| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- G N A T . R E G E X P -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1999-2002 Ada Core Technologies, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 2, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING. If not, write -- |
| -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- |
| -- MA 02111-1307, USA. -- |
| -- -- |
| -- As a special exception, if other files instantiate generics from this -- |
| -- unit, or you link this unit with other files to produce an executable, -- |
| -- this unit does not by itself cause the resulting executable to be -- |
| -- covered by the GNU General Public License. This exception does not -- |
| -- however invalidate any other reasons why the executable file might be -- |
| -- covered by the GNU Public License. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Unchecked_Deallocation; |
| with Ada.Exceptions; |
| with GNAT.Case_Util; |
| |
| package body GNAT.Regexp is |
| |
| Open_Paren : constant Character := '('; |
| Close_Paren : constant Character := ')'; |
| Open_Bracket : constant Character := '['; |
| Close_Bracket : constant Character := ']'; |
| |
| type State_Index is new Natural; |
| type Column_Index is new Natural; |
| |
| type Regexp_Array is array |
| (State_Index range <>, Column_Index range <>) of State_Index; |
| -- First index is for the state number |
| -- Second index is for the character type |
| -- Contents is the new State |
| |
| type Regexp_Array_Access is access Regexp_Array; |
| -- Use this type through the functions Set below, so that it |
| -- can grow dynamically depending on the needs. |
| |
| type Mapping is array (Character'Range) of Column_Index; |
| -- Mapping between characters and column in the Regexp_Array |
| |
| type Boolean_Array is array (State_Index range <>) of Boolean; |
| |
| type Regexp_Value |
| (Alphabet_Size : Column_Index; |
| Num_States : State_Index) is |
| record |
| Map : Mapping; |
| States : Regexp_Array (1 .. Num_States, 0 .. Alphabet_Size); |
| Is_Final : Boolean_Array (1 .. Num_States); |
| Case_Sensitive : Boolean; |
| end record; |
| -- Deterministic finite-state machine |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| procedure Set |
| (Table : in out Regexp_Array_Access; |
| State : State_Index; |
| Column : Column_Index; |
| Value : State_Index); |
| -- Sets a value in the table. If the table is too small, reallocate it |
| -- dynamically so that (State, Column) is a valid index in it. |
| |
| function Get |
| (Table : Regexp_Array_Access; |
| State : State_Index; |
| Column : Column_Index) |
| return State_Index; |
| -- Returns the value in the table at (State, Column). |
| -- If this index does not exist in the table, returns 0 |
| |
| procedure Free is new Unchecked_Deallocation |
| (Regexp_Array, Regexp_Array_Access); |
| |
| ------------ |
| -- Adjust -- |
| ------------ |
| |
| procedure Adjust (R : in out Regexp) is |
| Tmp : Regexp_Access; |
| |
| begin |
| Tmp := new Regexp_Value (Alphabet_Size => R.R.Alphabet_Size, |
| Num_States => R.R.Num_States); |
| Tmp.all := R.R.all; |
| R.R := Tmp; |
| end Adjust; |
| |
| ------------- |
| -- Compile -- |
| ------------- |
| |
| function Compile |
| (Pattern : String; |
| Glob : Boolean := False; |
| Case_Sensitive : Boolean := True) |
| return Regexp |
| is |
| S : String := Pattern; |
| -- The pattern which is really compiled (when the pattern is case |
| -- insensitive, we convert this string to lower-cases |
| |
| Map : Mapping := (others => 0); |
| -- Mapping between characters and columns in the tables |
| |
| Alphabet_Size : Column_Index := 0; |
| -- Number of significant characters in the regular expression. |
| -- This total does not include special operators, such as *, (, ... |
| |
| procedure Create_Mapping; |
| -- Creates a mapping between characters in the regexp and columns |
| -- in the tables representing the regexp. Test that the regexp is |
| -- well-formed Modifies Alphabet_Size and Map |
| |
| procedure Create_Primary_Table |
| (Table : out Regexp_Array_Access; |
| Num_States : out State_Index; |
| Start_State : out State_Index; |
| End_State : out State_Index); |
