| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- E V A L _ F A T -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2003 Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 2, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING. If not, write -- |
| -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- |
| -- MA 02111-1307, USA. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Einfo; use Einfo; |
| with Errout; use Errout; |
| with Sem_Util; use Sem_Util; |
| with Ttypef; use Ttypef; |
| with Targparm; use Targparm; |
| |
| package body Eval_Fat is |
| |
| Radix : constant Int := 2; |
| -- This code is currently only correct for the radix 2 case. We use |
| -- the symbolic value Radix where possible to help in the unlikely |
| -- case of anyone ever having to adjust this code for another value, |
| -- and for documentation purposes. |
| |
| type Radix_Power_Table is array (Int range 1 .. 4) of Int; |
| |
| Radix_Powers : constant Radix_Power_Table |
| := (Radix**1, Radix**2, Radix**3, Radix**4); |
| |
| function Float_Radix return T renames Ureal_2; |
| -- Radix expressed in real form |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| procedure Decompose |
| (RT : R; |
| X : in T; |
| Fraction : out T; |
| Exponent : out UI; |
| Mode : Rounding_Mode := Round); |
| -- Decomposes a non-zero floating-point number into fraction and |
| -- exponent parts. The fraction is in the interval 1.0 / Radix .. |
| -- T'Pred (1.0) and uses Rbase = Radix. |
| -- The result is rounded to a nearest machine number. |
| |
| procedure Decompose_Int |
| (RT : R; |
| X : in T; |
| Fraction : out UI; |
| Exponent : out UI; |
| Mode : Rounding_Mode); |
| -- This is similar to Decompose, except that the Fraction value returned |
| -- is an integer representing the value Fraction * Scale, where Scale is |
| -- the value (Radix ** Machine_Mantissa (RT)). The value is obtained by |
| -- using biased rounding (halfway cases round away from zero), round to |
| -- even, a floor operation or a ceiling operation depending on the setting |
| -- of Mode (see corresponding descriptions in Urealp). |
| |
| function Eps_Model (RT : R) return T; |
| -- Return the smallest model number of R. |
| |
| function Eps_Denorm (RT : R) return T; |
| -- Return the smallest denormal of type R. |
| |
| function Machine_Emin (RT : R) return Int; |
| -- Return value of the Machine_Emin attribute |
| |
| function Machine_Mantissa (RT : R) return Nat; |
| -- Return value of the Machine_Mantissa attribute |
| |
| -------------- |
| -- Adjacent -- |
| -------------- |
| |
| function Adjacent (RT : R; X, Towards : T) return T is |
| begin |
| if Towards = X then |
| return X; |
| |
| elsif Towards > X then |
| return Succ (RT, X); |
| |
| else |
| return Pred (RT, X); |
| end if; |
| end Adjacent; |
| |
| ------------- |
| -- Ceiling -- |
| ------------- |
| |
| function Ceiling (RT : R; X : T) return T is |
| XT : constant T := Truncation (RT, X); |
| |
| begin |
| if UR_Is_Negative (X) then |
| return XT; |
| |
| elsif X = XT then |
| return X; |
| |
| else |
| return XT + Ureal_1; |
| end if; |
| end Ceiling; |
| |
| ------------- |
| -- Compose -- |
| ------------- |
| |
| function Compose (RT : R; Fraction : T; Exponent : UI) return T is |
