blob: ab63d731c49ef192570057a9e4656b21754186fb [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- G N A T . R E G E X P --
-- --
-- B o d y --
-- --
-- Copyright (C) 1999-2002 Ada Core Technologies, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Unchecked_Deallocation;
with Ada.Exceptions;
with GNAT.Case_Util;
package body GNAT.Regexp is
Open_Paren : constant Character := '(';
Close_Paren : constant Character := ')';
Open_Bracket : constant Character := '[';
Close_Bracket : constant Character := ']';
type State_Index is new Natural;
type Column_Index is new Natural;
type Regexp_Array is array
(State_Index range <>, Column_Index range <>) of State_Index;
-- First index is for the state number
-- Second index is for the character type
-- Contents is the new State
type Regexp_Array_Access is access Regexp_Array;
-- Use this type through the functions Set below, so that it
-- can grow dynamically depending on the needs.
type Mapping is array (Character'Range) of Column_Index;
-- Mapping between characters and column in the Regexp_Array
type Boolean_Array is array (State_Index range <>) of Boolean;
type Regexp_Value
(Alphabet_Size : Column_Index;
Num_States : State_Index) is
record
Map : Mapping;
States : Regexp_Array (1 .. Num_States, 0 .. Alphabet_Size);
Is_Final : Boolean_Array (1 .. Num_States);
Case_Sensitive : Boolean;
end record;
-- Deterministic finite-state machine
-----------------------
-- Local Subprograms --
-----------------------
procedure Set
(Table : in out Regexp_Array_Access;
State : State_Index;
Column : Column_Index;
Value : State_Index);
-- Sets a value in the table. If the table is too small, reallocate it
-- dynamically so that (State, Column) is a valid index in it.
function Get
(Table : Regexp_Array_Access;
State : State_Index;
Column : Column_Index)
return State_Index;
-- Returns the value in the table at (State, Column).
-- If this index does not exist in the table, returns 0
procedure Free is new Unchecked_Deallocation
(Regexp_Array, Regexp_Array_Access);
------------
-- Adjust --
------------
procedure Adjust (R : in out Regexp) is
Tmp : Regexp_Access;
begin
Tmp := new Regexp_Value (Alphabet_Size => R.R.Alphabet_Size,
Num_States => R.R.Num_States);
Tmp.all := R.R.all;
R.R := Tmp;
end Adjust;
-------------
-- Compile --
-------------
function Compile
(Pattern : String;
Glob : Boolean := False;
Case_Sensitive : Boolean := True)
return Regexp
is
S : String := Pattern;
-- The pattern which is really compiled (when the pattern is case
-- insensitive, we convert this string to lower-cases
Map : Mapping := (others => 0);
-- Mapping between characters and columns in the tables
Alphabet_Size : Column_Index := 0;
-- Number of significant characters in the regular expression.
-- This total does not include special operators, such as *, (, ...
procedure Create_Mapping;
-- Creates a mapping between characters in the regexp and columns
-- in the tables representing the regexp. Test that the regexp is
-- well-formed Modifies Alphabet_Size and Map
procedure Create_Primary_Table
(Table : out Regexp_Array_Access;
Num_States : out State_Index;
Start_State : out State_Index;
End_State : out State_Index);
-- Creates the first version of the regexp (this is a non determinist
-- finite state machine, which is unadapted for a fast pattern
-- matching algorithm). We use a recursive algorithm to process the
-- parenthesis sub-expressions.
--
-- Table : at the end of the procedure : Column 0 is for any character
-- ('.') and the last columns are for no character (closure)
-- Num_States is set to the number of states in the table
-- Start_State is the number of the starting state in the regexp
-- End_State is the number of the final state when the regexp matches
procedure Create_Primary_Table_Glob
(Table : out Regexp_Array_Access;
Num_States : out State_Index;
Start_State : out State_Index;
End_State : out State_Index);
-- Same function as above, but it deals with the second possible
-- grammar for 'globbing pattern', which is a kind of subset of the
-- whole regular expression grammar.
function Create_Secondary_Table
(First_Table : Regexp_Array_Access;
Num_States : State_Index;
Start_State : State_Index;
End_State : State_Index)
return Regexp;
-- Creates the definitive table representing the regular expression
-- This is actually a transformation of the primary table First_Table,
-- where every state is grouped with the states in its 'no-character'
-- columns. The transitions between the new states are then recalculated
-- and if necessary some new states are created.
