a placeholder and the maximum size doesn't
overflow, use it. */
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
&& ! (TREE_CODE (gnu_max_size) == INTEGER_CST
&& TREE_OVERFLOW (gnu_max_size))
&& ! (TREE_CODE (gnu_max_size_unit) == INTEGER_CST
&& TREE_OVERFLOW (gnu_max_size_unit))
&& ! max_overflow)
{
TYPE_SIZE (gnu_type) = size_binop (MIN_EXPR, gnu_max_size,
TYPE_SIZE (gnu_type));
TYPE_SIZE_UNIT (gnu_type)
= size_binop (MIN_EXPR, gnu_max_size_unit,
TYPE_SIZE_UNIT (gnu_type));
}
/* Set our alias set to that of our base type. This gives all
array subtypes the same alias set. */
TYPE_ALIAS_SET (gnu_type) = get_alias_set (gnu_base_type);
record_component_aliases (gnu_type);
}
/* If this is a packed type, make this type the same as the packed
array type, but do some adjusting in the type first. */
if (Present (Packed_Array_Type (gnat_entity)))
{
Entity_Id gnat_index;
tree gnu_inner_type;
/* First finish the type we had been making so that we output
debugging information for it */
gnu_type = build_qualified_type (gnu_type,
(TYPE_QUALS (gnu_type)
| (TYPE_QUAL_VOLATILE
* Treat_As_Volatile (gnat_entity))));
set_lineno (gnat_entity, 0);
gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list,
! Comes_From_Source (gnat_entity),
debug_info_p);
if (! Comes_From_Source (gnat_entity))
DECL_ARTIFICIAL (gnu_decl) = 1;
/* Save it as our equivalent in case the call below elaborates
this type again. */
save_gnu_tree (gnat_entity, gnu_decl, 0);
gnu_decl = gnat_to_gnu_entity (Packed_Array_Type (gnat_entity),
NULL_TREE, 0);
this_made_decl = 1;
gnu_inner_type = gnu_type = TREE_TYPE (gnu_decl);
save_gnu_tree (gnat_entity, NULL_TREE, 0);
while (TREE_CODE (gnu_inner_type) == RECORD_TYPE
&& (TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_inner_type)
|| TYPE_IS_PADDING_P (gnu_inner_type)))
gnu_inner_type = TREE_TYPE (TYPE_FIELDS (gnu_inner_type));
/* We need to point the type we just made to our index type so
the actual bounds can be put into a template. */
if ((TREE_CODE (gnu_inner_type) == ARRAY_TYPE
&& TYPE_ACTUAL_BOUNDS (gnu_inner_type) == 0)
|| (TREE_CODE (gnu_inner_type) == INTEGER_TYPE
&& ! TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type)))
{
if (TREE_CODE (gnu_inner_type) == INTEGER_TYPE)
{
/* The TYPE_ACTUAL_BOUNDS field is also used for the modulus.
If it is, we need to make another type. */
if (TYPE_MODULAR_P (gnu_inner_type))
{
tree gnu_subtype;
gnu_subtype = make_node (INTEGER_TYPE);
TREE_TYPE (gnu_subtype) = gnu_inner_type;
TYPE_MIN_VALUE (gnu_subtype)
= TYPE_MIN_VALUE (gnu_inner_type);
TYPE_MAX_VALUE (gnu_subtype)
= TYPE_MAX_VALUE (gnu_inner_type);
TYPE_PRECISION (gnu_subtype)
= TYPE_PRECISION (gnu_inner_type);
TREE_UNSIGNED (gnu_subtype)
= TREE_UNSIGNED (gnu_inner_type);
TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
layout_type (gnu_subtype);
gnu_inner_type = gnu_subtype;
}
TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type) = 1;
}
SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, NULL_TREE);
for (gnat_index = First_Index (gnat_entity);
Present (gnat_index); gnat_index = Next_Index (gnat_index))
SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type,
tree_cons (NULL_TREE,
get_unpadded_type (Etype (gnat_index)),
TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
if (Convention (gnat_entity) != Convention_Fortran)
SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type,
nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
if (TREE_CODE (gnu_type) == RECORD_TYPE
&& TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_type))
TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner_type;
}
}
/* Abort if packed array with no packed array type field set. */
else if (Is_Packed (gnat_entity))
gigi_abort (107);
break;
case E_String_Literal_Subtype:
/* Create the type for a string literal. */
{
Entity_Id gnat_full_type
= (IN (Ekind (Etype (gnat_entity)), Private_Kind)
&& Present (Full_View (Etype (gnat_entity)))
? Full_View (Etype (gnat_entity)) : Etype (gnat_entity));
tree gnu_string_type = get_unpadded_type (gnat_full_type);
tree gnu_string_array_type
= TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type))));
tree gnu_string_index_type
= get_base_type (TREE_TYPE (TYPE_INDEX_TYPE
(TYPE_DOMAIN (gnu_string_array_type))));
tree gnu_lower_bound
= convert (gnu_string_index_type,
gnat_to_gnu (String_Literal_Low_Bound (gnat_entity)));
int length = UI_To_Int (String_Literal_Length (gnat_entity));
tree gnu_length = ssize_int (length - 1);
tree gnu_upper_bound
= build_binary_op (PLUS_EXPR, gnu_string_index_type,
gnu_lower_bound,
convert (gnu_string_index_type, gnu_length));
tree gnu_range_type
= build_range_type (gnu_string_index_type,
gnu_lower_bound, gnu_upper_bound);
tree gnu_index_type
= create_index_type (convert (sizetype,
TYPE_MIN_VALUE (gnu_range_type)),
convert (sizetype,
TYPE_MAX_VALUE (gnu_range_type)),
gnu_range_type);
gnu_type
= build_array_type (gnat_to_gnu_type (Component_Type (gnat_entity)),
gnu_index_type);
}
break;
/* Record Types and Subtypes
The following fields are defined on record types:
Has_Discriminants True if the record has discriminants
First_Discriminant Points to head of list of discriminants
First_Entity Points to head of list of fields
Is_Tagged_Type True if the record is tagged
Implementation of Ada records and discriminated records:
A record type definition is transformed into the equivalent of a C
struct definition. The fields that are the discriminants which are
found in the Full_Type_Declaration node and the elements of the
Component_List found in the Record_Type_Definition node. The
Component_List can be a recursive structure since each Variant of
the Variant_Part of the Component_List has a Component_List.