| Arg_Frac : T; |
| Arg_Exp : UI; |
| |
| begin |
| if UR_Is_Zero (Fraction) then |
| return Fraction; |
| else |
| Decompose (RT, Fraction, Arg_Frac, Arg_Exp); |
| return Scaling (RT, Arg_Frac, Exponent); |
| end if; |
| end Compose; |
| |
| --------------- |
| -- Copy_Sign -- |
| --------------- |
| |
| function Copy_Sign (RT : R; Value, Sign : T) return T is |
| pragma Warnings (Off, RT); |
| Result : T; |
| |
| begin |
| Result := abs Value; |
| |
| if UR_Is_Negative (Sign) then |
| return -Result; |
| else |
| return Result; |
| end if; |
| end Copy_Sign; |
| |
| --------------- |
| -- Decompose -- |
| --------------- |
| |
| procedure Decompose |
| (RT : R; |
| X : in T; |
| Fraction : out T; |
| Exponent : out UI; |
| Mode : Rounding_Mode := Round) |
| is |
| Int_F : UI; |
| |
| begin |
| Decompose_Int (RT, abs X, Int_F, Exponent, Mode); |
| |
| Fraction := UR_From_Components |
| (Num => Int_F, |
| Den => UI_From_Int (Machine_Mantissa (RT)), |
| Rbase => Radix, |
| Negative => False); |
| |
| if UR_Is_Negative (X) then |
| Fraction := -Fraction; |
| end if; |
| |
| return; |
| end Decompose; |
| |
| ------------------- |
| -- Decompose_Int -- |
| ------------------- |
| |
| -- This procedure should be modified with care, as there |
| -- are many non-obvious details that may cause problems |
| -- that are hard to detect. The cases of positive and |
| -- negative zeroes are also special and should be |
| -- verified separately. |
| |
| procedure Decompose_Int |
| (RT : R; |
| X : in T; |
| Fraction : out UI; |
| Exponent : out UI; |
| Mode : Rounding_Mode) |
| is |
| Base : Int := Rbase (X); |
| N : UI := abs Numerator (X); |
| D : UI := Denominator (X); |
| |
| N_Times_Radix : UI; |
| |
| Even : Boolean; |
| -- True iff Fraction is even |
| |
| Most_Significant_Digit : constant UI := |
| Radix ** (Machine_Mantissa (RT) - 1); |
| |
| Uintp_Mark : Uintp.Save_Mark; |
| -- The code is divided into blocks that systematically release |
| -- intermediate values (this routine generates lots of junk!) |
| |
| begin |
| Calculate_D_And_Exponent_1 : begin |
| Uintp_Mark := Mark; |
| Exponent := Uint_0; |
| |
| -- In cases where Base > 1, the actual denominator is |
| -- Base**D. For cases where Base is a power of Radix, use |
| -- the value 1 for the Denominator and adjust the exponent. |
| |
| -- Note: Exponent has different sign from D, because D is a divisor |
| |
| for Power in 1 .. Radix_Powers'Last loop |
| if Base = Radix_Powers (Power) then |
| Exponent := -D * Power; |
| Base := 0; |
| D := Uint_1; |
| exit; |
| end if; |
| end loop; |
| |
| Release_And_Save (Uintp_Mark, D, Exponent); |
| end Calculate_D_And_Exponent_1; |
| |
| if Base > 0 then |
| Calculate_Exponent : begin |
| Uintp_Mark := Mark; |
| |
| -- For bases that are a multiple of the Radix, divide |
| -- the base by Radix and adjust the Exponent. This will |
| -- help because D will be much smaller and faster to process. |
| |
| -- This occurs for decimal bases on a machine with binary |
| -- floating-point for example. When calculating 1E40, |
| -- with Radix = 2, N will be 93 bits instead of 133. |
| |
| -- N E |
| -- ------ * Radix |
| -- D |
| -- Base |
| |
| -- N E |
| -- = -------------------------- * Radix |
| -- D D |
| -- (Base/Radix) * Radix |
| |
