| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- S E M _ C H 4 -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2003, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 2, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING. If not, write -- |
| -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- |
| -- MA 02111-1307, USA. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Atree; use Atree; |
| with Debug; use Debug; |
| with Einfo; use Einfo; |
| with Errout; use Errout; |
| with Exp_Util; use Exp_Util; |
| with Hostparm; use Hostparm; |
| with Itypes; use Itypes; |
| with Lib.Xref; use Lib.Xref; |
| with Namet; use Namet; |
| with Nlists; use Nlists; |
| with Nmake; use Nmake; |
| with Opt; use Opt; |
| with Output; use Output; |
| with Restrict; use Restrict; |
| with Sem; use Sem; |
| with Sem_Cat; use Sem_Cat; |
| with Sem_Ch3; use Sem_Ch3; |
| with Sem_Ch8; use Sem_Ch8; |
| with Sem_Dist; use Sem_Dist; |
| with Sem_Eval; use Sem_Eval; |
| with Sem_Res; use Sem_Res; |
| with Sem_Util; use Sem_Util; |
| with Sem_Type; use Sem_Type; |
| with Stand; use Stand; |
| with Sinfo; use Sinfo; |
| with Snames; use Snames; |
| with Tbuild; use Tbuild; |
| |
| with GNAT.Spelling_Checker; use GNAT.Spelling_Checker; |
| |
| package body Sem_Ch4 is |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| procedure Analyze_Expression (N : Node_Id); |
| -- For expressions that are not names, this is just a call to analyze. |
| -- If the expression is a name, it may be a call to a parameterless |
| -- function, and if so must be converted into an explicit call node |
| -- and analyzed as such. This deproceduring must be done during the first |
| -- pass of overload resolution, because otherwise a procedure call with |
| -- overloaded actuals may fail to resolve. See 4327-001 for an example. |
| |
| procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id); |
| -- Analyze a call of the form "+"(x, y), etc. The prefix of the call |
| -- is an operator name or an expanded name whose selector is an operator |
| -- name, and one possible interpretation is as a predefined operator. |
| |
| procedure Analyze_Overloaded_Selected_Component (N : Node_Id); |
| -- If the prefix of a selected_component is overloaded, the proper |
| -- interpretation that yields a record type with the proper selector |
| -- name must be selected. |
| |
| procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id); |
| -- Procedure to analyze a user defined binary operator, which is resolved |
| -- like a function, but instead of a list of actuals it is presented |
| -- with the left and right operands of an operator node. |
| |
| procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id); |
| -- Procedure to analyze a user defined unary operator, which is resolved |
| -- like a function, but instead of a list of actuals, it is presented with |
| -- the operand of the operator node. |
| |
| procedure Ambiguous_Operands (N : Node_Id); |
| -- for equality, membership, and comparison operators with overloaded |
| -- arguments, list possible interpretations. |
| |
| procedure Analyze_One_Call |
| (N : Node_Id; |
| Nam : Entity_Id; |
| Report : Boolean; |
| Success : out Boolean); |
| -- Check one interpretation of an overloaded subprogram name for |
| -- compatibility with the types of the actuals in a call. If there is a |
| -- single interpretation which does not match, post error if Report is |
| -- set to True. |
| -- |
| -- Nam is the entity that provides the formals against which the actuals |
| -- are checked. Nam is either the name of a subprogram, or the internal |
| -- subprogram type constructed for an access_to_subprogram. If the actuals |
| -- are compatible with Nam, then Nam is added to the list of candidate |
| -- interpretations for N, and Success is set to True. |
| |
| procedure Check_Misspelled_Selector |
| (Prefix : Entity_Id; |
| Sel : Node_Id); |
| -- Give possible misspelling diagnostic if Sel is likely to be |
| -- a misspelling of one of the selectors of the Prefix. |
| -- This is called by Analyze_Selected_Component after producing |
| -- an invalid selector error message. |
| |
| function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean; |
| -- Verify that type T is declared in scope S. Used to find intepretations |
| -- for operators given by expanded names. This is abstracted as a separate |
| -- function to handle extensions to System, where S is System, but T is |
| -- declared in the extension. |
| |
| procedure Find_Arithmetic_Types |
| (L, R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id); |
| -- L and R are the operands of an arithmetic operator. Find |
| -- consistent pairs of interpretations for L and R that have a |
| -- numeric type consistent with the semantics of the operator. |
| |
| procedure Find_Comparison_Types |
| (L, R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id); |
| -- L and R are operands of a comparison operator. Find consistent |
| -- pairs of interpretations for L and R. |
| |
| procedure Find_Concatenation_Types |
| (L, R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id); |
| -- For the four varieties of concatenation. |
| |
| procedure Find_Equality_Types |
| (L, R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id); |
| -- Ditto for equality operators. |
| |
| procedure Find_Boolean_Types |
| (L, R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id); |
| -- Ditto for binary logical operations. |
| |
| procedure Find_Negation_Types |
| (R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id); |
| -- Find consistent interpretation for operand of negation operator. |
| |
| procedure Find_Non_Universal_Interpretations |
| (N : Node_Id; |
| R : Node_Id; |
| Op_Id : Entity_Id; |
| T1 : Entity_Id); |
| -- For equality and comparison operators, the result is always boolean, |
| -- and the legality of the operation is determined from the visibility |
| -- of the operand types. If one of the operands has a universal interpre- |
| -- tation, the legality check uses some compatible non-universal |
| -- interpretation of the other operand. N can be an operator node, or |
| -- a function call whose name is an operator designator. |
| |
| procedure Find_Unary_Types |
| (R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id); |
| -- Unary arithmetic types: plus, minus, abs. |
| |
| procedure Check_Arithmetic_Pair |
| (T1, T2 : Entity_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id); |
| -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid |
| -- types for left and right operand. Determine whether they constitute |
| -- a valid pair for the given operator, and record the corresponding |
| -- interpretation of the operator node. The node N may be an operator |
| -- node (the usual case) or a function call whose prefix is an operator |
| -- designator. In both cases Op_Id is the operator name itself. |
| |
| procedure Diagnose_Call (N : Node_Id; Nam : Node_Id); |
| -- Give detailed information on overloaded call where none of the |
| -- interpretations match. N is the call node, Nam the designator for |
| -- the overloaded entity being called. |
| |
| function Junk_Operand (N : Node_Id) return Boolean; |
| -- Test for an operand that is an inappropriate entity (e.g. a package |
| -- name or a label). If so, issue an error message and return True. If |
| -- the operand is not an inappropriate entity kind, return False. |
| |
| procedure Operator_Check (N : Node_Id); |
| -- Verify that an operator has received some valid interpretation. |
| -- If none was found, determine whether a use clause would make the |
| -- operation legal. The variable Candidate_Type (defined in Sem_Type) is |
| -- set for every type compatible with the operator, even if the operator |
| -- for the type is not directly visible. The routine uses this type to emit |
| -- a more informative message. |
| |
| function Try_Indexed_Call |
| (N : Node_Id; |
| Nam : Entity_Id; |
| Typ : Entity_Id) return Boolean; |
| -- If a function has defaults for all its actuals, a call to it may |
| -- in fact be an indexing on the result of the call. Try_Indexed_Call |
| -- attempts the interpretation as an indexing, prior to analysis as |
| -- a call. If both are possible, the node is overloaded with both |
| -- interpretations (same symbol but two different types). |
| |
| function Try_Indirect_Call |
| (N : Node_Id; |
| Nam : Entity_Id; |
| Typ : Entity_Id) return Boolean; |
| -- Similarly, a function F that needs no actuals can return an access |
| -- to a subprogram, and the call F (X) interpreted as F.all (X). In |
| -- this case the call may be overloaded with both interpretations. |
| |
| ------------------------ |
| -- Ambiguous_Operands -- |
| ------------------------ |
| |
| procedure Ambiguous_Operands (N : Node_Id) is |
| procedure List_Operand_Interps (Opnd : Node_Id); |
| |
| procedure List_Operand_Interps (Opnd : Node_Id) is |
| Nam : Node_Id; |
| Err : Node_Id := N; |
| |
| begin |
| if Is_Overloaded (Opnd) then |
| if Nkind (Opnd) in N_Op then |
| Nam := Opnd; |
| |
| elsif Nkind (Opnd) = N_Function_Call then |
| Nam := Name (Opnd); |
| |
| else |
| return; |
| end if; |
| |
| else |
| return; |
| end if; |
| |
| if Opnd = Left_Opnd (N) then |
| Error_Msg_N |
| ("\left operand has the following interpretations", N); |
| else |
| Error_Msg_N |
| ("\right operand has the following interpretations", N); |
| Err := Opnd; |
| end if; |
| |
| List_Interps (Nam, Err); |
| end List_Operand_Interps; |
| |
| begin |
| if Nkind (N) = N_In |
| or else Nkind (N) = N_Not_In |
| then |
| Error_Msg_N ("ambiguous operands for membership", N); |
| |
| elsif Nkind (N) = N_Op_Eq |
| or else Nkind (N) = N_Op_Ne |
| then |
| Error_Msg_N ("ambiguous operands for equality", N); |
| |
| else |
| Error_Msg_N ("ambiguous operands for comparison", N); |
| end if; |
| |
| if All_Errors_Mode then |
| List_Operand_Interps (Left_Opnd (N)); |
| List_Operand_Interps (Right_Opnd (N)); |
| else |
| |
| if OpenVMS then |
| Error_Msg_N ( |
| "\use '/'R'E'P'O'R'T'_'E'R'R'O'R'S'='F'U'L'L for details", |
| N); |
| else |
| Error_Msg_N ("\use -gnatf for details", N); |
| end if; |
| end if; |
| end Ambiguous_Operands; |
| |
| ----------------------- |
| -- Analyze_Aggregate -- |
| ----------------------- |
| |
| -- Most of the analysis of Aggregates requires that the type be known, |
| -- and is therefore put off until resolution. |
| |
| procedure Analyze_Aggregate (N : Node_Id) is |
| begin |
| if No (Etype (N)) then |
| Set_Etype (N, Any_Composite); |
| end if; |
| end Analyze_Aggregate; |
| |
| ----------------------- |
| -- Analyze_Allocator -- |
| ----------------------- |
| |
| procedure Analyze_Allocator (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Sav_Errs : constant Nat := Serious_Errors_Detected; |
| E : Node_Id := Expression (N); |
| Acc_Type : Entity_Id; |
| Type_Id : Entity_Id; |
| |
| begin |
| Check_Restriction (No_Allocators, N); |
| |
| if Nkind (E) = N_Qualified_Expression then |
| Acc_Type := Create_Itype (E_Allocator_Type, N); |
| Set_Etype (Acc_Type, Acc_Type); |
| Init_Size_Align (Acc_Type); |
| Find_Type (Subtype_Mark (E)); |
| Type_Id := Entity (Subtype_Mark (E)); |
| Check_Fully_Declared (Type_Id, N); |
| Set_Directly_Designated_Type (Acc_Type, Type_Id); |
| |
| if Is_Limited_Type (Type_Id) |
| and then Comes_From_Source (N) |
| and then not In_Instance_Body |
| then |
| -- Ada0Y (AI-287): Do not post an error if the expression corres- |
| -- ponds to a limited aggregate. Limited aggregates are checked in |
| -- sem_aggr in a per-component manner (cf. Get_Value subprogram). |
| |
| if Extensions_Allowed |
| and then Nkind (Expression (E)) = N_Aggregate |
| then |
| null; |
| else |
| Error_Msg_N ("initialization not allowed for limited types", N); |
| Explain_Limited_Type (Type_Id, N); |
| end if; |
| end if; |
| |
| Analyze_And_Resolve (Expression (E), Type_Id); |
| |
| -- A qualified expression requires an exact match of the type, |
| -- class-wide matching is not allowed. |
| |
| if Is_Class_Wide_Type (Type_Id) |
| and then Base_Type (Etype (Expression (E))) /= Base_Type (Type_Id) |
| then |
| Wrong_Type (Expression (E), Type_Id); |
| end if; |
| |
| Check_Non_Static_Context (Expression (E)); |
| |
| -- We don't analyze the qualified expression itself because it's |
| -- part of the allocator |
| |
| Set_Etype (E, Type_Id); |
| |
| else |
| declare |
| Def_Id : Entity_Id; |
| |
| begin |
| -- If the allocator includes a N_Subtype_Indication then a |
| -- constraint is present, otherwise the node is a subtype mark. |
| -- Introduce an explicit subtype declaration into the tree |
| -- defining some anonymous subtype and rewrite the allocator to |
| -- use this subtype rather than the subtype indication. |
| |
| -- It is important to introduce the explicit subtype declaration |
| -- so that the bounds of the subtype indication are attached to |
| -- the tree in case the allocator is inside a generic unit. |
| |
| if Nkind (E) = N_Subtype_Indication then |
| |
| -- A constraint is only allowed for a composite type in Ada |
| -- 95. In Ada 83, a constraint is also allowed for an |
| -- access-to-composite type, but the constraint is ignored. |
| |
| Find_Type (Subtype_Mark (E)); |
| |
| if Is_Elementary_Type (Entity (Subtype_Mark (E))) then |
| if not (Ada_83 |
| and then Is_Access_Type (Entity (Subtype_Mark (E)))) |
| then |
| Error_Msg_N ("constraint not allowed here", E); |
| |
| if Nkind (Constraint (E)) |
| = N_Index_Or_Discriminant_Constraint |
| then |
| Error_Msg_N |
| ("\if qualified expression was meant, " & |
| "use apostrophe", Constraint (E)); |
| end if; |
| end if; |
| |
| -- Get rid of the bogus constraint: |
| |
| Rewrite (E, New_Copy_Tree (Subtype_Mark (E))); |
| Analyze_Allocator (N); |
| return; |
| end if; |
| |
| if Expander_Active then |
| Def_Id := |
| Make_Defining_Identifier (Loc, New_Internal_Name ('S')); |
| |
| Insert_Action (E, |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => Def_Id, |
| Subtype_Indication => Relocate_Node (E))); |
| |
| if Sav_Errs /= Serious_Errors_Detected |
| and then Nkind (Constraint (E)) |
| = N_Index_Or_Discriminant_Constraint |
| then |
| Error_Msg_N |
| ("if qualified expression was meant, " & |
| "use apostrophe!", Constraint (E)); |
| end if; |
| |
| E := New_Occurrence_Of (Def_Id, Loc); |
| Rewrite (Expression (N), E); |
| end if; |
| end if; |
| |
| Type_Id := Process_Subtype (E, N); |
| Acc_Type := Create_Itype (E_Allocator_Type, N); |
| Set_Etype (Acc_Type, Acc_Type); |
| Init_Size_Align (Acc_Type); |
| Set_Directly_Designated_Type (Acc_Type, Type_Id); |
| Check_Fully_Declared (Type_Id, N); |
| |
| -- Check restriction against dynamically allocated protected |
| -- objects. Note that when limited aggregates are supported, |
| -- a similar test should be applied to an allocator with a |
| -- qualified expression ??? |
| |
| if Is_Protected_Type (Type_Id) then |
| Check_Restriction (No_Protected_Type_Allocators, N); |
| end if; |
| |
| -- Check for missing initialization. Skip this check if we already |
| -- had errors on analyzing the allocator, since in that case these |
| -- are probably cascaded errors |
| |
| if Is_Indefinite_Subtype (Type_Id) |