Processing of a record type definition comprises starting the list of
field declarations here from the discriminants and the calling the
function components_to_record to add the rest of the fields from the
component list and return the gnu type node. The function
components_to_record will call itself recursively as it traverses
the tree. */
case E_Record_Type:
if (Has_Complex_Representation (gnat_entity))
{
gnu_type
= build_complex_type
(get_unpadded_type
(Etype (Defining_Entity
(First (Component_Items
(Component_List
(Type_Definition
(Declaration_Node (gnat_entity)))))))));
break;
}
{
Node_Id full_definition = Declaration_Node (gnat_entity);
Node_Id record_definition = Type_Definition (full_definition);
Entity_Id gnat_field;
tree gnu_field;
tree gnu_field_list = NULL_TREE;
tree gnu_get_parent;
int packed = (Is_Packed (gnat_entity) ? 1
: (Component_Alignment (gnat_entity)
== Calign_Storage_Unit) ? -1
: 0);
int has_rep = Has_Specified_Layout (gnat_entity);
int all_rep = has_rep;
int is_extension
= (Is_Tagged_Type (gnat_entity)
&& Nkind (record_definition) == N_Derived_Type_Definition);
/* See if all fields have a rep clause. Stop when we find one
that doesn't. */
for (gnat_field = First_Entity (gnat_entity);
Present (gnat_field) && all_rep;
gnat_field = Next_Entity (gnat_field))
if ((Ekind (gnat_field) == E_Component
|| Ekind (gnat_field) == E_Discriminant)
&& No (Component_Clause (gnat_field)))
all_rep = 0;
/* If this is a record extension, go a level further to find the
record definition. Also, verify we have a Parent_Subtype. */
if (is_extension)
{
if (! type_annotate_only
|| Present (Record_Extension_Part (record_definition)))
record_definition = Record_Extension_Part (record_definition);
if (! type_annotate_only && No (Parent_Subtype (gnat_entity)))
gigi_abort (121);
}
/* Make a node for the record. If we are not defining the record,
suppress expanding incomplete types and save the node as the type
for GNAT_ENTITY. We use the same RECORD_TYPE as for a dummy type
and reset TYPE_DUMMY_P to show it's no longer a dummy.
It is very tempting to delay resetting this bit until we are done
with completing the type, e.g. to let possible intermediate
elaboration of access types designating the record know it is not
complete and arrange for update_pointer_to to fix things up later.
It would be wrong, however, because dummy types are expected only
to be created for Ada incomplete or private types, which is not
what we have here. Doing so would make other parts of gigi think
we are dealing with a really incomplete or private type, and have
nasty side effects, typically on the generation of the associated
debugging information. */
gnu_type = make_dummy_type (gnat_entity);
TYPE_DUMMY_P (gnu_type) = 0;
if (TREE_CODE (TYPE_NAME (gnu_type)) == TYPE_DECL && debug_info_p)
DECL_IGNORED_P (TYPE_NAME (gnu_type)) = 0;
TYPE_ALIGN (gnu_type) = 0;
TYPE_PACKED (gnu_type) = packed != 0 || has_rep;
if (! definition)
{
defer_incomplete_level++;
this_deferred = 1;
set_lineno (gnat_entity, 0);
gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list,
! Comes_From_Source (gnat_entity),
debug_info_p);
save_gnu_tree (gnat_entity, gnu_decl, 0);
this_made_decl = saved = 1;
}
/* If both a size and rep clause was specified, put the size in
the record type now so that it can get the proper mode. */
if (has_rep && Known_Esize (gnat_entity))
TYPE_SIZE (gnu_type) = UI_To_gnu (Esize (gnat_entity), sizetype);
/* Always set the alignment here so that it can be used to
set the mode, if it is making the alignment stricter. If
it is invalid, it will be checked again below. If this is to
be Atomic, choose a default alignment of a word unless we know
the size and it's smaller. */
if (Known_Alignment (gnat_entity))
TYPE_ALIGN (gnu_type)
= validate_alignment (Alignment (gnat_entity), gnat_entity, 0);
else if (Is_Atomic (gnat_entity))
TYPE_ALIGN (gnu_type)
= (esize >= BITS_PER_WORD ? BITS_PER_WORD
: 1 << ((floor_log2 (esize) - 1) + 1));
/* If we have a Parent_Subtype, make a field for the parent. If
this record has rep clauses, force the position to zero. */
if (Present (Parent_Subtype (gnat_entity)))
{
tree gnu_parent;
/* A major complexity here is that the parent subtype will
reference our discriminants. But those must reference
the parent component of this record. So here we will
initialize each of those components to a COMPONENT_REF.