| -- N E-D |
| -- = --------------- * Radix |
| -- D |
| -- (Base/Radix) |
| |
| -- This code is commented out, because it causes numerous |
| -- failures in the regression suite. To be studied ??? |
| |
| while False and then Base > 0 and then Base mod Radix = 0 loop |
| Base := Base / Radix; |
| Exponent := Exponent + D; |
| end loop; |
| |
| Release_And_Save (Uintp_Mark, Exponent); |
| end Calculate_Exponent; |
| |
| -- For remaining bases we must actually compute |
| -- the exponentiation. |
| |
| -- Because the exponentiation can be negative, and D must |
| -- be integer, the numerator is corrected instead. |
| |
| Calculate_N_And_D : begin |
| Uintp_Mark := Mark; |
| |
| if D < 0 then |
| N := N * Base ** (-D); |
| D := Uint_1; |
| else |
| D := Base ** D; |
| end if; |
| |
| Release_And_Save (Uintp_Mark, N, D); |
| end Calculate_N_And_D; |
| |
| Base := 0; |
| end if; |
| |
| -- Now scale N and D so that N / D is a value in the |
| -- interval [1.0 / Radix, 1.0) and adjust Exponent accordingly, |
| -- so the value N / D * Radix ** Exponent remains unchanged. |
| |
| -- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0 |
| |
| -- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D. |
| -- This scaling is not possible for N is Uint_0 as there |
| -- is no way to scale Uint_0 so the first digit is non-zero. |
| |
| Calculate_N_And_Exponent : begin |
| Uintp_Mark := Mark; |
| |
| N_Times_Radix := N * Radix; |
| |
| if N /= Uint_0 then |
| while not (N_Times_Radix >= D) loop |
| N := N_Times_Radix; |
| Exponent := Exponent - 1; |
| |
| N_Times_Radix := N * Radix; |
| end loop; |
| end if; |
| |
| Release_And_Save (Uintp_Mark, N, Exponent); |
| end Calculate_N_And_Exponent; |
| |
| -- Step 2 - Adjust D so N / D < 1 |
| |
| -- Scale up D so N / D < 1, so N < D |
| |
| Calculate_D_And_Exponent_2 : begin |
| Uintp_Mark := Mark; |
| |
| while not (N < D) loop |
| |
| -- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix, |
| -- so the result of Step 1 stays valid |
| |
| D := D * Radix; |
| Exponent := Exponent + 1; |
| end loop; |
| |
| Release_And_Save (Uintp_Mark, D, Exponent); |
| end Calculate_D_And_Exponent_2; |
| |
| -- Here the value N / D is in the range [1.0 / Radix .. 1.0) |
| |
| -- Now find the fraction by doing a very simple-minded |
| -- division until enough digits have been computed. |
| |
| -- This division works for all radices, but is only efficient for |
| -- a binary radix. It is just like a manual division algorithm, |
| -- but instead of moving the denominator one digit right, we move |
| -- the numerator one digit left so the numerator and denominator |
| -- remain integral. |
| |
| Fraction := Uint_0; |
| Even := True; |
| |
| Calculate_Fraction_And_N : begin |
| Uintp_Mark := Mark; |
| |
| loop |
| while N >= D loop |
| N := N - D; |
| Fraction := Fraction + 1; |
| Even := not Even; |
| end loop; |
| |
| -- Stop when the result is in [1.0 / Radix, 1.0) |
| |
| exit when Fraction >= Most_Significant_Digit; |
| |
| N := N * Radix; |
| Fraction := Fraction * Radix; |
| Even := True; |
| end loop; |
| |
| Release_And_Save (Uintp_Mark, Fraction, N); |
| end Calculate_Fraction_And_N; |
| |
| Calculate_Fraction_And_Exponent : begin |
| Uintp_Mark := Mark; |
| |
| -- Put back sign before applying the rounding. |