| and then Serious_Errors_Detected = Sav_Errs |
| then |
| if Is_Class_Wide_Type (Type_Id) then |
| Error_Msg_N |
| ("initialization required in class-wide allocation", N); |
| else |
| Error_Msg_N |
| ("initialization required in unconstrained allocation", N); |
| end if; |
| end if; |
| end; |
| end if; |
| |
| if Is_Abstract (Type_Id) then |
| Error_Msg_N ("cannot allocate abstract object", E); |
| end if; |
| |
| if Has_Task (Designated_Type (Acc_Type)) then |
| Check_Restriction (Max_Tasks, N); |
| Check_Restriction (No_Task_Allocators, N); |
| end if; |
| |
| Set_Etype (N, Acc_Type); |
| |
| if not Is_Library_Level_Entity (Acc_Type) then |
| Check_Restriction (No_Local_Allocators, N); |
| end if; |
| |
| if Serious_Errors_Detected > Sav_Errs then |
| Set_Error_Posted (N); |
| Set_Etype (N, Any_Type); |
| end if; |
| end Analyze_Allocator; |
| |
| --------------------------- |
| -- Analyze_Arithmetic_Op -- |
| --------------------------- |
| |
| procedure Analyze_Arithmetic_Op (N : Node_Id) is |
| L : constant Node_Id := Left_Opnd (N); |
| R : constant Node_Id := Right_Opnd (N); |
| Op_Id : Entity_Id; |
| |
| begin |
| Candidate_Type := Empty; |
| Analyze_Expression (L); |
| Analyze_Expression (R); |
| |
| -- If the entity is already set, the node is the instantiation of |
| -- a generic node with a non-local reference, or was manufactured |
| -- by a call to Make_Op_xxx. In either case the entity is known to |
| -- be valid, and we do not need to collect interpretations, instead |
| -- we just get the single possible interpretation. |
| |
| Op_Id := Entity (N); |
| |
| if Present (Op_Id) then |
| if Ekind (Op_Id) = E_Operator then |
| |
| if (Nkind (N) = N_Op_Divide or else |
| Nkind (N) = N_Op_Mod or else |
| Nkind (N) = N_Op_Multiply or else |
| Nkind (N) = N_Op_Rem) |
| and then Treat_Fixed_As_Integer (N) |
| then |
| null; |
| else |
| Set_Etype (N, Any_Type); |
| Find_Arithmetic_Types (L, R, Op_Id, N); |
| end if; |
| |
| else |
| Set_Etype (N, Any_Type); |
| Add_One_Interp (N, Op_Id, Etype (Op_Id)); |
| end if; |
| |
| -- Entity is not already set, so we do need to collect interpretations |
| |
| else |
| Op_Id := Get_Name_Entity_Id (Chars (N)); |
| Set_Etype (N, Any_Type); |
| |
| while Present (Op_Id) loop |
| if Ekind (Op_Id) = E_Operator |
| and then Present (Next_Entity (First_Entity (Op_Id))) |
| then |
| Find_Arithmetic_Types (L, R, Op_Id, N); |
| |
| -- The following may seem superfluous, because an operator cannot |
| -- be generic, but this ignores the cleverness of the author of |
| -- ACVC bc1013a. |
| |
| elsif Is_Overloadable (Op_Id) then |
| Analyze_User_Defined_Binary_Op (N, Op_Id); |
| end if; |
| |
| Op_Id := Homonym (Op_Id); |
| end loop; |
| end if; |
| |
| Operator_Check (N); |
| end Analyze_Arithmetic_Op; |
| |
| ------------------ |
| -- Analyze_Call -- |
| ------------------ |
| |
| -- Function, procedure, and entry calls are checked here. The Name |
| -- in the call may be overloaded. The actuals have been analyzed |
| -- and may themselves be overloaded. On exit from this procedure, the node |
| -- N may have zero, one or more interpretations. In the first case an error |
| -- message is produced. In the last case, the node is flagged as overloaded |
| -- and the interpretations are collected in All_Interp. |
| |
| -- If the name is an Access_To_Subprogram, it cannot be overloaded, but |
| -- the type-checking is similar to that of other calls. |
| |
| procedure Analyze_Call (N : Node_Id) is |
| Actuals : constant List_Id := Parameter_Associations (N); |
| Nam : Node_Id := Name (N); |
| X : Interp_Index; |
| It : Interp; |
| Nam_Ent : Entity_Id; |
| Success : Boolean := False; |
| |
| function Name_Denotes_Function return Boolean; |
| -- If the type of the name is an access to subprogram, this may be |
| -- the type of a name, or the return type of the function being called. |
| -- If the name is not an entity then it can denote a protected function. |
| -- Until we distinguish Etype from Return_Type, we must use this |
| -- routine to resolve the meaning of the name in the call. |
| |
| --------------------------- |
| -- Name_Denotes_Function -- |
| --------------------------- |
| |
| function Name_Denotes_Function return Boolean is |
| begin |
| if Is_Entity_Name (Nam) then |
| return Ekind (Entity (Nam)) = E_Function; |
| |
| elsif Nkind (Nam) = N_Selected_Component then |
| return Ekind (Entity (Selector_Name (Nam))) = E_Function; |
| |
| else |
| return False; |
| end if; |
| end Name_Denotes_Function; |
| |
| -- Start of processing for Analyze_Call |
| |
| begin |
| -- Initialize the type of the result of the call to the error type, |
| -- which will be reset if the type is successfully resolved. |
| |
| Set_Etype (N, Any_Type); |
| |
| if not Is_Overloaded (Nam) then |
| |
| -- Only one interpretation to check |
| |
| if Ekind (Etype (Nam)) = E_Subprogram_Type then |
| Nam_Ent := Etype (Nam); |
| |
| elsif Is_Access_Type (Etype (Nam)) |
| and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type |
| and then not Name_Denotes_Function |
| then |
| Nam_Ent := Designated_Type (Etype (Nam)); |
| Insert_Explicit_Dereference (Nam); |
| |
| -- Selected component case. Simple entry or protected operation, |
| -- where the entry name is given by the selector name. |
| |
| elsif Nkind (Nam) = N_Selected_Component then |
| Nam_Ent := Entity (Selector_Name (Nam)); |
| |
| if Ekind (Nam_Ent) /= E_Entry |
| and then Ekind (Nam_Ent) /= E_Entry_Family |
| and then Ekind (Nam_Ent) /= E_Function |
| and then Ekind (Nam_Ent) /= E_Procedure |
| then |
| Error_Msg_N ("name in call is not a callable entity", Nam); |
| Set_Etype (N, Any_Type); |
| return; |
| end if; |
| |
| -- If the name is an Indexed component, it can be a call to a member |
| -- of an entry family. The prefix must be a selected component whose |
| -- selector is the entry. Analyze_Procedure_Call normalizes several |
| -- kinds of call into this form. |
| |
| elsif Nkind (Nam) = N_Indexed_Component then |
| |
| if Nkind (Prefix (Nam)) = N_Selected_Component then |
| Nam_Ent := Entity (Selector_Name (Prefix (Nam))); |
| |
| else |
| Error_Msg_N ("name in call is not a callable entity", Nam); |
| Set_Etype (N, Any_Type); |
| return; |
| |
| end if; |
| |
| elsif not Is_Entity_Name (Nam) then |
| Error_Msg_N ("name in call is not a callable entity", Nam); |
| Set_Etype (N, Any_Type); |
| return; |
| |
| else |
| Nam_Ent := Entity (Nam); |
| |
| -- If no interpretations, give error message |
| |
| if not Is_Overloadable (Nam_Ent) then |
| declare |
| L : constant Boolean := Is_List_Member (N); |
| K : constant Node_Kind := Nkind (Parent (N)); |
| |
| begin |
| -- If the node is in a list whose parent is not an |
| -- expression then it must be an attempted procedure call. |
| |
| if L and then K not in N_Subexpr then |
| if Ekind (Entity (Nam)) = E_Generic_Procedure then |
| Error_Msg_NE |
| ("must instantiate generic procedure& before call", |
| Nam, Entity (Nam)); |
| else |
| Error_Msg_N |
| ("procedure or entry name expected", Nam); |
| end if; |
| |
| -- Check for tasking cases where only an entry call will do |
| |
| elsif not L |
| and then (K = N_Entry_Call_Alternative |
| or else K = N_Triggering_Alternative) |
| then |
| Error_Msg_N ("entry name expected", Nam); |
| |
| -- Otherwise give general error message |
| |
| else |
| Error_Msg_N ("invalid prefix in call", Nam); |
| end if; |
| |
| return; |
| end; |
| end if; |
| end if; |
| |
| Analyze_One_Call (N, Nam_Ent, True, Success); |
| |
| else |
| -- An overloaded selected component must denote overloaded |
| -- operations of a concurrent type. The interpretations are |
| -- attached to the simple name of those operations. |
| |
| if Nkind (Nam) = N_Selected_Component then |
| Nam := Selector_Name (Nam); |
| end if; |
| |
| Get_First_Interp (Nam, X, It); |
| |
| while Present (It.Nam) loop |
| Nam_Ent := It.Nam; |
| |
| -- Name may be call that returns an access to subprogram, or more |
| -- generally an overloaded expression one of whose interpretations |
| -- yields an access to subprogram. If the name is an entity, we |
| -- do not dereference, because the node is a call that returns |
| -- the access type: note difference between f(x), where the call |
| -- may return an access subprogram type, and f(x)(y), where the |
| -- type returned by the call to f is implicitly dereferenced to |
| -- analyze the outer call. |
| |
| if Is_Access_Type (Nam_Ent) then |
| Nam_Ent := Designated_Type (Nam_Ent); |
| |
| elsif Is_Access_Type (Etype (Nam_Ent)) |
| and then not Is_Entity_Name (Nam) |
| and then Ekind (Designated_Type (Etype (Nam_Ent))) |
| = E_Subprogram_Type |
| then |
| Nam_Ent := Designated_Type (Etype (Nam_Ent)); |
| end if; |
| |
| Analyze_One_Call (N, Nam_Ent, False, Success); |
| |
| -- If the interpretation succeeds, mark the proper type of the |
| -- prefix (any valid candidate will do). If not, remove the |
| -- candidate interpretation. This only needs to be done for |
| -- overloaded protected operations, for other entities disambi- |
| -- guation is done directly in Resolve. |
| |
| if Success then |
| Set_Etype (Nam, It.Typ); |
| |
| elsif Nkind (Name (N)) = N_Selected_Component |
| or else Nkind (Name (N)) = N_Function_Call |
| then |
| Remove_Interp (X); |
| end if; |
| |
| Get_Next_Interp (X, It); |
| end loop; |
| |
| -- If the name is the result of a function call, it can only |
| -- be a call to a function returning an access to subprogram. |
| -- Insert explicit dereference. |
| |
| if Nkind (Nam) = N_Function_Call then |
| Insert_Explicit_Dereference (Nam); |
| end if; |
| |
| if Etype (N) = Any_Type then |
| |
| -- None of the interpretations is compatible with the actuals |
| |
| Diagnose_Call (N, Nam); |
| |
| -- Special checks for uninstantiated put routines |
| |
| if Nkind (N) = N_Procedure_Call_Statement |
| and then Is_Entity_Name (Nam) |
| and then Chars (Nam) = Name_Put |
| and then List_Length (Actuals) = 1 |
| then |
| declare |
| Arg : constant Node_Id := First (Actuals); |
| Typ : Entity_Id; |
| |
| begin |
| if Nkind (Arg) = N_Parameter_Association then |
| Typ := Etype (Explicit_Actual_Parameter (Arg)); |
| else |
| Typ := Etype (Arg); |
| end if; |
| |
| if Is_Signed_Integer_Type (Typ) then |
| Error_Msg_N |
| ("possible missing instantiation of " & |
| "'Text_'I'O.'Integer_'I'O!", Nam); |
| |
| elsif Is_Modular_Integer_Type (Typ) then |
| Error_Msg_N |
| ("possible missing instantiation of " & |
| "'Text_'I'O.'Modular_'I'O!", Nam); |
| |
| elsif Is_Floating_Point_Type (Typ) then |
| Error_Msg_N |
| ("possible missing instantiation of " & |
| "'Text_'I'O.'Float_'I'O!", Nam); |
| |
| elsif Is_Ordinary_Fixed_Point_Type (Typ) then |
| Error_Msg_N |
| ("possible missing instantiation of " & |
| "'Text_'I'O.'Fixed_'I'O!", Nam); |
| |
| elsif Is_Decimal_Fixed_Point_Type (Typ) then |
| Error_Msg_N |
| ("possible missing instantiation of " & |
| "'Text_'I'O.'Decimal_'I'O!", Nam); |
| |
| elsif Is_Enumeration_Type (Typ) then |
| Error_Msg_N |
| ("possible missing instantiation of " & |
| "'Text_'I'O.'Enumeration_'I'O!", Nam); |
| end if; |
| end; |
| end if; |
| |
| elsif not Is_Overloaded (N) |
| and then Is_Entity_Name (Nam) |
| then |
| -- Resolution yields a single interpretation. Verify that |
| -- is has the proper capitalization. |
| |
| Set_Entity_With_Style_Check (Nam, Entity (Nam)); |
| Generate_Reference (Entity (Nam), Nam); |
| |
| Set_Etype (Nam, Etype (Entity (Nam))); |
| end if; |
| |
| End_Interp_List; |
| end if; |
| end Analyze_Call; |
| |
| --------------------------- |
| -- Analyze_Comparison_Op -- |
| --------------------------- |
| |
| procedure Analyze_Comparison_Op (N : Node_Id) is |
| L : constant Node_Id := Left_Opnd (N); |
| R : constant Node_Id := Right_Opnd (N); |
| Op_Id : Entity_Id := Entity (N); |
| |
| begin |
| Set_Etype (N, Any_Type); |
| Candidate_Type := Empty; |
| |
| Analyze_Expression (L); |
| Analyze_Expression (R); |
| |
| if Present (Op_Id) then |
| |
| if Ekind (Op_Id) = E_Operator then |
| Find_Comparison_Types (L, R, Op_Id, N); |
| else |
| Add_One_Interp (N, Op_Id, Etype (Op_Id)); |
| end if; |
| |
| if Is_Overloaded (L) then |
| Set_Etype (L, Intersect_Types (L, R)); |
| end if; |
| |
| else |
| Op_Id := Get_Name_Entity_Id (Chars (N)); |
| |
| while Present (Op_Id) loop |
| |
| if Ekind (Op_Id) = E_Operator then |
| Find_Comparison_Types (L, R, Op_Id, N); |
| else |
| Analyze_User_Defined_Binary_Op (N, Op_Id); |
| end if; |
| |
| Op_Id := Homonym (Op_Id); |
| end loop; |
| end if; |
| |
| Operator_Check (N); |
| end Analyze_Comparison_Op; |
| |
| --------------------------- |
| -- Analyze_Concatenation -- |
| --------------------------- |
| |
| -- If the only one-dimensional array type in scope is String, |
| -- this is the resulting type of the operation. Otherwise there |
| -- will be a concatenation operation defined for each user-defined |
| -- one-dimensional array. |
| |
| procedure Analyze_Concatenation (N : Node_Id) is |
| L : constant Node_Id := Left_Opnd (N); |
| R : constant Node_Id := Right_Opnd (N); |
| Op_Id : Entity_Id := Entity (N); |
| LT : Entity_Id; |
| RT : Entity_Id; |
| |
| begin |
| Set_Etype (N, Any_Type); |
| Candidate_Type := Empty; |
| |
| Analyze_Expression (L); |
| Analyze_Expression (R); |
| |
| -- If the entity is present, the node appears in an instance, |
| -- and denotes a predefined concatenation operation. The resulting |
| -- type is obtained from the arguments when possible. If the arguments |
| -- are aggregates, the array type and the concatenation type must be |
| -- visible. |
| |
| if Present (Op_Id) then |
| if Ekind (Op_Id) = E_Operator then |
| |
| LT := Base_Type (Etype (L)); |
| RT := Base_Type (Etype (R)); |
| |
| if Is_Array_Type (LT) |
| and then (RT = LT or else RT = Base_Type (Component_Type (LT))) |
| then |
| Add_One_Interp (N, Op_Id, LT); |
| |
| elsif Is_Array_Type (RT) |
| and then LT = Base_Type (Component_Type (RT)) |
| then |
| Add_One_Interp (N, Op_Id, RT); |
| |
| -- If one operand is a string type or a user-defined array type, |
| -- and the other is a literal, result is of the specific type. |
| |
| elsif |
| (Root_Type (LT) = Standard_String |
| or else Scope (LT) /= Standard_Standard) |
| and then Etype (R) = Any_String |
| then |
| Add_One_Interp (N, Op_Id, LT); |
| |
| elsif |
| (Root_Type (RT) = Standard_String |
| or else Scope (RT) /= Standard_Standard) |
| and then Etype (L) = Any_String |
| then |
| Add_One_Interp (N, Op_Id, RT); |
| |
| elsif not Is_Generic_Type (Etype (Op_Id)) then |
| Add_One_Interp (N, Op_Id, Etype (Op_Id)); |
| |
| else |
| -- Type and its operations must be visible. |
| |
| Set_Entity (N, Empty); |
| Analyze_Concatenation (N); |
| |
| end if; |
| |
| else |
| Add_One_Interp (N, Op_Id, Etype (Op_Id)); |
| end if; |
| |
| else |
| Op_Id := Get_Name_Entity_Id (Name_Op_Concat); |
| |
| while Present (Op_Id) loop |
| if Ekind (Op_Id) = E_Operator then |
| Find_Concatenation_Types (L, R, Op_Id, N); |
| else |
| Analyze_User_Defined_Binary_Op (N, Op_Id); |
| end if; |
| |
| Op_Id := Homonym (Op_Id); |
| end loop; |
| end if; |
| |
| Operator_Check (N); |
| end Analyze_Concatenation; |
| |
| ------------------------------------ |
| -- Analyze_Conditional_Expression -- |
