| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- S E M _ A G G R -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2003 Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 2, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING. If not, write -- |
| -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- |
| -- MA 02111-1307, USA. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Atree; use Atree; |
| with Checks; use Checks; |
| with Einfo; use Einfo; |
| with Elists; use Elists; |
| with Errout; use Errout; |
| with Exp_Tss; use Exp_Tss; |
| with Exp_Util; use Exp_Util; |
| with Freeze; use Freeze; |
| with Itypes; use Itypes; |
| with Lib.Xref; use Lib.Xref; |
| with Namet; use Namet; |
| with Nmake; use Nmake; |
| with Nlists; use Nlists; |
| with Opt; use Opt; |
| with Sem; use Sem; |
| with Sem_Cat; use Sem_Cat; |
| with Sem_Ch8; use Sem_Ch8; |
| with Sem_Ch13; use Sem_Ch13; |
| with Sem_Eval; use Sem_Eval; |
| with Sem_Res; use Sem_Res; |
| with Sem_Util; use Sem_Util; |
| with Sem_Type; use Sem_Type; |
| with Sem_Warn; use Sem_Warn; |
| with Sinfo; use Sinfo; |
| with Snames; use Snames; |
| with Stringt; use Stringt; |
| with Stand; use Stand; |
| with Targparm; use Targparm; |
| with Tbuild; use Tbuild; |
| with Uintp; use Uintp; |
| |
| with GNAT.Spelling_Checker; use GNAT.Spelling_Checker; |
| |
| package body Sem_Aggr is |
| |
| type Case_Bounds is record |
| Choice_Lo : Node_Id; |
| Choice_Hi : Node_Id; |
| Choice_Node : Node_Id; |
| end record; |
| |
| type Case_Table_Type is array (Nat range <>) of Case_Bounds; |
| -- Table type used by Check_Case_Choices procedure |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| procedure Sort_Case_Table (Case_Table : in out Case_Table_Type); |
| -- Sort the Case Table using the Lower Bound of each Choice as the key. |
| -- A simple insertion sort is used since the number of choices in a case |
| -- statement of variant part will usually be small and probably in near |
| -- sorted order. |
| |
| ------------------------------------------------------ |
| -- Subprograms used for RECORD AGGREGATE Processing -- |
| ------------------------------------------------------ |
| |
| procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id); |
| -- This procedure performs all the semantic checks required for record |
| -- aggregates. Note that for aggregates analysis and resolution go |
| -- hand in hand. Aggregate analysis has been delayed up to here and |
| -- it is done while resolving the aggregate. |
| -- |
| -- N is the N_Aggregate node. |
| -- Typ is the record type for the aggregate resolution |
| -- |
| -- While performing the semantic checks, this procedure |
| -- builds a new Component_Association_List where each record field |
| -- appears alone in a Component_Choice_List along with its corresponding |
| -- expression. The record fields in the Component_Association_List |
| -- appear in the same order in which they appear in the record type Typ. |
| -- |
| -- Once this new Component_Association_List is built and all the |
| -- semantic checks performed, the original aggregate subtree is replaced |
| -- with the new named record aggregate just built. Note that the subtree |
| -- substitution is performed with Rewrite so as to be |
| -- able to retrieve the original aggregate. |
| -- |
| -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate |
| -- yields the aggregate format expected by Gigi. Typically, this kind of |
| -- tree manipulations are done in the expander. However, because the |
| -- semantic checks that need to be performed on record aggregates really |
| -- go hand in hand with the record aggregate normalization, the aggregate |
| -- subtree transformation is performed during resolution rather than |
| -- expansion. Had we decided otherwise we would have had to duplicate |
| -- most of the code in the expansion procedure Expand_Record_Aggregate. |
| -- Note, however, that all the expansion concerning aggegates for tagged |
| -- records is done in Expand_Record_Aggregate. |
| -- |
| -- The algorithm of Resolve_Record_Aggregate proceeds as follows: |
| -- |
| -- 1. Make sure that the record type against which the record aggregate |
| -- has to be resolved is not abstract. Furthermore if the type is |
| -- a null aggregate make sure the input aggregate N is also null. |
| -- |
| -- 2. Verify that the structure of the aggregate is that of a record |
| -- aggregate. Specifically, look for component associations and ensure |
| -- that each choice list only has identifiers or the N_Others_Choice |
| -- node. Also make sure that if present, the N_Others_Choice occurs |
| -- last and by itself. |
| -- |
| -- 3. If Typ contains discriminants, the values for each discriminant |
| -- is looked for. If the record type Typ has variants, we check |
| -- that the expressions corresponding to each discriminant ruling |
| -- the (possibly nested) variant parts of Typ, are static. This |
| -- allows us to determine the variant parts to which the rest of |
| -- the aggregate must conform. The names of discriminants with their |
| -- values are saved in a new association list, New_Assoc_List which |
| -- is later augmented with the names and values of the remaining |
| -- components in the record type. |
| -- |
| -- During this phase we also make sure that every discriminant is |
| -- assigned exactly one value. Note that when several values |
| -- for a given discriminant are found, semantic processing continues |
| -- looking for further errors. In this case it's the first |
| -- discriminant value found which we will be recorded. |
| -- |
| -- IMPORTANT NOTE: For derived tagged types this procedure expects |
| -- First_Discriminant and Next_Discriminant to give the correct list |
| -- of discriminants, in the correct order. |
| -- |
| -- 4. After all the discriminant values have been gathered, we can |
| -- set the Etype of the record aggregate. If Typ contains no |
| -- discriminants this is straightforward: the Etype of N is just |
| -- Typ, otherwise a new implicit constrained subtype of Typ is |
| -- built to be the Etype of N. |
| -- |
| -- 5. Gather the remaining record components according to the discriminant |
| -- values. This involves recursively traversing the record type |
| -- structure to see what variants are selected by the given discriminant |
| -- values. This processing is a little more convoluted if Typ is a |
| -- derived tagged types since we need to retrieve the record structure |
| -- of all the ancestors of Typ. |
| -- |
| -- 6. After gathering the record components we look for their values |
| -- in the record aggregate and emit appropriate error messages |
| -- should we not find such values or should they be duplicated. |
| -- |
| -- 7. We then make sure no illegal component names appear in the |
| -- record aggegate and make sure that the type of the record |
| -- components appearing in a same choice list is the same. |
| -- Finally we ensure that the others choice, if present, is |
| -- used to provide the value of at least a record component. |
| -- |
| -- 8. The original aggregate node is replaced with the new named |
| -- aggregate built in steps 3 through 6, as explained earlier. |
| -- |
| -- Given the complexity of record aggregate resolution, the primary |
| -- goal of this routine is clarity and simplicity rather than execution |
| -- and storage efficiency. If there are only positional components in the |
| -- aggregate the running time is linear. If there are associations |
| -- the running time is still linear as long as the order of the |
| -- associations is not too far off the order of the components in the |
| -- record type. If this is not the case the running time is at worst |
| -- quadratic in the size of the association list. |
| |
| procedure Check_Misspelled_Component |
| (Elements : Elist_Id; |
| Component : Node_Id); |
| -- Give possible misspelling diagnostic if Component is likely to be |
| -- a misspelling of one of the components of the Assoc_List. |
| -- This is called by Resolv_Aggr_Expr after producing |
| -- an invalid component error message. |
| |
| procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id); |
| -- An optimization: determine whether a discriminated subtype has a |
| -- static constraint, and contains array components whose length is also |
| -- static, either because they are constrained by the discriminant, or |
| -- because the original component bounds are static. |
| |
| ----------------------------------------------------- |
| -- Subprograms used for ARRAY AGGREGATE Processing -- |
| ----------------------------------------------------- |
| |
| function Resolve_Array_Aggregate |
| (N : Node_Id; |
| Index : Node_Id; |
| Index_Constr : Node_Id; |
| Component_Typ : Entity_Id; |
| Others_Allowed : Boolean) |
| return Boolean; |
| -- This procedure performs the semantic checks for an array aggregate. |
| -- True is returned if the aggregate resolution succeeds. |
| -- The procedure works by recursively checking each nested aggregate. |
| -- Specifically, after checking a sub-aggreate nested at the i-th level |
| -- we recursively check all the subaggregates at the i+1-st level (if any). |
| -- Note that for aggregates analysis and resolution go hand in hand. |
| -- Aggregate analysis has been delayed up to here and it is done while |
| -- resolving the aggregate. |
| -- |
| -- N is the current N_Aggregate node to be checked. |
| -- |
| -- Index is the index node corresponding to the array sub-aggregate that |
| -- we are currently checking (RM 4.3.3 (8)). Its Etype is the |
| -- corresponding index type (or subtype). |
| -- |
| -- Index_Constr is the node giving the applicable index constraint if |
| -- any (RM 4.3.3 (10)). It "is a constraint provided by certain |
| -- contexts [...] that can be used to determine the bounds of the array |
| -- value specified by the aggregate". If Others_Allowed below is False |
| -- there is no applicable index constraint and this node is set to Index. |
| -- |
| -- Component_Typ is the array component type. |
| -- |
| -- Others_Allowed indicates whether an others choice is allowed |
| -- in the context where the top-level aggregate appeared. |
| -- |
| -- The algorithm of Resolve_Array_Aggregate proceeds as follows: |
| -- |
| -- 1. Make sure that the others choice, if present, is by itself and |
| -- appears last in the sub-aggregate. Check that we do not have |
| -- positional and named components in the array sub-aggregate (unless |
| -- the named association is an others choice). Finally if an others |
| -- choice is present, make sure it is allowed in the aggregate contex. |
| -- |
| -- 2. If the array sub-aggregate contains discrete_choices: |
| -- |
| -- (A) Verify their validity. Specifically verify that: |
| -- |
| -- (a) If a null range is present it must be the only possible |
| -- choice in the array aggregate. |
| -- |
| -- (b) Ditto for a non static range. |
| -- |
| -- (c) Ditto for a non static expression. |
| -- |
| -- In addition this step analyzes and resolves each discrete_choice, |
| -- making sure that its type is the type of the corresponding Index. |
| -- If we are not at the lowest array aggregate level (in the case of |
| -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate |
| -- recursively on each component expression. Otherwise, resolve the |
| -- bottom level component expressions against the expected component |
| -- type ONLY IF the component corresponds to a single discrete choice |
| -- which is not an others choice (to see why read the DELAYED |
| -- COMPONENT RESOLUTION below). |
| -- |
| -- (B) Determine the bounds of the sub-aggregate and lowest and |
| -- highest choice values. |
| -- |
| -- 3. For positional aggregates: |
| -- |
| -- (A) Loop over the component expressions either recursively invoking |
| -- Resolve_Array_Aggregate on each of these for multi-dimensional |
| -- array aggregates or resolving the bottom level component |
| -- expressions against the expected component type. |
| -- |
