blob: 2d2c86a51db58c74668cbcdd7ee3c20cbbe6b3f6 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Debug; use Debug;
with Debug_A; use Debug_A;
with Einfo; use Einfo;
with Errout; use Errout;
with Expander; use Expander;
with Fname; use Fname;
with HLO; use HLO;
with Lib; use Lib;
with Lib.Load; use Lib.Load;
with Nlists; use Nlists;
with Opt; use Opt;
with Sem_Attr; use Sem_Attr;
with Sem_Ch2; use Sem_Ch2;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch4; use Sem_Ch4;
with Sem_Ch5; use Sem_Ch5;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch7; use Sem_Ch7;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch9; use Sem_Ch9;
with Sem_Ch10; use Sem_Ch10;
with Sem_Ch11; use Sem_Ch11;
with Sem_Ch12; use Sem_Ch12;
with Sem_Ch13; use Sem_Ch13;
with Sem_Prag; use Sem_Prag;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Stand; use Stand;
with Uintp; use Uintp;
pragma Warnings (Off, Sem_Util);
-- Suppress warnings of unused with for Sem_Util (used only in asserts)
package body Sem is
Outer_Generic_Scope : Entity_Id := Empty;
-- Global reference to the outer scope that is generic. In a non
-- generic context, it is empty. At the moment, it is only used
-- for avoiding freezing of external references in generics.
-------------
-- Analyze --
-------------
procedure Analyze (N : Node_Id) is
begin
Debug_A_Entry ("analyzing ", N);
-- Immediate return if already analyzed
if Analyzed (N) then
Debug_A_Exit ("analyzing ", N, " (done, analyzed already)");
return;
end if;
-- Otherwise processing depends on the node kind
case Nkind (N) is
when N_Abort_Statement =>
Analyze_Abort_Statement (N);
when N_Abstract_Subprogram_Declaration =>
Analyze_Abstract_Subprogram_Declaration (N);
when N_Accept_Alternative =>
Analyze_Accept_Alternative (N);
when N_Accept_Statement =>
Analyze_Accept_Statement (N);
when N_Aggregate =>
Analyze_Aggregate (N);
when N_Allocator =>
Analyze_Allocator (N);
when N_And_Then =>
Analyze_Short_Circuit (N);
when N_Assignment_Statement =>
Analyze_Assignment (N);
when N_Asynchronous_Select =>
Analyze_Asynchronous_Select (N);
when N_At_Clause =>
Analyze_At_Clause (N);
when N_Attribute_Reference =>
Analyze_Attribute (N);
when N_Attribute_Definition_Clause =>
Analyze_Attribute_Definition_Clause (N);
when N_Block_Statement =>
Analyze_Block_Statement (N);
when N_Case_Statement =>
Analyze_Case_Statement (N);
when N_Character_Literal =>
Analyze_Character_Literal (N);
when N_Code_Statement =>
Analyze_Code_Statement (N);
when N_Compilation_Unit =>
Analyze_Compilation_Unit (N);
when N_Component_Declaration =>
Analyze_Component_Declaration (N);
when N_Conditional_Expression =>
Analyze_Conditional_Expression (N);
when N_Conditional_Entry_Call =>
Analyze_Conditional_Entry_Call (N);
when N_Delay_Alternative =>
Analyze_Delay_Alternative (N);
when N_Delay_Relative_Statement =>
Analyze_Delay_Relative (N);
when N_Delay_Until_Statement =>
Analyze_Delay_Until (N);
when N_Entry_Body =>
Analyze_Entry_Body (N);
when N_Entry_Body_Formal_Part =>
Analyze_Entry_Body_Formal_Part (N);
when N_Entry_Call_Alternative =>
Analyze_Entry_Call_Alternative (N);
when N_Entry_Declaration =>
Analyze_Entry_Declaration (N);
when N_Entry_Index_Specification =>
Analyze_Entry_Index_Specification (N);
when N_Enumeration_Representation_Clause =>
Analyze_Enumeration_Representation_Clause (N);
when N_Exception_Declaration =>
Analyze_Exception_Declaration (N);
when N_Exception_Renaming_Declaration =>
Analyze_Exception_Renaming (N);
when N_Exit_Statement =>
Analyze_Exit_Statement (N);
when N_Expanded_Name =>