| -- Creates the first version of the regexp (this is a non determinist |
| -- finite state machine, which is unadapted for a fast pattern |
| -- matching algorithm). We use a recursive algorithm to process the |
| -- parenthesis sub-expressions. |
| -- |
| -- Table : at the end of the procedure : Column 0 is for any character |
| -- ('.') and the last columns are for no character (closure) |
| -- Num_States is set to the number of states in the table |
| -- Start_State is the number of the starting state in the regexp |
| -- End_State is the number of the final state when the regexp matches |
| |
| procedure Create_Primary_Table_Glob |
| (Table : out Regexp_Array_Access; |
| Num_States : out State_Index; |
| Start_State : out State_Index; |
| End_State : out State_Index); |
| -- Same function as above, but it deals with the second possible |
| -- grammar for 'globbing pattern', which is a kind of subset of the |
| -- whole regular expression grammar. |
| |
| function Create_Secondary_Table |
| (First_Table : Regexp_Array_Access; |
| Num_States : State_Index; |
| Start_State : State_Index; |
| End_State : State_Index) |
| return Regexp; |
| -- Creates the definitive table representing the regular expression |
| -- This is actually a transformation of the primary table First_Table, |
| -- where every state is grouped with the states in its 'no-character' |
| -- columns. The transitions between the new states are then recalculated |
| -- and if necessary some new states are created. |
| -- |
| -- Note that the resulting finite-state machine is not optimized in |
| -- terms of the number of states : it would be more time-consuming to |
| -- add a third pass to reduce the number of states in the machine, with |
| -- no speed improvement... |
| |
| procedure Raise_Exception |
| (M : String; |
| Index : Integer); |
| pragma No_Return (Raise_Exception); |
| -- Raise an exception, indicating an error at character Index in S. |
| |
| -------------------- |
| -- Create_Mapping -- |
| -------------------- |
| |
| procedure Create_Mapping is |
| |
| procedure Add_In_Map (C : Character); |
| -- Add a character in the mapping, if it is not already defined |
| |
| ----------------- |
| -- Add_In_Map -- |
| ----------------- |
| |
| procedure Add_In_Map (C : Character) is |
| begin |
| if Map (C) = 0 then |
| Alphabet_Size := Alphabet_Size + 1; |
| Map (C) := Alphabet_Size; |
| end if; |
| end Add_In_Map; |
| |
| J : Integer := S'First; |
| Parenthesis_Level : Integer := 0; |
| Curly_Level : Integer := 0; |
| |
| -- Start of processing for Create_Mapping |
| |
| begin |
| while J <= S'Last loop |
| case S (J) is |
| when Open_Bracket => |
| J := J + 1; |
| |
| if S (J) = '^' then |
| J := J + 1; |
| end if; |
| |
| if S (J) = ']' or S (J) = '-' then |
| J := J + 1; |
| end if; |
| |
| -- The first character never has a special meaning |
| |
| loop |
| if J > S'Last then |
| Raise_Exception |
| ("Ran out of characters while parsing ", J); |
| end if; |
| |
| exit when S (J) = Close_Bracket; |
| |
| if S (J) = '-' |
| and then S (J + 1) /= Close_Bracket |
| then |
| declare |
| Start : constant Integer := J - 1; |
| |
| begin |
| J := J + 1; |
| |
| if S (J) = '\' then |
| J := J + 1; |
| end if; |
| |
| for Char in S (Start) .. S (J) loop |
| Add_In_Map (Char); |
| end loop; |
| end; |
| else |
| if S (J) = '\' then |
| J := J + 1; |
| end if; |
| |
| Add_In_Map (S (J)); |
| end if; |
| |
| J := J + 1; |
| end loop; |
| |
| -- A close bracket must follow a open_bracket, |
| -- and cannot be found alone on the line |
| |
| when Close_Bracket => |
| Raise_Exception |
| ("Incorrect character ']' in regular expression", J); |
| |
| when '\' => |
| if J < S'Last then |
| J := J + 1; |
| Add_In_Map (S (J)); |
| |
| else |
| -- \ not allowed at the end of the regexp |
| |
| Raise_Exception |
| ("Incorrect character '\' in regular expression", J); |
| end if; |
| |
| when Open_Paren => |
| if not Glob then |
| Parenthesis_Level := Parenthesis_Level + 1; |
| else |
| Add_In_Map (Open_Paren); |
| end if; |
| |
| when Close_Paren => |
| if not Glob then |
| Parenthesis_Level := Parenthesis_Level - 1; |
| |