| -- (B) Determine the bounds of the positional sub-aggregates. |
| -- |
| -- 4. Try to determine statically whether the evaluation of the array |
| -- sub-aggregate raises Constraint_Error. If yes emit proper |
| -- warnings. The precise checks are the following: |
| -- |
| -- (A) Check that the index range defined by aggregate bounds is |
| -- compatible with corresponding index subtype. |
| -- We also check against the base type. In fact it could be that |
| -- Low/High bounds of the base type are static whereas those of |
| -- the index subtype are not. Thus if we can statically catch |
| -- a problem with respect to the base type we are guaranteed |
| -- that the same problem will arise with the index subtype |
| -- |
| -- (B) If we are dealing with a named aggregate containing an others |
| -- choice and at least one discrete choice then make sure the range |
| -- specified by the discrete choices does not overflow the |
| -- aggregate bounds. We also check against the index type and base |
| -- type bounds for the same reasons given in (A). |
| -- |
| -- (C) If we are dealing with a positional aggregate with an others |
| -- choice make sure the number of positional elements specified |
| -- does not overflow the aggregate bounds. We also check against |
| -- the index type and base type bounds as mentioned in (A). |
| -- |
| -- Finally construct an N_Range node giving the sub-aggregate bounds. |
| -- Set the Aggregate_Bounds field of the sub-aggregate to be this |
| -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges |
| -- to build the appropriate aggregate subtype. Aggregate_Bounds |
| -- information is needed during expansion. |
| -- |
| -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component |
| -- expressions in an array aggregate may call Duplicate_Subexpr or some |
| -- other routine that inserts code just outside the outermost aggregate. |
| -- If the array aggregate contains discrete choices or an others choice, |
| -- this may be wrong. Consider for instance the following example. |
| -- |
| -- type Rec is record |
| -- V : Integer := 0; |
| -- end record; |
| -- |
| -- type Acc_Rec is access Rec; |
| -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec); |
| -- |
| -- Then the transformation of "new Rec" that occurs during resolution |
| -- entails the following code modifications |
| -- |
| -- P7b : constant Acc_Rec := new Rec; |
| -- RecIP (P7b.all); |
| -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b); |
| -- |
| -- This code transformation is clearly wrong, since we need to call |
| -- "new Rec" for each of the 3 array elements. To avoid this problem we |
| -- delay resolution of the components of non positional array aggregates |
| -- to the expansion phase. As an optimization, if the discrete choice |
| -- specifies a single value we do not delay resolution. |
| |
| function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id; |
| -- This routine returns the type or subtype of an array aggregate. |
| -- |
| -- N is the array aggregate node whose type we return. |
| -- |
| -- Typ is the context type in which N occurs. |
| -- |
| -- This routine creates an implicit array subtype whose bounds are |
| -- those defined by the aggregate. When this routine is invoked |
| -- Resolve_Array_Aggregate has already processed aggregate N. Thus the |
| -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the |
| -- sub-aggregate bounds. When building the aggegate itype, this function |
| -- traverses the array aggregate N collecting such Aggregate_Bounds and |
| -- constructs the proper array aggregate itype. |
| -- |
| -- Note that in the case of multidimensional aggregates each inner |
| -- sub-aggregate corresponding to a given array dimension, may provide a |
| -- different bounds. If it is possible to determine statically that |
| -- some sub-aggregates corresponding to the same index do not have the |
| -- same bounds, then a warning is emitted. If such check is not possible |
| -- statically (because some sub-aggregate bounds are dynamic expressions) |
| -- then this job is left to the expander. In all cases the particular |
| -- bounds that this function will chose for a given dimension is the first |
| -- N_Range node for a sub-aggregate corresponding to that dimension. |
| -- |
| -- Note that the Raises_Constraint_Error flag of an array aggregate |
| -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate, |
| -- is set in Resolve_Array_Aggregate but the aggregate is not |
| -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must |
| -- first construct the proper itype for the aggregate (Gigi needs |
| -- this). After constructing the proper itype we will eventually replace |
| -- the top-level aggregate with a raise CE (done in Resolve_Aggregate). |
| -- Of course in cases such as: |
| -- |
| -- type Arr is array (integer range <>) of Integer; |
| -- A : Arr := (positive range -1 .. 2 => 0); |
| -- |
| -- The bounds of the aggregate itype are cooked up to look reasonable |
| -- (in this particular case the bounds will be 1 .. 2). |
| |
| procedure Aggregate_Constraint_Checks |
| (Exp : Node_Id; |
| Check_Typ : Entity_Id); |
| -- Checks expression Exp against subtype Check_Typ. If Exp is an |
| -- aggregate and Check_Typ a constrained record type with discriminants, |
| -- we generate the appropriate discriminant checks. If Exp is an array |
| -- aggregate then emit the appropriate length checks. If Exp is a scalar |
| -- type, or a string literal, Exp is changed into Check_Typ'(Exp) to |
| -- ensure that range checks are performed at run time. |
| |
| procedure Make_String_Into_Aggregate (N : Node_Id); |
| -- A string literal can appear in a context in which a one dimensional |
| -- array of characters is expected. This procedure simply rewrites the |
| -- string as an aggregate, prior to resolution. |
| |
| --------------------------------- |
| -- Aggregate_Constraint_Checks -- |
| --------------------------------- |
| |
| procedure Aggregate_Constraint_Checks |
| (Exp : Node_Id; |
| Check_Typ : Entity_Id) |
| is |
| Exp_Typ : constant Entity_Id := Etype (Exp); |
| |
| begin |
| if Raises_Constraint_Error (Exp) then |
| return; |
| end if; |
| |
| -- This is really expansion activity, so make sure that expansion |
| -- is on and is allowed. |
| |
| if not Expander_Active or else In_Default_Expression then |
| return; |
| end if; |
| |
| -- First check if we have to insert discriminant checks |
| |
| if Has_Discriminants (Exp_Typ) then |
| Apply_Discriminant_Check (Exp, Check_Typ); |
| |
| -- Next emit length checks for array aggregates |
| |
| elsif Is_Array_Type (Exp_Typ) then |
| Apply_Length_Check (Exp, Check_Typ); |
| |
| -- Finally emit scalar and string checks. If we are dealing with a |
| -- scalar literal we need to check by hand because the Etype of |
| -- literals is not necessarily correct. |
| |
| elsif Is_Scalar_Type (Exp_Typ) |
| and then Compile_Time_Known_Value (Exp) |
| then |
| if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then |
| Apply_Compile_Time_Constraint_Error |
| (Exp, "value not in range of}?", CE_Range_Check_Failed, |
| Ent => Base_Type (Check_Typ), |
| Typ => Base_Type (Check_Typ)); |
| |
| elsif Is_Out_Of_Range (Exp, Check_Typ) then |
| Apply_Compile_Time_Constraint_Error |
| (Exp, "value not in range of}?", CE_Range_Check_Failed, |
| Ent => Check_Typ, |
| Typ => Check_Typ); |
| |
| elsif not Range_Checks_Suppressed (Check_Typ) then |
| Apply_Scalar_Range_Check (Exp, Check_Typ); |
| end if; |
| |
| elsif (Is_Scalar_Type (Exp_Typ) |
| or else Nkind (Exp) = N_String_Literal) |
| and then Exp_Typ /= Check_Typ |
| then |
| if Is_Entity_Name (Exp) |
| and then Ekind (Entity (Exp)) = E_Constant |
| then |
| -- If expression is a constant, it is worthwhile checking whether |
| -- it is a bound of the type. |
| |
| if (Is_Entity_Name (Type_Low_Bound (Check_Typ)) |
| and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ))) |
| or else (Is_Entity_Name (Type_High_Bound (Check_Typ)) |
| and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ))) |
| then |
| return; |
| |
| else |
| Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp))); |
| Analyze_And_Resolve (Exp, Check_Typ); |
| Check_Unset_Reference (Exp); |
| end if; |
| else |
| Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp))); |
| Analyze_And_Resolve (Exp, Check_Typ); |
| Check_Unset_Reference (Exp); |
| end if; |
| end if; |
| end Aggregate_Constraint_Checks; |
| |
| ------------------------ |
| -- Array_Aggr_Subtype -- |
| ------------------------ |
| |
| function Array_Aggr_Subtype |
| (N : Node_Id; |
| Typ : Entity_Id) |
| return Entity_Id |
| is |
| Aggr_Dimension : constant Pos := Number_Dimensions (Typ); |
| -- Number of aggregate index dimensions. |
| |
| Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty); |
| -- Constrained N_Range of each index dimension in our aggregate itype. |
| |
| Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty); |
| Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty); |
| -- Low and High bounds for each index dimension in our aggregate itype. |
| |
| Is_Fully_Positional : Boolean := True; |
| |
| procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos); |
| -- N is an array (sub-)aggregate. Dim is the dimension corresponding to |
| -- (sub-)aggregate N. This procedure collects the constrained N_Range |
| -- nodes corresponding to each index dimension of our aggregate itype. |
| -- These N_Range nodes are collected in Aggr_Range above. |
| -- Likewise collect in Aggr_Low & Aggr_High above the low and high |
| -- bounds of each index dimension. If, when collecting, two bounds |
| -- corresponding to the same dimension are static and found to differ, |
| -- then emit a warning, and mark N as raising Constraint_Error. |
| |
| ------------------------- |
| -- Collect_Aggr_Bounds -- |
| ------------------------- |
| |
| procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is |
| This_Range : constant Node_Id := Aggregate_Bounds (N); |
| -- The aggregate range node of this specific sub-aggregate. |
| |
| This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N)); |
| This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N)); |
| -- The aggregate bounds of this specific sub-aggregate. |
| |
| Assoc : Node_Id; |
| Expr : Node_Id; |
| |
| begin |
| -- Collect the first N_Range for a given dimension that you find. |
| -- For a given dimension they must be all equal anyway. |
| |
| if No (Aggr_Range (Dim)) then |
| Aggr_Low (Dim) := This_Low; |
| Aggr_High (Dim) := This_High; |
| Aggr_Range (Dim) := This_Range; |
| |
| else |
| if Compile_Time_Known_Value (This_Low) then |
| if not Compile_Time_Known_Value (Aggr_Low (Dim)) then |
| Aggr_Low (Dim) := This_Low; |
| |
| elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then |
| Set_Raises_Constraint_Error (N); |
| Error_Msg_N ("Sub-aggregate low bound mismatch?", N); |
| Error_Msg_N ("Constraint_Error will be raised at run-time?", |
| N); |
| end if; |
| end if; |
| |
| if Compile_Time_Known_Value (This_High) then |
| if not Compile_Time_Known_Value (Aggr_High (Dim)) then |
| Aggr_High (Dim) := This_High; |
| |
| elsif |
| Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim)) |
| then |
| Set_Raises_Constraint_Error (N); |
| Error_Msg_N ("Sub-aggregate high bound mismatch?", N); |
| Error_Msg_N ("Constraint_Error will be raised at run-time?", |
| N); |
| end if; |
| end if; |
| end if; |
| |
| if Dim < Aggr_Dimension then |
| |
| -- Process positional components |
| |
| if Present (Expressions (N)) then |
| Expr := First (Expressions (N)); |
| while Present (Expr) loop |
| Collect_Aggr_Bounds (Expr, Dim + 1); |
| Next (Expr); |
| end loop; |
| end if; |
| |
| -- Process component associations |
| |
| if Present (Component_Associations (N)) then |
| Is_Fully_Positional := False; |
| |
| Assoc := First (Component_Associations (N)); |
| while Present (Assoc) loop |
| Expr := Expression (Assoc); |
| Collect_Aggr_Bounds (Expr, Dim + 1); |
| Next (Assoc); |
| end loop; |
| end if; |
| end if; |
| end Collect_Aggr_Bounds; |
| |