| |
| if UR_Is_Negative (X) then |
| Fraction := -Fraction; |
| end if; |
| |
| -- Determine correct rounding based on the remainder |
| -- which is in N and the divisor D. |
| |
| case Mode is |
| when Round_Even => |
| |
| -- This rounding mode should not be used for static |
| -- expressions, but only for compile-time evaluation |
| -- of non-static expressions. |
| |
| if (Even and then N * 2 > D) |
| or else |
| (not Even and then N * 2 >= D) |
| then |
| Fraction := Fraction + 1; |
| end if; |
| |
| when Round => |
| |
| -- Do not round to even as is done with IEEE arithmetic, |
| -- but instead round away from zero when the result is |
| -- exactly between two machine numbers. See RM 4.9(38). |
| |
| if N * 2 >= D then |
| Fraction := Fraction + 1; |
| end if; |
| |
| when Ceiling => |
| if N > Uint_0 then |
| Fraction := Fraction + 1; |
| end if; |
| |
| when Floor => null; |
| end case; |
| |
| -- The result must be normalized to [1.0/Radix, 1.0), |
| -- so adjust if the result is 1.0 because of rounding. |
| |
| if Fraction = Most_Significant_Digit * Radix then |
| Fraction := Most_Significant_Digit; |
| Exponent := Exponent + 1; |
| end if; |
| |
| Release_And_Save (Uintp_Mark, Fraction, Exponent); |
| end Calculate_Fraction_And_Exponent; |
| end Decompose_Int; |
| |
| ---------------- |
| -- Eps_Denorm -- |
| ---------------- |
| |
| function Eps_Denorm (RT : R) return T is |
| begin |
| return Float_Radix ** UI_From_Int |
| (Machine_Emin (RT) - Machine_Mantissa (RT)); |
| end Eps_Denorm; |
| |
| --------------- |
| -- Eps_Model -- |
| --------------- |
| |
| function Eps_Model (RT : R) return T is |
| begin |
| return Float_Radix ** UI_From_Int (Machine_Emin (RT)); |
| end Eps_Model; |
| |
| -------------- |
| -- Exponent -- |
| -------------- |
| |
| function Exponent (RT : R; X : T) return UI is |
| X_Frac : UI; |
| X_Exp : UI; |
| |
| begin |
| if UR_Is_Zero (X) then |
| return Uint_0; |
| else |
| Decompose_Int (RT, X, X_Frac, X_Exp, Round_Even); |
| return X_Exp; |
| end if; |
| end Exponent; |
| |
| ----------- |
| -- Floor -- |
| ----------- |
| |
| function Floor (RT : R; X : T) return T is |
| XT : constant T := Truncation (RT, X); |
| |
| begin |
| if UR_Is_Positive (X) then |
| return XT; |
| |
| elsif XT = X then |
| return X; |
| |
| else |
| return XT - Ureal_1; |
| end if; |
| end Floor; |
| |
| -------------- |
| -- Fraction -- |
| -------------- |
| |
| function Fraction (RT : R; X : T) return T is |
| X_Frac : T; |
| X_Exp : UI; |
| |
| begin |
| if UR_Is_Zero (X) then |
| return X; |
| else |
| Decompose (RT, X, X_Frac, X_Exp); |
| return X_Frac; |
| end if; |
| end Fraction; |
| |
| ------------------ |
| -- Leading_Part -- |
| ------------------ |
| |
| function Leading_Part (RT : R; X : T; Radix_Digits : UI) return T is |
| L : UI; |
| Y, Z : T; |
| |
| begin |
| if Radix_Digits >= Machine_Mantissa (RT) then |
| return X; |
| |
| else |
| L := Exponent (RT, X) - Radix_Digits; |
| Y := Truncation (RT, Scaling (RT, X, -L)); |
| Z := Scaling (RT, Y, L); |
| return Z; |
| end if; |
| end Leading_Part; |
| |
| ------------- |
| -- Machine -- |
| ------------- |
| |
| function Machine |
| (RT : R; |
| X : T; |
| Mode : Rounding_Mode; |
| Enode : Node_Id) |
| return T |