The first operand of that COMPONENT_REF is another
COMPONENT_REF which will be filled in below, once
the parent type can be safely built. */
gnu_get_parent = build (COMPONENT_REF, void_type_node,
build (PLACEHOLDER_EXPR, gnu_type),
build_decl (FIELD_DECL, NULL_TREE,
NULL_TREE));
if (Has_Discriminants (gnat_entity))
for (gnat_field = First_Stored_Discriminant (gnat_entity);
Present (gnat_field);
gnat_field = Next_Stored_Discriminant (gnat_field))
if (Present (Corresponding_Discriminant (gnat_field)))
save_gnu_tree
(gnat_field,
build (COMPONENT_REF,
get_unpadded_type (Etype (gnat_field)),
gnu_get_parent,
gnat_to_gnu_entity (Corresponding_Discriminant
(gnat_field),
NULL_TREE, 0)),
1);
gnu_parent = gnat_to_gnu_type (Parent_Subtype (gnat_entity));
gnu_field_list
= create_field_decl (get_identifier
(Get_Name_String (Name_uParent)),
gnu_parent, gnu_type, 0,
has_rep ? TYPE_SIZE (gnu_parent) : 0,
has_rep ? bitsize_zero_node : 0, 1);
DECL_INTERNAL_P (gnu_field_list) = 1;
TREE_TYPE (gnu_get_parent) = gnu_parent;
TREE_OPERAND (gnu_get_parent, 1) = gnu_field_list;
}
/* Add the fields for the discriminants into the record. */
if (! Is_Unchecked_Union (gnat_entity)
&& Has_Discriminants (gnat_entity))
for (gnat_field = First_Stored_Discriminant (gnat_entity);
Present (gnat_field);
gnat_field = Next_Stored_Discriminant (gnat_field))
{
/* If this is a record extension and this discriminant
is the renaming of another discriminant, we've already
handled the discriminant above. */
if (Present (Parent_Subtype (gnat_entity))
&& Present (Corresponding_Discriminant (gnat_field)))
continue;
gnu_field
= gnat_to_gnu_field (gnat_field, gnu_type, packed, definition);
/* Make an expression using a PLACEHOLDER_EXPR from the
FIELD_DECL node just created and link that with the
corresponding GNAT defining identifier. Then add to the
list of fields. */
save_gnu_tree (gnat_field,
build (COMPONENT_REF, TREE_TYPE (gnu_field),
build (PLACEHOLDER_EXPR,
DECL_CONTEXT (gnu_field)),
gnu_field),
1);
TREE_CHAIN (gnu_field) = gnu_field_list;
gnu_field_list = gnu_field;
}
/* Put the discriminants into the record (backwards), so we can
know the appropriate discriminant to use for the names of the
variants. */
TYPE_FIELDS (gnu_type) = gnu_field_list;
/* Add the listed fields into the record and finish up. */
components_to_record (gnu_type, Component_List (record_definition),
gnu_field_list, packed, definition, 0,
0, all_rep);
TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_entity);
/* If this is an extension type, reset the tree for any
inherited discriminants. Also remove the PLACEHOLDER_EXPR
for non-inherited discriminants. */
if (! Is_Unchecked_Union (gnat_entity)
&& Has_Discriminants (gnat_entity))
for (gnat_field = First_Stored_Discriminant (gnat_entity);
Present (gnat_field);
gnat_field = Next_Stored_Discriminant (gnat_field))
{
if (Present (Parent_Subtype (gnat_entity))
&& Present (Corresponding_Discriminant (gnat_field)))
save_gnu_tree (gnat_field, NULL_TREE, 0);
else
{
gnu_field = get_gnu_tree (gnat_field);
save_gnu_tree (gnat_field, NULL_TREE, 0);
save_gnu_tree (gnat_field, TREE_OPERAND (gnu_field, 1), 0);
}
}
/* If it is a tagged record force the type to BLKmode to insure
that these objects will always be placed in memory. Do the
same thing for limited record types. */
if (Is_Tagged_Type (gnat_entity) || Is_Limited_Record (gnat_entity))
TYPE_MODE (gnu_type) = BLKmode;
/* If this is a derived type, we must make the alias set of this type
the same as that of the type we are derived from. We assume here
that the other type is already frozen. */
if (Etype (gnat_entity) != gnat_entity
&& ! (Is_Private_Type (Etype (gnat_entity))
&& Full_View (Etype (gnat_entity)) == gnat_entity))
{
TYPE_ALIAS_SET (gnu_type)
= get_alias_set (gnat_to_gnu_type (Etype (gnat_entity)));
record_component_aliases (gnu_type);
}
/* Fill in locations of fields. */
annotate_rep (gnat_entity, gnu_type);
/* If there are any entities in the chain corresponding to
components that we did not elaborate, ensure we elaborate their
types if they are Itypes. */
for (gnat_temp = First_Entity (gnat_entity);
Present (gnat_temp); gnat_temp = Next_Entity (gnat_temp))
if ((Ekind (gnat_temp) == E_Component
|| Ekind (gnat_temp) == E_Discriminant)
&& Is_Itype (Etype (gnat_temp))
&& ! present_gnu_tree (gnat_temp))
gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0);
}
break;
case E_Class_Wide_Subtype:
/* If an equivalent type is present, that is what we should use.