| if Parenthesis_Level < 0 then |
| Raise_Exception |
| ("')' is not associated with '(' in regular " |
| & "expression", J); |
| end if; |
| |
| if S (J - 1) = Open_Paren then |
| Raise_Exception |
| ("Empty parenthesis not allowed in regular " |
| & "expression", J); |
| end if; |
| |
| else |
| Add_In_Map (Close_Paren); |
| end if; |
| |
| when '.' => |
| if Glob then |
| Add_In_Map ('.'); |
| end if; |
| |
| when '{' => |
| if not Glob then |
| Add_In_Map (S (J)); |
| else |
| Curly_Level := Curly_Level + 1; |
| end if; |
| |
| when '}' => |
| if not Glob then |
| Add_In_Map (S (J)); |
| else |
| Curly_Level := Curly_Level - 1; |
| end if; |
| |
| when '*' | '?' => |
| if not Glob then |
| if J = S'First then |
| Raise_Exception |
| ("'*', '+', '?' and '|' operators can not be in " |
| & "first position in regular expression", J); |
| end if; |
| end if; |
| |
| when '|' | '+' => |
| if not Glob then |
| if J = S'First then |
| |
| -- These operators must apply to a sub-expression, |
| -- and cannot be found at the beginning of the line |
| |
| Raise_Exception |
| ("'*', '+', '?' and '|' operators can not be in " |
| & "first position in regular expression", J); |
| end if; |
| |
| else |
| Add_In_Map (S (J)); |
| end if; |
| |
| when others => |
| Add_In_Map (S (J)); |
| end case; |
| |
| J := J + 1; |
| end loop; |
| |
| -- A closing parenthesis must follow an open parenthesis |
| |
| if Parenthesis_Level /= 0 then |
| Raise_Exception |
| ("'(' must always be associated with a ')'", J); |
| end if; |
| |
| if Curly_Level /= 0 then |
| Raise_Exception |
| ("'{' must always be associated with a '}'", J); |
| end if; |
| end Create_Mapping; |
| |
| -------------------------- |
| -- Create_Primary_Table -- |
| -------------------------- |
| |
| procedure Create_Primary_Table |
| (Table : out Regexp_Array_Access; |
| Num_States : out State_Index; |
| Start_State : out State_Index; |
| End_State : out State_Index) |
| is |
| Empty_Char : constant Column_Index := Alphabet_Size + 1; |
| |
| Current_State : State_Index := 0; |
| -- Index of the last created state |
| |
| procedure Add_Empty_Char |
| (State : State_Index; |
| To_State : State_Index); |
| -- Add a empty-character transition from State to To_State. |
| |
| procedure Create_Repetition |
| (Repetition : Character; |
| Start_Prev : State_Index; |
| End_Prev : State_Index; |
| New_Start : out State_Index; |
| New_End : in out State_Index); |
| -- Create the table in case we have a '*', '+' or '?'. |
| -- Start_Prev .. End_Prev should indicate respectively the start and |
| -- end index of the previous expression, to which '*', '+' or '?' is |
| -- applied. |
| |
| procedure Create_Simple |
| (Start_Index : Integer; |
| End_Index : Integer; |
| Start_State : out State_Index; |
| End_State : out State_Index); |
| -- Fill the table for the regexp Simple. |
| -- This is the recursive procedure called to handle () expressions |
| -- If End_State = 0, then the call to Create_Simple creates an |
| -- independent regexp, not a concatenation |
| -- Start_Index .. End_Index is the starting index in the string S. |
| -- |
| -- Warning: it may look like we are creating too many empty-string |
| -- transitions, but they are needed to get the correct regexp. |
| -- The table is filled as follow ( s means start-state, e means |
| -- end-state) : |
| -- |
| -- regexp state_num | a b * empty_string |
| -- ------- --------------------------------------- |
| -- a 1 (s) | 2 - - - |
| -- 2 (e) | - - - - |
| -- |
| -- ab 1 (s) | 2 - - - |
| -- 2 | - - - 3 |
| -- 3 | - 4 - - |
| -- 4 (e) | - - - - |
| -- |
| -- a|b 1 | 2 - - - |
| -- 2 | - - - 6 |
| -- 3 | - 4 - - |
| -- 4 | - - - 6 |
| -- 5 (s) | - - - 1,3 |
| -- 6 (e) | - - - - |
| -- |
| -- a* 1 | 2 - - - |
| -- 2 | - - - 4 |
| -- 3 (s) | - - - 1,4 |
| -- 4 (e) | - - - 3 |
| -- |
| -- (a) 1 (s) | 2 - - - |
| -- 2 (e) | - - - - |
| -- |
| -- a+ 1 | 2 - - - |
| -- 2 | - - - 4 |
| -- 3 (s) | - - - 1 |
| -- 4 (e) | - - - 3 |
| -- |
| -- a? 1 | 2 - - - |
| -- 2 | - - - 4 |
| -- 3 (s) | - - - 1,4 |
| -- 4 (e) | - - - - |
| -- |
| -- . 1 (s) | 2 2 2 - |
| -- 2 (e) | - - - - |
| |
| function Next_Sub_Expression |
| (Start_Index : Integer; |