| is |
| pragma Warnings (Off, Enode); -- not yet referenced |
| |
| X_Frac : T; |
| X_Exp : UI; |
| Emin : constant UI := UI_From_Int (Machine_Emin (RT)); |
| |
| begin |
| if UR_Is_Zero (X) then |
| return X; |
| |
| else |
| Decompose (RT, X, X_Frac, X_Exp, Mode); |
| |
| -- Case of denormalized number or (gradual) underflow |
| |
| -- A denormalized number is one with the minimum exponent Emin, but |
| -- that breaks the assumption that the first digit of the mantissa |
| -- is a one. This allows the first non-zero digit to be in any |
| -- of the remaining Mant - 1 spots. The gap between subsequent |
| -- denormalized numbers is the same as for the smallest normalized |
| -- numbers. However, the number of significant digits left decreases |
| -- as a result of the mantissa now having leading seros. |
| |
| if X_Exp < Emin then |
| declare |
| Emin_Den : constant UI := |
| UI_From_Int |
| (Machine_Emin (RT) - Machine_Mantissa (RT) + 1); |
| begin |
| if X_Exp < Emin_Den or not Denorm_On_Target then |
| if UR_Is_Negative (X) then |
| Error_Msg_N |
| ("floating-point value underflows to -0.0?", Enode); |
| return Ureal_M_0; |
| |
| else |
| Error_Msg_N |
| ("floating-point value underflows to 0.0?", Enode); |
| return Ureal_0; |
| end if; |
| |
| elsif Denorm_On_Target then |
| |
| -- Emin - Mant <= X_Exp < Emin, so result is denormal. |
| -- Handle gradual underflow by first computing the |
| -- number of significant bits still available for the |
| -- mantissa and then truncating the fraction to this |
| -- number of bits. |
| |
| -- If this value is different from the original |
| -- fraction, precision is lost due to gradual underflow. |
| |
| -- We probably should round here and prevent double |
| -- rounding as a result of first rounding to a model |
| -- number and then to a machine number. However, this |
| -- is an extremely rare case that is not worth the extra |
| -- complexity. In any case, a warning is issued in cases |
| -- where gradual underflow occurs. |
| |
| declare |
| Denorm_Sig_Bits : constant UI := X_Exp - Emin_Den + 1; |
| |
| X_Frac_Denorm : constant T := UR_From_Components |
| (UR_Trunc (Scaling (RT, abs X_Frac, Denorm_Sig_Bits)), |
| Denorm_Sig_Bits, |
| Radix, |
| UR_Is_Negative (X)); |
| |
| begin |
| if X_Frac_Denorm /= X_Frac then |
| Error_Msg_N |
| ("gradual underflow causes loss of precision?", |
| Enode); |
| X_Frac := X_Frac_Denorm; |
| end if; |
| end; |
| end if; |
| end; |
| end if; |
| |
| return Scaling (RT, X_Frac, X_Exp); |
| end if; |
| end Machine; |
| |
| ------------------ |
| -- Machine_Emin -- |
| ------------------ |
| |
| function Machine_Emin (RT : R) return Int is |
| Digs : constant UI := Digits_Value (RT); |
| Emin : Int; |
| |
| begin |
| if Vax_Float (RT) then |
| if Digs = VAXFF_Digits then |
| Emin := VAXFF_Machine_Emin; |
| |
| elsif Digs = VAXDF_Digits then |
| Emin := VAXDF_Machine_Emin; |
| |
| else |
| pragma Assert (Digs = VAXGF_Digits); |
| Emin := VAXGF_Machine_Emin; |
| end if; |
| |
| elsif Is_AAMP_Float (RT) then |
| if Digs = AAMPS_Digits then |
| Emin := AAMPS_Machine_Emin; |
| |
| else |
| pragma Assert (Digs = AAMPL_Digits); |
| Emin := AAMPL_Machine_Emin; |
| end if; |
| |
| else |
| if Digs = IEEES_Digits then |
| Emin := IEEES_Machine_Emin; |