Otherwise, fall through to handle this like a record subtype
since it may have constraints. */
if (Present (Equivalent_Type (gnat_entity)))
{
gnu_decl = gnat_to_gnu_entity (Equivalent_Type (gnat_entity),
NULL_TREE, 0);
maybe_present = 1;
break;
}
/* ... fall through ... */
case E_Record_Subtype:
/* If Cloned_Subtype is Present it means this record subtype has
identical layout to that type or subtype and we should use
that GCC type for this one. The front end guarantees that
the component list is shared. */
if (Present (Cloned_Subtype (gnat_entity)))
{
gnu_decl = gnat_to_gnu_entity (Cloned_Subtype (gnat_entity),
NULL_TREE, 0);
maybe_present = 1;
}
/* Otherwise, first ensure the base type is elaborated. Then, if we are
changing the type, make a new type with each field having the
type of the field in the new subtype but having the position
computed by transforming every discriminant reference according
to the constraints. We don't see any difference between
private and nonprivate type here since derivations from types should
have been deferred until the completion of the private type. */
else
{
Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity);
tree gnu_base_type;
tree gnu_orig_type;
if (! definition)
defer_incomplete_level++, this_deferred = 1;
/* Get the base type initially for its alignment and sizes. But
if it is a padded type, we do all the other work with the
unpadded type. */
gnu_type = gnu_orig_type = gnu_base_type
= gnat_to_gnu_type (gnat_base_type);
if (TREE_CODE (gnu_type) == RECORD_TYPE
&& TYPE_IS_PADDING_P (gnu_type))
gnu_type = gnu_orig_type = TREE_TYPE (TYPE_FIELDS (gnu_type));
if (present_gnu_tree (gnat_entity))
{
maybe_present = 1;
break;
}
/* When the type has discriminants, and these discriminants
affect the shape of what it built, factor them in.
If we are making a subtype of an Unchecked_Union (must be an
Itype), just return the type.
We can't just use Is_Constrained because private subtypes without
discriminants of full types with discriminants with default
expressions are Is_Constrained but aren't constrained! */
if (IN (Ekind (gnat_base_type), Record_Kind)
&& ! Is_For_Access_Subtype (gnat_entity)
&& ! Is_Unchecked_Union (gnat_base_type)
&& Is_Constrained (gnat_entity)
&& Stored_Constraint (gnat_entity) != No_Elist
&& Present (Discriminant_Constraint (gnat_entity)))
{
Entity_Id gnat_field;
Entity_Id gnat_root_type;
tree gnu_field_list = 0;
tree gnu_pos_list
= compute_field_positions (gnu_orig_type, NULL_TREE,
size_zero_node, bitsize_zero_node,
BIGGEST_ALIGNMENT);
tree gnu_subst_list
= substitution_list (gnat_entity, gnat_base_type, NULL_TREE,
definition);
tree gnu_temp;
/* If this is a derived type, we may be seeing fields from any
original records, so add those positions and discriminant
substitutions to our lists. */
for (gnat_root_type = gnat_base_type;
Underlying_Type (Etype (gnat_root_type)) != gnat_root_type;
gnat_root_type = Underlying_Type (Etype (gnat_root_type)))
{
gnu_pos_list
= compute_field_positions
(gnat_to_gnu_type (Etype (gnat_root_type)),
gnu_pos_list, size_zero_node, bitsize_zero_node,
BIGGEST_ALIGNMENT);
if (Present (Parent_Subtype (gnat_root_type)))
gnu_subst_list
= substitution_list (Parent_Subtype (gnat_root_type),
Empty, gnu_subst_list, definition);
}
gnu_type = make_node (RECORD_TYPE);
TYPE_NAME (gnu_type) = gnu_entity_id;
TYPE_STUB_DECL (gnu_type)
= pushdecl (build_decl (TYPE_DECL, NULL_TREE, gnu_type));
TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type);
for (gnat_field = First_Entity (gnat_entity);
Present (gnat_field); gnat_field = Next_Entity (gnat_field))
if (Ekind (gnat_field) == E_Component
|| Ekind (gnat_field) == E_Discriminant)
{
tree gnu_old_field
= gnat_to_gnu_entity
(Original_Record_Component (gnat_field), NULL_TREE, 0);
tree gnu_offset
= TREE_VALUE (purpose_member (gnu_old_field,
gnu_pos_list));
tree gnu_pos = TREE_PURPOSE (gnu_offset);
tree gnu_bitpos = TREE_VALUE (TREE_VALUE (gnu_offset));
tree gnu_field_type
= gnat_to_gnu_type (Etype (gnat_field));
tree gnu_size = TYPE_SIZE (gnu_field_type);
tree gnu_new_pos = 0;
unsigned int offset_align
= tree_low_cst (TREE_PURPOSE (TREE_VALUE (gnu_offset)),
1);
tree gnu_field;
/* If there was a component clause, the field types must be
the same for the type and subtype, so copy the data from
the old field to avoid recomputation here. */
if (Present (Component_Clause
(Original_Record_Component (gnat_field))))
{
gnu_size = DECL_SIZE (gnu_old_field);
gnu_field_type = TREE_TYPE (gnu_old_field);
}
/* If this was a bitfield, get the size from the old field.