Analyze_Expanded_Name (N);
when N_Explicit_Dereference =>
Analyze_Explicit_Dereference (N);
when N_Extension_Aggregate =>
Analyze_Aggregate (N);
when N_Formal_Object_Declaration =>
Analyze_Formal_Object_Declaration (N);
when N_Formal_Package_Declaration =>
Analyze_Formal_Package (N);
when N_Formal_Subprogram_Declaration =>
Analyze_Formal_Subprogram (N);
when N_Formal_Type_Declaration =>
Analyze_Formal_Type_Declaration (N);
when N_Free_Statement =>
Analyze_Free_Statement (N);
when N_Freeze_Entity =>
null; -- no semantic processing required
when N_Full_Type_Declaration =>
Analyze_Type_Declaration (N);
when N_Function_Call =>
Analyze_Function_Call (N);
when N_Function_Instantiation =>
Analyze_Function_Instantiation (N);
when N_Generic_Function_Renaming_Declaration =>
Analyze_Generic_Function_Renaming (N);
when N_Generic_Package_Declaration =>
Analyze_Generic_Package_Declaration (N);
when N_Generic_Package_Renaming_Declaration =>
Analyze_Generic_Package_Renaming (N);
when N_Generic_Procedure_Renaming_Declaration =>
Analyze_Generic_Procedure_Renaming (N);
when N_Generic_Subprogram_Declaration =>
Analyze_Generic_Subprogram_Declaration (N);
when N_Goto_Statement =>
Analyze_Goto_Statement (N);
when N_Handled_Sequence_Of_Statements =>
Analyze_Handled_Statements (N);
when N_Identifier =>
Analyze_Identifier (N);
when N_If_Statement =>
Analyze_If_Statement (N);
when N_Implicit_Label_Declaration =>
Analyze_Implicit_Label_Declaration (N);
when N_In =>
Analyze_Membership_Op (N);
when N_Incomplete_Type_Declaration =>
Analyze_Incomplete_Type_Decl (N);
when N_Indexed_Component =>
Analyze_Indexed_Component_Form (N);
when N_Integer_Literal =>
Analyze_Integer_Literal (N);
when N_Itype_Reference =>
Analyze_Itype_Reference (N);
when N_Label =>
Analyze_Label (N);
when N_Loop_Statement =>
Analyze_Loop_Statement (N);
when N_Not_In =>
Analyze_Membership_Op (N);
when N_Null =>
Analyze_Null (N);
when N_Null_Statement =>
Analyze_Null_Statement (N);
when N_Number_Declaration =>
Analyze_Number_Declaration (N);
when N_Object_Declaration =>
Analyze_Object_Declaration (N);
when N_Object_Renaming_Declaration =>
Analyze_Object_Renaming (N);
when N_Operator_Symbol =>
Analyze_Operator_Symbol (N);
when N_Op_Abs =>
Analyze_Unary_Op (N);
when N_Op_Add =>
Analyze_Arithmetic_Op (N);
when N_Op_And =>
Analyze_Logical_Op (N);
when N_Op_Concat =>
Analyze_Concatenation (N);
when N_Op_Divide =>
Analyze_Arithmetic_Op (N);
when N_Op_Eq =>
Analyze_Equality_Op (N);
when N_Op_Expon =>
Analyze_Arithmetic_Op (N);
when N_Op_Ge =>
Analyze_Comparison_Op (N);
when N_Op_Gt =>
Analyze_Comparison_Op (N);
when N_Op_Le =>
Analyze_Comparison_Op (N);
when N_Op_Lt =>
Analyze_Comparison_Op (N);
when N_Op_Minus =>
Analyze_Unary_Op (N);
when N_Op_Mod =>
Analyze_Arithmetic_Op (N);
when N_Op_Multiply =>
Analyze_Arithmetic_Op (N);
when N_Op_Ne =>
Analyze_Equality_Op (N);
when N_Op_Not =>
Analyze_Negation (N);
when N_Op_Or =>
Analyze_Logical_Op (N);
when N_Op_Plus =>
Analyze_Unary_Op (N);
when N_Op_Rem =>
Analyze_Arithmetic_Op (N);
when N_Op_Rotate_Left =>
Analyze_Arithmetic_Op (N);
when N_Op_Rotate_Right =>
Analyze_Arithmetic_Op (N);
when N_Op_Shift_Left =>
Analyze_Arithmetic_Op (N);
when N_Op_Shift_Right =>
Analyze_Arithmetic_Op (N);
when N_Op_Shift_Right_Arithmetic =>
Analyze_Arithmetic_Op (N);
when N_Op_Subtract =>
Analyze_Arithmetic_Op (N);
when N_Op_Xor =>
Analyze_Logical_Op (N);
when N_Or_Else =>
Analyze_Short_Circuit (N);
when N_Others_Choice =>
Analyze_Others_Choice (N);
when N_Package_Body =>
Analyze_Package_Body (N);
when N_Package_Body_Stub =>