| End_Index : Integer) |
| return Integer; |
| -- Returns the index of the last character of the next sub-expression |
| -- in Simple. Index can not be greater than End_Index |
| |
| -------------------- |
| -- Add_Empty_Char -- |
| -------------------- |
| |
| procedure Add_Empty_Char |
| (State : State_Index; |
| To_State : State_Index) |
| is |
| J : Column_Index := Empty_Char; |
| |
| begin |
| while Get (Table, State, J) /= 0 loop |
| J := J + 1; |
| end loop; |
| |
| Set (Table, State, J, To_State); |
| end Add_Empty_Char; |
| |
| ----------------------- |
| -- Create_Repetition -- |
| ----------------------- |
| |
| procedure Create_Repetition |
| (Repetition : Character; |
| Start_Prev : State_Index; |
| End_Prev : State_Index; |
| New_Start : out State_Index; |
| New_End : in out State_Index) |
| is |
| begin |
| New_Start := Current_State + 1; |
| |
| if New_End /= 0 then |
| Add_Empty_Char (New_End, New_Start); |
| end if; |
| |
| Current_State := Current_State + 2; |
| New_End := Current_State; |
| |
| Add_Empty_Char (End_Prev, New_End); |
| Add_Empty_Char (New_Start, Start_Prev); |
| |
| if Repetition /= '+' then |
| Add_Empty_Char (New_Start, New_End); |
| end if; |
| |
| if Repetition /= '?' then |
| Add_Empty_Char (New_End, New_Start); |
| end if; |
| end Create_Repetition; |
| |
| ------------------- |
| -- Create_Simple -- |
| ------------------- |
| |
| procedure Create_Simple |
| (Start_Index : Integer; |
| End_Index : Integer; |
| Start_State : out State_Index; |
| End_State : out State_Index) |
| is |
| J : Integer := Start_Index; |
| Last_Start : State_Index := 0; |
| |
| begin |
| Start_State := 0; |
| End_State := 0; |
| while J <= End_Index loop |
| case S (J) is |
| when Open_Paren => |
| declare |
| J_Start : constant Integer := J + 1; |
| Next_Start : State_Index; |
| Next_End : State_Index; |
| |
| begin |
| J := Next_Sub_Expression (J, End_Index); |
| Create_Simple (J_Start, J - 1, Next_Start, Next_End); |
| |
| if J < End_Index |
| and then (S (J + 1) = '*' or else |
| S (J + 1) = '+' or else |
| S (J + 1) = '?') |
| then |
| J := J + 1; |
| Create_Repetition |
| (S (J), |
| Next_Start, |
| Next_End, |
| Last_Start, |
| End_State); |
| |
| else |
| Last_Start := Next_Start; |
| |
| if End_State /= 0 then |
| Add_Empty_Char (End_State, Last_Start); |
| end if; |
| |
| End_State := Next_End; |
| end if; |
| end; |
| |
| when '|' => |
| declare |
| Start_Prev : constant State_Index := Start_State; |
| End_Prev : constant State_Index := End_State; |
| Start_J : constant Integer := J + 1; |
| Start_Next : State_Index := 0; |
| End_Next : State_Index := 0; |
| |
| begin |
| J := Next_Sub_Expression (J, End_Index); |
| |
| -- Create a new state for the start of the alternative |
| |
| Current_State := Current_State + 1; |
| Last_Start := Current_State; |
| Start_State := Last_Start; |
| |
| -- Create the tree for the second part of alternative |
| |
| Create_Simple (Start_J, J, Start_Next, End_Next); |
| |
| -- Create the end state |
| |
| Add_Empty_Char (Last_Start, Start_Next); |
| Add_Empty_Char (Last_Start, Start_Prev); |
| Current_State := Current_State + 1; |
| End_State := Current_State; |
| Add_Empty_Char (End_Prev, End_State); |
| Add_Empty_Char (End_Next, End_State); |
| end; |
| |
| when Open_Bracket => |
| Current_State := Current_State + 1; |
| |
| declare |
| Next_State : State_Index := Current_State + 1; |
| |
| begin |
| J := J + 1; |
| |
| if S (J) = '^' then |
| J := J + 1; |
| |
| Next_State := 0; |
| |
| for Column in 0 .. Alphabet_Size loop |
| Set (Table, Current_State, Column, |
| Value => Current_State + 1); |
| end loop; |
| end if; |
| |
| -- Automatically add the first character |
| |
| if S (J) = '-' or S (J) = ']' then |
| Set (Table, Current_State, Map (S (J)), |
| Value => Next_State); |
| J := J + 1; |
| end if; |
| |
| -- Loop till closing bracket found |
| |
| loop |
| exit when S (J) = Close_Bracket; |
| |
| if S (J) = '-' |
| and then S (J + 1) /= ']' |
| then |
| declare |
| Start : constant Integer := J - 1; |
| |
| begin |
| J := J + 1; |
| |
| if S (J) = '\' then |
| J := J + 1; |
| end if; |
| |
| for Char in S (Start) .. S (J) loop |