| -- Array_Aggr_Subtype variables |
| |
| Itype : Entity_Id; |
| -- the final itype of the overall aggregate |
| |
| Index_Constraints : constant List_Id := New_List; |
| -- The list of index constraints of the aggregate itype. |
| |
| -- Start of processing for Array_Aggr_Subtype |
| |
| begin |
| -- Make sure that the list of index constraints is properly attached |
| -- to the tree, and then collect the aggregate bounds. |
| |
| Set_Parent (Index_Constraints, N); |
| Collect_Aggr_Bounds (N, 1); |
| |
| -- Build the list of constrained indices of our aggregate itype. |
| |
| for J in 1 .. Aggr_Dimension loop |
| Create_Index : declare |
| Index_Base : constant Entity_Id := |
| Base_Type (Etype (Aggr_Range (J))); |
| Index_Typ : Entity_Id; |
| |
| begin |
| -- Construct the Index subtype |
| |
| Index_Typ := Create_Itype (Subtype_Kind (Ekind (Index_Base)), N); |
| |
| Set_Etype (Index_Typ, Index_Base); |
| |
| if Is_Character_Type (Index_Base) then |
| Set_Is_Character_Type (Index_Typ); |
| end if; |
| |
| Set_Size_Info (Index_Typ, (Index_Base)); |
| Set_RM_Size (Index_Typ, RM_Size (Index_Base)); |
| Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base)); |
| Set_Scalar_Range (Index_Typ, Aggr_Range (J)); |
| |
| if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then |
| Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ))); |
| end if; |
| |
| Set_Etype (Aggr_Range (J), Index_Typ); |
| |
| Append (Aggr_Range (J), To => Index_Constraints); |
| end Create_Index; |
| end loop; |
| |
| -- Now build the Itype |
| |
| Itype := Create_Itype (E_Array_Subtype, N); |
| |
| Set_First_Rep_Item (Itype, First_Rep_Item (Typ)); |
| Set_Convention (Itype, Convention (Typ)); |
| Set_Depends_On_Private (Itype, Has_Private_Component (Typ)); |
| Set_Etype (Itype, Base_Type (Typ)); |
| Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ)); |
| Set_Is_Aliased (Itype, Is_Aliased (Typ)); |
| Set_Depends_On_Private (Itype, Depends_On_Private (Typ)); |
| |
| Copy_Suppress_Status (Index_Check, Typ, Itype); |
| Copy_Suppress_Status (Length_Check, Typ, Itype); |
| |
| Set_First_Index (Itype, First (Index_Constraints)); |
| Set_Is_Constrained (Itype, True); |
| Set_Is_Internal (Itype, True); |
| Init_Size_Align (Itype); |
| |
| -- A simple optimization: purely positional aggregates of static |
| -- components should be passed to gigi unexpanded whenever possible, |
| -- and regardless of the staticness of the bounds themselves. Subse- |
| -- quent checks in exp_aggr verify that type is not packed, etc. |
| |
| Set_Size_Known_At_Compile_Time (Itype, |
| Is_Fully_Positional |
| and then Comes_From_Source (N) |
| and then Size_Known_At_Compile_Time (Component_Type (Typ))); |
| |
| -- We always need a freeze node for a packed array subtype, so that |
| -- we can build the Packed_Array_Type corresponding to the subtype. |
| -- If expansion is disabled, the packed array subtype is not built, |
| -- and we must not generate a freeze node for the type, or else it |
| -- will appear incomplete to gigi. |
| |
| if Is_Packed (Itype) and then not In_Default_Expression |
| and then Expander_Active |
| then |
| Freeze_Itype (Itype, N); |
| end if; |
| |
| return Itype; |
| end Array_Aggr_Subtype; |
| |
| -------------------------------- |
| -- Check_Misspelled_Component -- |
| -------------------------------- |
| |
| procedure Check_Misspelled_Component |
| (Elements : Elist_Id; |
| Component : Node_Id) |
| is |
| Max_Suggestions : constant := 2; |
| |
| Nr_Of_Suggestions : Natural := 0; |
| Suggestion_1 : Entity_Id := Empty; |
| Suggestion_2 : Entity_Id := Empty; |
| Component_Elmt : Elmt_Id; |
| |
| begin |
| -- All the components of List are matched against Component and |
| -- a count is maintained of possible misspellings. When at the |
| -- end of the analysis there are one or two (not more!) possible |
| -- misspellings, these misspellings will be suggested as |
| -- possible correction. |
| |
| Get_Name_String (Chars (Component)); |
| |
| declare |
| S : constant String (1 .. Name_Len) := |
| Name_Buffer (1 .. Name_Len); |
| |
| begin |
| |
| Component_Elmt := First_Elmt (Elements); |
| |
| while Nr_Of_Suggestions <= Max_Suggestions |
| and then Present (Component_Elmt) |
| loop |
| |
| Get_Name_String (Chars (Node (Component_Elmt))); |
| |
| if Is_Bad_Spelling_Of (Name_Buffer (1 .. Name_Len), S) then |
| Nr_Of_Suggestions := Nr_Of_Suggestions + 1; |
| |
| case Nr_Of_Suggestions is |
| when 1 => Suggestion_1 := Node (Component_Elmt); |
| when 2 => Suggestion_2 := Node (Component_Elmt); |
| when others => exit; |
| end case; |
| end if; |
| |
| Next_Elmt (Component_Elmt); |
| end loop; |
| |
| -- Report at most two suggestions |
| |
| if Nr_Of_Suggestions = 1 then |
| Error_Msg_NE ("\possible misspelling of&", |
| Component, Suggestion_1); |
| |
| elsif Nr_Of_Suggestions = 2 then |
| Error_Msg_Node_2 := Suggestion_2; |
| Error_Msg_NE ("\possible misspelling of& or&", |
| Component, Suggestion_1); |
| end if; |
| end; |
| end Check_Misspelled_Component; |
| |
| ---------------------------------------- |
| -- Check_Static_Discriminated_Subtype -- |
| ---------------------------------------- |
| |
| procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is |
| Disc : constant Entity_Id := First_Discriminant (T); |
| Comp : Entity_Id; |
| Ind : Entity_Id; |
| |
| begin |
| if Has_Record_Rep_Clause (T) then |
| return; |
| |
| elsif Present (Next_Discriminant (Disc)) then |
| return; |
| |
| elsif Nkind (V) /= N_Integer_Literal then |
| return; |
| end if; |
| |
| Comp := First_Component (T); |
| |
| while Present (Comp) loop |
| |
| if Is_Scalar_Type (Etype (Comp)) then |
| null; |
| |
| elsif Is_Private_Type (Etype (Comp)) |
| and then Present (Full_View (Etype (Comp))) |
| and then Is_Scalar_Type (Full_View (Etype (Comp))) |
| then |
| null; |
| |
| elsif Is_Array_Type (Etype (Comp)) then |
| |
| if Is_Bit_Packed_Array (Etype (Comp)) then |
| return; |
| end if; |
| |
| Ind := First_Index (Etype (Comp)); |
| |
| while Present (Ind) loop |
| |
| if Nkind (Ind) /= N_Range |
| or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal |
| or else Nkind (High_Bound (Ind)) /= N_Integer_Literal |
| then |
| return; |
| end if; |
| |
| Next_Index (Ind); |
| end loop; |
| |
| else |
| return; |
| end if; |
| |
| Next_Component (Comp); |
| end loop; |
| |
| -- On exit, all components have statically known sizes. |
| |
| Set_Size_Known_At_Compile_Time (T); |
| end Check_Static_Discriminated_Subtype; |
| |
| -------------------------------- |
| -- Make_String_Into_Aggregate -- |
| -------------------------------- |
| |
| procedure Make_String_Into_Aggregate (N : Node_Id) is |
| Exprs : constant List_Id := New_List; |
| Loc : constant Source_Ptr := Sloc (N); |
| Str : constant String_Id := Strval (N); |
| Strlen : constant Nat := String_Length (Str); |
| C : Char_Code; |
| C_Node : Node_Id; |
| New_N : Node_Id; |
| P : Source_Ptr; |
| |
| begin |
| P := Loc + 1; |
| for J in 1 .. Strlen loop |
| C := Get_String_Char (Str, J); |
| Set_Character_Literal_Name (C); |
| |
| C_Node := Make_Character_Literal (P, Name_Find, C); |
| Set_Etype (C_Node, Any_Character); |
| Append_To (Exprs, C_Node); |
| |
| P := P + 1; |
| -- something special for wide strings ??? |
| end loop; |
| |
| New_N := Make_Aggregate (Loc, Expressions => Exprs); |
| Set_Analyzed (New_N); |
| Set_Etype (New_N, Any_Composite); |
| |
| Rewrite (N, New_N); |
| end Make_String_Into_Aggregate; |
| |
| ----------------------- |
| -- Resolve_Aggregate -- |
| ----------------------- |
| |
| procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is |
| Pkind : constant Node_Kind := Nkind (Parent (N)); |
| |
| Aggr_Subtyp : Entity_Id; |
| -- The actual aggregate subtype. This is not necessarily the same as Typ |
| -- which is the subtype of the context in which the aggregate was found. |
| |
| begin |
| -- Check for aggregates not allowed in configurable run-time mode. |
| -- We allow all cases of aggregates that do not come from source, |
| -- since these are all assumed to be small (e.g. bounds of a string |
| -- literal). We also allow aggregates of types we know to be small. |
| |
| if not Support_Aggregates_On_Target |
| and then Comes_From_Source (N) |
| and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64) |
| then |
| Error_Msg_CRT ("aggregate", N); |
| end if; |
| |
| if Is_Limited_Composite (Typ) then |
| Error_Msg_N ("aggregate type cannot have limited component", N); |
| Explain_Limited_Type (Typ, N); |
| |
| -- Ada0Y (AI-287): Limited aggregates allowed |
| |
| elsif Is_Limited_Type (Typ) |
| and not Extensions_Allowed |
| then |
| Error_Msg_N ("aggregate type cannot be limited", N); |
| Explain_Limited_Type (Typ, N); |
| |
| elsif Is_Class_Wide_Type (Typ) then |
| Error_Msg_N ("type of aggregate cannot be class-wide", N); |
| |
| elsif Typ = Any_String |
| or else Typ = Any_Composite |
| then |
| Error_Msg_N ("no unique type for aggregate", N); |
| Set_Etype (N, Any_Composite); |
| |
| elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then |
| Error_Msg_N ("null record forbidden in array aggregate", N); |
| |
| elsif Is_Record_Type (Typ) then |
| Resolve_Record_Aggregate (N, Typ); |
| |
| elsif Is_Array_Type (Typ) then |
| |
| -- First a special test, for the case of a positional aggregate |
| -- of characters which can be replaced by a string literal. |
| -- Do not perform this transformation if this was a string literal |
| -- to start with, whose components needed constraint checks, or if |
| -- the component type is non-static, because it will require those |
| -- checks and be transformed back into an aggregate. |
| |
| if Number_Dimensions (Typ) = 1 |
| and then |
| (Root_Type (Component_Type (Typ)) = Standard_Character |
| or else |
| Root_Type (Component_Type (Typ)) = Standard_Wide_Character) |
| and then No (Component_Associations (N)) |
| and then not Is_Limited_Composite (Typ) |
| and then not Is_Private_Composite (Typ) |
| and then not Is_Bit_Packed_Array (Typ) |
| and then Nkind (Original_Node (Parent (N))) /= N_String_Literal |
| and then Is_Static_Subtype (Component_Type (Typ)) |
| then |
| declare |
| Expr : Node_Id; |
| |
| begin |
| Expr := First (Expressions (N)); |
| while Present (Expr) loop |
| exit when Nkind (Expr) /= N_Character_Literal; |
| Next (Expr); |
| end loop; |
| |
| if No (Expr) then |
| Start_String; |
| |
| Expr := First (Expressions (N)); |
| while Present (Expr) loop |
| Store_String_Char (Char_Literal_Value (Expr)); |
| Next (Expr); |
| end loop; |
| |
| Rewrite (N, |
| Make_String_Literal (Sloc (N), End_String)); |
| |
| Analyze_And_Resolve (N, Typ); |
| return; |
| end if; |
| end; |
| end if; |
| |
| -- Here if we have a real aggregate to deal with |
| |
| Array_Aggregate : declare |
| Aggr_Resolved : Boolean; |
| |
| Aggr_Typ : constant Entity_Id := Etype (Typ); |
| -- This is the unconstrained array type, which is the type |
| -- against which the aggregate is to be resoved. Typ itself |
| -- is the array type of the context which may not be the same |
| -- subtype as the subtype for the final aggregate. |
| |
| begin |
| -- In the following we determine whether an others choice is |
| -- allowed inside the array aggregate. The test checks the context |
| -- in which the array aggregate occurs. If the context does not |
| -- permit it, or the aggregate type is unconstrained, an others |
| -- choice is not allowed. |
| -- |
| -- Note that there is no node for Explicit_Actual_Parameter. |
| -- To test for this context we therefore have to test for node |
| -- N_Parameter_Association which itself appears only if there is a |
| -- formal parameter. Consequently we also need to test for |
| -- N_Procedure_Call_Statement or N_Function_Call. |
| |
| Set_Etype (N, Aggr_Typ); -- may be overridden later on. |
| |
| if Is_Constrained (Typ) and then |
| (Pkind = N_Assignment_Statement or else |
| Pkind = N_Parameter_Association or else |
| Pkind = N_Function_Call or else |
| Pkind = N_Procedure_Call_Statement or else |
| Pkind = N_Generic_Association or else |
| Pkind = N_Formal_Object_Declaration or else |