Analyze_Package_Body_Stub (N);
when N_Package_Declaration =>
Analyze_Package_Declaration (N);
when N_Package_Instantiation =>
Analyze_Package_Instantiation (N);
when N_Package_Renaming_Declaration =>
Analyze_Package_Renaming (N);
when N_Package_Specification =>
Analyze_Package_Specification (N);
when N_Parameter_Association =>
Analyze_Parameter_Association (N);
when N_Pragma =>
Analyze_Pragma (N);
when N_Private_Extension_Declaration =>
Analyze_Private_Extension_Declaration (N);
when N_Private_Type_Declaration =>
Analyze_Private_Type_Declaration (N);
when N_Procedure_Call_Statement =>
Analyze_Procedure_Call (N);
when N_Procedure_Instantiation =>
Analyze_Procedure_Instantiation (N);
when N_Protected_Body =>
Analyze_Protected_Body (N);
when N_Protected_Body_Stub =>
Analyze_Protected_Body_Stub (N);
when N_Protected_Definition =>
Analyze_Protected_Definition (N);
when N_Protected_Type_Declaration =>
Analyze_Protected_Type (N);
when N_Qualified_Expression =>
Analyze_Qualified_Expression (N);
when N_Raise_Statement =>
Analyze_Raise_Statement (N);
when N_Raise_xxx_Error =>
Analyze_Raise_xxx_Error (N);
when N_Range =>
Analyze_Range (N);
when N_Range_Constraint =>
Analyze_Range (Range_Expression (N));
when N_Real_Literal =>
Analyze_Real_Literal (N);
when N_Record_Representation_Clause =>
Analyze_Record_Representation_Clause (N);
when N_Reference =>
Analyze_Reference (N);
when N_Requeue_Statement =>
Analyze_Requeue (N);
when N_Return_Statement =>
Analyze_Return_Statement (N);
when N_Selected_Component =>
Find_Selected_Component (N);
-- ??? why not Analyze_Selected_Component, needs comments
when N_Selective_Accept =>
Analyze_Selective_Accept (N);
when N_Single_Protected_Declaration =>
Analyze_Single_Protected (N);
when N_Single_Task_Declaration =>
Analyze_Single_Task (N);
when N_Slice =>
Analyze_Slice (N);
when N_String_Literal =>
Analyze_String_Literal (N);
when N_Subprogram_Body =>
Analyze_Subprogram_Body (N);
when N_Subprogram_Body_Stub =>
Analyze_Subprogram_Body_Stub (N);
when N_Subprogram_Declaration =>
Analyze_Subprogram_Declaration (N);
when N_Subprogram_Info =>
Analyze_Subprogram_Info (N);
when N_Subprogram_Renaming_Declaration =>
Analyze_Subprogram_Renaming (N);
when N_Subtype_Declaration =>
Analyze_Subtype_Declaration (N);
when N_Subtype_Indication =>
Analyze_Subtype_Indication (N);
when N_Subunit =>
Analyze_Subunit (N);
when N_Task_Body =>
Analyze_Task_Body (N);
when N_Task_Body_Stub =>
Analyze_Task_Body_Stub (N);
when N_Task_Definition =>
Analyze_Task_Definition (N);
when N_Task_Type_Declaration =>
Analyze_Task_Type (N);
when N_Terminate_Alternative =>
Analyze_Terminate_Alternative (N);
when N_Timed_Entry_Call =>
Analyze_Timed_Entry_Call (N);
when N_Triggering_Alternative =>
Analyze_Triggering_Alternative (N);
when N_Type_Conversion =>
Analyze_Type_Conversion (N);
when N_Unchecked_Expression =>
Analyze_Unchecked_Expression (N);
when N_Unchecked_Type_Conversion =>
Analyze_Unchecked_Type_Conversion (N);
when N_Use_Package_Clause =>
Analyze_Use_Package (N);
when N_Use_Type_Clause =>
Analyze_Use_Type (N);
when N_Validate_Unchecked_Conversion =>
null;
when N_Variant_Part =>
Analyze_Variant_Part (N);
when N_With_Clause =>
Analyze_With_Clause (N);
when N_With_Type_Clause =>
Analyze_With_Type_Clause (N);
-- A call to analyze the Empty node is an error, but most likely
-- it is an error caused by an attempt to analyze a malformed
-- piece of tree caused by some other error, so if there have
-- been any other errors, we just ignore it, otherwise it is
-- a real internal error which we complain about.