--
-- Note that the resulting finite-state machine is not optimized in
-- terms of the number of states : it would be more time-consuming to
-- add a third pass to reduce the number of states in the machine, with
-- no speed improvement...
procedure Raise_Exception
(M : String;
Index : Integer);
pragma No_Return (Raise_Exception);
-- Raise an exception, indicating an error at character Index in S.
--------------------
-- Create_Mapping --
--------------------
procedure Create_Mapping is
procedure Add_In_Map (C : Character);
-- Add a character in the mapping, if it is not already defined
-----------------
-- Add_In_Map --
-----------------
procedure Add_In_Map (C : Character) is
begin
if Map (C) = 0 then
Alphabet_Size := Alphabet_Size + 1;
Map (C) := Alphabet_Size;
end if;
end Add_In_Map;
J : Integer := S'First;
Parenthesis_Level : Integer := 0;
Curly_Level : Integer := 0;
-- Start of processing for Create_Mapping
begin
while J <= S'Last loop
case S (J) is
when Open_Bracket =>
J := J + 1;
if S (J) = '^' then
J := J + 1;
end if;
if S (J) = ']' or S (J) = '-' then
J := J + 1;
end if;
-- The first character never has a special meaning
loop
if J > S'Last then
Raise_Exception
("Ran out of characters while parsing ", J);
end if;
exit when S (J) = Close_Bracket;
if S (J) = '-'
and then S (J + 1) /= Close_Bracket
then
declare
Start : constant Integer := J - 1;
begin
J := J + 1;
if S (J) = '\' then
J := J + 1;
end if;
for Char in S (Start) .. S (J) loop
Add_In_Map (Char);
end loop;
end;
else
if S (J) = '\' then
J := J + 1;
end if;
Add_In_Map (S (J));
end if;
J := J + 1;
end loop;
-- A close bracket must follow a open_bracket,
-- and cannot be found alone on the line
when Close_Bracket =>
Raise_Exception
("Incorrect character ']' in regular expression", J);
when '\' =>
if J < S'Last then
J := J + 1;
Add_In_Map (S (J));
else
-- \ not allowed at the end of the regexp
Raise_Exception
("Incorrect character '\' in regular expression", J);
end if;
when Open_Paren =>
if not Glob then
Parenthesis_Level := Parenthesis_Level + 1;
else
Add_In_Map (Open_Paren);
end if;
when Close_Paren =>
if not Glob then
Parenthesis_Level := Parenthesis_Level - 1;
if Parenthesis_Level < 0 then
Raise_Exception
("')' is not associated with '(' in regular "
& "expression", J);
end if;
if S (J - 1) = Open_Paren then
Raise_Exception
("Empty parenthesis not allowed in regular "
& "expression", J);
end if;
else
Add_In_Map (Close_Paren);
end if;
when '.' =>
if Glob then
Add_In_Map ('.');
end if;
when '{' =>
if not Glob then
Add_In_Map (S (J));
else
Curly_Level := Curly_Level + 1;
end if;
when '}' =>
if not Glob then
Add_In_Map (S (J));
else
Curly_Level := Curly_Level - 1;
end if;
when '*' | '?' =>
if not Glob then
if J = S'First then
Raise_Exception
("'*', '+', '?' and '|' operators can not be in "
& "first position in regular expression", J);
end if;
end if;
when '|' | '+' =>
if not Glob then
if J = S'First then
-- These operators must apply to a sub-expression,
-- and cannot be found at the beginning of the line
Raise_Exception
("'*', '+', '?' and '|' operators can not be in "
& "first position in regular expression", J);
end if;
else
Add_In_Map (S (J));
end if;
when others =>
Add_In_Map (S (J));
end case;
J := J + 1;
end loop;
-- A closing parenthesis must follow an open parenthesis
if Parenthesis_Level /= 0 then
Raise_Exception
("'(' must always be associated with a ')'", J);
end if;
if Curly_Level /= 0 then
Raise_Exception
("'{' must always be associated with a '}'", J);
end if;
end Create_Mapping;
--------------------------
-- Create_Primary_Table --
--------------------------
procedure Create_Primary_Table
(Table : out Regexp_Array_Access;
Num_States : out State_Index;
Start_State : out State_Index;
End_State : out State_Index)
is
Empty_Char : constant Column_Index := Alphabet_Size + 1;
Current_State : State_Index := 0;
-- Index of the last created state
procedure Add_Empty_Char
(State : State_Index;
To_State : State_Index);
-- Add a empty-character transition from State to To_State.
procedure Create_Repetition
(Repetition : Character;
Start_Prev : State_Index;
End_Prev : State_Index;
New_Start : out State_Index;
New_End : in out State_Index);
-- Create the table in case we have a '*', '+' or '?'.