Also ensure the type can be placed into a bitfield. */
else if (DECL_BIT_FIELD (gnu_old_field))
{
gnu_size = DECL_SIZE (gnu_old_field);
if (TYPE_MODE (gnu_field_type) == BLKmode
&& TREE_CODE (gnu_field_type) == RECORD_TYPE
&& host_integerp (TYPE_SIZE (gnu_field_type), 1))
gnu_field_type = make_packable_type (gnu_field_type);
}
if (CONTAINS_PLACEHOLDER_P (gnu_pos))
for (gnu_temp = gnu_subst_list;
gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
gnu_pos = substitute_in_expr (gnu_pos,
TREE_PURPOSE (gnu_temp),
TREE_VALUE (gnu_temp));
/* If the size is now a constant, we can set it as the
size of the field when we make it. Otherwise, we need
to deal with it specially. */
if (TREE_CONSTANT (gnu_pos))
gnu_new_pos = bit_from_pos (gnu_pos, gnu_bitpos);
gnu_field
= create_field_decl
(DECL_NAME (gnu_old_field), gnu_field_type, gnu_type,
0, gnu_size, gnu_new_pos,
! DECL_NONADDRESSABLE_P (gnu_old_field));
if (! TREE_CONSTANT (gnu_pos))
{
normalize_offset (&gnu_pos, &gnu_bitpos, offset_align);
DECL_FIELD_OFFSET (gnu_field) = gnu_pos;
DECL_FIELD_BIT_OFFSET (gnu_field) = gnu_bitpos;
SET_DECL_OFFSET_ALIGN (gnu_field, offset_align);
DECL_SIZE (gnu_field) = gnu_size;
DECL_SIZE_UNIT (gnu_field)
= convert (sizetype,
size_binop (CEIL_DIV_EXPR, gnu_size,
bitsize_unit_node));
layout_decl (gnu_field, DECL_OFFSET_ALIGN (gnu_field));
}
DECL_INTERNAL_P (gnu_field)
= DECL_INTERNAL_P (gnu_old_field);
SET_DECL_ORIGINAL_FIELD (gnu_field,
(DECL_ORIGINAL_FIELD (gnu_old_field) != 0
? DECL_ORIGINAL_FIELD (gnu_old_field)
: gnu_old_field));
DECL_DISCRIMINANT_NUMBER (gnu_field)
= DECL_DISCRIMINANT_NUMBER (gnu_old_field);
TREE_THIS_VOLATILE (gnu_field)
= TREE_THIS_VOLATILE (gnu_old_field);
TREE_CHAIN (gnu_field) = gnu_field_list;
gnu_field_list = gnu_field;
save_gnu_tree (gnat_field, gnu_field, 0);
}
finish_record_type (gnu_type, nreverse (gnu_field_list), 1, 0);
/* Now set the size, alignment and alias set of the new type to
match that of the old one, doing any substitutions, as
above. */
TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type);
TYPE_SIZE (gnu_type) = TYPE_SIZE (gnu_base_type);
TYPE_SIZE_UNIT (gnu_type) = TYPE_SIZE_UNIT (gnu_base_type);
SET_TYPE_ADA_SIZE (gnu_type, TYPE_ADA_SIZE (gnu_base_type));
TYPE_ALIAS_SET (gnu_type) = get_alias_set (gnu_base_type);
record_component_aliases (gnu_type);
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
for (gnu_temp = gnu_subst_list;
gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
TYPE_SIZE (gnu_type)
= substitute_in_expr (TYPE_SIZE (gnu_type),
TREE_PURPOSE (gnu_temp),
TREE_VALUE (gnu_temp));
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (gnu_type)))
for (gnu_temp = gnu_subst_list;
gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
TYPE_SIZE_UNIT (gnu_type)
= substitute_in_expr (TYPE_SIZE_UNIT (gnu_type),
TREE_PURPOSE (gnu_temp),
TREE_VALUE (gnu_temp));
if (TYPE_ADA_SIZE (gnu_type) != 0
&& CONTAINS_PLACEHOLDER_P (TYPE_ADA_SIZE (gnu_type)))
for (gnu_temp = gnu_subst_list;
gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
SET_TYPE_ADA_SIZE (gnu_type,
substitute_in_expr (TYPE_ADA_SIZE (gnu_type),
TREE_PURPOSE (gnu_temp),
TREE_VALUE (gnu_temp)));
/* Recompute the mode of this record type now that we know its
actual size. */
compute_record_mode (gnu_type);
/* Fill in locations of fields. */
annotate_rep (gnat_entity, gnu_type);
}
/* If we've made a new type, record it and make an XVS type to show
what this is a subtype of. Some debuggers require the XVS
type to be output first, so do it in that order. */
if (gnu_type != gnu_orig_type)
{
if (debug_info_p)
{
tree gnu_subtype_marker = make_node (RECORD_TYPE);
tree gnu_orig_name = TYPE_NAME (gnu_orig_type);
if (TREE_CODE (gnu_orig_name) == TYPE_DECL)
gnu_orig_name = DECL_NAME (gnu_orig_name);
TYPE_NAME (gnu_subtype_marker)
= create_concat_name (gnat_entity, "XVS");
finish_record_type (gnu_subtype_marker,