| Set (Table, Current_State, Map (Char), |
| Value => Next_State); |
| end loop; |
| end; |
| |
| else |
| if S (J) = '\' then |
| J := J + 1; |
| end if; |
| |
| Set (Table, Current_State, Map (S (J)), |
| Value => Next_State); |
| end if; |
| J := J + 1; |
| end loop; |
| end; |
| |
| Current_State := Current_State + 1; |
| |
| -- If the next symbol is a special symbol |
| |
| if J < End_Index |
| and then (S (J + 1) = '*' or else |
| S (J + 1) = '+' or else |
| S (J + 1) = '?') |
| then |
| J := J + 1; |
| Create_Repetition |
| (S (J), |
| Current_State - 1, |
| Current_State, |
| Last_Start, |
| End_State); |
| |
| else |
| Last_Start := Current_State - 1; |
| |
| if End_State /= 0 then |
| Add_Empty_Char (End_State, Last_Start); |
| end if; |
| |
| End_State := Current_State; |
| end if; |
| |
| when '*' | '+' | '?' | Close_Paren | Close_Bracket => |
| Raise_Exception |
| ("Incorrect character in regular expression :", J); |
| |
| when others => |
| Current_State := Current_State + 1; |
| |
| -- Create the state for the symbol S (J) |
| |
| if S (J) = '.' then |
| for K in 0 .. Alphabet_Size loop |
| Set (Table, Current_State, K, |
| Value => Current_State + 1); |
| end loop; |
| |
| else |
| if S (J) = '\' then |
| J := J + 1; |
| end if; |
| |
| Set (Table, Current_State, Map (S (J)), |
| Value => Current_State + 1); |
| end if; |
| |
| Current_State := Current_State + 1; |
| |
| -- If the next symbol is a special symbol |
| |
| if J < End_Index |
| and then (S (J + 1) = '*' or else |
| S (J + 1) = '+' or else |
| S (J + 1) = '?') |
| then |
| J := J + 1; |
| Create_Repetition |
| (S (J), |
| Current_State - 1, |
| Current_State, |
| Last_Start, |
| End_State); |
| |
| else |
| Last_Start := Current_State - 1; |
| |
| if End_State /= 0 then |
| Add_Empty_Char (End_State, Last_Start); |
| end if; |
| |
| End_State := Current_State; |
| end if; |
| |
| end case; |
| |
| if Start_State = 0 then |
| Start_State := Last_Start; |
| end if; |
| |
| J := J + 1; |
| end loop; |
| end Create_Simple; |
| |
| ------------------------- |
| -- Next_Sub_Expression -- |
| ------------------------- |
| |
| function Next_Sub_Expression |
| (Start_Index : Integer; |
| End_Index : Integer) |
| return Integer |
| is |
| J : Integer := Start_Index; |
| Start_On_Alter : Boolean := False; |
| |
| begin |
| if S (J) = '|' then |
| Start_On_Alter := True; |
| end if; |
| |
| loop |
| exit when J = End_Index; |
| J := J + 1; |
| |
| case S (J) is |
| when '\' => |
| J := J + 1; |
| |
| when Open_Bracket => |
| loop |
| J := J + 1; |
| exit when S (J) = Close_Bracket; |
| |
| if S (J) = '\' then |
| J := J + 1; |
| end if; |
| end loop; |
| |
| when Open_Paren => |
| J := Next_Sub_Expression (J, End_Index); |
| |
| when Close_Paren => |
| return J; |
| |
| when '|' => |
| if Start_On_Alter then |
| return J - 1; |
| end if; |
| |
| when others => |
| null; |
| end case; |
| end loop; |
| |
| return J; |
| end Next_Sub_Expression; |
| |
| -- Start of Create_Primary_Table |
| |
| begin |
| Table.all := (others => (others => 0)); |
| Create_Simple (S'First, S'Last, Start_State, End_State); |
| Num_States := Current_State; |
| end Create_Primary_Table; |
| |
| ------------------------------- |
| -- Create_Primary_Table_Glob -- |
| ------------------------------- |
| |
| procedure Create_Primary_Table_Glob |
| (Table : out Regexp_Array_Access; |
| Num_States : out State_Index; |
| Start_State : out State_Index; |
| End_State : out State_Index) |
| is |
| Empty_Char : constant Column_Index := Alphabet_Size + 1; |
| |
| Current_State : State_Index := 0; |
| -- Index of the last created state |
| |
| procedure Add_Empty_Char |
| (State : State_Index; |
| To_State : State_Index); |
| -- Add a empty-character transition from State to To_State. |
| |
| procedure Create_Simple |
| (Start_Index : Integer; |
| End_Index : Integer; |
| Start_State : out State_Index; |
| End_State : out State_Index); |
| -- Fill the table for the S (Start_Index .. End_Index). |
| -- This is the recursive procedure called to handle () expressions |
| |
| -------------------- |
| -- Add_Empty_Char -- |
| -------------------- |
| |
| procedure Add_Empty_Char |