-- Start_Prev .. End_Prev should indicate respectively the start and
-- end index of the previous expression, to which '*', '+' or '?' is
-- applied.
procedure Create_Simple
(Start_Index : Integer;
End_Index : Integer;
Start_State : out State_Index;
End_State : out State_Index);
-- Fill the table for the regexp Simple.
-- This is the recursive procedure called to handle () expressions
-- If End_State = 0, then the call to Create_Simple creates an
-- independent regexp, not a concatenation
-- Start_Index .. End_Index is the starting index in the string S.
--
-- Warning: it may look like we are creating too many empty-string
-- transitions, but they are needed to get the correct regexp.
-- The table is filled as follow ( s means start-state, e means
-- end-state) :
--
-- regexp state_num | a b * empty_string
-- ------- ---------------------------------------
-- a 1 (s) | 2 - - -
-- 2 (e) | - - - -
--
-- ab 1 (s) | 2 - - -
-- 2 | - - - 3
-- 3 | - 4 - -
-- 4 (e) | - - - -
--
-- a|b 1 | 2 - - -
-- 2 | - - - 6
-- 3 | - 4 - -
-- 4 | - - - 6
-- 5 (s) | - - - 1,3
-- 6 (e) | - - - -
--
-- a* 1 | 2 - - -
-- 2 | - - - 4
-- 3 (s) | - - - 1,4
-- 4 (e) | - - - 3
--
-- (a) 1 (s) | 2 - - -
-- 2 (e) | - - - -
--
-- a+ 1 | 2 - - -
-- 2 | - - - 4
-- 3 (s) | - - - 1
-- 4 (e) | - - - 3
--
-- a? 1 | 2 - - -
-- 2 | - - - 4
-- 3 (s) | - - - 1,4
-- 4 (e) | - - - -
--
-- . 1 (s) | 2 2 2 -
-- 2 (e) | - - - -
function Next_Sub_Expression
(Start_Index : Integer;
End_Index : Integer)
return Integer;
-- Returns the index of the last character of the next sub-expression
-- in Simple. Index can not be greater than End_Index
--------------------
-- Add_Empty_Char --
--------------------
procedure Add_Empty_Char
(State : State_Index;
To_State : State_Index)
is
J : Column_Index := Empty_Char;
begin
while Get (Table, State, J) /= 0 loop
J := J + 1;
end loop;
Set (Table, State, J, To_State);
end Add_Empty_Char;
-----------------------
-- Create_Repetition --
-----------------------
procedure Create_Repetition
(Repetition : Character;
Start_Prev : State_Index;
End_Prev : State_Index;
New_Start : out State_Index;
New_End : in out State_Index)
is
begin
New_Start := Current_State + 1;
if New_End /= 0 then
Add_Empty_Char (New_End, New_Start);
end if;
Current_State := Current_State + 2;
New_End := Current_State;
Add_Empty_Char (End_Prev, New_End);
Add_Empty_Char (New_Start, Start_Prev);
if Repetition /= '+' then
Add_Empty_Char (New_Start, New_End);
end if;
if Repetition /= '?' then
Add_Empty_Char (New_End, New_Start);
end if;
end Create_Repetition;
-------------------
-- Create_Simple --
-------------------
procedure Create_Simple
(Start_Index : Integer;
End_Index : Integer;
Start_State : out State_Index;
End_State : out State_Index)
is
J : Integer := Start_Index;
Last_Start : State_Index := 0;
begin
Start_State := 0;
End_State := 0;
while J <= End_Index loop
case S (J) is
when Open_Paren =>
declare
J_Start : constant Integer := J + 1;
Next_Start : State_Index;
Next_End : State_Index;
begin
J := Next_Sub_Expression (J, End_Index);
Create_Simple (J_Start, J - 1, Next_Start, Next_End);
if J < End_Index
and then (S (J + 1) = '*' or else
S (J + 1) = '+' or else
S (J + 1) = '?')