when N_Empty =>
pragma Assert (Serious_Errors_Detected /= 0);
null;
-- A call to analyze the error node is simply ignored, to avoid
-- causing cascaded errors (happens of course only in error cases)
when N_Error =>
null;
-- For the remaining node types, we generate compiler abort, because
-- these nodes are always analyzed within the Sem_Chn routines and
-- there should never be a case of making a call to the main Analyze
-- routine for these node kinds. For example, an N_Access_Definition
-- node appears only in the context of a type declaration, and is
-- processed by the analyze routine for type declarations.
when
N_Abortable_Part |
N_Access_Definition |
N_Access_Function_Definition |
N_Access_Procedure_Definition |
N_Access_To_Object_Definition |
N_Case_Statement_Alternative |
N_Compilation_Unit_Aux |
N_Component_Association |
N_Component_Clause |
N_Component_Definition |
N_Component_List |
N_Constrained_Array_Definition |
N_Decimal_Fixed_Point_Definition |
N_Defining_Character_Literal |
N_Defining_Identifier |
N_Defining_Operator_Symbol |
N_Defining_Program_Unit_Name |
N_Delta_Constraint |
N_Derived_Type_Definition |
N_Designator |
N_Digits_Constraint |
N_Discriminant_Association |
N_Discriminant_Specification |
N_Elsif_Part |
N_Entry_Call_Statement |
N_Enumeration_Type_Definition |
N_Exception_Handler |
N_Floating_Point_Definition |
N_Formal_Decimal_Fixed_Point_Definition |
N_Formal_Derived_Type_Definition |
N_Formal_Discrete_Type_Definition |
N_Formal_Floating_Point_Definition |
N_Formal_Modular_Type_Definition |
N_Formal_Ordinary_Fixed_Point_Definition |
N_Formal_Private_Type_Definition |
N_Formal_Signed_Integer_Type_Definition |
N_Function_Specification |
N_Generic_Association |
N_Index_Or_Discriminant_Constraint |
N_Iteration_Scheme |
N_Loop_Parameter_Specification |
N_Mod_Clause |
N_Modular_Type_Definition |
N_Ordinary_Fixed_Point_Definition |
N_Parameter_Specification |
N_Pragma_Argument_Association |
N_Procedure_Specification |
N_Real_Range_Specification |
N_Record_Definition |
N_Signed_Integer_Type_Definition |
N_Unconstrained_Array_Definition |
N_Unused_At_Start |
N_Unused_At_End |
N_Variant =>
raise Program_Error;
end case;
Debug_A_Exit ("analyzing ", N, " (done)");
-- Now that we have analyzed the node, we call the expander to
-- perform possible expansion. This is done only for nodes that
-- are not subexpressions, because in the case of subexpressions,
-- we don't have the type yet, and the expander will need to know
-- the type before it can do its job. For subexpression nodes, the
-- call to the expander happens in the Sem_Res.Resolve.