| (State : State_Index; |
| To_State : State_Index) |
| is |
| J : Column_Index := Empty_Char; |
| |
| begin |
| while Get (Table, State, J) /= 0 loop |
| J := J + 1; |
| end loop; |
| |
| Set (Table, State, J, |
| Value => To_State); |
| end Add_Empty_Char; |
| |
| ------------------- |
| -- Create_Simple -- |
| ------------------- |
| |
| procedure Create_Simple |
| (Start_Index : Integer; |
| End_Index : Integer; |
| Start_State : out State_Index; |
| End_State : out State_Index) |
| is |
| J : Integer := Start_Index; |
| Last_Start : State_Index := 0; |
| |
| begin |
| Start_State := 0; |
| End_State := 0; |
| |
| while J <= End_Index loop |
| case S (J) is |
| |
| when Open_Bracket => |
| Current_State := Current_State + 1; |
| |
| declare |
| Next_State : State_Index := Current_State + 1; |
| |
| begin |
| J := J + 1; |
| |
| if S (J) = '^' then |
| J := J + 1; |
| Next_State := 0; |
| |
| for Column in 0 .. Alphabet_Size loop |
| Set (Table, Current_State, Column, |
| Value => Current_State + 1); |
| end loop; |
| end if; |
| |
| -- Automatically add the first character |
| |
| if S (J) = '-' or S (J) = ']' then |
| Set (Table, Current_State, Map (S (J)), |
| Value => Current_State); |
| J := J + 1; |
| end if; |
| |
| -- Loop till closing bracket found |
| |
| loop |
| exit when S (J) = Close_Bracket; |
| |
| if S (J) = '-' |
| and then S (J + 1) /= ']' |
| then |
| declare |
| Start : constant Integer := J - 1; |
| begin |
| J := J + 1; |
| |
| if S (J) = '\' then |
| J := J + 1; |
| end if; |
| |
| for Char in S (Start) .. S (J) loop |
| Set (Table, Current_State, Map (Char), |
| Value => Next_State); |
| end loop; |
| end; |
| |
| else |
| if S (J) = '\' then |
| J := J + 1; |
| end if; |
| |
| Set (Table, Current_State, Map (S (J)), |
| Value => Next_State); |
| end if; |
| J := J + 1; |
| end loop; |
| end; |
| |
| Last_Start := Current_State; |
| Current_State := Current_State + 1; |
| |
| if End_State /= 0 then |
| Add_Empty_Char (End_State, Last_Start); |
| end if; |
| |
| End_State := Current_State; |
| |
| when '{' => |
| declare |
| End_Sub : Integer; |
| Start_Regexp_Sub : State_Index; |
| End_Regexp_Sub : State_Index; |
| Create_Start : State_Index := 0; |
| |
| Create_End : State_Index := 0; |
| -- Initialized to avoid junk warning |
| |
| begin |
| while S (J) /= '}' loop |
| |
| -- First step : find sub pattern |
| |
| End_Sub := J + 1; |
| while S (End_Sub) /= ',' |
| and then S (End_Sub) /= '}' |
| loop |
| End_Sub := End_Sub + 1; |
| end loop; |
| |
| -- Second step : create a sub pattern |
| |
| Create_Simple |
| (J + 1, |
| End_Sub - 1, |
| Start_Regexp_Sub, |
| End_Regexp_Sub); |
| |
| J := End_Sub; |
| |
| -- Third step : create an alternative |
| |
| if Create_Start = 0 then |
| Current_State := Current_State + 1; |
| Create_Start := Current_State; |
| Add_Empty_Char (Create_Start, Start_Regexp_Sub); |
| Current_State := Current_State + 1; |
| Create_End := Current_State; |
| Add_Empty_Char (End_Regexp_Sub, Create_End); |
| |
| else |
| Current_State := Current_State + 1; |
| Add_Empty_Char (Current_State, Create_Start); |
| Create_Start := Current_State; |
| Add_Empty_Char (Create_Start, Start_Regexp_Sub); |
| Add_Empty_Char (End_Regexp_Sub, Create_End); |
| end if; |
| end loop; |
| |
| if End_State /= 0 then |
| Add_Empty_Char (End_State, Create_Start); |
| end if; |
| |
| End_State := Create_End; |
| Last_Start := Create_Start; |
| end; |
| |
| when '*' => |
| Current_State := Current_State + 1; |
| |
| if End_State /= 0 then |
| Add_Empty_Char (End_State, Current_State); |
| end if; |
| |
| Add_Empty_Char (Current_State, Current_State + 1); |
| Add_Empty_Char (Current_State, Current_State + 3); |
| Last_Start := Current_State; |
| |
| Current_State := Current_State + 1; |
| |
| for K in 0 .. Alphabet_Size loop |
| Set (Table, Current_State, K, |
| Value => Current_State + 1); |
| end loop; |
| |
| Current_State := Current_State + 1; |
| Add_Empty_Char (Current_State, Current_State + 1); |
| |
| Current_State := Current_State + 1; |
| Add_Empty_Char (Current_State, Last_Start); |
| End_State := Current_State; |
| |
| when others => |
| Current_State := Current_State + 1; |