then
J := J + 1;
Create_Repetition
(S (J),
Next_Start,
Next_End,
Last_Start,
End_State);
else
Last_Start := Next_Start;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Next_End;
end if;
end;
when '|' =>
declare
Start_Prev : constant State_Index := Start_State;
End_Prev : constant State_Index := End_State;
Start_J : constant Integer := J + 1;
Start_Next : State_Index := 0;
End_Next : State_Index := 0;
begin
J := Next_Sub_Expression (J, End_Index);
-- Create a new state for the start of the alternative
Current_State := Current_State + 1;
Last_Start := Current_State;
Start_State := Last_Start;
-- Create the tree for the second part of alternative
Create_Simple (Start_J, J, Start_Next, End_Next);
-- Create the end state
Add_Empty_Char (Last_Start, Start_Next);
Add_Empty_Char (Last_Start, Start_Prev);
Current_State := Current_State + 1;
End_State := Current_State;
Add_Empty_Char (End_Prev, End_State);
Add_Empty_Char (End_Next, End_State);
end;
when Open_Bracket =>
Current_State := Current_State + 1;
declare
Next_State : State_Index := Current_State + 1;
begin
J := J + 1;
if S (J) = '^' then
J := J + 1;
Next_State := 0;
for Column in 0 .. Alphabet_Size loop
Set (Table, Current_State, Column,
Value => Current_State + 1);
end loop;
end if;
-- Automatically add the first character
if S (J) = '-' or S (J) = ']' then
Set (Table, Current_State, Map (S (J)),
Value => Next_State);
J := J + 1;
end if;
-- Loop till closing bracket found
loop
exit when S (J) = Close_Bracket;
if S (J) = '-'
and then S (J + 1) /= ']'
then
declare
Start : constant Integer := J - 1;
begin
J := J + 1;
if S (J) = '\' then
J := J + 1;
end if;
for Char in S (Start) .. S (J) loop
Set (Table, Current_State, Map (Char),
Value => Next_State);
end loop;
end;
else
if S (J) = '\' then
J := J + 1;
end if;
Set (Table, Current_State, Map (S (J)),
Value => Next_State);
end if;
J := J + 1;
end loop;
end;
Current_State := Current_State + 1;
-- If the next symbol is a special symbol
if J < End_Index
and then (S (J + 1) = '*' or else
S (J + 1) = '+' or else
S (J + 1) = '?')
then
J := J + 1;
Create_Repetition
(S (J),
Current_State - 1,
Current_State,
Last_Start,
End_State);
else
Last_Start := Current_State - 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Current_State;
end if;
when '*' | '+' | '?' | Close_Paren | Close_Bracket =>
Raise_Exception
("Incorrect character in regular expression :", J);
when others =>
Current_State := Current_State + 1;
-- Create the state for the symbol S (J)
if S (J) = '.' then
for K in 0 .. Alphabet_Size loop
Set (Table, Current_State, K,
Value => Current_State + 1);
end loop;
else
if S (J) = '\' then
J := J + 1;
end if;
Set (Table, Current_State, Map (S (J)),
Value => Current_State + 1);
end if;
Current_State := Current_State + 1;
-- If the next symbol is a special symbol
if J < End_Index
and then (S (J + 1) = '*' or else
S (J + 1) = '+' or else
S (J + 1) = '?')