-- The Analyzed flag is also set at this point for non-subexpression
-- nodes (in the case of subexpression nodes, we can't set the flag
-- yet, since resolution and expansion have not yet been completed)
if Nkind (N) not in N_Subexpr then
Expand (N);
end if;
end Analyze;
-- Version with check(s) suppressed
procedure Analyze (N : Node_Id; Suppress : Check_Id) is
begin
if Suppress = All_Checks then
declare
Svg : constant Suppress_Array := Scope_Suppress;
begin
Scope_Suppress := (others => True);
Analyze (N);
Scope_Suppress := Svg;
end;
else
declare
Svg : constant Boolean := Scope_Suppress (Suppress);
begin
Scope_Suppress (Suppress) := True;
Analyze (N);
Scope_Suppress (Suppress) := Svg;
end;
end if;
end Analyze;
------------------
-- Analyze_List --
------------------
procedure Analyze_List (L : List_Id) is
Node : Node_Id;
begin
Node := First (L);
while Present (Node) loop
Analyze (Node);
Next (Node);
end loop;
end Analyze_List;
-- Version with check(s) suppressed
procedure Analyze_List (L : List_Id; Suppress : Check_Id) is
begin
if Suppress = All_Checks then
declare
Svg : constant Suppress_Array := Scope_Suppress;
begin
Scope_Suppress := (others => True);
Analyze_List (L);
Scope_Suppress := Svg;
end;
else
declare
Svg : constant Boolean := Scope_Suppress (Suppress);
begin
Scope_Suppress (Suppress) := True;
Analyze_List (L);
Scope_Suppress (Suppress) := Svg;
end;
end if;
end Analyze_List;
--------------------------
-- Copy_Suppress_Status --
--------------------------
procedure Copy_Suppress_Status
(C : Check_Id;
From : Entity_Id;
To : Entity_Id)
is
begin
if not Checks_May_Be_Suppressed (From) then
return;
end if;
-- First search the local entity suppress table, we search this in
-- reverse order so that we get the innermost entry that applies to
-- this case if there are nested entries. Note that for the purpose
-- of this procedure we are ONLY looking for entries corresponding
-- to a two-argument Suppress, where the second argument matches From.
for J in
reverse Local_Entity_Suppress.First .. Local_Entity_Suppress.Last
loop
declare
R : Entity_Check_Suppress_Record
renames Local_Entity_Suppress.Table (J);
begin
if R.Entity = From
and then (R.Check = All_Checks or else R.Check = C)
then
if R.Suppress then
Set_Checks_May_Be_Suppressed (To, True);
Local_Entity_Suppress.Append
((Entity => To,
Check => C,
Suppress => True));
return;
end if;
end if;
end;
end loop;
-- Now search the global entity suppress table for a matching entry
-- We also search this in reverse order so that if there are multiple
-- pragmas for the same entity, the last one applies.
for J in
reverse Global_Entity_Suppress.First .. Global_Entity_Suppress.Last
loop
declare
R : Entity_Check_Suppress_Record
renames Global_Entity_Suppress.Table (J);
begin
if R.Entity = From
and then (R.Check = All_Checks or else R.Check = C)
then
if R.Suppress then
Set_Checks_May_Be_Suppressed (To, True);
Local_Entity_Suppress.Append
((Entity => To,
Check => C,
Suppress => True));
end if;
end if;
end;
end loop;
end Copy_Suppress_Status;
-------------------------
-- Enter_Generic_Scope --
-------------------------
procedure Enter_Generic_Scope (S : Entity_Id) is
begin
if No (Outer_Generic_Scope) then
Outer_Generic_Scope := S;
end if;
end Enter_Generic_Scope;
------------------------
-- Exit_Generic_Scope --
------------------------
procedure Exit_Generic_Scope (S : Entity_Id) is
begin
if S = Outer_Generic_Scope then
Outer_Generic_Scope := Empty;
end if;
end Exit_Generic_Scope;
-----------------------
-- Explicit_Suppress --
-----------------------
function Explicit_Suppress (E : Entity_Id; C : Check_Id) return Boolean is
begin
if not Checks_May_Be_Suppressed (E) then
return False;
else
for J in
reverse Global_Entity_Suppress.First .. Global_Entity_Suppress.Last
loop
declare
R : Entity_Check_Suppress_Record
renames Global_Entity_Suppress.Table (J);
begin
if R.Entity = E
and then (R.Check = All_Checks or else R.Check = C)
then
return R.Suppress;
end if;
end;
end loop;
return False;
end if;
end Explicit_Suppress;
-----------------------------
-- External_Ref_In_Generic --
-----------------------------
function External_Ref_In_Generic (E : Entity_Id) return Boolean is
Scop : Entity_Id;
begin
-- Entity is global if defined outside of current outer_generic_scope:
-- Either the entity has a smaller depth that the outer generic, or it
-- is in a different compilation unit, or it is defined within a unit
-- in the same compilation, that is not within the outer_generic.