create_field_decl (gnu_orig_name,
integer_type_node,
gnu_subtype_marker,
0, NULL_TREE,
NULL_TREE, 0),
0, 0);
}
TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
TYPE_NAME (gnu_type) = gnu_entity_id;
TYPE_STUB_DECL (gnu_type)
= pushdecl (build_decl (TYPE_DECL, TYPE_NAME (gnu_type),
gnu_type));
DECL_ARTIFICIAL (TYPE_STUB_DECL (gnu_type)) = 1;
DECL_IGNORED_P (TYPE_STUB_DECL (gnu_type)) = ! debug_info_p;
rest_of_type_compilation (gnu_type, global_bindings_p ());
}
/* Otherwise, go down all the components in the new type and
make them equivalent to those in the base type. */
else
for (gnat_temp = First_Entity (gnat_entity); Present (gnat_temp);
gnat_temp = Next_Entity (gnat_temp))
if ((Ekind (gnat_temp) == E_Discriminant
&& ! Is_Unchecked_Union (gnat_base_type))
|| Ekind (gnat_temp) == E_Component)
save_gnu_tree (gnat_temp,
get_gnu_tree
(Original_Record_Component (gnat_temp)), 0);
}
break;
case E_Access_Subprogram_Type:
/* If we are not defining this entity, and we have incomplete
entities being processed above us, make a dummy type and
fill it in later. */
if (! definition && defer_incomplete_level != 0)
{
struct incomplete *p
= (struct incomplete *) xmalloc (sizeof (struct incomplete));
gnu_type
= build_pointer_type
(make_dummy_type (Directly_Designated_Type (gnat_entity)));
gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list,
! Comes_From_Source (gnat_entity),
debug_info_p);
save_gnu_tree (gnat_entity, gnu_decl, 0);
this_made_decl = saved = 1;
p->old_type = TREE_TYPE (gnu_type);
p->full_type = Directly_Designated_Type (gnat_entity);
p->next = defer_incomplete_list;
defer_incomplete_list = p;
break;
}
/* ... fall through ... */
case E_Allocator_Type:
case E_Access_Type:
case E_Access_Attribute_Type:
case E_Anonymous_Access_Type:
case E_General_Access_Type:
{
Entity_Id gnat_desig_type = Directly_Designated_Type (gnat_entity);
Entity_Id gnat_desig_full
= ((IN (Ekind (Etype (gnat_desig_type)),
Incomplete_Or_Private_Kind))
? Full_View (gnat_desig_type) : 0);
/* We want to know if we'll be seeing the freeze node for any
incomplete type we may be pointing to. */
int in_main_unit
= (Present (gnat_desig_full)
? In_Extended_Main_Code_Unit (gnat_desig_full)
: In_Extended_Main_Code_Unit (gnat_desig_type));
int got_fat_p = 0;
int made_dummy = 0;
tree gnu_desig_type = 0;
if (No (gnat_desig_full)
&& (Ekind (gnat_desig_type) == E_Class_Wide_Type
|| (Ekind (gnat_desig_type) == E_Class_Wide_Subtype
&& Present (Equivalent_Type (gnat_desig_type)))))
{
if (Present (Equivalent_Type (gnat_desig_type)))
{
gnat_desig_full = Equivalent_Type (gnat_desig_type);
if (IN (Ekind (gnat_desig_full), Incomplete_Or_Private_Kind))
gnat_desig_full = Full_View (gnat_desig_full);
}
else if (IN (Ekind (Root_Type (gnat_desig_type)),
Incomplete_Or_Private_Kind))
gnat_desig_full = Full_View (Root_Type (gnat_desig_type));
}
if (Present (gnat_desig_full) && Is_Concurrent_Type (gnat_desig_full))
gnat_desig_full = Corresponding_Record_Type (gnat_desig_full);
/* If either the designated type or its full view is an
unconstrained array subtype, replace it with the type it's a
subtype of. This avoids problems with multiple copies of
unconstrained array types. */
if (Ekind (gnat_desig_type) == E_Array_Subtype
&& ! Is_Constrained (gnat_desig_type))
gnat_desig_type = Etype (gnat_desig_type);
if (Present (gnat_desig_full)
&& Ekind (gnat_desig_full) == E_Array_Subtype
&& ! Is_Constrained (gnat_desig_full))
gnat_desig_full = Etype (gnat_desig_full);
/* If the designated type is a subtype of an incomplete record type,
use the parent type to avoid order of elaboration issues. This
can lose some code efficiency, but there is no alternative. */
if (Present (gnat_desig_full)
&& Ekind (gnat_desig_full) == E_Record_Subtype
&& Ekind (Etype (gnat_desig_full)) == E_Record_Type)
gnat_desig_full = Etype (gnat_desig_full);