then
J := J + 1;
Create_Repetition
(S (J),
Current_State - 1,
Current_State,
Last_Start,
End_State);
else
Last_Start := Current_State - 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Current_State;
end if;
end case;
if Start_State = 0 then
Start_State := Last_Start;
end if;
J := J + 1;
end loop;
end Create_Simple;
-------------------------
-- Next_Sub_Expression --
-------------------------
function Next_Sub_Expression
(Start_Index : Integer;
End_Index : Integer)
return Integer
is
J : Integer := Start_Index;
Start_On_Alter : Boolean := False;
begin
if S (J) = '|' then
Start_On_Alter := True;
end if;
loop
exit when J = End_Index;
J := J + 1;
case S (J) is
when '\' =>
J := J + 1;
when Open_Bracket =>
loop
J := J + 1;
exit when S (J) = Close_Bracket;
if S (J) = '\' then
J := J + 1;
end if;
end loop;
when Open_Paren =>
J := Next_Sub_Expression (J, End_Index);
when Close_Paren =>
return J;
when '|' =>
if Start_On_Alter then
return J - 1;
end if;
when others =>
null;
end case;
end loop;
return J;
end Next_Sub_Expression;
-- Start of Create_Primary_Table
begin
Table.all := (others => (others => 0));
Create_Simple (S'First, S'Last, Start_State, End_State);
Num_States := Current_State;
end Create_Primary_Table;
-------------------------------
-- Create_Primary_Table_Glob --
-------------------------------
procedure Create_Primary_Table_Glob
(Table : out Regexp_Array_Access;
Num_States : out State_Index;
Start_State : out State_Index;
End_State : out State_Index)
is
Empty_Char : constant Column_Index := Alphabet_Size + 1;
Current_State : State_Index := 0;
-- Index of the last created state
procedure Add_Empty_Char
(State : State_Index;
To_State : State_Index);
-- Add a empty-character transition from State to To_State.
procedure Create_Simple
(Start_Index : Integer;
End_Index : Integer;
Start_State : out State_Index;
End_State : out State_Index);
-- Fill the table for the S (Start_Index .. End_Index).
-- This is the recursive procedure called to handle () expressions
--------------------
-- Add_Empty_Char --
--------------------
procedure Add_Empty_Char
(State : State_Index;
To_State : State_Index)
is
J : Column_Index := Empty_Char;
begin
while Get (Table, State, J) /= 0 loop
J := J + 1;
end loop;
Set (Table, State, J,
Value => To_State);
end Add_Empty_Char;
-------------------
-- Create_Simple --
-------------------
procedure Create_Simple
(Start_Index : Integer;
End_Index : Integer;
Start_State : out State_Index;
End_State : out State_Index)
is
J : Integer := Start_Index;
Last_Start : State_Index := 0;
begin
Start_State := 0;
End_State := 0;
while J <= End_Index loop
case S (J) is
when Open_Bracket =>
Current_State := Current_State + 1;
declare
Next_State : State_Index := Current_State + 1;
begin
J := J + 1;
if S (J) = '^' then
J := J + 1;
Next_State := 0;
for Column in 0 .. Alphabet_Size loop
Set (Table, Current_State, Column,
Value => Current_State + 1);
end loop;
end if;
-- Automatically add the first character
if S (J) = '-' or S (J) = ']' then
Set (Table, Current_State, Map (S (J)),
Value => Current_State);
J := J + 1;
end if;
-- Loop till closing bracket found
loop
exit when S (J) = Close_Bracket;
if S (J) = '-'
and then S (J + 1) /= ']'
then
declare
Start : constant Integer := J - 1;
begin
J := J + 1;
if S (J) = '\' then
J := J + 1;
end if;
for Char in S (Start) .. S (J) loop
Set (Table, Current_State, Map (Char),
Value => Next_State);
end loop;
end;
else
if S (J) = '\' then
J := J + 1;
end if;
Set (Table, Current_State, Map (S (J)),
Value => Next_State);
end if;
J := J + 1;
end loop;
end;
Last_Start := Current_State;
Current_State := Current_State + 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Current_State;
when '{' =>
declare
End_Sub : Integer;
Start_Regexp_Sub : State_Index;
End_Regexp_Sub : State_Index;
Create_Start : State_Index := 0;
Create_End : State_Index := 0;
-- Initialized to avoid junk warning
begin
while S (J) /= '}' loop
-- First step : find sub pattern
End_Sub := J + 1;
while S (End_Sub) /= ','
and then S (End_Sub) /= '}'
loop
End_Sub := End_Sub + 1;
end loop;
-- Second step : create a sub pattern
Create_Simple
(J + 1,
End_Sub - 1,
Start_Regexp_Sub,
End_Regexp_Sub);
J := End_Sub;
-- Third step : create an alternative
if Create_Start = 0 then
Current_State := Current_State + 1;
Create_Start := Current_State;
Add_Empty_Char (Create_Start, Start_Regexp_Sub);
Current_State := Current_State + 1;
Create_End := Current_State;
Add_Empty_Char (End_Regexp_Sub, Create_End);
else
Current_State := Current_State + 1;
Add_Empty_Char (Current_State, Create_Start);
Create_Start := Current_State;
Add_Empty_Char (Create_Start, Start_Regexp_Sub);
Add_Empty_Char (End_Regexp_Sub, Create_End);
end if;
end loop;
if End_State /= 0 then
Add_Empty_Char (End_State, Create_Start);
end if;
End_State := Create_End;
Last_Start := Create_Start;