| Pkind = N_Return_Statement or else |
| Pkind = N_Object_Declaration or else |
| Pkind = N_Component_Declaration or else |
| Pkind = N_Parameter_Specification or else |
| Pkind = N_Qualified_Expression or else |
| Pkind = N_Aggregate or else |
| Pkind = N_Extension_Aggregate or else |
| Pkind = N_Component_Association) |
| then |
| Aggr_Resolved := |
| Resolve_Array_Aggregate |
| (N, |
| Index => First_Index (Aggr_Typ), |
| Index_Constr => First_Index (Typ), |
| Component_Typ => Component_Type (Typ), |
| Others_Allowed => True); |
| |
| else |
| Aggr_Resolved := |
| Resolve_Array_Aggregate |
| (N, |
| Index => First_Index (Aggr_Typ), |
| Index_Constr => First_Index (Aggr_Typ), |
| Component_Typ => Component_Type (Typ), |
| Others_Allowed => False); |
| end if; |
| |
| if not Aggr_Resolved then |
| Aggr_Subtyp := Any_Composite; |
| else |
| Aggr_Subtyp := Array_Aggr_Subtype (N, Typ); |
| end if; |
| |
| Set_Etype (N, Aggr_Subtyp); |
| end Array_Aggregate; |
| |
| else |
| Error_Msg_N ("illegal context for aggregate", N); |
| |
| end if; |
| |
| -- If we can determine statically that the evaluation of the |
| -- aggregate raises Constraint_Error, then replace the |
| -- aggregate with an N_Raise_Constraint_Error node, but set the |
| -- Etype to the right aggregate subtype. Gigi needs this. |
| |
| if Raises_Constraint_Error (N) then |
| Aggr_Subtyp := Etype (N); |
| Rewrite (N, |
| Make_Raise_Constraint_Error (Sloc (N), |
| Reason => CE_Range_Check_Failed)); |
| Set_Raises_Constraint_Error (N); |
| Set_Etype (N, Aggr_Subtyp); |
| Set_Analyzed (N); |
| end if; |
| end Resolve_Aggregate; |
| |
| ----------------------------- |
| -- Resolve_Array_Aggregate -- |
| ----------------------------- |
| |
| function Resolve_Array_Aggregate |
| (N : Node_Id; |
| Index : Node_Id; |
| Index_Constr : Node_Id; |
| Component_Typ : Entity_Id; |
| Others_Allowed : Boolean) |
| return Boolean |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| |
| Failure : constant Boolean := False; |
| Success : constant Boolean := True; |
| |
| Index_Typ : constant Entity_Id := Etype (Index); |
| Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ); |
| Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ); |
| -- The type of the index corresponding to the array sub-aggregate |
| -- along with its low and upper bounds |
| |
| Index_Base : constant Entity_Id := Base_Type (Index_Typ); |
| Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base); |
| Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base); |
| -- ditto for the base type |
| |
| function Add (Val : Uint; To : Node_Id) return Node_Id; |
| -- Creates a new expression node where Val is added to expression To. |
| -- Tries to constant fold whenever possible. To must be an already |
| -- analyzed expression. |
| |
| procedure Check_Bound (BH : Node_Id; AH : in out Node_Id); |
| -- Checks that AH (the upper bound of an array aggregate) is <= BH |
| -- (the upper bound of the index base type). If the check fails a |
| -- warning is emitted, the Raises_Constraint_Error Flag of N is set, |
| -- and AH is replaced with a duplicate of BH. |
| |
| procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id); |
| -- Checks that range AL .. AH is compatible with range L .. H. Emits a |
| -- warning if not and sets the Raises_Constraint_Error Flag in N. |
| |
| procedure Check_Length (L, H : Node_Id; Len : Uint); |
| -- Checks that range L .. H contains at least Len elements. Emits a |
| -- warning if not and sets the Raises_Constraint_Error Flag in N. |
| |
| function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean; |
| -- Returns True if range L .. H is dynamic or null. |
| |
| procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean); |
| -- Given expression node From, this routine sets OK to False if it |
| -- cannot statically evaluate From. Otherwise it stores this static |
| -- value into Value. |
| |
| function Resolve_Aggr_Expr |
| (Expr : Node_Id; |
| Single_Elmt : Boolean) |
| return Boolean; |
| -- Resolves aggregate expression Expr. Returs False if resolution |
| -- fails. If Single_Elmt is set to False, the expression Expr may be |
| -- used to initialize several array aggregate elements (this can |
| -- happen for discrete choices such as "L .. H => Expr" or the others |
| -- choice). In this event we do not resolve Expr unless expansion is |
| -- disabled. To know why, see the DELAYED COMPONENT RESOLUTION |
| -- note above. |
| |
| --------- |
| -- Add -- |
| --------- |
| |
| function Add (Val : Uint; To : Node_Id) return Node_Id is |
| Expr_Pos : Node_Id; |
| Expr : Node_Id; |
| To_Pos : Node_Id; |
| |
| begin |
| if Raises_Constraint_Error (To) then |
| return To; |
| end if; |
| |
| -- First test if we can do constant folding |
| |
| if Compile_Time_Known_Value (To) |
| or else Nkind (To) = N_Integer_Literal |
| then |
| Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val); |
| Set_Is_Static_Expression (Expr_Pos); |
| Set_Etype (Expr_Pos, Etype (To)); |
| Set_Analyzed (Expr_Pos, Analyzed (To)); |
| |
| if not Is_Enumeration_Type (Index_Typ) then |
| Expr := Expr_Pos; |
| |
| -- If we are dealing with enumeration return |
| -- Index_Typ'Val (Expr_Pos) |
| |
| else |
| Expr := |
| Make_Attribute_Reference |
| (Loc, |
| Prefix => New_Reference_To (Index_Typ, Loc), |
| Attribute_Name => Name_Val, |
| Expressions => New_List (Expr_Pos)); |
| end if; |
| |
| return Expr; |
| end if; |
| |
| -- If we are here no constant folding possible |
| |
| if not Is_Enumeration_Type (Index_Base) then |
| Expr := |
| Make_Op_Add (Loc, |
| Left_Opnd => Duplicate_Subexpr (To), |
| Right_Opnd => Make_Integer_Literal (Loc, Val)); |
| |
| -- If we are dealing with enumeration return |
| -- Index_Typ'Val (Index_Typ'Pos (To) + Val) |
| |
| else |
| To_Pos := |
| Make_Attribute_Reference |
| (Loc, |
| Prefix => New_Reference_To (Index_Typ, Loc), |
| Attribute_Name => Name_Pos, |
| Expressions => New_List (Duplicate_Subexpr (To))); |
| |
| Expr_Pos := |
| Make_Op_Add (Loc, |
| Left_Opnd => To_Pos, |
| Right_Opnd => Make_Integer_Literal (Loc, Val)); |
| |
| Expr := |
| Make_Attribute_Reference |
| (Loc, |
| Prefix => New_Reference_To (Index_Typ, Loc), |
| Attribute_Name => Name_Val, |
| Expressions => New_List (Expr_Pos)); |
| end if; |
| |
| return Expr; |
| end Add; |
| |
| ----------------- |
| -- Check_Bound -- |
| ----------------- |
| |
| procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is |
| Val_BH : Uint; |
| Val_AH : Uint; |
| |
| OK_BH : Boolean; |
| OK_AH : Boolean; |
| |
| begin |
| Get (Value => Val_BH, From => BH, OK => OK_BH); |
| Get (Value => Val_AH, From => AH, OK => OK_AH); |
| |
| if OK_BH and then OK_AH and then Val_BH < Val_AH then |
| Set_Raises_Constraint_Error (N); |
| Error_Msg_N ("upper bound out of range?", AH); |
| Error_Msg_N ("Constraint_Error will be raised at run-time?", AH); |
| |
| -- You need to set AH to BH or else in the case of enumerations |
| -- indices we will not be able to resolve the aggregate bounds. |
| |
| AH := Duplicate_Subexpr (BH); |
| end if; |
| end Check_Bound; |
| |
| ------------------ |
| -- Check_Bounds -- |
| ------------------ |
| |
| procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is |
| Val_L : Uint; |
| Val_H : Uint; |
| Val_AL : Uint; |
| Val_AH : Uint; |
| |
| OK_L : Boolean; |
| OK_H : Boolean; |
| OK_AL : Boolean; |
| OK_AH : Boolean; |
| |
| begin |
| if Raises_Constraint_Error (N) |
| or else Dynamic_Or_Null_Range (AL, AH) |
| then |
| return; |
| end if; |
| |
| Get (Value => Val_L, From => L, OK => OK_L); |
| Get (Value => Val_H, From => H, OK => OK_H); |
| |
| Get (Value => Val_AL, From => AL, OK => OK_AL); |
| Get (Value => Val_AH, From => AH, OK => OK_AH); |
| |
| if OK_L and then Val_L > Val_AL then |
| Set_Raises_Constraint_Error (N); |
| Error_Msg_N ("lower bound of aggregate out of range?", N); |
| Error_Msg_N ("\Constraint_Error will be raised at run-time?", N); |
| end if; |
| |
| if OK_H and then Val_H < Val_AH then |
| Set_Raises_Constraint_Error (N); |
| Error_Msg_N ("upper bound of aggregate out of range?", N); |
| Error_Msg_N ("\Constraint_Error will be raised at run-time?", N); |
| end if; |
| end Check_Bounds; |
| |
| ------------------ |
| -- Check_Length -- |
| ------------------ |
| |
| procedure Check_Length (L, H : Node_Id; Len : Uint) is |
| Val_L : Uint; |
| Val_H : Uint; |
| |
| OK_L : Boolean; |
| OK_H : Boolean; |
| |
| Range_Len : Uint; |
| |
| begin |
| if Raises_Constraint_Error (N) then |
| return; |
| end if; |
| |
| Get (Value => Val_L, From => L, OK => OK_L); |
| Get (Value => Val_H, From => H, OK => OK_H); |
| |
| if not OK_L or else not OK_H then |
| return; |
| end if; |
| |
| -- If null range length is zero |
| |
| if Val_L > Val_H then |
| Range_Len := Uint_0; |
| else |
| Range_Len := Val_H - Val_L + 1; |
| end if; |
| |
| if Range_Len < Len then |
| Set_Raises_Constraint_Error (N); |
| Error_Msg_N ("Too many elements?", N); |
| Error_Msg_N ("Constraint_Error will be raised at run-time?", N); |
| end if; |
| end Check_Length; |
| |
| --------------------------- |
| -- Dynamic_Or_Null_Range -- |
| --------------------------- |
| |
| function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is |
| Val_L : Uint; |
| Val_H : Uint; |
| |
| OK_L : Boolean; |
| OK_H : Boolean; |
| |
| begin |
| Get (Value => Val_L, From => L, OK => OK_L); |
| Get (Value => Val_H, From => H, OK => OK_H); |
| |
| return not OK_L or else not OK_H |
| or else not Is_OK_Static_Expression (L) |
| or else not Is_OK_Static_Expression (H) |
| or else Val_L > Val_H; |
| end Dynamic_Or_Null_Range; |
| |
| --------- |
| -- Get -- |
| --------- |
| |
| procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is |
| begin |
| OK := True; |
| |
| if Compile_Time_Known_Value (From) then |
| Value := Expr_Value (From); |
| |
| -- If expression From is something like Some_Type'Val (10) then |
| -- Value = 10 |
| |
| elsif Nkind (From) = N_Attribute_Reference |
| and then Attribute_Name (From) = Name_Val |
| and then Compile_Time_Known_Value (First (Expressions (From))) |
| then |
| Value := Expr_Value (First (Expressions (From))); |
| |
| else |
| Value := Uint_0; |
| OK := False; |
| end if; |
| end Get; |
| |
| ----------------------- |
| -- Resolve_Aggr_Expr -- |
| ----------------------- |
| |
| function Resolve_Aggr_Expr |
| (Expr : Node_Id; |
| Single_Elmt : Boolean) |
| return Boolean |
| is |
| Nxt_Ind : constant Node_Id := Next_Index (Index); |
| Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr); |
| -- Index is the current index corresponding to the expresion. |
| |
| Resolution_OK : Boolean := True; |
| -- Set to False if resolution of the expression failed. |
| |
| begin |
| -- If the array type against which we are resolving the aggregate |
| -- has several dimensions, the expressions nested inside the |
| -- aggregate must be further aggregates (or strings). |
| |
| if Present (Nxt_Ind) then |
| if Nkind (Expr) /= N_Aggregate then |
| |
| -- A string literal can appear where a one-dimensional array |
| -- of characters is expected. If the literal looks like an |
| -- operator, it is still an operator symbol, which will be |
| -- transformed into a string when analyzed. |
| |
| if Is_Character_Type (Component_Typ) |
| and then No (Next_Index (Nxt_Ind)) |
| and then (Nkind (Expr) = N_String_Literal |
| or else Nkind (Expr) = N_Operator_Symbol) |
| then |
| -- A string literal used in a multidimensional array |
| -- aggregate in place of the final one-dimensional |
| -- aggregate must not be enclosed in parentheses. |
| |
| if Paren_Count (Expr) /= 0 then |
| Error_Msg_N ("No parenthesis allowed here", Expr); |
| end if; |
| |
| Make_String_Into_Aggregate (Expr); |
| |
| else |
| Error_Msg_N ("nested array aggregate expected", Expr); |
| return Failure; |
| end if; |
| end if; |
| |
| Resolution_OK := Resolve_Array_Aggregate |
| (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed); |
| |
| -- Do not resolve the expressions of discrete or others choices |
| -- unless the expression covers a single component, or the expander |