if No (Outer_Generic_Scope) then
return False;
elsif Scope_Depth (Scope (E)) < Scope_Depth (Outer_Generic_Scope)
or else not In_Same_Source_Unit (E, Outer_Generic_Scope)
then
return True;
else
Scop := Scope (E);
while Present (Scop) loop
if Scop = Outer_Generic_Scope then
return False;
elsif Scope_Depth (Scop) < Scope_Depth (Outer_Generic_Scope) then
return True;
else
Scop := Scope (Scop);
end if;
end loop;
return True;
end if;
end External_Ref_In_Generic;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Local_Entity_Suppress.Init;
Global_Entity_Suppress.Init;
Scope_Stack.Init;
Unloaded_Subunits := False;
end Initialize;
------------------------------
-- Insert_After_And_Analyze --
------------------------------
procedure Insert_After_And_Analyze (N : Node_Id; M : Node_Id) is
Node : Node_Id;
begin
if Present (M) then
-- If we are not at the end of the list, then the easiest
-- coding is simply to insert before our successor
if Present (Next (N)) then
Insert_Before_And_Analyze (Next (N), M);
-- Case of inserting at the end of the list
else
-- Capture the Node_Id of the node to be inserted. This Node_Id
-- will still be the same after the insert operation.
Node := M;
Insert_After (N, M);
-- Now just analyze from the inserted node to the end of
-- the new list (note that this properly handles the case
-- where any of the analyze calls result in the insertion of
-- nodes after the analyzed node, expecting analysis).
while Present (Node) loop
Analyze (Node);
Mark_Rewrite_Insertion (Node);
Next (Node);
end loop;
end if;
end if;
end Insert_After_And_Analyze;
-- Version with check(s) suppressed
procedure Insert_After_And_Analyze
(N : Node_Id;
M : Node_Id;
Suppress : Check_Id)
is
begin
if Suppress = All_Checks then
declare
Svg : constant Suppress_Array := Scope_Suppress;
begin
Scope_Suppress := (others => True);
Insert_After_And_Analyze (N, M);
Scope_Suppress := Svg;
end;
else
declare
Svg : constant Boolean := Scope_Suppress (Suppress);
begin
Scope_Suppress (Suppress) := True;
Insert_After_And_Analyze (N, M);
Scope_Suppress (Suppress) := Svg;
end;
end if;
end Insert_After_And_Analyze;
-------------------------------
-- Insert_Before_And_Analyze --
-------------------------------
procedure Insert_Before_And_Analyze (N : Node_Id; M : Node_Id) is
Node : Node_Id;
begin
if Present (M) then
-- Capture the Node_Id of the first list node to be inserted.
-- This will still be the first node after the insert operation,
-- since Insert_List_After does not modify the Node_Id values.
Node := M;
Insert_Before (N, M);
-- The insertion does not change the Id's of any of the nodes in
-- the list, and they are still linked, so we can simply loop from
-- the original first node until we meet the node before which the
-- insertion is occurring. Note that this properly handles the case
-- where any of the analyzed nodes insert nodes after themselves,
-- expecting them to get analyzed.
while Node /= N loop
Analyze (Node);
Mark_Rewrite_Insertion (Node);
Next (Node);
end loop;
end if;
end Insert_Before_And_Analyze;
-- Version with check(s) suppressed
procedure Insert_Before_And_Analyze
(N : Node_Id;
M : Node_Id;
Suppress : Check_Id)
is
begin
if Suppress = All_Checks then
declare
Svg : constant Suppress_Array := Scope_Suppress;
begin
Scope_Suppress := (others => True);
Insert_Before_And_Analyze (N, M);
Scope_Suppress := Svg;
end;
else
declare
Svg : constant Boolean := Scope_Suppress (Suppress);
begin
Scope_Suppress (Suppress) := True;
Insert_Before_And_Analyze (N, M);
Scope_Suppress (Suppress) := Svg;
end;
end if;
end Insert_Before_And_Analyze;
-----------------------------------
-- Insert_List_After_And_Analyze --
-----------------------------------
procedure Insert_List_After_And_Analyze (N : Node_Id; L : List_Id) is
After : constant Node_Id := Next (N);
Node : Node_Id;
begin
if Is_Non_Empty_List (L) then
-- Capture the Node_Id of the first list node to be inserted.