| ------------------------------------ |
| |
| procedure Analyze_Conditional_Expression (N : Node_Id) is |
| Condition : constant Node_Id := First (Expressions (N)); |
| Then_Expr : constant Node_Id := Next (Condition); |
| Else_Expr : constant Node_Id := Next (Then_Expr); |
| |
| begin |
| Analyze_Expression (Condition); |
| Analyze_Expression (Then_Expr); |
| Analyze_Expression (Else_Expr); |
| Set_Etype (N, Etype (Then_Expr)); |
| end Analyze_Conditional_Expression; |
| |
| ------------------------- |
| -- Analyze_Equality_Op -- |
| ------------------------- |
| |
| procedure Analyze_Equality_Op (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| L : constant Node_Id := Left_Opnd (N); |
| R : constant Node_Id := Right_Opnd (N); |
| Op_Id : Entity_Id; |
| |
| begin |
| Set_Etype (N, Any_Type); |
| Candidate_Type := Empty; |
| |
| Analyze_Expression (L); |
| Analyze_Expression (R); |
| |
| -- If the entity is set, the node is a generic instance with a non-local |
| -- reference to the predefined operator or to a user-defined function. |
| -- It can also be an inequality that is expanded into the negation of a |
| -- call to a user-defined equality operator. |
| |
| -- For the predefined case, the result is Boolean, regardless of the |
| -- type of the operands. The operands may even be limited, if they are |
| -- generic actuals. If they are overloaded, label the left argument with |
| -- the common type that must be present, or with the type of the formal |
| -- of the user-defined function. |
| |
| if Present (Entity (N)) then |
| |
| Op_Id := Entity (N); |
| |
| if Ekind (Op_Id) = E_Operator then |
| Add_One_Interp (N, Op_Id, Standard_Boolean); |
| else |
| Add_One_Interp (N, Op_Id, Etype (Op_Id)); |
| end if; |
| |
| if Is_Overloaded (L) then |
| |
| if Ekind (Op_Id) = E_Operator then |
| Set_Etype (L, Intersect_Types (L, R)); |
| else |
| Set_Etype (L, Etype (First_Formal (Op_Id))); |
| end if; |
| end if; |
| |
| else |
| Op_Id := Get_Name_Entity_Id (Chars (N)); |
| |
| while Present (Op_Id) loop |
| |
| if Ekind (Op_Id) = E_Operator then |
| Find_Equality_Types (L, R, Op_Id, N); |
| else |
| Analyze_User_Defined_Binary_Op (N, Op_Id); |
| end if; |
| |
| Op_Id := Homonym (Op_Id); |
| end loop; |
| end if; |
| |
| -- If there was no match, and the operator is inequality, this may |
| -- be a case where inequality has not been made explicit, as for |
| -- tagged types. Analyze the node as the negation of an equality |
| -- operation. This cannot be done earlier, because before analysis |
| -- we cannot rule out the presence of an explicit inequality. |
| |
| if Etype (N) = Any_Type |
| and then Nkind (N) = N_Op_Ne |
| then |
| Op_Id := Get_Name_Entity_Id (Name_Op_Eq); |
| |
| while Present (Op_Id) loop |
| |
| if Ekind (Op_Id) = E_Operator then |
| Find_Equality_Types (L, R, Op_Id, N); |
| else |
| Analyze_User_Defined_Binary_Op (N, Op_Id); |
| end if; |
| |
| Op_Id := Homonym (Op_Id); |
| end loop; |
| |
| if Etype (N) /= Any_Type then |
| Op_Id := Entity (N); |
| |
| Rewrite (N, |
| Make_Op_Not (Loc, |
| Right_Opnd => |
| Make_Op_Eq (Loc, |
| Left_Opnd => Relocate_Node (Left_Opnd (N)), |
| Right_Opnd => Relocate_Node (Right_Opnd (N))))); |
| |
| Set_Entity (Right_Opnd (N), Op_Id); |
| Analyze (N); |
| end if; |
| end if; |
| |
| Operator_Check (N); |
| end Analyze_Equality_Op; |
| |
| ---------------------------------- |
| -- Analyze_Explicit_Dereference -- |
| ---------------------------------- |
| |
| procedure Analyze_Explicit_Dereference (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| P : constant Node_Id := Prefix (N); |
| T : Entity_Id; |
| I : Interp_Index; |
| It : Interp; |
| New_N : Node_Id; |
| |
| function Is_Function_Type return Boolean; |
| -- Check whether node may be interpreted as an implicit function call. |
| |
| function Is_Function_Type return Boolean is |
| I : Interp_Index; |
| It : Interp; |
| |
| begin |
| if not Is_Overloaded (N) then |
| return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type |
| and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type; |
| |
| else |
| Get_First_Interp (N, I, It); |
| |
| while Present (It.Nam) loop |
| if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type |
| or else Etype (Base_Type (It.Typ)) = Standard_Void_Type |
| then |
| return False; |
| end if; |
| |
| Get_Next_Interp (I, It); |
| end loop; |
| |
| return True; |
| end if; |
| end Is_Function_Type; |
| |
| begin |
| Analyze (P); |
| Set_Etype (N, Any_Type); |
| |
| -- Test for remote access to subprogram type, and if so return |
| -- after rewriting the original tree. |
| |
| if Remote_AST_E_Dereference (P) then |
| return; |
| end if; |
| |
| -- Normal processing for other than remote access to subprogram type |
| |
| if not Is_Overloaded (P) then |
| if Is_Access_Type (Etype (P)) then |
| |
| -- Set the Etype. We need to go thru Is_For_Access_Subtypes |
| -- to avoid other problems caused by the Private_Subtype |
| -- and it is safe to go to the Base_Type because this is the |
| -- same as converting the access value to its Base_Type. |
| |
| declare |
| DT : Entity_Id := Designated_Type (Etype (P)); |
| |
| begin |
| if Ekind (DT) = E_Private_Subtype |
| and then Is_For_Access_Subtype (DT) |
| then |
| DT := Base_Type (DT); |
| end if; |
| |
| Set_Etype (N, DT); |
| end; |
| |
| elsif Etype (P) /= Any_Type then |
| Error_Msg_N ("prefix of dereference must be an access type", N); |
| return; |
| end if; |
| |
| else |
| Get_First_Interp (P, I, It); |
| |
| while Present (It.Nam) loop |
| T := It.Typ; |
| |
| if Is_Access_Type (T) then |
| Add_One_Interp (N, Designated_Type (T), Designated_Type (T)); |
| end if; |
| |
| Get_Next_Interp (I, It); |
| end loop; |
| |
| End_Interp_List; |
| |
| -- Error if no interpretation of the prefix has an access type. |
| |
| if Etype (N) = Any_Type then |
| Error_Msg_N |
| ("access type required in prefix of explicit dereference", P); |
| Set_Etype (N, Any_Type); |
| return; |
| end if; |
| end if; |
| |
| if Is_Function_Type |
| and then Nkind (Parent (N)) /= N_Indexed_Component |
| |
| and then (Nkind (Parent (N)) /= N_Function_Call |
| or else N /= Name (Parent (N))) |
| |
| and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement |
| or else N /= Name (Parent (N))) |
| |
| and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration |
| and then (Nkind (Parent (N)) /= N_Attribute_Reference |
| or else |
| (Attribute_Name (Parent (N)) /= Name_Address |
| and then |
| Attribute_Name (Parent (N)) /= Name_Access)) |
| then |
| -- Name is a function call with no actuals, in a context that |
| -- requires deproceduring (including as an actual in an enclosing |
| -- function or procedure call). We can conceive of pathological cases |
| -- where the prefix might include functions that return access to |
| -- subprograms and others that return a regular type. Disambiguation |
| -- of those will have to take place in Resolve. See e.g. 7117-014. |
| |
| New_N := |
| Make_Function_Call (Loc, |
| Name => Make_Explicit_Dereference (Loc, P), |
| Parameter_Associations => New_List); |
| |
| -- If the prefix is overloaded, remove operations that have formals, |
| -- we know that this is a parameterless call. |
| |
| if Is_Overloaded (P) then |
| Get_First_Interp (P, I, It); |
| |
| while Present (It.Nam) loop |
| T := It.Typ; |
| |
| if No (First_Formal (Base_Type (Designated_Type (T)))) then |
| Set_Etype (P, T); |
| else |
| Remove_Interp (I); |
| end if; |
| |
| Get_Next_Interp (I, It); |
| end loop; |
| end if; |
| |
| Rewrite (N, New_N); |
| Analyze (N); |
| end if; |
| |
| -- A value of remote access-to-class-wide must not be dereferenced |
| -- (RM E.2.2(16)). |
| |
| Validate_Remote_Access_To_Class_Wide_Type (N); |
| |
| end Analyze_Explicit_Dereference; |
| |
| ------------------------ |
| -- Analyze_Expression -- |
| ------------------------ |
| |
| procedure Analyze_Expression (N : Node_Id) is |
| begin |
| Analyze (N); |
| Check_Parameterless_Call (N); |
| end Analyze_Expression; |
| |
| ------------------------------------ |
| -- Analyze_Indexed_Component_Form -- |
| ------------------------------------ |
| |
| procedure Analyze_Indexed_Component_Form (N : Node_Id) is |
| P : constant Node_Id := Prefix (N); |
| Exprs : constant List_Id := Expressions (N); |
| Exp : Node_Id; |
| P_T : Entity_Id; |
| E : Node_Id; |
| U_N : Entity_Id; |
| |
| procedure Process_Function_Call; |
| -- Prefix in indexed component form is an overloadable entity, |
| -- so the node is a function call. Reformat it as such. |
| |
| procedure Process_Indexed_Component; |
| -- Prefix in indexed component form is actually an indexed component. |
| -- This routine processes it, knowing that the prefix is already |
| -- resolved. |
| |
| procedure Process_Indexed_Component_Or_Slice; |
| -- An indexed component with a single index may designate a slice if |
| -- the index is a subtype mark. This routine disambiguates these two |
| -- cases by resolving the prefix to see if it is a subtype mark. |
| |
| procedure Process_Overloaded_Indexed_Component; |
| -- If the prefix of an indexed component is overloaded, the proper |
| -- interpretation is selected by the index types and the context. |
| |
| --------------------------- |
| -- Process_Function_Call -- |
| --------------------------- |
| |
| procedure Process_Function_Call is |
| Actual : Node_Id; |
| |
| begin |
| Change_Node (N, N_Function_Call); |
| Set_Name (N, P); |
| Set_Parameter_Associations (N, Exprs); |
| Actual := First (Parameter_Associations (N)); |
| |
| while Present (Actual) loop |
| Analyze (Actual); |
| Check_Parameterless_Call (Actual); |
| Next_Actual (Actual); |
| end loop; |
| |
| Analyze_Call (N); |
| end Process_Function_Call; |
| |
| ------------------------------- |
| -- Process_Indexed_Component -- |
| ------------------------------- |
| |
| procedure Process_Indexed_Component is |
| Exp : Node_Id; |
| Array_Type : Entity_Id; |
| Index : Node_Id; |
| Entry_Family : Entity_Id; |
| |
| begin |
| Exp := First (Exprs); |
| |
| if Is_Overloaded (P) then |
| Process_Overloaded_Indexed_Component; |
| |
| else |
| Array_Type := Etype (P); |
| |
| -- Prefix must be appropriate for an array type. |
| -- Dereference the prefix if it is an access type. |
| |
| if Is_Access_Type (Array_Type) then |
| Array_Type := Designated_Type (Array_Type); |
| Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N); |
| end if; |
| |
| if Is_Array_Type (Array_Type) then |
| null; |
| |
| elsif (Is_Entity_Name (P) |
| and then |
| Ekind (Entity (P)) = E_Entry_Family) |
| or else |
| (Nkind (P) = N_Selected_Component |
| and then |
| Is_Entity_Name (Selector_Name (P)) |
| and then |
| Ekind (Entity (Selector_Name (P))) = E_Entry_Family) |
| then |
| if Is_Entity_Name (P) then |
| Entry_Family := Entity (P); |
| else |
| Entry_Family := Entity (Selector_Name (P)); |
| end if; |
| |
| Analyze (Exp); |
| Set_Etype (N, Any_Type); |
| |
| if not Has_Compatible_Type |
| (Exp, Entry_Index_Type (Entry_Family)) |
| then |
| Error_Msg_N ("invalid index type in entry name", N); |
| |
| elsif Present (Next (Exp)) then |
| Error_Msg_N ("too many subscripts in entry reference", N); |
| |
| else |
| Set_Etype (N, Etype (P)); |
| end if; |
| |
| return; |
| |
| elsif Is_Record_Type (Array_Type) |
| and then Remote_AST_I_Dereference (P) |
| then |
| return; |
| |
| elsif Array_Type = Any_Type then |
| Set_Etype (N, Any_Type); |
| return; |
| |
| -- Here we definitely have a bad indexing |
| |
| else |
| if Nkind (Parent (N)) = N_Requeue_Statement |
| and then |
| ((Is_Entity_Name (P) |
| and then Ekind (Entity (P)) = E_Entry) |
| or else |
| (Nkind (P) = N_Selected_Component |
| and then Is_Entity_Name (Selector_Name (P)) |
| and then Ekind (Entity (Selector_Name (P))) = E_Entry)) |
| then |
| Error_Msg_N |
| ("REQUEUE does not permit parameters", First (Exprs)); |
| |
| elsif Is_Entity_Name (P) |
| and then Etype (P) = Standard_Void_Type |
| then |
| Error_Msg_NE ("incorrect use of&", P, Entity (P)); |
| |
| else |
| Error_Msg_N ("array type required in indexed component", P); |
| end if; |
| |
| Set_Etype (N, Any_Type); |
| return; |
| end if; |
| |
| Index := First_Index (Array_Type); |
| |
| while Present (Index) and then Present (Exp) loop |
| if not Has_Compatible_Type (Exp, Etype (Index)) then |
| Wrong_Type (Exp, Etype (Index)); |
| Set_Etype (N, Any_Type); |
| return; |
| end if; |
| |
| Next_Index (Index); |
| Next (Exp); |
| end loop; |
| |
| Set_Etype (N, Component_Type (Array_Type)); |
| |
| if Present (Index) then |
| Error_Msg_N |
| ("too few subscripts in array reference", First (Exprs)); |
| |
| elsif Present (Exp) then |
| Error_Msg_N ("too many subscripts in array reference", Exp); |
| end if; |
| end if; |
| |
| end Process_Indexed_Component; |
| |
| ---------------------------------------- |
| -- Process_Indexed_Component_Or_Slice -- |
| ---------------------------------------- |
| |
| procedure Process_Indexed_Component_Or_Slice is |
| begin |
| Exp := First (Exprs); |
| |
| while Present (Exp) loop |
| Analyze_Expression (Exp); |
| Next (Exp); |
| end loop; |
| |
| Exp := First (Exprs); |
| |
| -- If one index is present, and it is a subtype name, then the |
| -- node denotes a slice (note that the case of an explicit range |
| -- for a slice was already built as an N_Slice node in the first |
| -- place, so that case is not handled here). |
| |
| -- We use a replace rather than a rewrite here because this is one |
| -- of the cases in which the tree built by the parser is plain wrong. |
| |
| if No (Next (Exp)) |
| and then Is_Entity_Name (Exp) |
| and then Is_Type (Entity (Exp)) |
| then |
| Replace (N, |
| Make_Slice (Sloc (N), |
| Prefix => P, |
| Discrete_Range => New_Copy (Exp))); |
| Analyze (N); |
| |
| -- Otherwise (more than one index present, or single index is not |
| -- a subtype name), then we have the indexed component case. |
| |
| else |
| Process_Indexed_Component; |
| end if; |
| end Process_Indexed_Component_Or_Slice; |
| |
| ------------------------------------------ |
| -- Process_Overloaded_Indexed_Component -- |
| ------------------------------------------ |
| |
| procedure Process_Overloaded_Indexed_Component is |
| Exp : Node_Id; |
| I : Interp_Index; |
| It : Interp; |
| Typ : Entity_Id; |
| Index : Node_Id; |
| Found : Boolean; |
| |
| begin |
| Set_Etype (N, Any_Type); |
| Get_First_Interp (P, I, It); |
| |
| while Present (It.Nam) loop |
| Typ := It.Typ; |
| |
| if Is_Access_Type (Typ) then |
| Typ := Designated_Type (Typ); |
| Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N); |
| end if; |
| |
| if Is_Array_Type (Typ) then |
| |
| -- Got a candidate: verify that index types are compatible |
| |
| Index := First_Index (Typ); |
| Found := True; |
| |
| Exp := First (Exprs); |
| |
| while Present (Index) and then Present (Exp) loop |
| if Has_Compatible_Type (Exp, Etype (Index)) then |
| null; |
| else |
| Found := False; |
| Remove_Interp (I); |
| exit; |
| end if; |
| |
| Next_Index (Index); |
| Next (Exp); |
| end loop; |
| |
| if Found and then No (Index) and then No (Exp) then |
| Add_One_Interp (N, |
| Etype (Component_Type (Typ)), |
| Etype (Component_Type (Typ))); |
| end if; |
| end if; |
| |
| Get_Next_Interp (I, It); |