| -- is inactive. |
| |
| elsif Single_Elmt |
| or else not Expander_Active |
| or else In_Default_Expression |
| then |
| Analyze_And_Resolve (Expr, Component_Typ); |
| Check_Non_Static_Context (Expr); |
| Aggregate_Constraint_Checks (Expr, Component_Typ); |
| Check_Unset_Reference (Expr); |
| end if; |
| |
| if Raises_Constraint_Error (Expr) |
| and then Nkind (Parent (Expr)) /= N_Component_Association |
| then |
| Set_Raises_Constraint_Error (N); |
| end if; |
| |
| return Resolution_OK; |
| end Resolve_Aggr_Expr; |
| |
| -- Variables local to Resolve_Array_Aggregate |
| |
| Assoc : Node_Id; |
| Choice : Node_Id; |
| Expr : Node_Id; |
| |
| Who_Cares : Node_Id; |
| |
| Aggr_Low : Node_Id := Empty; |
| Aggr_High : Node_Id := Empty; |
| -- The actual low and high bounds of this sub-aggegate |
| |
| Choices_Low : Node_Id := Empty; |
| Choices_High : Node_Id := Empty; |
| -- The lowest and highest discrete choices values for a named aggregate |
| |
| Nb_Elements : Uint := Uint_0; |
| -- The number of elements in a positional aggegate |
| |
| Others_Present : Boolean := False; |
| |
| Nb_Choices : Nat := 0; |
| -- Contains the overall number of named choices in this sub-aggregate |
| |
| Nb_Discrete_Choices : Nat := 0; |
| -- The overall number of discrete choices (not counting others choice) |
| |
| Case_Table_Size : Nat; |
| -- Contains the size of the case table needed to sort aggregate choices |
| |
| -- Start of processing for Resolve_Array_Aggregate |
| |
| begin |
| -- STEP 1: make sure the aggregate is correctly formatted |
| |
| if Present (Component_Associations (N)) then |
| Assoc := First (Component_Associations (N)); |
| while Present (Assoc) loop |
| Choice := First (Choices (Assoc)); |
| while Present (Choice) loop |
| if Nkind (Choice) = N_Others_Choice then |
| Others_Present := True; |
| |
| if Choice /= First (Choices (Assoc)) |
| or else Present (Next (Choice)) |
| then |
| Error_Msg_N |
| ("OTHERS must appear alone in a choice list", Choice); |
| return Failure; |
| end if; |
| |
| if Present (Next (Assoc)) then |
| Error_Msg_N |
| ("OTHERS must appear last in an aggregate", Choice); |
| return Failure; |
| end if; |
| |
| if Ada_83 |
| and then Assoc /= First (Component_Associations (N)) |
| and then (Nkind (Parent (N)) = N_Assignment_Statement |
| or else |
| Nkind (Parent (N)) = N_Object_Declaration) |
| then |
| Error_Msg_N |
| ("(Ada 83) illegal context for OTHERS choice", N); |
| end if; |
| end if; |
| |
| Nb_Choices := Nb_Choices + 1; |
| Next (Choice); |
| end loop; |
| |
| Next (Assoc); |
| end loop; |
| end if; |
| |
| -- At this point we know that the others choice, if present, is by |
| -- itself and appears last in the aggregate. Check if we have mixed |
| -- positional and discrete associations (other than the others choice). |
| |
| if Present (Expressions (N)) |
| and then (Nb_Choices > 1 |
| or else (Nb_Choices = 1 and then not Others_Present)) |
| then |
| Error_Msg_N |
| ("named association cannot follow positional association", |
| First (Choices (First (Component_Associations (N))))); |
| return Failure; |
| end if; |
| |
| -- Test for the validity of an others choice if present |
| |
| if Others_Present and then not Others_Allowed then |
| Error_Msg_N |
| ("OTHERS choice not allowed here", |
| First (Choices (First (Component_Associations (N))))); |
| return Failure; |
| end if; |
| |
| -- Protect against cascaded errors |
| |
| if Etype (Index_Typ) = Any_Type then |
| return Failure; |
| end if; |
| |
| -- STEP 2: Process named components |
| |
| if No (Expressions (N)) then |
| |
| if Others_Present then |
| Case_Table_Size := Nb_Choices - 1; |
| else |
| Case_Table_Size := Nb_Choices; |
| end if; |
| |
| Step_2 : declare |
| Low : Node_Id; |
| High : Node_Id; |
| -- Denote the lowest and highest values in an aggregate choice |
| |
| Hi_Val : Uint; |
| Lo_Val : Uint; |
| -- High end of one range and Low end of the next. Should be |
| -- contiguous if there is no hole in the list of values. |
| |
| Missing_Values : Boolean; |
| -- Set True if missing index values |
| |
| S_Low : Node_Id := Empty; |
| S_High : Node_Id := Empty; |
| -- if a choice in an aggregate is a subtype indication these |
| -- denote the lowest and highest values of the subtype |
| |
| Table : Case_Table_Type (1 .. Case_Table_Size); |
| -- Used to sort all the different choice values |
| |
| Single_Choice : Boolean; |
| -- Set to true every time there is a single discrete choice in a |
| -- discrete association |
| |
| Prev_Nb_Discrete_Choices : Nat; |
| -- Used to keep track of the number of discrete choices |
| -- in the current association. |
| |
| begin |
| -- STEP 2 (A): Check discrete choices validity. |
| |
| Assoc := First (Component_Associations (N)); |
| while Present (Assoc) loop |
| |
| Prev_Nb_Discrete_Choices := Nb_Discrete_Choices; |
| Choice := First (Choices (Assoc)); |
| loop |
| Analyze (Choice); |
| |
| if Nkind (Choice) = N_Others_Choice then |
| Single_Choice := False; |
| exit; |
| |
| -- Test for subtype mark without constraint |
| |
| elsif Is_Entity_Name (Choice) and then |
| Is_Type (Entity (Choice)) |
| then |
| if Base_Type (Entity (Choice)) /= Index_Base then |
| Error_Msg_N |
| ("invalid subtype mark in aggregate choice", |
| Choice); |
| return Failure; |
| end if; |
| |
| elsif Nkind (Choice) = N_Subtype_Indication then |
| Resolve_Discrete_Subtype_Indication (Choice, Index_Base); |
| |
| -- Does the subtype indication evaluation raise CE ? |
| |
| Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High); |
| Get_Index_Bounds (Choice, Low, High); |
| Check_Bounds (S_Low, S_High, Low, High); |
| |
| else -- Choice is a range or an expression |
| Resolve (Choice, Index_Base); |
| Check_Unset_Reference (Choice); |
| Check_Non_Static_Context (Choice); |
| |
| -- Do not range check a choice. This check is redundant |
| -- since this test is already performed when we check |
| -- that the bounds of the array aggregate are within |
| -- range. |
| |
| Set_Do_Range_Check (Choice, False); |
| end if; |
| |
| -- If we could not resolve the discrete choice stop here |
| |
| if Etype (Choice) = Any_Type then |
| return Failure; |
| |
| -- If the discrete choice raises CE get its original bounds. |
| |
| elsif Nkind (Choice) = N_Raise_Constraint_Error then |
| Set_Raises_Constraint_Error (N); |
| Get_Index_Bounds (Original_Node (Choice), Low, High); |
| |
| -- Otherwise get its bounds as usual |
| |
| else |
| Get_Index_Bounds (Choice, Low, High); |
| end if; |
| |
| if (Dynamic_Or_Null_Range (Low, High) |
| or else (Nkind (Choice) = N_Subtype_Indication |
| and then |
| Dynamic_Or_Null_Range (S_Low, S_High))) |
| and then Nb_Choices /= 1 |
| then |
| Error_Msg_N |
| ("dynamic or empty choice in aggregate " & |
| "must be the only choice", Choice); |
| return Failure; |
| end if; |
| |
| Nb_Discrete_Choices := Nb_Discrete_Choices + 1; |
| Table (Nb_Discrete_Choices).Choice_Lo := Low; |
| Table (Nb_Discrete_Choices).Choice_Hi := High; |
| |
| Next (Choice); |
| |
| if No (Choice) then |
| -- Check if we have a single discrete choice and whether |
| -- this discrete choice specifies a single value. |
| |
| Single_Choice := |
| (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1) |
| and then (Low = High); |
| |
| exit; |
| end if; |
| end loop; |
| |
| -- Ada0Y (AI-287): In case of default initialized component |
| -- we delay the resolution to the expansion phase |
| |
| if Box_Present (Assoc) then |
| |
| -- Ada0Y (AI-287): In case of default initialization of a |
| -- component the expander will generate calls to the |
| -- corresponding initialization subprogram. |
| |
| if Present (Base_Init_Proc (Etype (Component_Typ))) |
| or else Has_Task (Base_Type (Component_Typ)) |
| then |
| null; |
| else |
| Error_Msg_N |
| ("(Ada 0Y): no value supplied for this component", |
| Assoc); |
| end if; |
| |
| elsif not Resolve_Aggr_Expr (Expression (Assoc), |
| Single_Elmt => Single_Choice) |
| then |
| return Failure; |
| end if; |
| |
| Next (Assoc); |
| end loop; |
| |
| -- If aggregate contains more than one choice then these must be |
| -- static. Sort them and check that they are contiguous |
| |
| if Nb_Discrete_Choices > 1 then |
| Sort_Case_Table (Table); |
| Missing_Values := False; |
| |
| Outer : for J in 1 .. Nb_Discrete_Choices - 1 loop |
| if Expr_Value (Table (J).Choice_Hi) >= |
| Expr_Value (Table (J + 1).Choice_Lo) |
| then |
| Error_Msg_N |
| ("duplicate choice values in array aggregate", |
| Table (J).Choice_Hi); |
| return Failure; |
| |
| elsif not Others_Present then |
| |
| Hi_Val := Expr_Value (Table (J).Choice_Hi); |
| Lo_Val := Expr_Value (Table (J + 1).Choice_Lo); |
| |
| -- If missing values, output error messages |
| |
| if Lo_Val - Hi_Val > 1 then |
| |
| -- Header message if not first missing value |
| |
| if not Missing_Values then |
| Error_Msg_N |
| ("missing index value(s) in array aggregate", N); |
| Missing_Values := True; |
| end if; |
| |
| -- Output values of missing indexes |
| |
| Lo_Val := Lo_Val - 1; |
| Hi_Val := Hi_Val + 1; |
| |
| -- Enumeration type case |
| |
| if Is_Enumeration_Type (Index_Typ) then |
| Error_Msg_Name_1 := |
| Chars |
| (Get_Enum_Lit_From_Pos |
| (Index_Typ, Hi_Val, Loc)); |
| |
| if Lo_Val = Hi_Val then |
| Error_Msg_N ("\ %", N); |
| else |
| Error_Msg_Name_2 := |
| Chars |
| (Get_Enum_Lit_From_Pos |
| (Index_Typ, Lo_Val, Loc)); |
| Error_Msg_N ("\ % .. %", N); |
| end if; |
| |
| -- Integer types case |
| |
| else |
| Error_Msg_Uint_1 := Hi_Val; |
| |
| if Lo_Val = Hi_Val then |
| Error_Msg_N ("\ ^", N); |
| else |
| Error_Msg_Uint_2 := Lo_Val; |
| Error_Msg_N ("\ ^ .. ^", N); |
| end if; |
| end if; |
| end if; |
| end if; |
| end loop Outer; |
| |
| if Missing_Values then |
| Set_Etype (N, Any_Composite); |
| return Failure; |
| end if; |
| end if; |
| |
| -- STEP 2 (B): Compute aggregate bounds and min/max choices values |
| |
| if Nb_Discrete_Choices > 0 then |
| Choices_Low := Table (1).Choice_Lo; |
| Choices_High := Table (Nb_Discrete_Choices).Choice_Hi; |
| end if; |
| |
| if Others_Present then |
| Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High); |
| |
| else |
| Aggr_Low := Choices_Low; |
| Aggr_High := Choices_High; |
| end if; |
| end Step_2; |
| |
| -- STEP 3: Process positional components |
| |
| else |
| -- STEP 3 (A): Process positional elements |
| |
| Expr := First (Expressions (N)); |
| Nb_Elements := Uint_0; |
| while Present (Expr) loop |
| Nb_Elements := Nb_Elements + 1; |
| |
| if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then |
| return Failure; |
| end if; |
| |
| Next (Expr); |
| end loop; |
| |
| if Others_Present then |
| Assoc := Last (Component_Associations (N)); |
| |
| -- Ada0Y (AI-287): In case of default initialized component |
| -- we delay the resolution to the expansion phase. |
| |
| if Box_Present (Assoc) then |
| |
| -- Ada0Y (AI-287): In case of default initialization of a |
| -- component the expander will generate calls to the |
| -- corresponding initialization subprogram. |
| |
| if Present (Base_Init_Proc (Etype (Component_Typ))) then |
| null; |
| else |
| Error_Msg_N |
| ("(Ada 0Y): no value supplied for these components", |
| Assoc); |
| end if; |
| |
| elsif not Resolve_Aggr_Expr (Expression (Assoc), |
| Single_Elmt => False) |
| then |
| return Failure; |
| end if; |
| end if; |
| |
| -- STEP 3 (B): Compute the aggregate bounds |
| |
| if Others_Present then |
| Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High); |
| |
| else |
| if Others_Allowed then |
| Get_Index_Bounds (Index_Constr, Aggr_Low, Who_Cares); |
| else |
| Aggr_Low := Index_Typ_Low; |
| end if; |
| |
| Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low); |
| Check_Bound (Index_Base_High, Aggr_High); |
| end if; |
| end if; |
| |
| -- STEP 4: Perform static aggregate checks and save the bounds |
| |
| -- Check (A) |
| |
| Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High); |
| Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High); |
| |
| -- Check (B) |
| |
| if Others_Present and then Nb_Discrete_Choices > 0 then |
| Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High); |
| Check_Bounds (Index_Typ_Low, Index_Typ_High, |
| Choices_Low, Choices_High); |
| Check_Bounds (Index_Base_Low, Index_Base_High, |
| Choices_Low, Choices_High); |
| |
| -- Check (C) |
| |
| elsif Others_Present and then Nb_Elements > 0 then |
| Check_Length (Aggr_Low, Aggr_High, Nb_Elements); |
| Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements); |
| Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements); |
| |
| end if; |
| |
| if Raises_Constraint_Error (Aggr_Low) |
| or else Raises_Constraint_Error (Aggr_High) |
| then |
| Set_Raises_Constraint_Error (N); |
| end if; |
| |
| Aggr_Low := Duplicate_Subexpr (Aggr_Low); |
| |
| -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements |
| -- since the addition node returned by Add is not yet analyzed. Attach |
| -- to tree and analyze first. Reset analyzed flag to insure it will get |
| -- analyzed when it is a literal bound whose type must be properly |
| -- set. |
| |
| if Others_Present or else Nb_Discrete_Choices > 0 then |
| Aggr_High := Duplicate_Subexpr (Aggr_High); |
| |
| if Etype (Aggr_High) = Universal_Integer then |
| Set_Analyzed (Aggr_High, False); |
| end if; |
| end if; |
| |
| Set_Aggregate_Bounds |
| (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High)); |
| |
| -- The bounds may contain expressions that must be inserted upwards. |
| -- Attach them fully to the tree. After analysis, remove side effects |
| -- from upper bound, if still needed. |
| |
| Set_Parent (Aggregate_Bounds (N), N); |
| Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ); |
| Check_Unset_Reference (Aggregate_Bounds (N)); |
| |
| if not Others_Present and then Nb_Discrete_Choices = 0 then |
| Set_High_Bound (Aggregate_Bounds (N), |
| Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N)))); |
| end if; |
| |
| return Success; |
| end Resolve_Array_Aggregate; |
| |
| --------------------------------- |
| -- Resolve_Extension_Aggregate -- |
| --------------------------------- |
| |
| -- There are two cases to consider: |
| |
| -- a) If the ancestor part is a type mark, the components needed are |
| -- the difference between the components of the expected type and the |
| -- components of the given type mark. |
| |
| -- b) If the ancestor part is an expression, it must be unambiguous, |
| -- and once we have its type we can also compute the needed components |
| -- as in the previous case. In both cases, if the ancestor type is not |
| -- the immediate ancestor, we have to build this ancestor recursively. |
| |
| -- In both cases discriminants of the ancestor type do not play a |
| -- role in the resolution of the needed components, because inherited |
| -- discriminants cannot be used in a type extension. As a result we can |
| -- compute independently the list of components of the ancestor type and |
| -- of the expected type. |
| |
| procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is |
| A : constant Node_Id := Ancestor_Part (N); |
| A_Type : Entity_Id; |
| I : Interp_Index; |
| It : Interp; |
| |
| function Valid_Ancestor_Type return Boolean; |
| -- Verify that the type of the ancestor part is a non-private ancestor |
| -- of the expected type. |
| |
| ------------------------- |
| -- Valid_Ancestor_Type -- |
| ------------------------- |
| |
| function Valid_Ancestor_Type return Boolean is |
| Imm_Type : Entity_Id; |
| |
| begin |
| Imm_Type := Base_Type (Typ); |
| while Is_Derived_Type (Imm_Type) |
| and then Etype (Imm_Type) /= Base_Type (A_Type) |
| loop |
| Imm_Type := Etype (Base_Type (Imm_Type)); |
| end loop; |
| |
| if Etype (Imm_Type) /= Base_Type (A_Type) then |
| Error_Msg_NE ("expect ancestor type of &", A, Typ); |
| return False; |
| else |
| return True; |
| end if; |
| end Valid_Ancestor_Type; |
| |
| -- Start of processing for Resolve_Extension_Aggregate |
| |
| begin |
| Analyze (A); |
| |
| if not Is_Tagged_Type (Typ) then |
| Error_Msg_N ("type of extension aggregate must be tagged", N); |
| return; |
| |
| elsif Is_Limited_Type (Typ) then |
| |
| -- Ada0Y (AI-287): Limited aggregates are allowed |
| |
| if Extensions_Allowed then |
| null; |
| else |
| Error_Msg_N ("aggregate type cannot be limited", N); |
| Explain_Limited_Type (Typ, N); |
| return; |
| end if; |
| |
| elsif Is_Class_Wide_Type (Typ) then |
| Error_Msg_N ("aggregate cannot be of a class-wide type", N); |
| return; |
| end if; |
| |
| if Is_Entity_Name (A) |
| and then Is_Type (Entity (A)) |
| then |
| A_Type := Get_Full_View (Entity (A)); |
| |
| if Valid_Ancestor_Type then |
| Set_Entity (A, A_Type); |
| Set_Etype (A, A_Type); |
| |
| Validate_Ancestor_Part (N); |
| Resolve_Record_Aggregate (N, Typ); |
| end if; |
| |
| elsif Nkind (A) /= N_Aggregate then |
| if Is_Overloaded (A) then |
| A_Type := Any_Type; |
| Get_First_Interp (A, I, It); |
| |
| while Present (It.Typ) loop |
| |
| if Is_Tagged_Type (It.Typ) |
| and then not Is_Limited_Type (It.Typ) |
| then |
| if A_Type /= Any_Type then |
| Error_Msg_N ("cannot resolve expression", A); |
| return; |
| else |
| A_Type := It.Typ; |
| end if; |
| end if; |
| |
| Get_Next_Interp (I, It); |
| end loop; |
| |
| if A_Type = Any_Type then |
| Error_Msg_N |
| ("ancestor part must be non-limited tagged type", A); |
| return; |
| end if; |
| |
| else |
| A_Type := Etype (A); |
| end if; |
| |
| if Valid_Ancestor_Type then |
| Resolve (A, A_Type); |
| Check_Unset_Reference (A); |
| Check_Non_Static_Context (A); |
| |
| if Is_Class_Wide_Type (Etype (A)) |
| and then Nkind (Original_Node (A)) = N_Function_Call |
| then |
| -- If the ancestor part is a dispatching call, it appears |
| -- statically to be a legal ancestor, but it yields any |
| -- member of the class, and it is not possible to determine |
| -- whether it is an ancestor of the extension aggregate (much |
| -- less which ancestor). It is not possible to determine the |
| -- required components of the extension part. |
| |
| Error_Msg_N ("ancestor part must be statically tagged", A); |
| else |
| Resolve_Record_Aggregate (N, Typ); |
| end if; |
| end if; |
| |
| else |
| Error_Msg_N (" No unique type for this aggregate", A); |
| end if; |
| end Resolve_Extension_Aggregate; |
| |
| ------------------------------ |
| -- Resolve_Record_Aggregate -- |
| ------------------------------ |
| |
| procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is |
| New_Assoc_List : constant List_Id := New_List; |
| New_Assoc : Node_Id; |
| -- New_Assoc_List is the newly built list of N_Component_Association |
| -- nodes. New_Assoc is one such N_Component_Association node in it. |
| -- Please note that while Assoc and New_Assoc contain the same |
| -- kind of nodes, they are used to iterate over two different |
| -- N_Component_Association lists. |
| |
| Others_Etype : Entity_Id := Empty; |
| -- This variable is used to save the Etype of the last record component |
| -- that takes its value from the others choice. Its purpose is: |
| -- |
| -- (a) make sure the others choice is useful |
| -- |
| -- (b) make sure the type of all the components whose value is |
| -- subsumed by the others choice are the same. |
| -- |
| -- This variable is updated as a side effect of function Get_Value |
| |
| Mbox_Present : Boolean := False; |
| Others_Mbox : Boolean := False; |
| -- Ada0Y (AI-287): Variables used in case of default initialization to |
| -- provide a functionality similar to Others_Etype. Mbox_Present |
| -- indicates that the component takes its default initialization; |
| -- Others_Mbox indicates that at least one component takes its default |
| -- initialization. Similar to Others_Etype, they are also updated as a |
| -- side effect of function Get_Value. |
| |
| procedure Add_Association |
| (Component : Entity_Id; |
| Expr : Node_Id; |
| Box_Present : Boolean := False); |
| -- Builds a new N_Component_Association node which associates |
| -- Component to expression Expr and adds it to the new association |
| -- list New_Assoc_List being built. |
| |
| function Discr_Present (Discr : Entity_Id) return Boolean; |
| -- If aggregate N is a regular aggregate this routine will return True. |
| -- Otherwise, if N is an extension aggregate, Discr is a discriminant |
| -- whose value may already have been specified by N's ancestor part, |
| -- this routine checks whether this is indeed the case and if so |
| -- returns False, signaling that no value for Discr should appear in the |
| -- N's aggregate part. Also, in this case, the routine appends to |
| -- New_Assoc_List Discr the discriminant value specified in the ancestor |
| -- part. |
| |
| function Get_Value |
| (Compon : Node_Id; |
| From : List_Id; |
| Consider_Others_Choice : Boolean := False) |
| return Node_Id; |
| -- Given a record component stored in parameter Compon, the |
| -- following function returns its value as it appears in the list |
| -- From, which is a list of N_Component_Association nodes. If no |
| -- component association has a choice for the searched component, |
| -- the value provided by the others choice is returned, if there |
| -- is one and Consider_Others_Choice is set to true. Otherwise |
| -- Empty is returned. If there is more than one component association |
| -- giving a value for the searched record component, an error message |
| -- is emitted and the first found value is returned. |
| -- |
| -- If Consider_Others_Choice is set and the returned expression comes |
| -- from the others choice, then Others_Etype is set as a side effect. |
| -- An error message is emitted if the components taking their value |
| -- from the others choice do not have same type. |
| |
| procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id); |
| -- Analyzes and resolves expression Expr against the Etype of the |
| -- Component. This routine also applies all appropriate checks to Expr. |
| -- It finally saves a Expr in the newly created association list that |
| -- will be attached to the final record aggregate. Note that if the |
| -- Parent pointer of Expr is not set then Expr was produced with a |
| -- New_Copy_Tree or some such. |
| |
| --------------------- |
| -- Add_Association -- |
| --------------------- |
| |
| procedure Add_Association |
| (Component : Entity_Id; |
| Expr : Node_Id; |
| Box_Present : Boolean := False) |
| is |
| Choice_List : constant List_Id := New_List; |
| New_Assoc : Node_Id; |
| |
| begin |
| Append (New_Occurrence_Of (Component, Sloc (Expr)), Choice_List); |
| New_Assoc := |
| Make_Component_Association (Sloc (Expr), |
| Choices => Choice_List, |
| Expression => Expr, |
| Box_Present => Box_Present); |
| Append (New_Assoc, New_Assoc_List); |
| end Add_Association; |
| |
| ------------------- |
| -- Discr_Present -- |
| ------------------- |
| |
| function Discr_Present (Discr : Entity_Id) return Boolean is |
| Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate; |
| |
| Loc : Source_Ptr; |
| |
| Ancestor : Node_Id; |
| Discr_Expr : Node_Id; |
| |
| Ancestor_Typ : Entity_Id; |
| Orig_Discr : Entity_Id; |
| D : Entity_Id; |
| D_Val : Elmt_Id := No_Elmt; -- stop junk warning |
| |
| Ancestor_Is_Subtyp : Boolean; |
| |
| begin |
| if Regular_Aggr then |
| return True; |
| end if; |
| |
| Ancestor := Ancestor_Part (N); |
| Ancestor_Typ := Etype (Ancestor); |
| Loc := Sloc (Ancestor); |
| |
| Ancestor_Is_Subtyp := |
| Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor)); |
| |
| -- If the ancestor part has no discriminants clearly N's aggregate |
| -- part must provide a value for Discr. |
| |
| if not Has_Discriminants (Ancestor_Typ) then |
| return True; |
| |
| -- If the ancestor part is an unconstrained subtype mark then the |
| -- Discr must be present in N's aggregate part. |
| |
| elsif Ancestor_Is_Subtyp |
| and then not Is_Constrained (Entity (Ancestor)) |
| then |
| return True; |
| end if; |
| |
| -- Now look to see if Discr was specified in the ancestor part. |
| |
| Orig_Discr := Original_Record_Component (Discr); |
| D := First_Discriminant (Ancestor_Typ); |
| |
| if Ancestor_Is_Subtyp then |