end;
when '*' =>
Current_State := Current_State + 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Current_State);
end if;
Add_Empty_Char (Current_State, Current_State + 1);
Add_Empty_Char (Current_State, Current_State + 3);
Last_Start := Current_State;
Current_State := Current_State + 1;
for K in 0 .. Alphabet_Size loop
Set (Table, Current_State, K,
Value => Current_State + 1);
end loop;
Current_State := Current_State + 1;
Add_Empty_Char (Current_State, Current_State + 1);
Current_State := Current_State + 1;
Add_Empty_Char (Current_State, Last_Start);
End_State := Current_State;
when others =>
Current_State := Current_State + 1;
if S (J) = '?' then
for K in 0 .. Alphabet_Size loop
Set (Table, Current_State, K,
Value => Current_State + 1);
end loop;
else
if S (J) = '\' then
J := J + 1;
end if;
-- Create the state for the symbol S (J)
Set (Table, Current_State, Map (S (J)),
Value => Current_State + 1);
end if;
Last_Start := Current_State;
Current_State := Current_State + 1;
if End_State /= 0 then
Add_Empty_Char (End_State, Last_Start);
end if;
End_State := Current_State;
end case;
if Start_State = 0 then
Start_State := Last_Start;
end if;
J := J + 1;
end loop;
end Create_Simple;
-- Start of processing for Create_Primary_Table_Glob
begin
Table.all := (others => (others => 0));
Create_Simple (S'First, S'Last, Start_State, End_State);
Num_States := Current_State;
end Create_Primary_Table_Glob;
----------------------------
-- Create_Secondary_Table --
----------------------------
function Create_Secondary_Table
(First_Table : Regexp_Array_Access;
Num_States : State_Index;
Start_State : State_Index;
End_State : State_Index)
return Regexp
is
pragma Warnings (Off, Num_States);
Last_Index : constant State_Index := First_Table'Last (1);
type Meta_State is array (1 .. Last_Index) of Boolean;
Table : Regexp_Array (1 .. Last_Index, 0 .. Alphabet_Size) :=
(others => (others => 0));
Meta_States : array (1 .. Last_Index + 1) of Meta_State :=
(others => (others => False));
Temp_State_Not_Null : Boolean;
Is_Final : Boolean_Array (1 .. Last_Index) := (others => False);
Current_State : State_Index := 1;
Nb_State : State_Index := 1;
procedure Closure
(State : in out Meta_State;
Item : State_Index);
-- Compute the closure of the state (that is every other state which
-- has a empty-character transition) and add it to the state
-------------
-- Closure --
-------------
procedure Closure
(State : in out Meta_State;
Item : State_Index)
is
begin
if State (Item) then
return;
end if;
State (Item) := True;
for Column in Alphabet_Size + 1 .. First_Table'Last (2) loop
if First_Table (Item, Column) = 0 then
return;
end if;
Closure (State, First_Table (Item, Column));
end loop;
end Closure;
-- Start of procesing for Create_Secondary_Table
begin
-- Create a new state
Closure (Meta_States (Current_State), Start_State);
while Current_State <= Nb_State loop
-- If this new meta-state includes the primary table end state,
-- then this meta-state will be a final state in the regexp
if Meta_States (Current_State)(End_State) then
Is_Final (Current_State) := True;
end if;
-- For every character in the regexp, calculate the possible
-- transitions from Current_State
for Column in 0 .. Alphabet_Size loop
Meta_States (Nb_State + 1) := (others => False);
Temp_State_Not_Null := False;
for K in Meta_States (Current_State)'Range loop
if Meta_States (Current_State)(K)
and then First_Table (K, Column) /= 0
then
Closure
(Meta_States (Nb_State + 1), First_Table (K, Column));
Temp_State_Not_Null := True;
end if;
end loop;
-- If at least one transition existed
if Temp_State_Not_Null then
-- Check if this new state corresponds to an old one
for K in 1 .. Nb_State loop
if Meta_States (K) = Meta_States (Nb_State + 1) then
Table (Current_State, Column) := K;
exit;
end if;
end loop;
-- If not, create a new state
if Table (Current_State, Column) = 0 then
Nb_State := Nb_State + 1;
Table (Current_State, Column) := Nb_State;
end if;
end if;
end loop;
Current_State := Current_State + 1;
end loop;
-- Returns the regexp
declare
R : Regexp_Access;
begin
R := new Regexp_Value (Alphabet_Size => Alphabet_Size,
Num_States => Nb_State);
R.Map := Map;
R.Is_Final := Is_Final (1 .. Nb_State);
R.Case_Sensitive := Case_Sensitive;
for State in 1 .. Nb_State loop
for K in 0 .. Alphabet_Size loop
R.States (State, K) := Table (State, K);
end loop;
end loop;
return (Ada.Finalization.Controlled with R => R);
end;
end Create_Secondary_Table;
---------------------
-- Raise_Exception --
---------------------
procedure Raise_Exception
(M : String;
Index : Integer)
is
begin
Ada.Exceptions.Raise_Exception
(Error_In_Regexp'Identity, M & " at offset " & Index'Img);
end Raise_Exception;
-- Start of processing for Compile
begin
-- Special case for the empty string: it always matches, and the
-- following processing would fail on it.