| end loop; |
| |
| if Etype (N) = Any_Type then |
| Error_Msg_N ("no legal interpetation for indexed component", N); |
| Set_Is_Overloaded (N, False); |
| end if; |
| |
| End_Interp_List; |
| end Process_Overloaded_Indexed_Component; |
| |
| ------------------------------------ |
| -- Analyze_Indexed_Component_Form -- |
| ------------------------------------ |
| |
| begin |
| -- Get name of array, function or type |
| |
| Analyze (P); |
| if Nkind (N) = N_Function_Call |
| or else Nkind (N) = N_Procedure_Call_Statement |
| then |
| -- If P is an explicit dereference whose prefix is of a |
| -- remote access-to-subprogram type, then N has already |
| -- been rewritten as a subprogram call and analyzed. |
| |
| return; |
| end if; |
| |
| pragma Assert (Nkind (N) = N_Indexed_Component); |
| |
| P_T := Base_Type (Etype (P)); |
| |
| if Is_Entity_Name (P) |
| or else Nkind (P) = N_Operator_Symbol |
| then |
| U_N := Entity (P); |
| |
| if Ekind (U_N) in Type_Kind then |
| |
| -- Reformat node as a type conversion. |
| |
| E := Remove_Head (Exprs); |
| |
| if Present (First (Exprs)) then |
| Error_Msg_N |
| ("argument of type conversion must be single expression", N); |
| end if; |
| |
| Change_Node (N, N_Type_Conversion); |
| Set_Subtype_Mark (N, P); |
| Set_Etype (N, U_N); |
| Set_Expression (N, E); |
| |
| -- After changing the node, call for the specific Analysis |
| -- routine directly, to avoid a double call to the expander. |
| |
| Analyze_Type_Conversion (N); |
| return; |
| end if; |
| |
| if Is_Overloadable (U_N) then |
| Process_Function_Call; |
| |
| elsif Ekind (Etype (P)) = E_Subprogram_Type |
| or else (Is_Access_Type (Etype (P)) |
| and then |
| Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type) |
| then |
| -- Call to access_to-subprogram with possible implicit dereference |
| |
| Process_Function_Call; |
| |
| elsif Is_Generic_Subprogram (U_N) then |
| |
| -- A common beginner's (or C++ templates fan) error. |
| |
| Error_Msg_N ("generic subprogram cannot be called", N); |
| Set_Etype (N, Any_Type); |
| return; |
| |
| else |
| Process_Indexed_Component_Or_Slice; |
| end if; |
| |
| -- If not an entity name, prefix is an expression that may denote |
| -- an array or an access-to-subprogram. |
| |
| else |
| if Ekind (P_T) = E_Subprogram_Type |
| or else (Is_Access_Type (P_T) |
| and then |
| Ekind (Designated_Type (P_T)) = E_Subprogram_Type) |
| then |
| Process_Function_Call; |
| |
| elsif Nkind (P) = N_Selected_Component |
| and then Ekind (Entity (Selector_Name (P))) = E_Function |
| then |
| Process_Function_Call; |
| |
| else |
| -- Indexed component, slice, or a call to a member of a family |
| -- entry, which will be converted to an entry call later. |
| |
| Process_Indexed_Component_Or_Slice; |
| end if; |
| end if; |
| end Analyze_Indexed_Component_Form; |
| |
| ------------------------ |
| -- Analyze_Logical_Op -- |
| ------------------------ |
| |
| procedure Analyze_Logical_Op (N : Node_Id) is |
| L : constant Node_Id := Left_Opnd (N); |
| R : constant Node_Id := Right_Opnd (N); |
| Op_Id : Entity_Id := Entity (N); |
| |
| begin |
| Set_Etype (N, Any_Type); |
| Candidate_Type := Empty; |
| |
| Analyze_Expression (L); |
| Analyze_Expression (R); |
| |
| if Present (Op_Id) then |
| |
| if Ekind (Op_Id) = E_Operator then |
| Find_Boolean_Types (L, R, Op_Id, N); |
| else |
| Add_One_Interp (N, Op_Id, Etype (Op_Id)); |
| end if; |
| |
| else |
| Op_Id := Get_Name_Entity_Id (Chars (N)); |
| |
| while Present (Op_Id) loop |
| if Ekind (Op_Id) = E_Operator then |
| Find_Boolean_Types (L, R, Op_Id, N); |
| else |
| Analyze_User_Defined_Binary_Op (N, Op_Id); |
| end if; |
| |
| Op_Id := Homonym (Op_Id); |
| end loop; |
| end if; |
| |
| Operator_Check (N); |
| end Analyze_Logical_Op; |
| |
| --------------------------- |
| -- Analyze_Membership_Op -- |
| --------------------------- |
| |
| procedure Analyze_Membership_Op (N : Node_Id) is |
| L : constant Node_Id := Left_Opnd (N); |
| R : constant Node_Id := Right_Opnd (N); |
| |
| Index : Interp_Index; |
| It : Interp; |
| Found : Boolean := False; |
| I_F : Interp_Index; |
| T_F : Entity_Id; |
| |
| procedure Try_One_Interp (T1 : Entity_Id); |
| -- Routine to try one proposed interpretation. Note that the context |
| -- of the operation plays no role in resolving the arguments, so that |
| -- if there is more than one interpretation of the operands that is |
| -- compatible with a membership test, the operation is ambiguous. |
| |
| procedure Try_One_Interp (T1 : Entity_Id) is |
| begin |
| if Has_Compatible_Type (R, T1) then |
| if Found |
| and then Base_Type (T1) /= Base_Type (T_F) |
| then |
| It := Disambiguate (L, I_F, Index, Any_Type); |
| |
| if It = No_Interp then |
| Ambiguous_Operands (N); |
| Set_Etype (L, Any_Type); |
| return; |
| |
| else |
| T_F := It.Typ; |
| end if; |
| |
| else |
| Found := True; |
| T_F := T1; |
| I_F := Index; |
| end if; |
| |
| Set_Etype (L, T_F); |
| end if; |
| |
| end Try_One_Interp; |
| |
| -- Start of processing for Analyze_Membership_Op |
| |
| begin |
| Analyze_Expression (L); |
| |
| if Nkind (R) = N_Range |
| or else (Nkind (R) = N_Attribute_Reference |
| and then Attribute_Name (R) = Name_Range) |
| then |
| Analyze (R); |
| |
| if not Is_Overloaded (L) then |
| Try_One_Interp (Etype (L)); |
| |
| else |
| Get_First_Interp (L, Index, It); |
| |
| while Present (It.Typ) loop |
| Try_One_Interp (It.Typ); |
| Get_Next_Interp (Index, It); |
| end loop; |
| end if; |
| |
| -- If not a range, it can only be a subtype mark, or else there |
| -- is a more basic error, to be diagnosed in Find_Type. |
| |
| else |
| Find_Type (R); |
| |
| if Is_Entity_Name (R) then |
| Check_Fully_Declared (Entity (R), R); |
| end if; |
| end if; |
| |
| -- Compatibility between expression and subtype mark or range is |
| -- checked during resolution. The result of the operation is Boolean |
| -- in any case. |
| |
| Set_Etype (N, Standard_Boolean); |
| end Analyze_Membership_Op; |
| |
| ---------------------- |
| -- Analyze_Negation -- |
| ---------------------- |
| |
| procedure Analyze_Negation (N : Node_Id) is |
| R : constant Node_Id := Right_Opnd (N); |
| Op_Id : Entity_Id := Entity (N); |
| |
| begin |
| Set_Etype (N, Any_Type); |
| Candidate_Type := Empty; |
| |
| Analyze_Expression (R); |
| |
| if Present (Op_Id) then |
| if Ekind (Op_Id) = E_Operator then |
| Find_Negation_Types (R, Op_Id, N); |
| else |
| Add_One_Interp (N, Op_Id, Etype (Op_Id)); |
| end if; |
| |
| else |
| Op_Id := Get_Name_Entity_Id (Chars (N)); |
| |
| while Present (Op_Id) loop |
| if Ekind (Op_Id) = E_Operator then |
| Find_Negation_Types (R, Op_Id, N); |
| else |
| Analyze_User_Defined_Unary_Op (N, Op_Id); |
| end if; |
| |
| Op_Id := Homonym (Op_Id); |
| end loop; |
| end if; |
| |
| Operator_Check (N); |
| end Analyze_Negation; |
| |
| ------------------- |
| -- Analyze_Null -- |
| ------------------- |
| |
| procedure Analyze_Null (N : Node_Id) is |
| begin |
| Set_Etype (N, Any_Access); |
| end Analyze_Null; |
| |
| ---------------------- |
| -- Analyze_One_Call -- |
| ---------------------- |
| |
| procedure Analyze_One_Call |
| (N : Node_Id; |
| Nam : Entity_Id; |
| Report : Boolean; |
| Success : out Boolean) |
| is |
| Actuals : constant List_Id := Parameter_Associations (N); |
| Prev_T : constant Entity_Id := Etype (N); |
| Formal : Entity_Id; |
| Actual : Node_Id; |
| Is_Indexed : Boolean := False; |
| Subp_Type : constant Entity_Id := Etype (Nam); |
| Norm_OK : Boolean; |
| |
| procedure Indicate_Name_And_Type; |
| -- If candidate interpretation matches, indicate name and type of |
| -- result on call node. |
| |
| ---------------------------- |
| -- Indicate_Name_And_Type -- |
| ---------------------------- |
| |
| procedure Indicate_Name_And_Type is |
| begin |
| Add_One_Interp (N, Nam, Etype (Nam)); |
| Success := True; |
| |
| -- If the prefix of the call is a name, indicate the entity |
| -- being called. If it is not a name, it is an expression that |
| -- denotes an access to subprogram or else an entry or family. In |
| -- the latter case, the name is a selected component, and the entity |
| -- being called is noted on the selector. |
| |
| if not Is_Type (Nam) then |
| if Is_Entity_Name (Name (N)) |
| or else Nkind (Name (N)) = N_Operator_Symbol |
| then |
| Set_Entity (Name (N), Nam); |
| |
| elsif Nkind (Name (N)) = N_Selected_Component then |
| Set_Entity (Selector_Name (Name (N)), Nam); |
| end if; |
| end if; |
| |
| if Debug_Flag_E and not Report then |
| Write_Str (" Overloaded call "); |
| Write_Int (Int (N)); |
| Write_Str (" compatible with "); |
| Write_Int (Int (Nam)); |
| Write_Eol; |
| end if; |
| end Indicate_Name_And_Type; |
| |
| -- Start of processing for Analyze_One_Call |
| |
| begin |
| Success := False; |
| |
| -- If the subprogram has no formals, or if all the formals have |
| -- defaults, and the return type is an array type, the node may |
| -- denote an indexing of the result of a parameterless call. |
| |
| if Needs_No_Actuals (Nam) |
| and then Present (Actuals) |
| then |
| if Is_Array_Type (Subp_Type) then |
| Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type); |
| |
| elsif Is_Access_Type (Subp_Type) |
| and then Is_Array_Type (Designated_Type (Subp_Type)) |
| then |
| Is_Indexed := |
| Try_Indexed_Call (N, Nam, Designated_Type (Subp_Type)); |
| |
| elsif Is_Access_Type (Subp_Type) |
| and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type |
| then |
| Is_Indexed := Try_Indirect_Call (N, Nam, Subp_Type); |
| end if; |
| |
| end if; |
| |
| Normalize_Actuals (N, Nam, (Report and not Is_Indexed), Norm_OK); |
| |
| if not Norm_OK then |
| |
| -- Mismatch in number or names of parameters |
| |
| if Debug_Flag_E then |
| Write_Str (" normalization fails in call "); |
| Write_Int (Int (N)); |
| Write_Str (" with subprogram "); |
| Write_Int (Int (Nam)); |
| Write_Eol; |
| end if; |
| |
| -- If the context expects a function call, discard any interpretation |
| -- that is a procedure. If the node is not overloaded, leave as is for |
| -- better error reporting when type mismatch is found. |
| |
| elsif Nkind (N) = N_Function_Call |
| and then Is_Overloaded (Name (N)) |
| and then Ekind (Nam) = E_Procedure |
| then |
| return; |
| |
| -- Ditto for function calls in a procedure context. |
| |
| elsif Nkind (N) = N_Procedure_Call_Statement |
| and then Is_Overloaded (Name (N)) |
| and then Etype (Nam) /= Standard_Void_Type |
| then |
| return; |
| |
| elsif not Present (Actuals) then |
| |
| -- If Normalize succeeds, then there are default parameters for |
| -- all formals. |
| |
| Indicate_Name_And_Type; |
| |
| elsif Ekind (Nam) = E_Operator then |
| if Nkind (N) = N_Procedure_Call_Statement then |
| return; |
| end if; |
| |
| -- This can occur when the prefix of the call is an operator |
| -- name or an expanded name whose selector is an operator name. |
| |
| Analyze_Operator_Call (N, Nam); |
| |
| if Etype (N) /= Prev_T then |
| |
| -- There may be a user-defined operator that hides the |
| -- current interpretation. We must check for this independently |
| -- of the analysis of the call with the user-defined operation, |
| -- because the parameter names may be wrong and yet the hiding |
| -- takes place. Fixes b34014o. |
| |
| if Is_Overloaded (Name (N)) then |
| declare |
| I : Interp_Index; |
| It : Interp; |
| |
| begin |
| Get_First_Interp (Name (N), I, It); |
| |
| while Present (It.Nam) loop |
| |
| if Ekind (It.Nam) /= E_Operator |
| and then Hides_Op (It.Nam, Nam) |
| and then |
| Has_Compatible_Type |
| (First_Actual (N), Etype (First_Formal (It.Nam))) |
| and then (No (Next_Actual (First_Actual (N))) |
| or else Has_Compatible_Type |
| (Next_Actual (First_Actual (N)), |
| Etype (Next_Formal (First_Formal (It.Nam))))) |
| then |
| Set_Etype (N, Prev_T); |
| return; |
| end if; |
| |
| Get_Next_Interp (I, It); |
| end loop; |
| end; |
| end if; |
| |
| -- If operator matches formals, record its name on the call. |
| -- If the operator is overloaded, Resolve will select the |
| -- correct one from the list of interpretations. The call |
| -- node itself carries the first candidate. |
| |
| Set_Entity (Name (N), Nam); |
| Success := True; |
| |
| elsif Report and then Etype (N) = Any_Type then |
| Error_Msg_N ("incompatible arguments for operator", N); |
| end if; |
| |
| else |
| -- Normalize_Actuals has chained the named associations in the |
| -- correct order of the formals. |
| |
| Actual := First_Actual (N); |
| Formal := First_Formal (Nam); |
| |
| while Present (Actual) and then Present (Formal) loop |
| |
| if Nkind (Parent (Actual)) /= N_Parameter_Association |
| or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal) |
| then |
| if Has_Compatible_Type (Actual, Etype (Formal)) then |
| Next_Actual (Actual); |
| Next_Formal (Formal); |
| |
| else |
| if Debug_Flag_E then |
| Write_Str (" type checking fails in call "); |
| Write_Int (Int (N)); |
| Write_Str (" with formal "); |
| Write_Int (Int (Formal)); |
| Write_Str (" in subprogram "); |
| Write_Int (Int (Nam)); |
| Write_Eol; |
| end if; |
| |
| if Report and not Is_Indexed then |
| |
| Wrong_Type (Actual, Etype (Formal)); |
| |
| if Nkind (Actual) = N_Op_Eq |
| and then Nkind (Left_Opnd (Actual)) = N_Identifier |
| then |
| Formal := First_Formal (Nam); |
| |
| while Present (Formal) loop |
| |
| if Chars (Left_Opnd (Actual)) = Chars (Formal) then |
| Error_Msg_N |
| ("possible misspelling of `='>`!", Actual); |
| exit; |
| end if; |
| |
| Next_Formal (Formal); |
| end loop; |
| end if; |
| |
| if All_Errors_Mode then |
| Error_Msg_Sloc := Sloc (Nam); |
| |
| if Is_Overloadable (Nam) |
| and then Present (Alias (Nam)) |
| and then not Comes_From_Source (Nam) |
| then |
| Error_Msg_NE |
| (" =='> in call to &#(inherited)!", Actual, Nam); |
| else |
| Error_Msg_NE (" =='> in call to &#!", Actual, Nam); |
| end if; |
| end if; |
| end if; |
| |
| return; |
| end if; |
| |
| else |
| -- Normalize_Actuals has verified that a default value exists |
| -- for this formal. Current actual names a subsequent formal. |
| |
| Next_Formal (Formal); |
| end if; |
| end loop; |
| |
| -- On exit, all actuals match. |
| |
| Indicate_Name_And_Type; |
| end if; |
| end Analyze_One_Call; |
| |
| ---------------------------- |
| -- Analyze_Operator_Call -- |
| ---------------------------- |
| |
| procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is |
| Op_Name : constant Name_Id := Chars (Op_Id); |
| Act1 : constant Node_Id := First_Actual (N); |
| Act2 : constant Node_Id := Next_Actual (Act1); |
| |
| begin |
| if Present (Act2) then |
| |
| -- Maybe binary operators |
| |
| if Present (Next_Actual (Act2)) then |
| |
| -- Too many actuals for an operator |
| |
| return; |
| |
| elsif Op_Name = Name_Op_Add |
| or else Op_Name = Name_Op_Subtract |
| or else Op_Name = Name_Op_Multiply |
| or else Op_Name = Name_Op_Divide |
| or else Op_Name = Name_Op_Mod |
| or else Op_Name = Name_Op_Rem |
| or else Op_Name = Name_Op_Expon |
| then |
| Find_Arithmetic_Types (Act1, Act2, Op_Id, N); |
| |
| elsif Op_Name = Name_Op_And |
| or else Op_Name = Name_Op_Or |
| or else Op_Name = Name_Op_Xor |
| then |
| Find_Boolean_Types (Act1, Act2, Op_Id, N); |
| |
| elsif Op_Name = Name_Op_Lt |