| D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor))); |
| end if; |
| |
| while Present (D) loop |
| -- If Ancestor has already specified Disc value than |
| -- insert its value in the final aggregate. |
| |
| if Original_Record_Component (D) = Orig_Discr then |
| if Ancestor_Is_Subtyp then |
| Discr_Expr := New_Copy_Tree (Node (D_Val)); |
| else |
| Discr_Expr := |
| Make_Selected_Component (Loc, |
| Prefix => Duplicate_Subexpr (Ancestor), |
| Selector_Name => New_Occurrence_Of (Discr, Loc)); |
| end if; |
| |
| Resolve_Aggr_Expr (Discr_Expr, Discr); |
| return False; |
| end if; |
| |
| Next_Discriminant (D); |
| |
| if Ancestor_Is_Subtyp then |
| Next_Elmt (D_Val); |
| end if; |
| end loop; |
| |
| return True; |
| end Discr_Present; |
| |
| --------------- |
| -- Get_Value -- |
| --------------- |
| |
| function Get_Value |
| (Compon : Node_Id; |
| From : List_Id; |
| Consider_Others_Choice : Boolean := False) |
| return Node_Id |
| is |
| Assoc : Node_Id; |
| Expr : Node_Id := Empty; |
| Selector_Name : Node_Id; |
| |
| procedure Check_Non_Limited_Type; |
| -- Relax check to allow the default initialization of limited types. |
| -- For example: |
| -- record |
| -- C : Lim := (..., others => <>); |
| -- end record; |
| |
| ---------------------------- |
| -- Check_Non_Limited_Type -- |
| ---------------------------- |
| |
| procedure Check_Non_Limited_Type is |
| begin |
| if Is_Limited_Type (Etype (Compon)) |
| and then Comes_From_Source (Compon) |
| and then not In_Instance_Body |
| then |
| -- Ada0Y (AI-287): Limited aggregates are allowed |
| |
| if Extensions_Allowed |
| and then Present (Expression (Assoc)) |
| and then Nkind (Expression (Assoc)) = N_Aggregate |
| then |
| null; |
| else |
| Error_Msg_N |
| ("initialization not allowed for limited types", N); |
| Explain_Limited_Type (Etype (Compon), Compon); |
| end if; |
| |
| end if; |
| end Check_Non_Limited_Type; |
| |
| -- Start of processing for Get_Value |
| |
| begin |
| Mbox_Present := False; |
| |
| if Present (From) then |
| Assoc := First (From); |
| else |
| return Empty; |
| end if; |
| |
| while Present (Assoc) loop |
| Selector_Name := First (Choices (Assoc)); |
| while Present (Selector_Name) loop |
| if Nkind (Selector_Name) = N_Others_Choice then |
| if Consider_Others_Choice and then No (Expr) then |
| |
| -- We need to duplicate the expression for each |
| -- successive component covered by the others choice. |
| -- This is redundant if the others_choice covers only |
| -- one component (small optimization possible???), but |
| -- indispensable otherwise, because each one must be |
| -- expanded individually to preserve side-effects. |
| |
| -- Ada0Y (AI-287): In case of default initialization of |
| -- components, we duplicate the corresponding default |
| -- expression (from the record type declaration). |
| |
| if Box_Present (Assoc) then |
| Others_Mbox := True; |
| Mbox_Present := True; |
| |
| if Expander_Active then |
| return New_Copy_Tree (Expression (Parent (Compon))); |
| else |
| return Expression (Parent (Compon)); |
| end if; |
| |
| else |
| Check_Non_Limited_Type; |
| |
| if Present (Others_Etype) and then |
| Base_Type (Others_Etype) /= Base_Type (Etype |
| (Compon)) |
| then |
| Error_Msg_N ("components in OTHERS choice must " & |
| "have same type", Selector_Name); |
| end if; |
| |
| Others_Etype := Etype (Compon); |
| |
| if Expander_Active then |
| return New_Copy_Tree (Expression (Assoc)); |
| else |
| return Expression (Assoc); |
| end if; |
| end if; |
| end if; |
| |
| elsif Chars (Compon) = Chars (Selector_Name) then |
| if No (Expr) then |
| |
| -- We need to duplicate the expression when several |
| -- components are grouped together with a "|" choice. |
| -- For instance "filed1 | filed2 => Expr" |
| |
| if Box_Present (Assoc) then |
| Mbox_Present := True; |
| |
| -- Duplicate the default expression of the component |
| -- from the record type declaration |
| |
| if Present (Next (Selector_Name)) then |
| Expr := New_Copy_Tree |
| (Expression (Parent (Compon))); |
| else |
| Expr := Expression (Parent (Compon)); |
| end if; |
| |
| else |
| Check_Non_Limited_Type; |
| |
| if Present (Next (Selector_Name)) then |
| Expr := New_Copy_Tree (Expression (Assoc)); |
| else |
| Expr := Expression (Assoc); |
| end if; |
| end if; |
| |
| Generate_Reference (Compon, Selector_Name); |
| |
| else |
| Error_Msg_NE |
| ("more than one value supplied for &", |
| Selector_Name, Compon); |
| |
| end if; |
| end if; |
| |
| Next (Selector_Name); |
| end loop; |
| |
| Next (Assoc); |
| end loop; |
| |
| return Expr; |
| end Get_Value; |
| |
| ----------------------- |
| -- Resolve_Aggr_Expr -- |
| ----------------------- |
| |
| procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is |
| New_C : Entity_Id := Component; |
| Expr_Type : Entity_Id := Empty; |
| |
| function Has_Expansion_Delayed (Expr : Node_Id) return Boolean; |
| -- If the expression is an aggregate (possibly qualified) then its |
| -- expansion is delayed until the enclosing aggregate is expanded |
| -- into assignments. In that case, do not generate checks on the |
| -- expression, because they will be generated later, and will other- |
| -- wise force a copy (to remove side-effects) that would leave a |
| -- dynamic-sized aggregate in the code, something that gigi cannot |
| -- handle. |
| |
| Relocate : Boolean; |
| -- Set to True if the resolved Expr node needs to be relocated |
| -- when attached to the newly created association list. This node |
| -- need not be relocated if its parent pointer is not set. |
| -- In fact in this case Expr is the output of a New_Copy_Tree call. |
| -- if Relocate is True then we have analyzed the expression node |
| -- in the original aggregate and hence it needs to be relocated |
| -- when moved over the new association list. |
| |
| function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is |
| Kind : constant Node_Kind := Nkind (Expr); |
| |
| begin |
| return ((Kind = N_Aggregate |
| or else Kind = N_Extension_Aggregate) |
| and then Present (Etype (Expr)) |
| and then Is_Record_Type (Etype (Expr)) |
| and then Expansion_Delayed (Expr)) |
| |
| or else (Kind = N_Qualified_Expression |
| and then Has_Expansion_Delayed (Expression (Expr))); |
| end Has_Expansion_Delayed; |
| |
| -- Start of processing for Resolve_Aggr_Expr |
| |
| begin |
| -- If the type of the component is elementary or the type of the |
| -- aggregate does not contain discriminants, use the type of the |
| -- component to resolve Expr. |
| |
| if Is_Elementary_Type (Etype (Component)) |
| or else not Has_Discriminants (Etype (N)) |
| then |
| Expr_Type := Etype (Component); |
| |
| -- Otherwise we have to pick up the new type of the component from |
| -- the new costrained subtype of the aggregate. In fact components |
| -- which are of a composite type might be constrained by a |
| -- discriminant, and we want to resolve Expr against the subtype were |
| -- all discriminant occurrences are replaced with their actual value. |
| |
| else |
| New_C := First_Component (Etype (N)); |
| while Present (New_C) loop |
| if Chars (New_C) = Chars (Component) then |
| Expr_Type := Etype (New_C); |
| exit; |
| end if; |
| |
| Next_Component (New_C); |
| end loop; |
| |
| pragma Assert (Present (Expr_Type)); |
| |
| -- For each range in an array type where a discriminant has been |
| -- replaced with the constraint, check that this range is within |
| -- the range of the base type. This checks is done in the |
| -- init proc for regular objects, but has to be done here for |
| -- aggregates since no init proc is called for them. |
| |
| if Is_Array_Type (Expr_Type) then |
| declare |
| Index : Node_Id := First_Index (Expr_Type); |
| -- Range of the current constrained index in the array. |
| |
| Orig_Index : Node_Id := First_Index (Etype (Component)); |
| -- Range corresponding to the range Index above in the |
| -- original unconstrained record type. The bounds of this |
| -- range may be governed by discriminants. |
| |
| Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type)); |
| -- Range corresponding to the range Index above for the |
| -- unconstrained array type. This range is needed to apply |
| -- range checks. |
| |
| begin |
| while Present (Index) loop |
| if Depends_On_Discriminant (Orig_Index) then |
| Apply_Range_Check (Index, Etype (Unconstr_Index)); |
| end if; |
| |
| Next_Index (Index); |
| Next_Index (Orig_Index); |
| Next_Index (Unconstr_Index); |
| end loop; |
| end; |
| end if; |
| end if; |
| |
| -- If the Parent pointer of Expr is not set, Expr is an expression |
| -- duplicated by New_Tree_Copy (this happens for record aggregates |
| -- that look like (Field1 | Filed2 => Expr) or (others => Expr)). |
| -- Such a duplicated expression must be attached to the tree |
| -- before analysis and resolution to enforce the rule that a tree |
| -- fragment should never be analyzed or resolved unless it is |
| -- attached to the current compilation unit. |
| |
| if No (Parent (Expr)) then |
| Set_Parent (Expr, N); |
| Relocate := False; |
| else |
| Relocate := True; |
| end if; |
| |
| Analyze_And_Resolve (Expr, Expr_Type); |
| Check_Non_Static_Context (Expr); |
| Check_Unset_Reference (Expr); |
| |
| if not Has_Expansion_Delayed (Expr) then |
| Aggregate_Constraint_Checks (Expr, Expr_Type); |
| end if; |
| |
| if Raises_Constraint_Error (Expr) then |
| Set_Raises_Constraint_Error (N); |
| end if; |
| |
| if Relocate then |
| Add_Association (New_C, Relocate_Node (Expr)); |
| else |
| Add_Association (New_C, Expr); |
| end if; |
| end Resolve_Aggr_Expr; |
| |
| -- Resolve_Record_Aggregate local variables |
| |
| Assoc : Node_Id; |
| -- N_Component_Association node belonging to the input aggregate N |
| |
| Expr : Node_Id; |
| Positional_Expr : Node_Id; |
| Component : Entity_Id; |
| Component_Elmt : Elmt_Id; |
| |
| Components : constant Elist_Id := New_Elmt_List; |
| -- Components is the list of the record components whose value must |
| -- be provided in the aggregate. This list does include discriminants. |
| |
| -- Start of processing for Resolve_Record_Aggregate |
| |
| begin |
| -- We may end up calling Duplicate_Subexpr on expressions that are |
| -- attached to New_Assoc_List. For this reason we need to attach it |
| -- to the tree by setting its parent pointer to N. This parent point |
| -- will change in STEP 8 below. |
| |
| Set_Parent (New_Assoc_List, N); |
| |
| -- STEP 1: abstract type and null record verification |
| |
| if Is_Abstract (Typ) then |
| Error_Msg_N ("type of aggregate cannot be abstract", N); |
| end if; |
| |
| if No (First_Entity (Typ)) and then Null_Record_Present (N) then |
| Set_Etype (N, Typ); |
| return; |
| |
| elsif Present (First_Entity (Typ)) |
| and then Null_Record_Present (N) |
| and then not Is_Tagged_Type (Typ) |
| then |
| Error_Msg_N ("record aggregate cannot be null", N); |
| return; |
| |
| elsif No (First_Entity (Typ)) then |
| Error_Msg_N ("record aggregate must be null", N); |
| return; |
| end if; |
| |
| -- STEP 2: Verify aggregate structure |
| |
| Step_2 : declare |
| Selector_Name : Node_Id; |
| Bad_Aggregate : Boolean := False; |
| |
| begin |
| if Present (Component_Associations (N)) then |
| Assoc := First (Component_Associations (N)); |
| else |
| Assoc := Empty; |
| end if; |
| |
| while Present (Assoc) loop |
| Selector_Name := First (Choices (Assoc)); |
| while Present (Selector_Name) loop |
| if Nkind (Selector_Name) = N_Identifier then |
| null; |
| |
| elsif Nkind (Selector_Name) = N_Others_Choice then |
| if Selector_Name /= First (Choices (Assoc)) |
| or else Present (Next (Selector_Name)) |
| then |
| Error_Msg_N ("OTHERS must appear alone in a choice list", |
| Selector_Name); |
| return; |
| |
| elsif Present (Next (Assoc)) then |
| Error_Msg_N ("OTHERS must appear last in an aggregate", |
| Selector_Name); |
| return; |
| end if; |
| |
| else |
| Error_Msg_N |
| ("selector name should be identifier or OTHERS", |
| Selector_Name); |
| Bad_Aggregate := True; |
| end if; |
| |
| Next (Selector_Name); |
| end loop; |
| |