| |
| if S (J) = '?' then |
| for K in 0 .. Alphabet_Size loop |
| Set (Table, Current_State, K, |
| Value => Current_State + 1); |
| end loop; |
| |
| else |
| if S (J) = '\' then |
| J := J + 1; |
| end if; |
| |
| -- Create the state for the symbol S (J) |
| |
| Set (Table, Current_State, Map (S (J)), |
| Value => Current_State + 1); |
| end if; |
| |
| Last_Start := Current_State; |
| Current_State := Current_State + 1; |
| |
| if End_State /= 0 then |
| Add_Empty_Char (End_State, Last_Start); |
| end if; |
| |
| End_State := Current_State; |
| |
| end case; |
| |
| if Start_State = 0 then |
| Start_State := Last_Start; |
| end if; |
| |
| J := J + 1; |
| end loop; |
| end Create_Simple; |
| |
| -- Start of processing for Create_Primary_Table_Glob |
| |
| begin |
| Table.all := (others => (others => 0)); |
| Create_Simple (S'First, S'Last, Start_State, End_State); |
| Num_States := Current_State; |
| end Create_Primary_Table_Glob; |
| |
| ---------------------------- |
| -- Create_Secondary_Table -- |
| ---------------------------- |
| |
| function Create_Secondary_Table |
| (First_Table : Regexp_Array_Access; |
| Num_States : State_Index; |
| Start_State : State_Index; |
| End_State : State_Index) |
| return Regexp |
| is |
| pragma Warnings (Off, Num_States); |
| |
| Last_Index : constant State_Index := First_Table'Last (1); |
| type Meta_State is array (1 .. Last_Index) of Boolean; |
| |
| Table : Regexp_Array (1 .. Last_Index, 0 .. Alphabet_Size) := |
| (others => (others => 0)); |
| |
| Meta_States : array (1 .. Last_Index + 1) of Meta_State := |
| (others => (others => False)); |
| |
| Temp_State_Not_Null : Boolean; |
| |
| Is_Final : Boolean_Array (1 .. Last_Index) := (others => False); |
| |
| Current_State : State_Index := 1; |
| Nb_State : State_Index := 1; |
| |
| procedure Closure |
| (State : in out Meta_State; |
| Item : State_Index); |
| -- Compute the closure of the state (that is every other state which |
| -- has a empty-character transition) and add it to the state |
| |
| ------------- |
| -- Closure -- |
| ------------- |
| |
| procedure Closure |
| (State : in out Meta_State; |
| Item : State_Index) |
| is |
| begin |
| if State (Item) then |
| return; |
| end if; |
| |
| State (Item) := True; |
| |
| for Column in Alphabet_Size + 1 .. First_Table'Last (2) loop |
| if First_Table (Item, Column) = 0 then |
| return; |
| end if; |
| |
| Closure (State, First_Table (Item, Column)); |
| end loop; |
| end Closure; |
| |
| -- Start of procesing for Create_Secondary_Table |
| |
| begin |
| -- Create a new state |
| |
| Closure (Meta_States (Current_State), Start_State); |
| |
| while Current_State <= Nb_State loop |
| |
| -- If this new meta-state includes the primary table end state, |
| -- then this meta-state will be a final state in the regexp |
| |
| if Meta_States (Current_State)(End_State) then |
| Is_Final (Current_State) := True; |
| end if; |
| |
| -- For every character in the regexp, calculate the possible |
| -- transitions from Current_State |
| |
| for Column in 0 .. Alphabet_Size loop |
| Meta_States (Nb_State + 1) := (others => False); |
| Temp_State_Not_Null := False; |
| |
| for K in Meta_States (Current_State)'Range loop |
| if Meta_States (Current_State)(K) |
| and then First_Table (K, Column) /= 0 |
| then |
| Closure |
| (Meta_States (Nb_State + 1), First_Table (K, Column)); |
| Temp_State_Not_Null := True; |
| end if; |
| end loop; |
| |
| -- If at least one transition existed |
| |
| if Temp_State_Not_Null then |
| |
| -- Check if this new state corresponds to an old one |
| |
| for K in 1 .. Nb_State loop |
| if Meta_States (K) = Meta_States (Nb_State + 1) then |
| Table (Current_State, Column) := K; |
| exit; |
| end if; |
| end loop; |
| |
| -- If not, create a new state |
| |
| if Table (Current_State, Column) = 0 then |
| Nb_State := Nb_State + 1; |
| Table (Current_State, Column) := Nb_State; |
| end if; |
| end if; |
| end loop; |
| |
| Current_State := Current_State + 1; |
| end loop; |
| |
| -- Returns the regexp |
| |
| declare |
| R : Regexp_Access; |
| |
| begin |
| R := new Regexp_Value (Alphabet_Size => Alphabet_Size, |
| Num_States => Nb_State); |