| |
| elsif Digs = IEEEL_Digits then |
| Emin := IEEEL_Machine_Emin; |
| |
| else |
| pragma Assert (Digs = IEEEX_Digits); |
| Emin := IEEEX_Machine_Emin; |
| end if; |
| end if; |
| |
| return Emin; |
| end Machine_Emin; |
| |
| ---------------------- |
| -- Machine_Mantissa -- |
| ---------------------- |
| |
| function Machine_Mantissa (RT : R) return Nat is |
| Digs : constant UI := Digits_Value (RT); |
| Mant : Nat; |
| |
| begin |
| if Vax_Float (RT) then |
| if Digs = VAXFF_Digits then |
| Mant := VAXFF_Machine_Mantissa; |
| |
| elsif Digs = VAXDF_Digits then |
| Mant := VAXDF_Machine_Mantissa; |
| |
| else |
| pragma Assert (Digs = VAXGF_Digits); |
| Mant := VAXGF_Machine_Mantissa; |
| end if; |
| |
| elsif Is_AAMP_Float (RT) then |
| if Digs = AAMPS_Digits then |
| Mant := AAMPS_Machine_Mantissa; |
| |
| else |
| pragma Assert (Digs = AAMPL_Digits); |
| Mant := AAMPL_Machine_Mantissa; |
| end if; |
| |
| else |
| if Digs = IEEES_Digits then |
| Mant := IEEES_Machine_Mantissa; |
| |
| elsif Digs = IEEEL_Digits then |
| Mant := IEEEL_Machine_Mantissa; |
| |
| else |
| pragma Assert (Digs = IEEEX_Digits); |
| Mant := IEEEX_Machine_Mantissa; |
| end if; |
| end if; |
| |
| return Mant; |
| end Machine_Mantissa; |
| |
| ----------- |
| -- Model -- |
| ----------- |
| |
| function Model (RT : R; X : T) return T is |
| X_Frac : T; |
| X_Exp : UI; |
| |
| begin |
| Decompose (RT, X, X_Frac, X_Exp); |
| return Compose (RT, X_Frac, X_Exp); |
| end Model; |
| |
| ---------- |
| -- Pred -- |
| ---------- |
| |
| function Pred (RT : R; X : T) return T is |
| Result_F : UI; |
| Result_X : UI; |
| |
| begin |
| if abs X < Eps_Model (RT) then |
| if Denorm_On_Target then |
| return X - Eps_Denorm (RT); |
| |
| elsif X > Ureal_0 then |
| |
| -- Target does not support denorms, so predecessor is 0.0 |
| |
| return Ureal_0; |
| |
| else |
| -- Target does not support denorms, and X is 0.0 |
| -- or at least bigger than -Eps_Model (RT) |
| |
| return -Eps_Model (RT); |
| end if; |
| |
| else |
| Decompose_Int (RT, X, Result_F, Result_X, Ceiling); |
| return UR_From_Components |
| (Num => Result_F - 1, |
| Den => Machine_Mantissa (RT) - Result_X, |
| Rbase => Radix, |
| Negative => False); |
| -- Result_F may be false, but this is OK as UR_From_Components |
| -- handles that situation. |
| end if; |
| end Pred; |
| |
| --------------- |
| -- Remainder -- |
| --------------- |
| |
| function Remainder (RT : R; X, Y : T) return T is |
| A : T; |
| B : T; |
| Arg : T; |
| P : T; |
| Arg_Frac : T; |
| P_Frac : T; |
| Sign_X : T; |
| IEEE_Rem : T; |
| Arg_Exp : UI; |
| P_Exp : UI; |
| K : UI; |
| P_Even : Boolean; |
| |
| begin |
| if UR_Is_Positive (X) then |
| Sign_X := Ureal_1; |
| else |
| Sign_X := -Ureal_1; |
| end if; |
| |
| Arg := abs X; |
| P := abs Y; |
| |
| if Arg < P then |
| P_Even := True; |
| IEEE_Rem := Arg; |
| P_Exp := Exponent (RT, P); |
| |
| else |
| -- ??? what about zero cases? |
| Decompose (RT, Arg, Arg_Frac, Arg_Exp); |
| Decompose (RT, P, P_Frac, P_Exp); |
| |
| P := Compose (RT, P_Frac, Arg_Exp); |
| K := Arg_Exp - P_Exp; |
| P_Even := True; |
| IEEE_Rem := Arg; |
| |
| for Cnt in reverse 0 .. UI_To_Int (K) loop |
| if IEEE_Rem >= P then |
| P_Even := False; |
| IEEE_Rem := IEEE_Rem - P; |
| else |