| or else Op_Name = Name_Op_Le |
| or else Op_Name = Name_Op_Gt |
| or else Op_Name = Name_Op_Ge |
| then |
| Find_Comparison_Types (Act1, Act2, Op_Id, N); |
| |
| elsif Op_Name = Name_Op_Eq |
| or else Op_Name = Name_Op_Ne |
| then |
| Find_Equality_Types (Act1, Act2, Op_Id, N); |
| |
| elsif Op_Name = Name_Op_Concat then |
| Find_Concatenation_Types (Act1, Act2, Op_Id, N); |
| |
| -- Is this else null correct, or should it be an abort??? |
| |
| else |
| null; |
| end if; |
| |
| else |
| -- Unary operators |
| |
| if Op_Name = Name_Op_Subtract or else |
| Op_Name = Name_Op_Add or else |
| Op_Name = Name_Op_Abs |
| then |
| Find_Unary_Types (Act1, Op_Id, N); |
| |
| elsif |
| Op_Name = Name_Op_Not |
| then |
| Find_Negation_Types (Act1, Op_Id, N); |
| |
| -- Is this else null correct, or should it be an abort??? |
| |
| else |
| null; |
| end if; |
| end if; |
| end Analyze_Operator_Call; |
| |
| ------------------------------------------- |
| -- Analyze_Overloaded_Selected_Component -- |
| ------------------------------------------- |
| |
| procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is |
| Nam : constant Node_Id := Prefix (N); |
| Sel : constant Node_Id := Selector_Name (N); |
| Comp : Entity_Id; |
| I : Interp_Index; |
| It : Interp; |
| T : Entity_Id; |
| |
| begin |
| Get_First_Interp (Nam, I, It); |
| |
| Set_Etype (Sel, Any_Type); |
| |
| while Present (It.Typ) loop |
| if Is_Access_Type (It.Typ) then |
| T := Designated_Type (It.Typ); |
| Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N); |
| |
| else |
| T := It.Typ; |
| end if; |
| |
| if Is_Record_Type (T) then |
| Comp := First_Entity (T); |
| |
| while Present (Comp) loop |
| |
| if Chars (Comp) = Chars (Sel) |
| and then Is_Visible_Component (Comp) |
| then |
| Set_Entity_With_Style_Check (Sel, Comp); |
| Generate_Reference (Comp, Sel); |
| |
| Set_Etype (Sel, Etype (Comp)); |
| Add_One_Interp (N, Etype (Comp), Etype (Comp)); |
| |
| -- This also specifies a candidate to resolve the name. |
| -- Further overloading will be resolved from context. |
| |
| Set_Etype (Nam, It.Typ); |
| end if; |
| |
| Next_Entity (Comp); |
| end loop; |
| |
| elsif Is_Concurrent_Type (T) then |
| Comp := First_Entity (T); |
| |
| while Present (Comp) |
| and then Comp /= First_Private_Entity (T) |
| loop |
| if Chars (Comp) = Chars (Sel) then |
| if Is_Overloadable (Comp) then |
| Add_One_Interp (Sel, Comp, Etype (Comp)); |
| else |
| Set_Entity_With_Style_Check (Sel, Comp); |
| Generate_Reference (Comp, Sel); |
| end if; |
| |
| Set_Etype (Sel, Etype (Comp)); |
| Set_Etype (N, Etype (Comp)); |
| Set_Etype (Nam, It.Typ); |
| |
| -- For access type case, introduce explicit deference for |
| -- more uniform treatment of entry calls. |
| |
| if Is_Access_Type (Etype (Nam)) then |
| Insert_Explicit_Dereference (Nam); |
| Error_Msg_NW |
| (Warn_On_Dereference, "?implicit dereference", N); |
| end if; |
| end if; |
| |
| Next_Entity (Comp); |
| end loop; |
| |
| Set_Is_Overloaded (N, Is_Overloaded (Sel)); |
| end if; |
| |
| Get_Next_Interp (I, It); |
| end loop; |
| |
| if Etype (N) = Any_Type then |
| Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel); |
| Set_Entity (Sel, Any_Id); |
| Set_Etype (Sel, Any_Type); |
| end if; |
| |
| end Analyze_Overloaded_Selected_Component; |
| |
| ---------------------------------- |
| -- Analyze_Qualified_Expression -- |
| ---------------------------------- |
| |
| procedure Analyze_Qualified_Expression (N : Node_Id) is |
| Mark : constant Entity_Id := Subtype_Mark (N); |
| T : Entity_Id; |
| |
| begin |
| Set_Etype (N, Any_Type); |
| Find_Type (Mark); |
| T := Entity (Mark); |
| |
| if T = Any_Type then |
| return; |
| end if; |
| Check_Fully_Declared (T, N); |
| |
| Analyze_Expression (Expression (N)); |
| Set_Etype (N, T); |
| end Analyze_Qualified_Expression; |
| |
| ------------------- |
| -- Analyze_Range -- |
| ------------------- |
| |
| procedure Analyze_Range (N : Node_Id) is |
| L : constant Node_Id := Low_Bound (N); |
| H : constant Node_Id := High_Bound (N); |
| I1, I2 : Interp_Index; |
| It1, It2 : Interp; |
| |
| procedure Check_Common_Type (T1, T2 : Entity_Id); |
| -- Verify the compatibility of two types, and choose the |
| -- non universal one if the other is universal. |
| |
| procedure Check_High_Bound (T : Entity_Id); |
| -- Test one interpretation of the low bound against all those |
| -- of the high bound. |
| |
| procedure Check_Universal_Expression (N : Node_Id); |
| -- In Ada83, reject bounds of a universal range that are not |
| -- literals or entity names. |
| |
| ----------------------- |
| -- Check_Common_Type -- |
| ----------------------- |
| |
| procedure Check_Common_Type (T1, T2 : Entity_Id) is |
| begin |
| if Covers (T1, T2) or else Covers (T2, T1) then |
| if T1 = Universal_Integer |
| or else T1 = Universal_Real |
| or else T1 = Any_Character |
| then |
| Add_One_Interp (N, Base_Type (T2), Base_Type (T2)); |
| |
| elsif T1 = T2 then |
| Add_One_Interp (N, T1, T1); |
| |
| else |
| Add_One_Interp (N, Base_Type (T1), Base_Type (T1)); |
| end if; |
| end if; |
| end Check_Common_Type; |
| |
| ---------------------- |
| -- Check_High_Bound -- |
| ---------------------- |
| |
| procedure Check_High_Bound (T : Entity_Id) is |
| begin |
| if not Is_Overloaded (H) then |
| Check_Common_Type (T, Etype (H)); |
| else |
| Get_First_Interp (H, I2, It2); |
| |
| while Present (It2.Typ) loop |
| Check_Common_Type (T, It2.Typ); |
| Get_Next_Interp (I2, It2); |
| end loop; |
| end if; |
| end Check_High_Bound; |
| |
| ----------------------------- |
| -- Is_Universal_Expression -- |
| ----------------------------- |
| |
| procedure Check_Universal_Expression (N : Node_Id) is |
| begin |
| if Etype (N) = Universal_Integer |
| and then Nkind (N) /= N_Integer_Literal |
| and then not Is_Entity_Name (N) |
| and then Nkind (N) /= N_Attribute_Reference |
| then |
| Error_Msg_N ("illegal bound in discrete range", N); |
| end if; |
| end Check_Universal_Expression; |
| |
| -- Start of processing for Analyze_Range |
| |
| begin |
| Set_Etype (N, Any_Type); |
| Analyze_Expression (L); |
| Analyze_Expression (H); |
| |
| if Etype (L) = Any_Type or else Etype (H) = Any_Type then |
| return; |
| |
| else |
| if not Is_Overloaded (L) then |
| Check_High_Bound (Etype (L)); |
| else |
| Get_First_Interp (L, I1, It1); |
| |
| while Present (It1.Typ) loop |
| Check_High_Bound (It1.Typ); |
| Get_Next_Interp (I1, It1); |
| end loop; |
| end if; |
| |
| -- If result is Any_Type, then we did not find a compatible pair |
| |
| if Etype (N) = Any_Type then |
| Error_Msg_N ("incompatible types in range ", N); |
| end if; |
| end if; |
| |
| if Ada_83 |
| and then |
| (Nkind (Parent (N)) = N_Loop_Parameter_Specification |
| or else Nkind (Parent (N)) = N_Constrained_Array_Definition) |
| then |
| Check_Universal_Expression (L); |
| Check_Universal_Expression (H); |
| end if; |
| end Analyze_Range; |
| |
| ----------------------- |
| -- Analyze_Reference -- |
| ----------------------- |
| |
| procedure Analyze_Reference (N : Node_Id) is |
| P : constant Node_Id := Prefix (N); |
| Acc_Type : Entity_Id; |
| |
| begin |
| Analyze (P); |
| Acc_Type := Create_Itype (E_Allocator_Type, N); |
| Set_Etype (Acc_Type, Acc_Type); |
| Init_Size_Align (Acc_Type); |
| Set_Directly_Designated_Type (Acc_Type, Etype (P)); |
| Set_Etype (N, Acc_Type); |
| end Analyze_Reference; |
| |
| -------------------------------- |
| -- Analyze_Selected_Component -- |
| -------------------------------- |
| |
| -- Prefix is a record type or a task or protected type. In the |
| -- later case, the selector must denote a visible entry. |
| |
| procedure Analyze_Selected_Component (N : Node_Id) is |
| Name : constant Node_Id := Prefix (N); |
| Sel : constant Node_Id := Selector_Name (N); |
| Comp : Entity_Id; |
| Entity_List : Entity_Id; |
| Prefix_Type : Entity_Id; |
| Act_Decl : Node_Id; |
| In_Scope : Boolean; |
| Parent_N : Node_Id; |
| |
| -- Start of processing for Analyze_Selected_Component |
| |
| begin |
| Set_Etype (N, Any_Type); |
| |
| if Is_Overloaded (Name) then |
| Analyze_Overloaded_Selected_Component (N); |
| return; |
| |
| elsif Etype (Name) = Any_Type then |
| Set_Entity (Sel, Any_Id); |
| Set_Etype (Sel, Any_Type); |
| return; |
| |
| else |
| -- Function calls that are prefixes of selected components must be |
| -- fully resolved in case we need to build an actual subtype, or |
| -- do some other operation requiring a fully resolved prefix. |
| |
| -- Note: Resolving all Nkinds of nodes here doesn't work. |
| -- (Breaks 2129-008) ???. |
| |
| if Nkind (Name) = N_Function_Call then |
| Resolve (Name); |
| end if; |
| |
| Prefix_Type := Etype (Name); |
| end if; |
| |
| if Is_Access_Type (Prefix_Type) then |
| |
| -- A RACW object can never be used as prefix of a selected |
| -- component since that means it is dereferenced without |
| -- being a controlling operand of a dispatching operation |
| -- (RM E.2.2(15)). |
| |
| if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type) |
| and then Comes_From_Source (N) |
| then |
| Error_Msg_N |
| ("invalid dereference of a remote access to class-wide value", |
| N); |
| |
| -- Normal case of selected component applied to access type |
| |
| else |
| Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N); |
| end if; |
| |
| Prefix_Type := Designated_Type (Prefix_Type); |
| end if; |
| |
| if Ekind (Prefix_Type) = E_Private_Subtype then |
| Prefix_Type := Base_Type (Prefix_Type); |
| end if; |
| |
| Entity_List := Prefix_Type; |
| |
| -- For class-wide types, use the entity list of the root type. This |
| -- indirection is specially important for private extensions because |
| -- only the root type get switched (not the class-wide type). |
| |
| if Is_Class_Wide_Type (Prefix_Type) then |
| Entity_List := Root_Type (Prefix_Type); |
| end if; |
| |
| Comp := First_Entity (Entity_List); |
| |
| -- If the selector has an original discriminant, the node appears in |
| -- an instance. Replace the discriminant with the corresponding one |
| -- in the current discriminated type. For nested generics, this must |
| -- be done transitively, so note the new original discriminant. |
| |
| if Nkind (Sel) = N_Identifier |
| and then Present (Original_Discriminant (Sel)) |
| then |
| Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type); |
| |
| -- Mark entity before rewriting, for completeness and because |
| -- subsequent semantic checks might examine the original node. |
| |
| Set_Entity (Sel, Comp); |
| Rewrite (Selector_Name (N), |
| New_Occurrence_Of (Comp, Sloc (N))); |
| Set_Original_Discriminant (Selector_Name (N), Comp); |
| Set_Etype (N, Etype (Comp)); |
| |
| if Is_Access_Type (Etype (Name)) then |
| Insert_Explicit_Dereference (Name); |
| Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N); |
| end if; |
| |
| elsif Is_Record_Type (Prefix_Type) then |
| |
| -- Find component with given name |
| |
| while Present (Comp) loop |
| |
| if Chars (Comp) = Chars (Sel) |
| and then Is_Visible_Component (Comp) |
| then |
| Set_Entity_With_Style_Check (Sel, Comp); |
| Generate_Reference (Comp, Sel); |
| |
| Set_Etype (Sel, Etype (Comp)); |
| |
| if Ekind (Comp) = E_Discriminant then |
| if Is_Unchecked_Union (Prefix_Type) then |
| Error_Msg_N |
| ("cannot reference discriminant of Unchecked_Union", |
| Sel); |
| end if; |
| |
| if Is_Generic_Type (Prefix_Type) |
| or else |
| Is_Generic_Type (Root_Type (Prefix_Type)) |
| then |
| Set_Original_Discriminant (Sel, Comp); |
| end if; |
| end if; |
| |
| -- Resolve the prefix early otherwise it is not possible to |
| -- build the actual subtype of the component: it may need |
| -- to duplicate this prefix and duplication is only allowed |
| -- on fully resolved expressions. |
| |
| Resolve (Name); |
| |
| -- We never need an actual subtype for the case of a selection |
| -- for a indexed component of a non-packed array, since in |
| -- this case gigi generates all the checks and can find the |
| -- necessary bounds information. |
| |
| -- We also do not need an actual subtype for the case of |
| -- a first, last, length, or range attribute applied to a |
| -- non-packed array, since gigi can again get the bounds in |
| -- these cases (gigi cannot handle the packed case, since it |
| -- has the bounds of the packed array type, not the original |
| -- bounds of the type). However, if the prefix is itself a |
| -- selected component, as in a.b.c (i), gigi may regard a.b.c |
| -- as a dynamic-sized temporary, so we do generate an actual |
| -- subtype for this case. |
| |
| Parent_N := Parent (N); |
| |
| if not Is_Packed (Etype (Comp)) |
| and then |
| ((Nkind (Parent_N) = N_Indexed_Component |
| and then Nkind (Name) /= N_Selected_Component) |
| or else |
| (Nkind (Parent_N) = N_Attribute_Reference |
| and then (Attribute_Name (Parent_N) = Name_First |
| or else |
| Attribute_Name (Parent_N) = Name_Last |
| or else |
| Attribute_Name (Parent_N) = Name_Length |
| or else |
| Attribute_Name (Parent_N) = Name_Range))) |
| then |
| Set_Etype (N, Etype (Comp)); |
| |
| -- In all other cases, we currently build an actual subtype. It |
| -- seems likely that many of these cases can be avoided, but |
| -- right now, the front end makes direct references to the |
| -- bounds (e.g. in generating a length check), and if we do |
| -- not make an actual subtype, we end up getting a direct |
| -- reference to a discriminant which will not do. |
| |
| else |
| Act_Decl := |
| Build_Actual_Subtype_Of_Component (Etype (Comp), N); |
| Insert_Action (N, Act_Decl); |
| |
| if No (Act_Decl) then |
| Set_Etype (N, Etype (Comp)); |
| |
| else |
| -- Component type depends on discriminants. Enter the |
| -- main attributes of the subtype. |
| |
| declare |
| Subt : constant Entity_Id := |
| Defining_Identifier (Act_Decl); |
| |
| begin |
| Set_Etype (Subt, Base_Type (Etype (Comp))); |
| Set_Ekind (Subt, Ekind (Etype (Comp))); |
| Set_Etype (N, Subt); |
| end; |
| end if; |
| end if; |
| |
| return; |
| end if; |
| |
| Next_Entity (Comp); |
| end loop; |
| |
| elsif Is_Private_Type (Prefix_Type) then |
| |
| -- Allow access only to discriminants of the type. If the |
| -- type has no full view, gigi uses the parent type for |
| -- the components, so we do the same here. |
| |
| if No (Full_View (Prefix_Type)) then |
| Entity_List := Root_Type (Base_Type (Prefix_Type)); |
| Comp := First_Entity (Entity_List); |
| end if; |
| |
| while Present (Comp) loop |
| |
| if Chars (Comp) = Chars (Sel) then |
| if Ekind (Comp) = E_Discriminant then |
| Set_Entity_With_Style_Check (Sel, Comp); |
| Generate_Reference (Comp, Sel); |
| |
| Set_Etype (Sel, Etype (Comp)); |
| Set_Etype (N, Etype (Comp)); |
| |
| if Is_Generic_Type (Prefix_Type) |
| or else |
| Is_Generic_Type (Root_Type (Prefix_Type)) |
| then |
| Set_Original_Discriminant (Sel, Comp); |
| end if; |
| |
| else |
| Error_Msg_NE |
| ("invisible selector for }", |
| N, First_Subtype (Prefix_Type)); |
| Set_Entity (Sel, Any_Id); |
| Set_Etype (N, Any_Type); |
| end if; |
| |
| return; |
| end if; |
| |
| Next_Entity (Comp); |
| end loop; |
| |
| elsif Is_Concurrent_Type (Prefix_Type) then |
| |
| -- Prefix is concurrent type. Find visible operation with given name |