/* If we are pointing to an incomplete type whose completion is an
unconstrained array, make a fat pointer type instead of a pointer
to VOID. The two types in our fields will be pointers to VOID and
will be replaced in update_pointer_to. Similiarly, if the type
itself is a dummy type or an unconstrained array. Also make
a dummy TYPE_OBJECT_RECORD_TYPE in case we have any thin
pointers to it. */
if ((Present (gnat_desig_full)
&& Is_Array_Type (gnat_desig_full)
&& ! Is_Constrained (gnat_desig_full))
|| (present_gnu_tree (gnat_desig_type)
&& TYPE_IS_DUMMY_P (TREE_TYPE
(get_gnu_tree (gnat_desig_type)))
&& Is_Array_Type (gnat_desig_type)
&& ! Is_Constrained (gnat_desig_type))
|| (present_gnu_tree (gnat_desig_type)
&& (TREE_CODE (TREE_TYPE (get_gnu_tree (gnat_desig_type)))
== UNCONSTRAINED_ARRAY_TYPE)
&& (TYPE_POINTER_TO (TREE_TYPE
(get_gnu_tree (gnat_desig_type)))
== 0))
|| (No (gnat_desig_full) && ! in_main_unit
&& defer_incomplete_level != 0
&& ! present_gnu_tree (gnat_desig_type)
&& Is_Array_Type (gnat_desig_type)
&& ! Is_Constrained (gnat_desig_type)))
{
tree gnu_old
= (present_gnu_tree (gnat_desig_type)
? gnat_to_gnu_type (gnat_desig_type)
: make_dummy_type (gnat_desig_type));
tree fields;
/* Show the dummy we get will be a fat pointer. */
got_fat_p = made_dummy = 1;
/* If the call above got something that has a pointer, that
pointer is our type. This could have happened either
because the type was elaborated or because somebody
else executed the code below. */
gnu_type = TYPE_POINTER_TO (gnu_old);
if (gnu_type == 0)
{
gnu_type = make_node (RECORD_TYPE);
SET_TYPE_UNCONSTRAINED_ARRAY (gnu_type, gnu_old);
TYPE_POINTER_TO (gnu_old) = gnu_type;
set_lineno (gnat_entity, 0);
fields
= chainon (chainon (NULL_TREE,
create_field_decl
(get_identifier ("P_ARRAY"),
ptr_void_type_node, gnu_type,
0, 0, 0, 0)),
create_field_decl (get_identifier ("P_BOUNDS"),
ptr_void_type_node,
gnu_type, 0, 0, 0, 0));
/* Make sure we can place this into a register. */
TYPE_ALIGN (gnu_type)
= MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE);
TYPE_IS_FAT_POINTER_P (gnu_type) = 1;
finish_record_type (gnu_type, fields, 0, 1);
TYPE_OBJECT_RECORD_TYPE (gnu_old) = make_node (RECORD_TYPE);
TYPE_NAME (TYPE_OBJECT_RECORD_TYPE (gnu_old))
= concat_id_with_name (get_entity_name (gnat_desig_type),
"XUT");
TYPE_DUMMY_P (TYPE_OBJECT_RECORD_TYPE (gnu_old)) = 1;
}
}
/* If we already know what the full type is, use it. */
else if (Present (gnat_desig_full)
&& present_gnu_tree (gnat_desig_full))
gnu_desig_type = TREE_TYPE (get_gnu_tree (gnat_desig_full));
/* Get the type of the thing we are to point to and build a pointer
to it. If it is a reference to an incomplete or private type with a
full view that is a record, make a dummy type node and get the
actual type later when we have verified it is safe. */
else if (! in_main_unit
&& ! present_gnu_tree (gnat_desig_type)
&& Present (gnat_desig_full)
&& ! present_gnu_tree (gnat_desig_full)
&& Is_Record_Type (gnat_desig_full))
{
gnu_desig_type = make_dummy_type (gnat_desig_type);
made_dummy = 1;
}
/* Likewise if we are pointing to a record or array and we are to defer
elaborating incomplete types. We do this since this access type
may be the full view of some private type. Note that the
unconstrained array case is handled above. */
else if ((! in_main_unit || imported_p) && defer_incomplete_level != 0
&& ! present_gnu_tree (gnat_desig_type)
&& ((Is_Record_Type (gnat_desig_type)
|| Is_Array_Type (gnat_desig_type))
|| (Present (gnat_desig_full)
&& (Is_Record_Type (gnat_desig_full)
|| Is_Array_Type (gnat_desig_full)))))
{
gnu_desig_type = make_dummy_type (gnat_desig_type);
made_dummy = 1;
}
else if (gnat_desig_type == gnat_entity)
{
gnu_type = build_pointer_type (make_node (VOID_TYPE));
TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type) = gnu_type;
}
else
gnu_desig_type = gnat_to_gnu_type (gnat_desig_type);