| P_Even := True; |
| end if; |
| |
| P := P * Ureal_Half; |
| end loop; |
| end if; |
| |
| -- That completes the calculation of modulus remainder. The final step |
| -- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2. |
| |
| if P_Exp >= 0 then |
| A := IEEE_Rem; |
| B := abs Y * Ureal_Half; |
| |
| else |
| A := IEEE_Rem * Ureal_2; |
| B := abs Y; |
| end if; |
| |
| if A > B or else (A = B and then not P_Even) then |
| IEEE_Rem := IEEE_Rem - abs Y; |
| end if; |
| |
| return Sign_X * IEEE_Rem; |
| end Remainder; |
| |
| -------------- |
| -- Rounding -- |
| -------------- |
| |
| function Rounding (RT : R; X : T) return T is |
| Result : T; |
| Tail : T; |
| |
| begin |
| Result := Truncation (RT, abs X); |
| Tail := abs X - Result; |
| |
| if Tail >= Ureal_Half then |
| Result := Result + Ureal_1; |
| end if; |
| |
| if UR_Is_Negative (X) then |
| return -Result; |
| else |
| return Result; |
| end if; |
| end Rounding; |
| |
| ------------- |
| -- Scaling -- |
| ------------- |
| |
| function Scaling (RT : R; X : T; Adjustment : UI) return T is |
| pragma Warnings (Off, RT); |
| |
| begin |
| if Rbase (X) = Radix then |
| return UR_From_Components |
| (Num => Numerator (X), |
| Den => Denominator (X) - Adjustment, |
| Rbase => Radix, |
| Negative => UR_Is_Negative (X)); |
| |
| elsif Adjustment >= 0 then |
| return X * Radix ** Adjustment; |
| else |
| return X / Radix ** (-Adjustment); |
| end if; |
| end Scaling; |
| |
| ---------- |
| -- Succ -- |
| ---------- |
| |
| function Succ (RT : R; X : T) return T is |
| Result_F : UI; |
| Result_X : UI; |
| |
| begin |
| if abs X < Eps_Model (RT) then |
| if Denorm_On_Target then |
| return X + Eps_Denorm (RT); |
| |
| elsif X < Ureal_0 then |
| -- Target does not support denorms, so successor is 0.0 |
| return Ureal_0; |
| |
| else |
| -- Target does not support denorms, and X is 0.0 |
| -- or at least smaller than Eps_Model (RT) |
| |
| return Eps_Model (RT); |
| end if; |
| |
| else |
| Decompose_Int (RT, X, Result_F, Result_X, Floor); |
| return UR_From_Components |
| (Num => Result_F + 1, |
| Den => Machine_Mantissa (RT) - Result_X, |
| Rbase => Radix, |
| Negative => False); |
| -- Result_F may be false, but this is OK as UR_From_Components |
| -- handles that situation. |
| end if; |
| end Succ; |
| |
| ---------------- |
| -- Truncation -- |
| ---------------- |
| |
| function Truncation (RT : R; X : T) return T is |
| pragma Warnings (Off, RT); |
| |
| begin |
| return UR_From_Uint (UR_Trunc (X)); |
| end Truncation; |
| |
| ----------------------- |
| -- Unbiased_Rounding -- |
| ----------------------- |
| |
| function Unbiased_Rounding (RT : R; X : T) return T is |
| Abs_X : constant T := abs X; |
| Result : T; |
| Tail : T; |
| |
| begin |
| Result := Truncation (RT, Abs_X); |
| Tail := Abs_X - Result; |
| |
| if Tail > Ureal_Half then |
| Result := Result + Ureal_1; |
| |
| elsif Tail = Ureal_Half then |
| Result := Ureal_2 * |
| Truncation (RT, (Result / Ureal_2) + Ureal_Half); |
| end if; |
| |
| if UR_Is_Negative (X) then |
| return -Result; |
| elsif UR_Is_Positive (X) then |
| return Result; |
| |
| -- For zero case, make sure sign of zero is preserved |
| |
| else |
| return X; |
| end if; |
| end Unbiased_Rounding; |
| |
| end Eval_Fat; |