| -- For a task, this can only include entries or discriminants if |
| -- the task type is not an enclosing scope. If it is an enclosing |
| -- scope (e.g. in an inner task) then all entities are visible, but |
| -- the prefix must denote the enclosing scope, i.e. can only be |
| -- a direct name or an expanded name. |
| |
| Set_Etype (Sel, Any_Type); |
| In_Scope := In_Open_Scopes (Prefix_Type); |
| |
| while Present (Comp) loop |
| if Chars (Comp) = Chars (Sel) then |
| if Is_Overloadable (Comp) then |
| Add_One_Interp (Sel, Comp, Etype (Comp)); |
| |
| elsif Ekind (Comp) = E_Discriminant |
| or else Ekind (Comp) = E_Entry_Family |
| or else (In_Scope |
| and then Is_Entity_Name (Name)) |
| then |
| Set_Entity_With_Style_Check (Sel, Comp); |
| Generate_Reference (Comp, Sel); |
| |
| else |
| goto Next_Comp; |
| end if; |
| |
| Set_Etype (Sel, Etype (Comp)); |
| Set_Etype (N, Etype (Comp)); |
| |
| if Ekind (Comp) = E_Discriminant then |
| Set_Original_Discriminant (Sel, Comp); |
| end if; |
| |
| -- For access type case, introduce explicit deference for |
| -- more uniform treatment of entry calls. |
| |
| if Is_Access_Type (Etype (Name)) then |
| Insert_Explicit_Dereference (Name); |
| Error_Msg_NW |
| (Warn_On_Dereference, "?implicit dereference", N); |
| end if; |
| end if; |
| |
| <<Next_Comp>> |
| Next_Entity (Comp); |
| exit when not In_Scope |
| and then Comp = First_Private_Entity (Prefix_Type); |
| end loop; |
| |
| Set_Is_Overloaded (N, Is_Overloaded (Sel)); |
| |
| else |
| -- Invalid prefix |
| |
| Error_Msg_NE ("invalid prefix in selected component&", N, Sel); |
| end if; |
| |
| -- If N still has no type, the component is not defined in the prefix. |
| |
| if Etype (N) = Any_Type then |
| |
| -- If the prefix is a single concurrent object, use its name in |
| -- the error message, rather than that of its anonymous type. |
| |
| if Is_Concurrent_Type (Prefix_Type) |
| and then Is_Internal_Name (Chars (Prefix_Type)) |
| and then not Is_Derived_Type (Prefix_Type) |
| and then Is_Entity_Name (Name) |
| then |
| |
| Error_Msg_Node_2 := Entity (Name); |
| Error_Msg_NE ("no selector& for&", N, Sel); |
| |
| Check_Misspelled_Selector (Entity_List, Sel); |
| |
| elsif Is_Generic_Type (Prefix_Type) |
| and then Ekind (Prefix_Type) = E_Record_Type_With_Private |
| and then Prefix_Type /= Etype (Prefix_Type) |
| and then Is_Record_Type (Etype (Prefix_Type)) |
| then |
| -- If this is a derived formal type, the parent may have a |
| -- different visibility at this point. Try for an inherited |
| -- component before reporting an error. |
| |
| Set_Etype (Prefix (N), Etype (Prefix_Type)); |
| Analyze_Selected_Component (N); |
| return; |
| |
| elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private |
| and then Is_Generic_Actual_Type (Prefix_Type) |
| and then Present (Full_View (Prefix_Type)) |
| then |
| -- Similarly, if this the actual for a formal derived type, |
| -- the component inherited from the generic parent may not |
| -- be visible in the actual, but the selected component is |
| -- legal. |
| |
| declare |
| Comp : Entity_Id; |
| begin |
| Comp := |
| First_Component (Generic_Parent_Type (Parent (Prefix_Type))); |
| |
| while Present (Comp) loop |
| if Chars (Comp) = Chars (Sel) then |
| Set_Entity_With_Style_Check (Sel, Comp); |
| Set_Etype (Sel, Etype (Comp)); |
| Set_Etype (N, Etype (Comp)); |
| exit; |
| end if; |
| |
| Next_Component (Comp); |
| end loop; |
| |
| pragma Assert (Etype (N) /= Any_Type); |
| end; |
| |
| else |
| if Ekind (Prefix_Type) = E_Record_Subtype then |
| |
| -- Check whether this is a component of the base type |
| -- which is absent from a statically constrained subtype. |
| -- This will raise constraint error at run-time, but is |
| -- not a compile-time error. When the selector is illegal |
| -- for base type as well fall through and generate a |
| -- compilation error anyway. |
| |
| Comp := First_Component (Base_Type (Prefix_Type)); |
| |
| while Present (Comp) loop |
| |
| if Chars (Comp) = Chars (Sel) |
| and then Is_Visible_Component (Comp) |
| then |
| Set_Entity_With_Style_Check (Sel, Comp); |
| Generate_Reference (Comp, Sel); |
| Set_Etype (Sel, Etype (Comp)); |
| Set_Etype (N, Etype (Comp)); |
| |
| -- Emit appropriate message. Gigi will replace the |
| -- node subsequently with the appropriate Raise. |
| |
| Apply_Compile_Time_Constraint_Error |
| (N, "component not present in }?", |
| CE_Discriminant_Check_Failed, |
| Ent => Prefix_Type, Rep => False); |
| Set_Raises_Constraint_Error (N); |
| return; |
| end if; |
| |
| Next_Component (Comp); |
| end loop; |
| |
| end if; |
| |
| Error_Msg_Node_2 := First_Subtype (Prefix_Type); |
| Error_Msg_NE ("no selector& for}", N, Sel); |
| |
| Check_Misspelled_Selector (Entity_List, Sel); |
| |
| end if; |
| |
| Set_Entity (Sel, Any_Id); |
| Set_Etype (Sel, Any_Type); |
| end if; |
| end Analyze_Selected_Component; |
| |
| --------------------------- |
| -- Analyze_Short_Circuit -- |
| --------------------------- |
| |
| procedure Analyze_Short_Circuit (N : Node_Id) is |
| L : constant Node_Id := Left_Opnd (N); |
| R : constant Node_Id := Right_Opnd (N); |
| Ind : Interp_Index; |
| It : Interp; |
| |
| begin |
| Analyze_Expression (L); |
| Analyze_Expression (R); |
| Set_Etype (N, Any_Type); |
| |
| if not Is_Overloaded (L) then |
| |
| if Root_Type (Etype (L)) = Standard_Boolean |
| and then Has_Compatible_Type (R, Etype (L)) |
| then |
| Add_One_Interp (N, Etype (L), Etype (L)); |
| end if; |
| |
| else |
| Get_First_Interp (L, Ind, It); |
| |
| while Present (It.Typ) loop |
| if Root_Type (It.Typ) = Standard_Boolean |
| and then Has_Compatible_Type (R, It.Typ) |
| then |
| Add_One_Interp (N, It.Typ, It.Typ); |
| end if; |
| |
| Get_Next_Interp (Ind, It); |
| end loop; |
| end if; |
| |
| -- Here we have failed to find an interpretation. Clearly we |
| -- know that it is not the case that both operands can have |
| -- an interpretation of Boolean, but this is by far the most |
| -- likely intended interpretation. So we simply resolve both |
| -- operands as Booleans, and at least one of these resolutions |
| -- will generate an error message, and we do not need to give |
| -- a further error message on the short circuit operation itself. |
| |
| if Etype (N) = Any_Type then |
| Resolve (L, Standard_Boolean); |
| Resolve (R, Standard_Boolean); |
| Set_Etype (N, Standard_Boolean); |
| end if; |
| end Analyze_Short_Circuit; |
| |
| ------------------- |
| -- Analyze_Slice -- |
| ------------------- |
| |
| procedure Analyze_Slice (N : Node_Id) is |
| P : constant Node_Id := Prefix (N); |
| D : constant Node_Id := Discrete_Range (N); |
| Array_Type : Entity_Id; |
| |
| procedure Analyze_Overloaded_Slice; |
| -- If the prefix is overloaded, select those interpretations that |
| -- yield a one-dimensional array type. |
| |
| procedure Analyze_Overloaded_Slice is |
| I : Interp_Index; |
| It : Interp; |
| Typ : Entity_Id; |
| |
| begin |
| Set_Etype (N, Any_Type); |
| Get_First_Interp (P, I, It); |
| |
| while Present (It.Nam) loop |
| Typ := It.Typ; |
| |
| if Is_Access_Type (Typ) then |
| Typ := Designated_Type (Typ); |
| Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N); |
| end if; |
| |
| if Is_Array_Type (Typ) |
| and then Number_Dimensions (Typ) = 1 |
| and then Has_Compatible_Type (D, Etype (First_Index (Typ))) |
| then |
| Add_One_Interp (N, Typ, Typ); |
| end if; |
| |
| Get_Next_Interp (I, It); |
| end loop; |
| |
| if Etype (N) = Any_Type then |
| Error_Msg_N ("expect array type in prefix of slice", N); |
| end if; |
| end Analyze_Overloaded_Slice; |
| |
| -- Start of processing for Analyze_Slice |
| |
| begin |
| -- Analyze the prefix if not done already |
| |
| if No (Etype (P)) then |
| Analyze (P); |
| end if; |
| |
| Analyze (D); |
| |
| if Is_Overloaded (P) then |
| Analyze_Overloaded_Slice; |
| |
| else |
| Array_Type := Etype (P); |
| Set_Etype (N, Any_Type); |
| |
| if Is_Access_Type (Array_Type) then |
| Array_Type := Designated_Type (Array_Type); |
| Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N); |
| end if; |
| |
| if not Is_Array_Type (Array_Type) then |
| Wrong_Type (P, Any_Array); |
| |
| elsif Number_Dimensions (Array_Type) > 1 then |
| Error_Msg_N |
| ("type is not one-dimensional array in slice prefix", N); |
| |
| elsif not |
| Has_Compatible_Type (D, Etype (First_Index (Array_Type))) |
| then |
| Wrong_Type (D, Etype (First_Index (Array_Type))); |
| |
| else |
| Set_Etype (N, Array_Type); |
| end if; |
| end if; |
| end Analyze_Slice; |
| |
| ----------------------------- |
| -- Analyze_Type_Conversion -- |
| ----------------------------- |
| |
| procedure Analyze_Type_Conversion (N : Node_Id) is |
| Expr : constant Node_Id := Expression (N); |
| T : Entity_Id; |
| |
| begin |
| -- If Conversion_OK is set, then the Etype is already set, and the |
| -- only processing required is to analyze the expression. This is |
| -- used to construct certain "illegal" conversions which are not |
| -- allowed by Ada semantics, but can be handled OK by Gigi, see |
| -- Sinfo for further details. |
| |
| if Conversion_OK (N) then |
| Analyze (Expr); |
| return; |
| end if; |
| |
| -- Otherwise full type analysis is required, as well as some semantic |
| -- checks to make sure the argument of the conversion is appropriate. |
| |
| Find_Type (Subtype_Mark (N)); |
| T := Entity (Subtype_Mark (N)); |
| Set_Etype (N, T); |
| Check_Fully_Declared (T, N); |
| Analyze_Expression (Expr); |
| Validate_Remote_Type_Type_Conversion (N); |
| |
| -- Only remaining step is validity checks on the argument. These |
| -- are skipped if the conversion does not come from the source. |
| |
| if not Comes_From_Source (N) then |
| return; |
| |
| elsif Nkind (Expr) = N_Null then |
| Error_Msg_N ("argument of conversion cannot be null", N); |
| Error_Msg_N ("\use qualified expression instead", N); |
| Set_Etype (N, Any_Type); |
| |
| elsif Nkind (Expr) = N_Aggregate then |
| Error_Msg_N ("argument of conversion cannot be aggregate", N); |
| Error_Msg_N ("\use qualified expression instead", N); |
| |
| elsif Nkind (Expr) = N_Allocator then |
| Error_Msg_N ("argument of conversion cannot be an allocator", N); |
| Error_Msg_N ("\use qualified expression instead", N); |
| |
| elsif Nkind (Expr) = N_String_Literal then |
| Error_Msg_N ("argument of conversion cannot be string literal", N); |
| Error_Msg_N ("\use qualified expression instead", N); |
| |
| elsif Nkind (Expr) = N_Character_Literal then |
| if Ada_83 then |
| Resolve (Expr, T); |
| else |
| Error_Msg_N ("argument of conversion cannot be character literal", |
| N); |
| Error_Msg_N ("\use qualified expression instead", N); |
| end if; |
| |
| elsif Nkind (Expr) = N_Attribute_Reference |
| and then |
| (Attribute_Name (Expr) = Name_Access or else |
| Attribute_Name (Expr) = Name_Unchecked_Access or else |
| Attribute_Name (Expr) = Name_Unrestricted_Access) |
| then |
| Error_Msg_N ("argument of conversion cannot be access", N); |
| Error_Msg_N ("\use qualified expression instead", N); |
| end if; |
| |
| end Analyze_Type_Conversion; |
| |
| ---------------------- |
| -- Analyze_Unary_Op -- |
| ---------------------- |
| |
| procedure Analyze_Unary_Op (N : Node_Id) is |
| R : constant Node_Id := Right_Opnd (N); |
| Op_Id : Entity_Id := Entity (N); |
| |
| begin |
| Set_Etype (N, Any_Type); |
| Candidate_Type := Empty; |
| |
| Analyze_Expression (R); |
| |
| if Present (Op_Id) then |
| if Ekind (Op_Id) = E_Operator then |
| Find_Unary_Types (R, Op_Id, N); |
| else |
| Add_One_Interp (N, Op_Id, Etype (Op_Id)); |
| end if; |
| |
| else |
| Op_Id := Get_Name_Entity_Id (Chars (N)); |
| |
| while Present (Op_Id) loop |
| |
| if Ekind (Op_Id) = E_Operator then |
| if No (Next_Entity (First_Entity (Op_Id))) then |
| Find_Unary_Types (R, Op_Id, N); |
| end if; |
| |
| elsif Is_Overloadable (Op_Id) then |
| Analyze_User_Defined_Unary_Op (N, Op_Id); |
| end if; |
| |
| Op_Id := Homonym (Op_Id); |
| end loop; |
| end if; |
| |
| Operator_Check (N); |
| end Analyze_Unary_Op; |
| |
| ---------------------------------- |
| -- Analyze_Unchecked_Expression -- |
| ---------------------------------- |
| |
| procedure Analyze_Unchecked_Expression (N : Node_Id) is |
| begin |
| Analyze (Expression (N), Suppress => All_Checks); |
| Set_Etype (N, Etype (Expression (N))); |
| Save_Interps (Expression (N), N); |
| end Analyze_Unchecked_Expression; |
| |
| --------------------------------------- |
| -- Analyze_Unchecked_Type_Conversion -- |
| --------------------------------------- |
| |
| procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is |
| begin |
| Find_Type (Subtype_Mark (N)); |
| Analyze_Expression (Expression (N)); |
| Set_Etype (N, Entity (Subtype_Mark (N))); |
| end Analyze_Unchecked_Type_Conversion; |
| |
| ------------------------------------ |
| -- Analyze_User_Defined_Binary_Op -- |
| ------------------------------------ |
| |
| procedure Analyze_User_Defined_Binary_Op |
| (N : Node_Id; |
| Op_Id : Entity_Id) |
| is |
| begin |
| -- Only do analysis if the operator Comes_From_Source, since otherwise |
| -- the operator was generated by the expander, and all such operators |
| -- always refer to the operators in package Standard. |
| |
| if Comes_From_Source (N) then |
| declare |
| F1 : constant Entity_Id := First_Formal (Op_Id); |
| F2 : constant Entity_Id := Next_Formal (F1); |
| |
| begin |
| -- Verify that Op_Id is a visible binary function. Note that since |
| -- we know Op_Id is overloaded, potentially use visible means use |
| -- visible for sure (RM 9.4(11)). |
| |
| if Ekind (Op_Id) = E_Function |
| and then Present (F2) |
| and then (Is_Immediately_Visible (Op_Id) |
| or else Is_Potentially_Use_Visible (Op_Id)) |
| and then Has_Compatible_Type (Left_Opnd (N), Etype (F1)) |
| and then Has_Compatible_Type (Right_Opnd (N), Etype (F2)) |
| then |
| Add_One_Interp (N, Op_Id, Etype (Op_Id)); |
| |
| if Debug_Flag_E then |
| Write_Str ("user defined operator "); |
| Write_Name (Chars (Op_Id)); |
| Write_Str (" on node "); |
| Write_Int (Int (N)); |
| Write_Eol; |
| end if; |
| end if; |
| end; |
| end if; |
| end Analyze_User_Defined_Binary_Op; |
| |
| ----------------------------------- |
| -- Analyze_User_Defined_Unary_Op -- |
| ----------------------------------- |
| |
| procedure Analyze_User_Defined_Unary_Op |
| (N : Node_Id; |
| Op_Id : Entity_Id) |
| is |
| begin |
| -- Only do analysis if the operator Comes_From_Source, since otherwise |
| -- the operator was generated by the expander, and all such operators |
| -- always refer to the operators in package Standard. |
| |
| if Comes_From_Source (N) then |
| declare |
| F : constant Entity_Id := First_Formal (Op_Id); |
| |
| begin |
| -- Verify that Op_Id is a visible unary function. Note that since |
| -- we know Op_Id is overloaded, potentially use visible means use |
| -- visible for sure (RM 9.4(11)). |
| |
| if Ekind (Op_Id) = E_Function |
| and then No (Next_Formal (F)) |
| and then (Is_Immediately_Visible (Op_Id) |
| or else Is_Potentially_Use_Visible (Op_Id)) |
| and then Has_Compatible_Type (Right_Opnd (N), Etype (F)) |
| then |
| Add_One_Interp (N, Op_Id, Etype (Op_Id)); |
| end if; |
| end; |
| end if; |
| end Analyze_User_Defined_Unary_Op; |
| |
| --------------------------- |