| Next (Assoc); |
| end loop; |
| |
| if Bad_Aggregate then |
| return; |
| end if; |
| end Step_2; |
| |
| -- STEP 3: Find discriminant Values |
| |
| Step_3 : declare |
| Discrim : Entity_Id; |
| Missing_Discriminants : Boolean := False; |
| |
| begin |
| if Present (Expressions (N)) then |
| Positional_Expr := First (Expressions (N)); |
| else |
| Positional_Expr := Empty; |
| end if; |
| |
| if Has_Discriminants (Typ) then |
| Discrim := First_Discriminant (Typ); |
| else |
| Discrim := Empty; |
| end if; |
| |
| -- First find the discriminant values in the positional components |
| |
| while Present (Discrim) and then Present (Positional_Expr) loop |
| if Discr_Present (Discrim) then |
| Resolve_Aggr_Expr (Positional_Expr, Discrim); |
| Next (Positional_Expr); |
| end if; |
| |
| if Present (Get_Value (Discrim, Component_Associations (N))) then |
| Error_Msg_NE |
| ("more than one value supplied for discriminant&", |
| N, Discrim); |
| end if; |
| |
| Next_Discriminant (Discrim); |
| end loop; |
| |
| -- Find remaining discriminant values, if any, among named components |
| |
| while Present (Discrim) loop |
| Expr := Get_Value (Discrim, Component_Associations (N), True); |
| |
| if not Discr_Present (Discrim) then |
| if Present (Expr) then |
| Error_Msg_NE |
| ("more than one value supplied for discriminant&", |
| N, Discrim); |
| end if; |
| |
| elsif No (Expr) then |
| Error_Msg_NE |
| ("no value supplied for discriminant &", N, Discrim); |
| Missing_Discriminants := True; |
| |
| else |
| Resolve_Aggr_Expr (Expr, Discrim); |
| end if; |
| |
| Next_Discriminant (Discrim); |
| end loop; |
| |
| if Missing_Discriminants then |
| return; |
| end if; |
| |
| -- At this point and until the beginning of STEP 6, New_Assoc_List |
| -- contains only the discriminants and their values. |
| |
| end Step_3; |
| |
| -- STEP 4: Set the Etype of the record aggregate |
| |
| -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That |
| -- routine should really be exported in sem_util or some such and used |
| -- in sem_ch3 and here rather than have a copy of the code which is a |
| -- maintenance nightmare. |
| |
| -- ??? Performace WARNING. The current implementation creates a new |
| -- itype for all aggregates whose base type is discriminated. |
| -- This means that for record aggregates nested inside an array |
| -- aggregate we will create a new itype for each record aggregate |
| -- if the array cmponent type has discriminants. For large aggregates |
| -- this may be a problem. What should be done in this case is |
| -- to reuse itypes as much as possible. |
| |
| if Has_Discriminants (Typ) then |
| Build_Constrained_Itype : declare |
| Loc : constant Source_Ptr := Sloc (N); |
| Indic : Node_Id; |
| Subtyp_Decl : Node_Id; |
| Def_Id : Entity_Id; |
| |
| C : constant List_Id := New_List; |
| |
| begin |
| New_Assoc := First (New_Assoc_List); |
| while Present (New_Assoc) loop |
| Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C); |
| Next (New_Assoc); |
| end loop; |
| |
| Indic := |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => New_Occurrence_Of (Base_Type (Typ), Loc), |
| Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C)); |
| |
| Def_Id := Create_Itype (Ekind (Typ), N); |
| |
| Subtyp_Decl := |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => Def_Id, |
| Subtype_Indication => Indic); |
| Set_Parent (Subtyp_Decl, Parent (N)); |
| |
| -- Itypes must be analyzed with checks off (see itypes.ads). |
| |
| Analyze (Subtyp_Decl, Suppress => All_Checks); |
| |
| Set_Etype (N, Def_Id); |
| Check_Static_Discriminated_Subtype |
| (Def_Id, Expression (First (New_Assoc_List))); |
| end Build_Constrained_Itype; |
| |
| else |
| Set_Etype (N, Typ); |
| end if; |
| |
| -- STEP 5: Get remaining components according to discriminant values |
| |
| Step_5 : declare |
| Record_Def : Node_Id; |
| Parent_Typ : Entity_Id; |
| Root_Typ : Entity_Id; |
| Parent_Typ_List : Elist_Id; |
| Parent_Elmt : Elmt_Id; |
| Errors_Found : Boolean := False; |
| Dnode : Node_Id; |
| |
| begin |
| if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then |
| Parent_Typ_List := New_Elmt_List; |
| |
| -- If this is an extension aggregate, the component list must |
| -- include all components that are not in the given ancestor |
| -- type. Otherwise, the component list must include components |
| -- of all ancestors, starting with the root. |
| |
| if Nkind (N) = N_Extension_Aggregate then |
| Root_Typ := Base_Type (Etype (Ancestor_Part (N))); |
| else |
| Root_Typ := Root_Type (Typ); |
| |
| if Nkind (Parent (Base_Type (Root_Typ))) |
| = N_Private_Type_Declaration |
| then |
| Error_Msg_NE |
| ("type of aggregate has private ancestor&!", |
| N, Root_Typ); |
| Error_Msg_N ("must use extension aggregate!", N); |
| return; |
| end if; |
| |
| Dnode := Declaration_Node (Base_Type (Root_Typ)); |
| |
| -- If we don't get a full declaration, then we have some |
| -- error which will get signalled later so skip this part. |
| -- Otherwise, gather components of root that apply to the |
| -- aggregate type. We use the base type in case there is an |
| -- applicable stored constraint that renames the discriminants |
| -- of the root. |
| |
| if Nkind (Dnode) = N_Full_Type_Declaration then |
| Record_Def := Type_Definition (Dnode); |
| Gather_Components (Base_Type (Typ), |
| Component_List (Record_Def), |
| Governed_By => New_Assoc_List, |
| Into => Components, |
| Report_Errors => Errors_Found); |
| end if; |
| end if; |
| |
| Parent_Typ := Base_Type (Typ); |
| while Parent_Typ /= Root_Typ loop |
| |
| Prepend_Elmt (Parent_Typ, To => Parent_Typ_List); |
| Parent_Typ := Etype (Parent_Typ); |
| |
| if Nkind (Parent (Base_Type (Parent_Typ))) = |
| N_Private_Type_Declaration |
| or else Nkind (Parent (Base_Type (Parent_Typ))) = |
| N_Private_Extension_Declaration |
| then |
| if Nkind (N) /= N_Extension_Aggregate then |
| Error_Msg_NE |
| ("type of aggregate has private ancestor&!", |
| N, Parent_Typ); |
| Error_Msg_N ("must use extension aggregate!", N); |
| return; |
| |
| elsif Parent_Typ /= Root_Typ then |
| Error_Msg_NE |
| ("ancestor part of aggregate must be private type&", |
| Ancestor_Part (N), Parent_Typ); |
| return; |
| end if; |
| end if; |
| end loop; |
| |
| -- Now collect components from all other ancestors. |
| |
| Parent_Elmt := First_Elmt (Parent_Typ_List); |
| while Present (Parent_Elmt) loop |
| Parent_Typ := Node (Parent_Elmt); |
| Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ))); |
| Gather_Components (Empty, |
| Component_List (Record_Extension_Part (Record_Def)), |
| Governed_By => New_Assoc_List, |
| Into => Components, |
| Report_Errors => Errors_Found); |
| |
| Next_Elmt (Parent_Elmt); |
| end loop; |
| |
| else |
| Record_Def := Type_Definition (Parent (Base_Type (Typ))); |
| |
| if Null_Present (Record_Def) then |
| null; |
| else |
| Gather_Components (Base_Type (Typ), |
| Component_List (Record_Def), |
| Governed_By => New_Assoc_List, |
| Into => Components, |
| Report_Errors => Errors_Found); |
| end if; |
| end if; |
| |
| if Errors_Found then |
| return; |
| end if; |
| end Step_5; |
| |
| -- STEP 6: Find component Values |
| |
| Component := Empty; |
| Component_Elmt := First_Elmt (Components); |
| |
| -- First scan the remaining positional associations in the aggregate. |
| -- Remember that at this point Positional_Expr contains the current |
| -- positional association if any is left after looking for discriminant |
| -- values in step 3. |
| |
| while Present (Positional_Expr) and then Present (Component_Elmt) loop |
| Component := Node (Component_Elmt); |
| Resolve_Aggr_Expr (Positional_Expr, Component); |
| |
| if Present (Get_Value (Component, Component_Associations (N))) then |
| Error_Msg_NE |
| ("more than one value supplied for Component &", N, Component); |
| end if; |
| |
| Next (Positional_Expr); |
| Next_Elmt (Component_Elmt); |
| end loop; |
| |
| if Present (Positional_Expr) then |
| Error_Msg_N |
| ("too many components for record aggregate", Positional_Expr); |
| end if; |
| |
| -- Now scan for the named arguments of the aggregate |
| |
| while Present (Component_Elmt) loop |
| Component := Node (Component_Elmt); |
| Expr := Get_Value (Component, Component_Associations (N), True); |
| |
| if Mbox_Present and then Is_Limited_Type (Etype (Component)) then |
| |
| -- Ada0Y (AI-287): In case of default initialization of a limited |
| -- component we pass the limited component to the expander. The |
| -- expander will generate calls to the corresponding initiali- |
| -- zation subprograms. |
| |
| Add_Association |
| (Component => Component, |
| Expr => Empty, |
| Box_Present => True); |
| |
| elsif No (Expr) then |
| Error_Msg_NE ("no value supplied for component &!", N, Component); |
| else |
| Resolve_Aggr_Expr (Expr, Component); |
| end if; |
| |
| Next_Elmt (Component_Elmt); |
| end loop; |
| |
| -- STEP 7: check for invalid components + check type in choice list |
| |
| Step_7 : declare |
| Selectr : Node_Id; |
| -- Selector name |
| |
| Typech : Entity_Id; |
| -- Type of first component in choice list |
| |
| begin |
| if Present (Component_Associations (N)) then |
| Assoc := First (Component_Associations (N)); |
| else |
| Assoc := Empty; |
| end if; |
| |
| Verification : while Present (Assoc) loop |
| Selectr := First (Choices (Assoc)); |
| Typech := Empty; |
| |
| if Nkind (Selectr) = N_Others_Choice then |
| |
| -- Ada0Y (AI-287): others choice may have expression or mbox |
| |
| if No (Others_Etype) |
| and then not Others_Mbox |
| then |
| Error_Msg_N |
| ("OTHERS must represent at least one component", Selectr); |
| end if; |
| |
| exit Verification; |
| end if; |
| |
| while Present (Selectr) loop |
| New_Assoc := First (New_Assoc_List); |
| while Present (New_Assoc) loop |
| Component := First (Choices (New_Assoc)); |
| exit when Chars (Selectr) = Chars (Component); |
| Next (New_Assoc); |
| end loop; |
| |
| -- If no association, this is not a legal component of |
| -- of the type in question, except if this is an internal |
| -- component supplied by a previous expansion. |
| |
| if No (New_Assoc) then |
| if Box_Present (Parent (Selectr)) then |
| null; |
| |
| elsif Chars (Selectr) /= Name_uTag |
| and then Chars (Selectr) /= Name_uParent |
| and then Chars (Selectr) /= Name_uController |
| then |
| if not Has_Discriminants (Typ) then |
| Error_Msg_Node_2 := Typ; |
| Error_Msg_N |
| ("& is not a component of}", |
| Selectr); |
| else |
| Error_Msg_N |
| ("& is not a component of the aggregate subtype", |
| Selectr); |
| end if; |
| |
| Check_Misspelled_Component (Components, Selectr); |
| end if; |
| |
| elsif No (Typech) then |
| Typech := Base_Type (Etype (Component)); |
| |
| elsif Typech /= Base_Type (Etype (Component)) then |
| if not Box_Present (Parent (Selectr)) then |
| Error_Msg_N |
| ("components in choice list must have same type", |
| Selectr); |
| end if; |
| end if; |
| |
| Next (Selectr); |
| end loop; |
| |
| Next (Assoc); |
| end loop Verification; |
| end Step_7; |
| |
| -- STEP 8: replace the original aggregate |
| |
| Step_8 : declare |
| New_Aggregate : constant Node_Id := New_Copy (N); |
| |
| begin |
| Set_Expressions (New_Aggregate, No_List); |
| Set_Etype (New_Aggregate, Etype (N)); |
| Set_Component_Associations (New_Aggregate, New_Assoc_List); |
| |
| Rewrite (N, New_Aggregate); |
| end Step_8; |
| end Resolve_Record_Aggregate; |
| |
| --------------------- |
| -- Sort_Case_Table -- |
| --------------------- |
| |
| procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is |
| L : constant Int := Case_Table'First; |
| U : constant Int := Case_Table'Last; |
| K : Int; |
| J : Int; |
| T : Case_Bounds; |
| |
| begin |
| K := L; |
| |
| while K /= U loop |
| T := Case_Table (K + 1); |
| J := K + 1; |
| |
| while J /= L |
| and then Expr_Value (Case_Table (J - 1).Choice_Lo) > |
| Expr_Value (T.Choice_Lo) |
| loop |
| Case_Table (J) := Case_Table (J - 1); |
| J := J - 1; |
| end loop; |
| |
| Case_Table (J) := T; |
| K := K + 1; |
| end loop; |
| end Sort_Case_Table; |
| |
| end Sem_Aggr; |