/* It is possible that the above call to gnat_to_gnu_type resolved our
type. If so, just return it. */
if (present_gnu_tree (gnat_entity))
{
maybe_present = 1;
break;
}
/* If we have a GCC type for the designated type, possibly modify it
if we are pointing only to constant objects and then make a pointer
to it. Don't do this for unconstrained arrays. */
if (gnu_type == 0 && gnu_desig_type != 0)
{
if (Is_Access_Constant (gnat_entity)
&& TREE_CODE (gnu_desig_type) != UNCONSTRAINED_ARRAY_TYPE)
{
gnu_desig_type
= build_qualified_type
(gnu_desig_type,
TYPE_QUALS (gnu_desig_type) | TYPE_QUAL_CONST);
/* Some extra processing is required if we are building a
pointer to an incomplete type (in the GCC sense). We might
have such a type if we just made a dummy, or directly out
of the call to gnat_to_gnu_type above if we are processing
an access type for a record component designating the
record type itself. */
if (! COMPLETE_TYPE_P (gnu_desig_type))
{
/* We must ensure that the pointer to variant we make will
be processed by update_pointer_to when the initial type
is completed. Pretend we made a dummy and let further
processing act as usual. */
made_dummy = 1;
/* We must ensure that update_pointer_to will not retrieve
the dummy variant when building a properly qualified
version of the complete type. We take advantage of the
fact that get_qualified_type is requiring TYPE_NAMEs to
match to influence build_qualified_type and then also
update_pointer_to here. */
TYPE_NAME (gnu_desig_type)
= create_concat_name (gnat_desig_type, "INCOMPLETE_CST");
}
}
gnu_type = build_pointer_type (gnu_desig_type);
}
/* If we are not defining this object and we made a dummy pointer,
save our current definition, evaluate the actual type, and replace
the tentative type we made with the actual one. If we are to defer
actually looking up the actual type, make an entry in the
deferred list. */
if (! in_main_unit && made_dummy)
{
tree gnu_old_type
= TYPE_FAT_POINTER_P (gnu_type)
? TYPE_UNCONSTRAINED_ARRAY (gnu_type) : TREE_TYPE (gnu_type);
if (esize == POINTER_SIZE
&& (got_fat_p || TYPE_FAT_POINTER_P (gnu_type)))
gnu_type
= build_pointer_type
(TYPE_OBJECT_RECORD_TYPE
(TYPE_UNCONSTRAINED_ARRAY (gnu_type)));
gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list,
! Comes_From_Source (gnat_entity),
debug_info_p);
save_gnu_tree (gnat_entity, gnu_decl, 0);
this_made_decl = saved = 1;
if (defer_incomplete_level == 0)
{
update_pointer_to (TYPE_MAIN_VARIANT (gnu_old_type),
gnat_to_gnu_type (gnat_desig_type));
/* Note that the call to gnat_to_gnu_type here might have
updated gnu_old_type directly, in which case it is not a
dummy type any more when we get into update_pointer_to.
This may happen for instance when the designated type is a
record type, because their elaboration starts with an
initial node from make_dummy_type, which may yield the same
node as the one we got.
Besides, variants of this non-dummy type might have been
created along the way. update_pointer_to is expected to
properly take care of those situations. */
}
else
{
struct incomplete *p
= (struct incomplete *) xmalloc (sizeof (struct incomplete));
p->old_type = gnu_old_type;
p->full_type = gnat_desig_type;
p->next = defer_incomplete_list;
defer_incomplete_list = p;
}
}
}
break;
case E_Access_Protected_Subprogram_Type:
if (type_annotate_only && No (Equivalent_Type (gnat_entity)))
gnu_type = build_pointer_type (void_type_node);
else
/* The runtime representation is the equivalent type. */
gnu_type = gnat_to_gnu_type (Equivalent_Type (gnat_entity));
if (Is_Itype (Directly_Designated_Type (gnat_entity))
&& ! present_gnu_tree (Directly_Designated_Type (gnat_entity))
&& No (Freeze_Node (Directly_Designated_Type (gnat_entity)))
&& ! Is_Record_Type (Scope (Directly_Designated_Type (gnat_entity))))
gnat_to_gnu_entity (Directly_Designated_Type (gnat_entity),