| -- Check_Arithmetic_Pair -- |
| --------------------------- |
| |
| procedure Check_Arithmetic_Pair |
| (T1, T2 : Entity_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id) |
| is |
| Op_Name : constant Name_Id := Chars (Op_Id); |
| |
| function Specific_Type (T1, T2 : Entity_Id) return Entity_Id; |
| -- Get specific type (i.e. non-universal type if there is one) |
| |
| function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is |
| begin |
| if T1 = Universal_Integer or else T1 = Universal_Real then |
| return Base_Type (T2); |
| else |
| return Base_Type (T1); |
| end if; |
| end Specific_Type; |
| |
| -- Start of processing for Check_Arithmetic_Pair |
| |
| begin |
| if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then |
| |
| if Is_Numeric_Type (T1) |
| and then Is_Numeric_Type (T2) |
| and then (Covers (T1, T2) or else Covers (T2, T1)) |
| then |
| Add_One_Interp (N, Op_Id, Specific_Type (T1, T2)); |
| end if; |
| |
| elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then |
| |
| if Is_Fixed_Point_Type (T1) |
| and then (Is_Fixed_Point_Type (T2) |
| or else T2 = Universal_Real) |
| then |
| -- If Treat_Fixed_As_Integer is set then the Etype is already set |
| -- and no further processing is required (this is the case of an |
| -- operator constructed by Exp_Fixd for a fixed point operation) |
| -- Otherwise add one interpretation with universal fixed result |
| -- If the operator is given in functional notation, it comes |
| -- from source and Fixed_As_Integer cannot apply. |
| |
| if Nkind (N) not in N_Op |
| or else not Treat_Fixed_As_Integer (N) |
| then |
| Add_One_Interp (N, Op_Id, Universal_Fixed); |
| end if; |
| |
| elsif Is_Fixed_Point_Type (T2) |
| and then (Nkind (N) not in N_Op |
| or else not Treat_Fixed_As_Integer (N)) |
| and then T1 = Universal_Real |
| then |
| Add_One_Interp (N, Op_Id, Universal_Fixed); |
| |
| elsif Is_Numeric_Type (T1) |
| and then Is_Numeric_Type (T2) |
| and then (Covers (T1, T2) or else Covers (T2, T1)) |
| then |
| Add_One_Interp (N, Op_Id, Specific_Type (T1, T2)); |
| |
| elsif Is_Fixed_Point_Type (T1) |
| and then (Base_Type (T2) = Base_Type (Standard_Integer) |
| or else T2 = Universal_Integer) |
| then |
| Add_One_Interp (N, Op_Id, T1); |
| |
| elsif T2 = Universal_Real |
| and then Base_Type (T1) = Base_Type (Standard_Integer) |
| and then Op_Name = Name_Op_Multiply |
| then |
| Add_One_Interp (N, Op_Id, Any_Fixed); |
| |
| elsif T1 = Universal_Real |
| and then Base_Type (T2) = Base_Type (Standard_Integer) |
| then |
| Add_One_Interp (N, Op_Id, Any_Fixed); |
| |
| elsif Is_Fixed_Point_Type (T2) |
| and then (Base_Type (T1) = Base_Type (Standard_Integer) |
| or else T1 = Universal_Integer) |
| and then Op_Name = Name_Op_Multiply |
| then |
| Add_One_Interp (N, Op_Id, T2); |
| |
| elsif T1 = Universal_Real and then T2 = Universal_Integer then |
| Add_One_Interp (N, Op_Id, T1); |
| |
| elsif T2 = Universal_Real |
| and then T1 = Universal_Integer |
| and then Op_Name = Name_Op_Multiply |
| then |
| Add_One_Interp (N, Op_Id, T2); |
| end if; |
| |
| elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then |
| |
| -- Note: The fixed-point operands case with Treat_Fixed_As_Integer |
| -- set does not require any special processing, since the Etype is |
| -- already set (case of operation constructed by Exp_Fixed). |
| |
| if Is_Integer_Type (T1) |
| and then (Covers (T1, T2) or else Covers (T2, T1)) |
| then |
| Add_One_Interp (N, Op_Id, Specific_Type (T1, T2)); |
| end if; |
| |
| elsif Op_Name = Name_Op_Expon then |
| |
| if Is_Numeric_Type (T1) |
| and then not Is_Fixed_Point_Type (T1) |
| and then (Base_Type (T2) = Base_Type (Standard_Integer) |
| or else T2 = Universal_Integer) |
| then |
| Add_One_Interp (N, Op_Id, Base_Type (T1)); |
| end if; |
| |
| else pragma Assert (Nkind (N) in N_Op_Shift); |
| |
| -- If not one of the predefined operators, the node may be one |
| -- of the intrinsic functions. Its kind is always specific, and |
| -- we can use it directly, rather than the name of the operation. |
| |
| if Is_Integer_Type (T1) |
| and then (Base_Type (T2) = Base_Type (Standard_Integer) |
| or else T2 = Universal_Integer) |
| then |
| Add_One_Interp (N, Op_Id, Base_Type (T1)); |
| end if; |
| end if; |
| end Check_Arithmetic_Pair; |
| |
| ------------------------------- |
| -- Check_Misspelled_Selector -- |
| ------------------------------- |
| |
| procedure Check_Misspelled_Selector |
| (Prefix : Entity_Id; |
| Sel : Node_Id) |
| is |
| Max_Suggestions : constant := 2; |
| Nr_Of_Suggestions : Natural := 0; |
| |
| Suggestion_1 : Entity_Id := Empty; |
| Suggestion_2 : Entity_Id := Empty; |
| |
| Comp : Entity_Id; |
| |
| begin |
| -- All the components of the prefix of selector Sel are matched |
| -- against Sel and a count is maintained of possible misspellings. |
| -- When at the end of the analysis there are one or two (not more!) |
| -- possible misspellings, these misspellings will be suggested as |
| -- possible correction. |
| |
| if not (Is_Private_Type (Prefix) or Is_Record_Type (Prefix)) then |
| -- Concurrent types should be handled as well ??? |
| return; |
| end if; |
| |
| Get_Name_String (Chars (Sel)); |
| |
| declare |
| S : constant String (1 .. Name_Len) := |
| Name_Buffer (1 .. Name_Len); |
| |
| begin |
| Comp := First_Entity (Prefix); |
| |
| while Nr_Of_Suggestions <= Max_Suggestions |
| and then Present (Comp) |
| loop |
| |
| if Is_Visible_Component (Comp) then |
| Get_Name_String (Chars (Comp)); |
| |
| if Is_Bad_Spelling_Of (Name_Buffer (1 .. Name_Len), S) then |
| Nr_Of_Suggestions := Nr_Of_Suggestions + 1; |
| |
| case Nr_Of_Suggestions is |
| when 1 => Suggestion_1 := Comp; |
| when 2 => Suggestion_2 := Comp; |
| when others => exit; |
| end case; |
| end if; |
| end if; |
| |
| Comp := Next_Entity (Comp); |
| end loop; |
| |
| -- Report at most two suggestions |
| |
| if Nr_Of_Suggestions = 1 then |
| Error_Msg_NE ("\possible misspelling of&", Sel, Suggestion_1); |
| |
| elsif Nr_Of_Suggestions = 2 then |
| Error_Msg_Node_2 := Suggestion_2; |
| Error_Msg_NE ("\possible misspelling of& or&", |
| Sel, Suggestion_1); |
| end if; |
| end; |
| end Check_Misspelled_Selector; |
| |
| ---------------------- |
| -- Defined_In_Scope -- |
| ---------------------- |
| |
| function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean |
| is |
| S1 : constant Entity_Id := Scope (Base_Type (T)); |
| |
| begin |
| return S1 = S |
| or else (S1 = System_Aux_Id and then S = Scope (S1)); |
| end Defined_In_Scope; |
| |
| ------------------- |
| -- Diagnose_Call -- |
| ------------------- |
| |
| procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is |
| Actual : Node_Id; |
| X : Interp_Index; |
| It : Interp; |
| Success : Boolean; |
| Err_Mode : Boolean; |
| New_Nam : Node_Id; |
| Void_Interp_Seen : Boolean := False; |
| |
| begin |
| if Extensions_Allowed then |
| Actual := First_Actual (N); |
| |
| while Present (Actual) loop |
| -- Ada0Y (AI-50217): Post an error in case of premature usage of |
| -- an entity from the limited view. |
| |
| if not Analyzed (Etype (Actual)) |
| and then From_With_Type (Etype (Actual)) |
| then |
| Error_Msg_Qual_Level := 1; |
| Error_Msg_NE |
| ("missing with_clause for scope of imported type&", |
| Actual, Etype (Actual)); |
| Error_Msg_Qual_Level := 0; |
| end if; |
| |
| Next_Actual (Actual); |
| end loop; |
| end if; |
| |
| -- Analyze each candidate call again, with full error reporting |
| -- for each. |
| |
| Error_Msg_N |
| ("no candidate interpretations match the actuals:!", Nam); |
| Err_Mode := All_Errors_Mode; |
| All_Errors_Mode := True; |
| |
| -- If this is a call to an operation of a concurrent type, |
| -- the failed interpretations have been removed from the |
| -- name. Recover them to provide full diagnostics. |
| |
| if Nkind (Parent (Nam)) = N_Selected_Component then |
| Set_Entity (Nam, Empty); |
| New_Nam := New_Copy_Tree (Parent (Nam)); |
| Set_Is_Overloaded (New_Nam, False); |
| Set_Is_Overloaded (Selector_Name (New_Nam), False); |
| Set_Parent (New_Nam, Parent (Parent (Nam))); |
| Analyze_Selected_Component (New_Nam); |
| Get_First_Interp (Selector_Name (New_Nam), X, It); |
| else |
| Get_First_Interp (Nam, X, It); |
| end if; |
| |
| while Present (It.Nam) loop |
| if Etype (It.Nam) = Standard_Void_Type then |
| Void_Interp_Seen := True; |
| end if; |
| |
| Analyze_One_Call (N, It.Nam, True, Success); |
| Get_Next_Interp (X, It); |
| end loop; |
| |
| if Nkind (N) = N_Function_Call then |
| Get_First_Interp (Nam, X, It); |
| |
| while Present (It.Nam) loop |
| if Ekind (It.Nam) = E_Function |
| or else Ekind (It.Nam) = E_Operator |
| then |
| return; |
| else |
| Get_Next_Interp (X, It); |
| end if; |
| end loop; |
| |
| -- If all interpretations are procedures, this deserves a |
| -- more precise message. Ditto if this appears as the prefix |
| -- of a selected component, which may be a lexical error. |
| |
| Error_Msg_N ( |
| "\context requires function call, found procedure name", Nam); |
| |
| if Nkind (Parent (N)) = N_Selected_Component |
| and then N = Prefix (Parent (N)) |
| then |
| Error_Msg_N ( |
| "\period should probably be semicolon", Parent (N)); |
| end if; |
| |
| elsif Nkind (N) = N_Procedure_Call_Statement |
| and then not Void_Interp_Seen |
| then |
| Error_Msg_N ( |
| "\function name found in procedure call", Nam); |
| end if; |
| |
| All_Errors_Mode := Err_Mode; |
| end Diagnose_Call; |
| |
| --------------------------- |
| -- Find_Arithmetic_Types -- |
| --------------------------- |
| |
| procedure Find_Arithmetic_Types |
| (L, R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id) |
| is |
| Index1, Index2 : Interp_Index; |
| It1, It2 : Interp; |
| |
| procedure Check_Right_Argument (T : Entity_Id); |
| -- Check right operand of operator |
| |
| procedure Check_Right_Argument (T : Entity_Id) is |
| begin |
| if not Is_Overloaded (R) then |
| Check_Arithmetic_Pair (T, Etype (R), Op_Id, N); |
| else |
| Get_First_Interp (R, Index2, It2); |
| |
| while Present (It2.Typ) loop |
| Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N); |
| Get_Next_Interp (Index2, It2); |
| end loop; |
| end if; |
| end Check_Right_Argument; |
| |
| -- Start processing for Find_Arithmetic_Types |
| |
| begin |
| if not Is_Overloaded (L) then |
| Check_Right_Argument (Etype (L)); |
| |
| else |
| Get_First_Interp (L, Index1, It1); |
| |
| while Present (It1.Typ) loop |
| Check_Right_Argument (It1.Typ); |
| Get_Next_Interp (Index1, It1); |
| end loop; |
| end if; |
| |
| end Find_Arithmetic_Types; |
| |
| ------------------------ |
| -- Find_Boolean_Types -- |
| ------------------------ |
| |
| procedure Find_Boolean_Types |
| (L, R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id) |
| is |
| Index : Interp_Index; |
| It : Interp; |
| |
| procedure Check_Numeric_Argument (T : Entity_Id); |
| -- Special case for logical operations one of whose operands is an |
| -- integer literal. If both are literal the result is any modular type. |
| |
| procedure Check_Numeric_Argument (T : Entity_Id) is |
| begin |
| if T = Universal_Integer then |
| Add_One_Interp (N, Op_Id, Any_Modular); |
| |
| elsif Is_Modular_Integer_Type (T) then |
| Add_One_Interp (N, Op_Id, T); |
| end if; |
| end Check_Numeric_Argument; |
| |
| -- Start of processing for Find_Boolean_Types |
| |
| begin |
| if not Is_Overloaded (L) then |
| |
| if Etype (L) = Universal_Integer |
| or else Etype (L) = Any_Modular |
| then |
| if not Is_Overloaded (R) then |
| Check_Numeric_Argument (Etype (R)); |
| |
| else |
| Get_First_Interp (R, Index, It); |
| |
| while Present (It.Typ) loop |
| Check_Numeric_Argument (It.Typ); |
| |
| Get_Next_Interp (Index, It); |
| end loop; |
| end if; |
| |
| elsif Valid_Boolean_Arg (Etype (L)) |
| and then Has_Compatible_Type (R, Etype (L)) |
| then |
| Add_One_Interp (N, Op_Id, Etype (L)); |
| end if; |
| |
| else |
| Get_First_Interp (L, Index, It); |
| |
| while Present (It.Typ) loop |
| if Valid_Boolean_Arg (It.Typ) |
| and then Has_Compatible_Type (R, It.Typ) |
| then |
| Add_One_Interp (N, Op_Id, It.Typ); |
| end if; |
| |
| Get_Next_Interp (Index, It); |
| end loop; |
| end if; |
| end Find_Boolean_Types; |
| |
| --------------------------- |
| -- Find_Comparison_Types -- |
| --------------------------- |
| |
| procedure Find_Comparison_Types |
| (L, R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id) |
| is |
| Index : Interp_Index; |
| It : Interp; |
| Found : Boolean := False; |
| I_F : Interp_Index; |
| T_F : Entity_Id; |
| Scop : Entity_Id := Empty; |
| |
| procedure Try_One_Interp (T1 : Entity_Id); |
| -- Routine to try one proposed interpretation. Note that the context |
| -- of the operator plays no role in resolving the arguments, so that |
| -- if there is more than one interpretation of the operands that is |
| -- compatible with comparison, the operation is ambiguous. |
| |
| procedure Try_One_Interp (T1 : Entity_Id) is |
| begin |
| |
| -- If the operator is an expanded name, then the type of the operand |
| -- must be defined in the corresponding scope. If the type is |
| -- universal, the context will impose the correct type. |
| |
| if Present (Scop) |
| and then not Defined_In_Scope (T1, Scop) |
| and then T1 /= Universal_Integer |
| and then T1 /= Universal_Real |
| and then T1 /= Any_String |
| and then T1 /= Any_Composite |
| then |
| return; |
| end if; |
| |
| if Valid_Comparison_Arg (T1) |
| and then Has_Compatible_Type (R, T1) |
| then |
| if Found |
| and then Base_Type (T1) /= Base_Type (T_F) |
| then |
| It := Disambiguate (L, I_F, Index, Any_Type); |
| |
| if It = No_Interp then |
| Ambiguous_Operands (N); |
| Set_Etype (L, Any_Type); |
| return; |
| |
| else |
| T_F := It.Typ; |
| end if; |
| |
| else |
| Found := True; |
| T_F := T1; |
| I_F := Index; |
| end if; |
| |
| Set_Etype (L, T_F); |
| Find_Non_Universal_Interpretations (N, R, Op_Id, T1); |
| |
| end if; |
| end Try_One_Interp; |
| |
| -- Start processing for Find_Comparison_Types |
| |
| begin |
| -- If left operand is aggregate, the right operand has to |
| -- provide a usable type for it. |
| |
| if Nkind (L) = N_Aggregate |
| and then Nkind (R) /= N_Aggregate |
| then |
| Find_Comparison_Types (R, L, Op_Id, N); |
| return; |
| end if; |
| |
| if Nkind (N) = N_Function_Call |
| and then Nkind (Name (N)) = N_Expanded_Name |
| then |
| Scop := Entity (Prefix (Name (N))); |
| |
| -- The prefix may be a package renaming, and the subsequent test |
| -- requires the original package. |
| |
| if Ekind (Scop) = E_Package |
| and then Present (Renamed_Entity (Scop)) |
| then |
| Scop := Renamed_Entity (Scop); |
| Set_Entity (Prefix (Name (N)), Scop); |
| end if; |
| end if; |
| |
| if not Is_Overloaded (L) then |
| Try_One_Interp (Etype (L)); |
| |
| else |
| Get_First_Interp (L, Index, It); |
| |
| while Present (It.Typ) loop |
| Try_One_Interp (It.Typ); |
| Get_Next_Interp (Index, It); |
| end loop; |
| end if; |
| end Find_Comparison_Types; |
| |
| ---------------------------------------- |
| -- Find_Non_Universal_Interpretations -- |
| ---------------------------------------- |
| |
| procedure Find_Non_Universal_Interpretations |
| (N : Node_Id; |
| R : Node_Id; |
| Op_Id : Entity_Id; |
| T1 : Entity_Id) |