| R.Map := Map; |
| R.Is_Final := Is_Final (1 .. Nb_State); |
| R.Case_Sensitive := Case_Sensitive; |
| |
| for State in 1 .. Nb_State loop |
| for K in 0 .. Alphabet_Size loop |
| R.States (State, K) := Table (State, K); |
| end loop; |
| end loop; |
| |
| return (Ada.Finalization.Controlled with R => R); |
| end; |
| end Create_Secondary_Table; |
| |
| --------------------- |
| -- Raise_Exception -- |
| --------------------- |
| |
| procedure Raise_Exception |
| (M : String; |
| Index : Integer) |
| is |
| begin |
| Ada.Exceptions.Raise_Exception |
| (Error_In_Regexp'Identity, M & " at offset " & Index'Img); |
| end Raise_Exception; |
| |
| -- Start of processing for Compile |
| |
| begin |
| -- Special case for the empty string: it always matches, and the |
| -- following processing would fail on it. |
| if S = "" then |
| return (Ada.Finalization.Controlled with |
| R => new Regexp_Value' |
| (Alphabet_Size => 0, |
| Num_States => 1, |
| Map => (others => 0), |
| States => (others => (others => 1)), |
| Is_Final => (others => True), |
| Case_Sensitive => True)); |
| end if; |
| |
| if not Case_Sensitive then |
| GNAT.Case_Util.To_Lower (S); |
| end if; |
| |
| Create_Mapping; |
| |
| -- Creates the primary table |
| |
| declare |
| Table : Regexp_Array_Access; |
| Num_States : State_Index; |
| Start_State : State_Index; |
| End_State : State_Index; |
| R : Regexp; |
| |
| begin |
| Table := new Regexp_Array (1 .. 100, |
| 0 .. Alphabet_Size + 10); |
| if not Glob then |
| Create_Primary_Table (Table, Num_States, Start_State, End_State); |
| else |
| Create_Primary_Table_Glob |
| (Table, Num_States, Start_State, End_State); |
| end if; |
| |
| -- Creates the secondary table |
| |
| R := Create_Secondary_Table |
| (Table, Num_States, Start_State, End_State); |
| Free (Table); |
| return R; |
| end; |
| end Compile; |
| |
| -------------- |
| -- Finalize -- |
| -------------- |
| |
| procedure Finalize (R : in out Regexp) is |
| procedure Free is new |
| Unchecked_Deallocation (Regexp_Value, Regexp_Access); |
| |
| begin |
| Free (R.R); |
| end Finalize; |
| |
| --------- |
| -- Get -- |
| --------- |
| |
| function Get |
| (Table : Regexp_Array_Access; |
| State : State_Index; |
| Column : Column_Index) |
| return State_Index |
| is |
| begin |
| if State <= Table'Last (1) |
| and then Column <= Table'Last (2) |
| then |
| return Table (State, Column); |
| else |
| return 0; |
| end if; |
| end Get; |
| |
| ----------- |
| -- Match -- |
| ----------- |
| |
| function Match (S : String; R : Regexp) return Boolean is |
| Current_State : State_Index := 1; |
| |
| begin |
| if R.R = null then |
| raise Constraint_Error; |
| end if; |
| |
| for Char in S'Range loop |
| |
| if R.R.Case_Sensitive then |
| Current_State := R.R.States (Current_State, R.R.Map (S (Char))); |
| else |
| Current_State := |
| R.R.States (Current_State, |
| R.R.Map (GNAT.Case_Util.To_Lower (S (Char)))); |
| end if; |
| |
| if Current_State = 0 then |
| return False; |
| end if; |
| |
| end loop; |
| |
| return R.R.Is_Final (Current_State); |
| end Match; |
| |
| --------- |
| -- Set -- |
| --------- |
| |
| procedure Set |
| (Table : in out Regexp_Array_Access; |
| State : State_Index; |
| Column : Column_Index; |
| Value : State_Index) |
| is |
| New_Lines : State_Index; |
| New_Columns : Column_Index; |
| New_Table : Regexp_Array_Access; |
| |
| begin |
| if State <= Table'Last (1) |
| and then Column <= Table'Last (2) |
| then |
| Table (State, Column) := Value; |
| else |
| -- Doubles the size of the table until it is big enough that |
| -- (State, Column) is a valid index |
| |
| New_Lines := Table'Last (1) * (State / Table'Last (1) + 1); |
| New_Columns := Table'Last (2) * (Column / Table'Last (2) + 1); |
| New_Table := new Regexp_Array (Table'First (1) .. New_Lines, |
| Table'First (2) .. New_Columns); |
| New_Table.all := (others => (others => 0)); |
| |
| for J in Table'Range (1) loop |
| for K in Table'Range (2) loop |
| New_Table (J, K) := Table (J, K); |
| end loop; |
| end loop; |
| |
| Free (Table); |
| Table := New_Table; |
| Table (State, Column) := Value; |
| end if; |
| end Set; |
| |
| end GNAT.Regexp; |