-- This will still be the first node after the insert operation,
-- since Insert_List_After does not modify the Node_Id values.
Node := First (L);
Insert_List_After (N, L);
-- Now just analyze from the original first node until we get to
-- the successor of the original insertion point (which may be
-- Empty if the insertion point was at the end of the list). Note
-- that this properly handles the case where any of the analyze
-- calls result in the insertion of nodes after the analyzed
-- node (possibly calling this routine recursively).
while Node /= After loop
Analyze (Node);
Mark_Rewrite_Insertion (Node);
Next (Node);
end loop;
end if;
end Insert_List_After_And_Analyze;
-- Version with check(s) suppressed
procedure Insert_List_After_And_Analyze
(N : Node_Id; L : List_Id; Suppress : Check_Id)
is
begin
if Suppress = All_Checks then
declare
Svg : constant Suppress_Array := Scope_Suppress;
begin
Scope_Suppress := (others => True);
Insert_List_After_And_Analyze (N, L);
Scope_Suppress := Svg;
end;
else
declare
Svg : constant Boolean := Scope_Suppress (Suppress);
begin
Scope_Suppress (Suppress) := True;
Insert_List_After_And_Analyze (N, L);
Scope_Suppress (Suppress) := Svg;
end;
end if;
end Insert_List_After_And_Analyze;
------------------------------------
-- Insert_List_Before_And_Analyze --
------------------------------------
procedure Insert_List_Before_And_Analyze (N : Node_Id; L : List_Id) is
Node : Node_Id;
begin
if Is_Non_Empty_List (L) then
-- Capture the Node_Id of the first list node to be inserted.
-- This will still be the first node after the insert operation,
-- since Insert_List_After does not modify the Node_Id values.
Node := First (L);
Insert_List_Before (N, L);
-- The insertion does not change the Id's of any of the nodes in
-- the list, and they are still linked, so we can simply loop from
-- the original first node until we meet the node before which the
-- insertion is occurring. Note that this properly handles the case
-- where any of the analyzed nodes insert nodes after themselves,
-- expecting them to get analyzed.
while Node /= N loop
Analyze (Node);
Mark_Rewrite_Insertion (Node);
Next (Node);
end loop;
end if;
end Insert_List_Before_And_Analyze;
-- Version with check(s) suppressed
procedure Insert_List_Before_And_Analyze
(N : Node_Id; L : List_Id; Suppress : Check_Id)
is
begin
if Suppress = All_Checks then
declare
Svg : constant Suppress_Array := Scope_Suppress;
begin
Scope_Suppress := (others => True);
Insert_List_Before_And_Analyze (N, L);
Scope_Suppress := Svg;
end;
else
declare
Svg : constant Boolean := Scope_Suppress (Suppress);
begin
Scope_Suppress (Suppress) := True;
Insert_List_Before_And_Analyze (N, L);
Scope_Suppress (Suppress) := Svg;
end;
end if;
end Insert_List_Before_And_Analyze;
-------------------------
-- Is_Check_Suppressed --
-------------------------
function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
begin
-- First search the local entity suppress table, we search this in
-- reverse order so that we get the innermost entry that applies to
-- this case if there are nested entries.
for J in
reverse Local_Entity_Suppress.First .. Local_Entity_Suppress.Last
loop
declare
R : Entity_Check_Suppress_Record
renames Local_Entity_Suppress.Table (J);
begin
if (R.Entity = Empty or else R.Entity = E)
and then (R.Check = All_Checks or else R.Check = C)
then
return R.Suppress;
end if;
end;
end loop;
-- Now search the global entity suppress table for a matching entry
-- We also search this in reverse order so that if there are multiple
-- pragmas for the same entity, the last one applies (not clear what
-- or whether the RM specifies this handling, but it seems reasonable).