| is |
| Index : Interp_Index; |
| It : Interp; |
| |
| begin |
| if T1 = Universal_Integer |
| or else T1 = Universal_Real |
| then |
| if not Is_Overloaded (R) then |
| Add_One_Interp |
| (N, Op_Id, Standard_Boolean, Base_Type (Etype (R))); |
| else |
| Get_First_Interp (R, Index, It); |
| |
| while Present (It.Typ) loop |
| if Covers (It.Typ, T1) then |
| Add_One_Interp |
| (N, Op_Id, Standard_Boolean, Base_Type (It.Typ)); |
| end if; |
| |
| Get_Next_Interp (Index, It); |
| end loop; |
| end if; |
| else |
| Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1)); |
| end if; |
| end Find_Non_Universal_Interpretations; |
| |
| ------------------------------ |
| -- Find_Concatenation_Types -- |
| ------------------------------ |
| |
| procedure Find_Concatenation_Types |
| (L, R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id) |
| is |
| Op_Type : constant Entity_Id := Etype (Op_Id); |
| |
| begin |
| if Is_Array_Type (Op_Type) |
| and then not Is_Limited_Type (Op_Type) |
| |
| and then (Has_Compatible_Type (L, Op_Type) |
| or else |
| Has_Compatible_Type (L, Component_Type (Op_Type))) |
| |
| and then (Has_Compatible_Type (R, Op_Type) |
| or else |
| Has_Compatible_Type (R, Component_Type (Op_Type))) |
| then |
| Add_One_Interp (N, Op_Id, Op_Type); |
| end if; |
| end Find_Concatenation_Types; |
| |
| ------------------------- |
| -- Find_Equality_Types -- |
| ------------------------- |
| |
| procedure Find_Equality_Types |
| (L, R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id) |
| is |
| Index : Interp_Index; |
| It : Interp; |
| Found : Boolean := False; |
| I_F : Interp_Index; |
| T_F : Entity_Id; |
| Scop : Entity_Id := Empty; |
| |
| procedure Try_One_Interp (T1 : Entity_Id); |
| -- The context of the operator plays no role in resolving the |
| -- arguments, so that if there is more than one interpretation |
| -- of the operands that is compatible with equality, the construct |
| -- is ambiguous and an error can be emitted now, after trying to |
| -- disambiguate, i.e. applying preference rules. |
| |
| procedure Try_One_Interp (T1 : Entity_Id) is |
| begin |
| |
| -- If the operator is an expanded name, then the type of the operand |
| -- must be defined in the corresponding scope. If the type is |
| -- universal, the context will impose the correct type. An anonymous |
| -- type for a 'Access reference is also universal in this sense, as |
| -- the actual type is obtained from context. |
| |
| if Present (Scop) |
| and then not Defined_In_Scope (T1, Scop) |
| and then T1 /= Universal_Integer |
| and then T1 /= Universal_Real |
| and then T1 /= Any_Access |
| and then T1 /= Any_String |
| and then T1 /= Any_Composite |
| and then (Ekind (T1) /= E_Access_Subprogram_Type |
| or else Comes_From_Source (T1)) |
| then |
| return; |
| end if; |
| |
| if T1 /= Standard_Void_Type |
| and then not Is_Limited_Type (T1) |
| and then not Is_Limited_Composite (T1) |
| and then Ekind (T1) /= E_Anonymous_Access_Type |
| and then Has_Compatible_Type (R, T1) |
| then |
| if Found |
| and then Base_Type (T1) /= Base_Type (T_F) |
| then |
| It := Disambiguate (L, I_F, Index, Any_Type); |
| |
| if It = No_Interp then |
| Ambiguous_Operands (N); |
| Set_Etype (L, Any_Type); |
| return; |
| |
| else |
| T_F := It.Typ; |
| end if; |
| |
| else |
| Found := True; |
| T_F := T1; |
| I_F := Index; |
| end if; |
| |
| if not Analyzed (L) then |
| Set_Etype (L, T_F); |
| end if; |
| |
| Find_Non_Universal_Interpretations (N, R, Op_Id, T1); |
| |
| if Etype (N) = Any_Type then |
| |
| -- Operator was not visible. |
| |
| Found := False; |
| end if; |
| end if; |
| end Try_One_Interp; |
| |
| -- Start of processing for Find_Equality_Types |
| |
| begin |
| -- If left operand is aggregate, the right operand has to |
| -- provide a usable type for it. |
| |
| if Nkind (L) = N_Aggregate |
| and then Nkind (R) /= N_Aggregate |
| then |
| Find_Equality_Types (R, L, Op_Id, N); |
| return; |
| end if; |
| |
| if Nkind (N) = N_Function_Call |
| and then Nkind (Name (N)) = N_Expanded_Name |
| then |
| Scop := Entity (Prefix (Name (N))); |
| |
| -- The prefix may be a package renaming, and the subsequent test |
| -- requires the original package. |
| |
| if Ekind (Scop) = E_Package |
| and then Present (Renamed_Entity (Scop)) |
| then |
| Scop := Renamed_Entity (Scop); |
| Set_Entity (Prefix (Name (N)), Scop); |
| end if; |
| end if; |
| |
| if not Is_Overloaded (L) then |
| Try_One_Interp (Etype (L)); |
| else |
| |
| Get_First_Interp (L, Index, It); |
| |
| while Present (It.Typ) loop |
| Try_One_Interp (It.Typ); |
| Get_Next_Interp (Index, It); |
| end loop; |
| end if; |
| end Find_Equality_Types; |
| |
| ------------------------- |
| -- Find_Negation_Types -- |
| ------------------------- |
| |
| procedure Find_Negation_Types |
| (R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id) |
| is |
| Index : Interp_Index; |
| It : Interp; |
| |
| begin |
| if not Is_Overloaded (R) then |
| |
| if Etype (R) = Universal_Integer then |
| Add_One_Interp (N, Op_Id, Any_Modular); |
| |
| elsif Valid_Boolean_Arg (Etype (R)) then |
| Add_One_Interp (N, Op_Id, Etype (R)); |
| end if; |
| |
| else |
| Get_First_Interp (R, Index, It); |
| |
| while Present (It.Typ) loop |
| if Valid_Boolean_Arg (It.Typ) then |
| Add_One_Interp (N, Op_Id, It.Typ); |
| end if; |
| |
| Get_Next_Interp (Index, It); |
| end loop; |
| end if; |
| end Find_Negation_Types; |
| |
| ---------------------- |
| -- Find_Unary_Types -- |
| ---------------------- |
| |
| procedure Find_Unary_Types |
| (R : Node_Id; |
| Op_Id : Entity_Id; |
| N : Node_Id) |
| is |
| Index : Interp_Index; |
| It : Interp; |
| |
| begin |
| if not Is_Overloaded (R) then |
| if Is_Numeric_Type (Etype (R)) then |
| Add_One_Interp (N, Op_Id, Base_Type (Etype (R))); |
| end if; |
| |
| else |
| Get_First_Interp (R, Index, It); |
| |
| while Present (It.Typ) loop |
| if Is_Numeric_Type (It.Typ) then |
| Add_One_Interp (N, Op_Id, Base_Type (It.Typ)); |
| end if; |
| |
| Get_Next_Interp (Index, It); |
| end loop; |
| end if; |
| end Find_Unary_Types; |
| |
| ------------------ |
| -- Junk_Operand -- |
| ------------------ |
| |
| function Junk_Operand (N : Node_Id) return Boolean is |
| Enode : Node_Id; |
| |
| begin |
| if Error_Posted (N) then |
| return False; |
| end if; |
| |
| -- Get entity to be tested |
| |
| if Is_Entity_Name (N) |
| and then Present (Entity (N)) |
| then |
| Enode := N; |
| |
| -- An odd case, a procedure name gets converted to a very peculiar |
| -- function call, and here is where we detect this happening. |
| |
| elsif Nkind (N) = N_Function_Call |
| and then Is_Entity_Name (Name (N)) |
| and then Present (Entity (Name (N))) |
| then |
| Enode := Name (N); |
| |
| -- Another odd case, there are at least some cases of selected |
| -- components where the selected component is not marked as having |
| -- an entity, even though the selector does have an entity |
| |
| elsif Nkind (N) = N_Selected_Component |
| and then Present (Entity (Selector_Name (N))) |
| then |
| Enode := Selector_Name (N); |
| |
| else |
| return False; |
| end if; |
| |
| -- Now test the entity we got to see if it a bad case |
| |
| case Ekind (Entity (Enode)) is |
| |
| when E_Package => |
| Error_Msg_N |
| ("package name cannot be used as operand", Enode); |
| |
| when Generic_Unit_Kind => |
| Error_Msg_N |
| ("generic unit name cannot be used as operand", Enode); |
| |
| when Type_Kind => |
| Error_Msg_N |
| ("subtype name cannot be used as operand", Enode); |
| |
| when Entry_Kind => |
| Error_Msg_N |
| ("entry name cannot be used as operand", Enode); |
| |
| when E_Procedure => |
| Error_Msg_N |
| ("procedure name cannot be used as operand", Enode); |
| |
| when E_Exception => |
| Error_Msg_N |
| ("exception name cannot be used as operand", Enode); |
| |
| when E_Block | E_Label | E_Loop => |
| Error_Msg_N |
| ("label name cannot be used as operand", Enode); |
| |
| when others => |
| return False; |
| |
| end case; |
| |
| return True; |
| end Junk_Operand; |
| |
| -------------------- |
| -- Operator_Check -- |
| -------------------- |
| |
| procedure Operator_Check (N : Node_Id) is |
| begin |
| -- Test for case of no interpretation found for operator |
| |
| if Etype (N) = Any_Type then |
| declare |
| L : Node_Id; |
| R : Node_Id; |
| |
| begin |
| R := Right_Opnd (N); |
| |
| if Nkind (N) in N_Binary_Op then |
| L := Left_Opnd (N); |
| else |
| L := Empty; |
| end if; |
| |
| -- If either operand has no type, then don't complain further, |
| -- since this simply means that we have a propragated error. |
| |
| if R = Error |
| or else Etype (R) = Any_Type |
| or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type) |
| then |
| return; |
| |
| -- We explicitly check for the case of concatenation of |
| -- component with component to avoid reporting spurious |
| -- matching array types that might happen to be lurking |
| -- in distant packages (such as run-time packages). This |
| -- also prevents inconsistencies in the messages for certain |
| -- ACVC B tests, which can vary depending on types declared |
| -- in run-time interfaces. A further improvement, when |
| -- aggregates are present, is to look for a well-typed operand. |
| |
| elsif Present (Candidate_Type) |
| and then (Nkind (N) /= N_Op_Concat |
| or else Is_Array_Type (Etype (L)) |
| or else Is_Array_Type (Etype (R))) |
| then |
| |
| if Nkind (N) = N_Op_Concat then |
| if Etype (L) /= Any_Composite |
| and then Is_Array_Type (Etype (L)) |
| then |
| Candidate_Type := Etype (L); |
| |
| elsif Etype (R) /= Any_Composite |
| and then Is_Array_Type (Etype (R)) |
| then |
| Candidate_Type := Etype (R); |
| end if; |
| end if; |
| |
| Error_Msg_NE |
| ("operator for} is not directly visible!", |
| N, First_Subtype (Candidate_Type)); |
| Error_Msg_N ("use clause would make operation legal!", N); |
| return; |
| |
| -- If either operand is a junk operand (e.g. package name), then |
| -- post appropriate error messages, but do not complain further. |
| |
| -- Note that the use of OR in this test instead of OR ELSE |
| -- is quite deliberate, we may as well check both operands |
| -- in the binary operator case. |
| |
| elsif Junk_Operand (R) |
| or (Nkind (N) in N_Binary_Op and then Junk_Operand (L)) |
| then |
| return; |
| |
| -- If we have a logical operator, one of whose operands is |
| -- Boolean, then we know that the other operand cannot resolve |
| -- to Boolean (since we got no interpretations), but in that |
| -- case we pretty much know that the other operand should be |
| -- Boolean, so resolve it that way (generating an error) |
| |
| elsif Nkind (N) = N_Op_And |
| or else |
| Nkind (N) = N_Op_Or |
| or else |
| Nkind (N) = N_Op_Xor |
| then |
| if Etype (L) = Standard_Boolean then |
| Resolve (R, Standard_Boolean); |
| return; |
| elsif Etype (R) = Standard_Boolean then |
| Resolve (L, Standard_Boolean); |
| return; |
| end if; |
| |
| -- For an arithmetic operator or comparison operator, if one |
| -- of the operands is numeric, then we know the other operand |
| -- is not the same numeric type. If it is a non-numeric type, |
| -- then probably it is intended to match the other operand. |
| |
| elsif Nkind (N) = N_Op_Add or else |
| Nkind (N) = N_Op_Divide or else |
| Nkind (N) = N_Op_Ge or else |
| Nkind (N) = N_Op_Gt or else |
| Nkind (N) = N_Op_Le or else |
| Nkind (N) = N_Op_Lt or else |
| Nkind (N) = N_Op_Mod or else |
| Nkind (N) = N_Op_Multiply or else |
| Nkind (N) = N_Op_Rem or else |
| Nkind (N) = N_Op_Subtract |
| then |
| if Is_Numeric_Type (Etype (L)) |
| and then not Is_Numeric_Type (Etype (R)) |
| then |
| Resolve (R, Etype (L)); |
| return; |
| |
| elsif Is_Numeric_Type (Etype (R)) |
| and then not Is_Numeric_Type (Etype (L)) |
| then |
| Resolve (L, Etype (R)); |
| return; |
| end if; |
| |
| -- Comparisons on A'Access are common enough to deserve a |
| -- special message. |
| |
| elsif (Nkind (N) = N_Op_Eq or else |
| Nkind (N) = N_Op_Ne) |
| and then Ekind (Etype (L)) = E_Access_Attribute_Type |
| and then Ekind (Etype (R)) = E_Access_Attribute_Type |
| then |
| Error_Msg_N |
| ("two access attributes cannot be compared directly", N); |
| Error_Msg_N |
| ("\they must be converted to an explicit type for comparison", |
| N); |
| return; |
| |
| -- Another one for C programmers |
| |
| elsif Nkind (N) = N_Op_Concat |
| and then Valid_Boolean_Arg (Etype (L)) |
| and then Valid_Boolean_Arg (Etype (R)) |
| then |
| Error_Msg_N ("invalid operands for concatenation", N); |
| Error_Msg_N ("\maybe AND was meant", N); |
| return; |
| |
| -- A special case for comparison of access parameter with null |
| |
| elsif Nkind (N) = N_Op_Eq |
| and then Is_Entity_Name (L) |
| and then Nkind (Parent (Entity (L))) = N_Parameter_Specification |
| and then Nkind (Parameter_Type (Parent (Entity (L)))) = |
| N_Access_Definition |
| and then Nkind (R) = N_Null |
| then |
| Error_Msg_N ("access parameter is not allowed to be null", L); |
| Error_Msg_N ("\(call would raise Constraint_Error)", L); |
| return; |
| end if; |
| |
| -- If we fall through then just give general message. Note |
| -- that in the following messages, if the operand is overloaded |
| -- we choose an arbitrary type to complain about, but that is |
| -- probably more useful than not giving a type at all. |
| |
| if Nkind (N) in N_Unary_Op then |
| Error_Msg_Node_2 := Etype (R); |
| Error_Msg_N ("operator& not defined for}", N); |
| return; |
| |
| else |
| if Nkind (N) in N_Binary_Op then |
| if not Is_Overloaded (L) |
| and then not Is_Overloaded (R) |
| and then Base_Type (Etype (L)) = Base_Type (Etype (R)) |
| then |
| Error_Msg_Node_2 := Etype (R); |
| Error_Msg_N ("there is no applicable operator& for}", N); |
| |
| else |
| Error_Msg_N ("invalid operand types for operator&", N); |
| |
| if Nkind (N) /= N_Op_Concat then |
| Error_Msg_NE ("\left operand has}!", N, Etype (L)); |
| Error_Msg_NE ("\right operand has}!", N, Etype (R)); |
| end if; |
| end if; |
| end if; |
| end if; |
| end; |
| end if; |
| end Operator_Check; |
| |
| ----------------------- |
| -- Try_Indirect_Call -- |
| ----------------------- |
| |
| function Try_Indirect_Call |
| (N : Node_Id; |
| Nam : Entity_Id; |
| Typ : Entity_Id) return Boolean |
| is |
| Actuals : constant List_Id := Parameter_Associations (N); |
| Actual : Node_Id; |
| Formal : Entity_Id; |
| |
| begin |
| Actual := First (Actuals); |
| Formal := First_Formal (Designated_Type (Typ)); |
| while Present (Actual) |
| and then Present (Formal) |
| loop |
| if not Has_Compatible_Type (Actual, Etype (Formal)) then |
| return False; |
| end if; |
| |
| Next (Actual); |
| Next_Formal (Formal); |
| end loop; |
| |
| if No (Actual) and then No (Formal) then |
| Add_One_Interp (N, Nam, Etype (Designated_Type (Typ))); |
| |
| -- Nam is a candidate interpretation for the name in the call, |
| -- if it is not an indirect call. |
| |
| if not Is_Type (Nam) |
| and then Is_Entity_Name (Name (N)) |
| then |
| Set_Entity (Name (N), Nam); |
| end if; |
| |
| return True; |
| else |
| return False; |
| end if; |
| end Try_Indirect_Call; |
| |
| ---------------------- |
| -- Try_Indexed_Call -- |
| ---------------------- |
| |
| function Try_Indexed_Call |
| (N : Node_Id; |
|