if S = "" then
return (Ada.Finalization.Controlled with
R => new Regexp_Value'
(Alphabet_Size => 0,
Num_States => 1,
Map => (others => 0),
States => (others => (others => 1)),
Is_Final => (others => True),
Case_Sensitive => True));
end if;
if not Case_Sensitive then
GNAT.Case_Util.To_Lower (S);
end if;
Create_Mapping;
-- Creates the primary table
declare
Table : Regexp_Array_Access;
Num_States : State_Index;
Start_State : State_Index;
End_State : State_Index;
R : Regexp;
begin
Table := new Regexp_Array (1 .. 100,
0 .. Alphabet_Size + 10);
if not Glob then
Create_Primary_Table (Table, Num_States, Start_State, End_State);
else
Create_Primary_Table_Glob
(Table, Num_States, Start_State, End_State);
end if;
-- Creates the secondary table
R := Create_Secondary_Table
(Table, Num_States, Start_State, End_State);
Free (Table);
return R;
end;
end Compile;
--------------
-- Finalize --
--------------
procedure Finalize (R : in out Regexp) is
procedure Free is new
Unchecked_Deallocation (Regexp_Value, Regexp_Access);
begin
Free (R.R);
end Finalize;
---------
-- Get --
---------
function Get
(Table : Regexp_Array_Access;
State : State_Index;
Column : Column_Index)
return State_Index
is
begin
if State <= Table'Last (1)
and then Column <= Table'Last (2)
then
return Table (State, Column);
else
return 0;
end if;
end Get;
-----------
-- Match --
-----------
function Match (S : String; R : Regexp) return Boolean is
Current_State : State_Index := 1;
begin
if R.R = null then
raise Constraint_Error;
end if;
for Char in S'Range loop
if R.R.Case_Sensitive then
Current_State := R.R.States (Current_State, R.R.Map (S (Char)));
else
Current_State :=
R.R.States (Current_State,
R.R.Map (GNAT.Case_Util.To_Lower (S (Char))));
end if;
if Current_State = 0 then
return False;
end if;
end loop;
return R.R.Is_Final (Current_State);
end Match;
---------
-- Set --
---------
procedure Set
(Table : in out Regexp_Array_Access;
State : State_Index;
Column : Column_Index;
Value : State_Index)
is
New_Lines : State_Index;
New_Columns : Column_Index;
New_Table : Regexp_Array_Access;
begin
if State <= Table'Last (1)
and then Column <= Table'Last (2)
then
Table (State, Column) := Value;
else
-- Doubles the size of the table until it is big enough that
-- (State, Column) is a valid index
New_Lines := Table'Last (1) * (State / Table'Last (1) + 1);
New_Columns := Table'Last (2) * (Column / Table'Last (2) + 1);
New_Table := new Regexp_Array (Table'First (1) .. New_Lines,
Table'First (2) .. New_Columns);
New_Table.all := (others => (others => 0));
for J in Table'Range (1) loop
for K in Table'Range (2) loop
New_Table (J, K) := Table (J, K);
end loop;
end loop;
Free (Table);
Table := New_Table;
Table (State, Column) := Value;
end if;
end Set;
end GNAT.Regexp;