for J in
reverse Global_Entity_Suppress.First .. Global_Entity_Suppress.Last
loop
declare
R : Entity_Check_Suppress_Record
renames Global_Entity_Suppress.Table (J);
begin
if R.Entity = E
and then (R.Check = All_Checks or else R.Check = C)
then
return R.Suppress;
end if;
end;
end loop;
-- If we did not find a matching entry, then use the normal scope
-- suppress value after all (actually this will be the global setting
-- since it clearly was not overridden at any point)
return Scope_Suppress (C);
end Is_Check_Suppressed;
----------
-- Lock --
----------
procedure Lock is
begin
Local_Entity_Suppress.Locked := True;
Global_Entity_Suppress.Locked := True;
Scope_Stack.Locked := True;
Local_Entity_Suppress.Release;
Global_Entity_Suppress.Release;
Scope_Stack.Release;
end Lock;
---------------
-- Semantics --
---------------
procedure Semantics (Comp_Unit : Node_Id) is
-- The following locations save the corresponding global flags and
-- variables so that they can be restored on completion. This is
-- needed so that calls to Rtsfind start with the proper default
-- values for these variables, and also that such calls do not
-- disturb the settings for units being analyzed at a higher level.
S_Full_Analysis : constant Boolean := Full_Analysis;
S_In_Default_Expr : constant Boolean := In_Default_Expression;
S_Inside_A_Generic : constant Boolean := Inside_A_Generic;
S_New_Nodes_OK : constant Int := New_Nodes_OK;
S_Outer_Gen_Scope : constant Entity_Id := Outer_Generic_Scope;
S_Sem_Unit : constant Unit_Number_Type := Current_Sem_Unit;
Generic_Main : constant Boolean :=
Nkind (Unit (Cunit (Main_Unit)))
in N_Generic_Declaration;
-- If the main unit is generic, every compiled unit, including its
-- context, is compiled with expansion disabled.
Save_Config_Switches : Config_Switches_Type;
-- Variable used to save values of config switches while we analyze
-- the new unit, to be restored on exit for proper recursive behavior.
procedure Do_Analyze;
-- Procedure to analyze the compilation unit. This is called more
-- than once when the high level optimizer is activated.
----------------
-- Do_Analyze --
----------------
procedure Do_Analyze is
begin
Save_Scope_Stack;
New_Scope (Standard_Standard);
Scope_Suppress := Suppress_Options;
Scope_Stack.Table
(Scope_Stack.Last).Component_Alignment_Default := Calign_Default;
Scope_Stack.Table
(Scope_Stack.Last).Is_Active_Stack_Base := True;
Outer_Generic_Scope := Empty;
-- Now analyze the top level compilation unit node
Analyze (Comp_Unit);
-- Check for scope mismatch on exit from compilation
pragma Assert (Current_Scope = Standard_Standard
or else Comp_Unit = Cunit (Main_Unit));
-- Then pop entry for Standard, and pop implicit types
Pop_Scope;
Restore_Scope_Stack;
end Do_Analyze;
-- Start of processing for Semantics
begin
Compiler_State := Analyzing;
Current_Sem_Unit := Get_Cunit_Unit_Number (Comp_Unit);
if Generic_Main then
Expander_Mode_Save_And_Set (False);
else
Expander_Mode_Save_And_Set
(Operating_Mode = Generate_Code or Debug_Flag_X);
end if;
Full_Analysis := True;
Inside_A_Generic := False;
In_Default_Expression := False;
Set_Comes_From_Source_Default (False);
Save_Opt_Config_Switches (Save_Config_Switches);
Set_Opt_Config_Switches
(Is_Internal_File_Name (Unit_File_Name (Current_Sem_Unit)));
-- Only do analysis of unit that has not already been analyzed
if not Analyzed (Comp_Unit) then
Initialize_Version (Current_Sem_Unit);
if HLO_Active then
Expander_Mode_Save_And_Set (False);
New_Nodes_OK := 1;
Do_Analyze;
Reset_Analyzed_Flags (Comp_Unit);
Expander_Mode_Restore;
High_Level_Optimize (Comp_Unit);
New_Nodes_OK := 0;
end if;
Do_Analyze;
end if;
-- Save indication of dynamic elaboration checks for ALI file
Set_Dynamic_Elab (Current_Sem_Unit, Dynamic_Elaboration_Checks);
-- Restore settings of saved switches to entry values
Current_Sem_Unit := S_Sem_Unit;
Full_Analysis := S_Full_Analysis;
In_Default_Expression := S_In_Default_Expr;
Inside_A_Generic := S_Inside_A_Generic;
New_Nodes_OK := S_New_Nodes_OK;
Outer_Generic_Scope := S_Outer_Gen_Scope;
Restore_Opt_Config_Switches (Save_Config_Switches);
Expander_Mode_Restore;
end Semantics;
end Sem;