blob: d37b951aac6dc6a19216db3816251d969a5771fd [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 5 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2003 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Lib.Xref; use Lib.Xref;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Sem; use Sem;
with Sem_Case; use Sem_Case;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch8; use Sem_Ch8;
with Sem_Disp; use Sem_Disp;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_Warn; use Sem_Warn;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
package body Sem_Ch5 is
Unblocked_Exit_Count : Nat := 0;
-- This variable is used when processing if statements or case
-- statements, it counts the number of branches of the conditional
-- that are not blocked by unconditional transfer instructions. At
-- the end of processing, if the count is zero, it means that control
-- cannot fall through the conditional statement. This is used for
-- the generation of warning messages. This variable is recursively
-- saved on entry to processing an if or case, and restored on exit.
-----------------------
-- Local Subprograms --
-----------------------
procedure Analyze_Iteration_Scheme (N : Node_Id);
procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id);
-- Cnode is N_If_Statement, N_Elsif_Part, or N_Iteration_Scheme
-- (the latter when a WHILE condition is present). This call checks
-- if Condition (Cnode) is of the form ([NOT] var op val), where var
-- is a simple object, val is known at compile time, and op is one
-- of the six relational operators. If this is the case, and the
-- Current_Value field of "var" is not set, then it is set to Cnode.
-- See Exp_Util.Set_Current_Value_Condition for further details.
------------------------
-- Analyze_Assignment --
------------------------
procedure Analyze_Assignment (N : Node_Id) is
Lhs : constant Node_Id := Name (N);
Rhs : constant Node_Id := Expression (N);
T1 : Entity_Id;
T2 : Entity_Id;
Decl : Node_Id;
Ent : Entity_Id;
procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
-- N is the node for the left hand side of an assignment, and it
-- is not a variable. This routine issues an appropriate diagnostic.
procedure Set_Assignment_Type
(Opnd : Node_Id;
Opnd_Type : in out Entity_Id);
-- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
-- is the nominal subtype. This procedure is used to deal with cases
-- where the nominal subtype must be replaced by the actual subtype.
-------------------------------
-- Diagnose_Non_Variable_Lhs --
-------------------------------
procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
begin
-- Not worth posting another error if left hand side already
-- flagged as being illegal in some respect
if Error_Posted (N) then
return;
-- Some special bad cases of entity names
elsif Is_Entity_Name (N) then
if Ekind (Entity (N)) = E_In_Parameter then
Error_Msg_N
("assignment to IN mode parameter not allowed", N);
-- Private declarations in a protected object are turned into
-- constants when compiling a protected function.
elsif Present (Scope (Entity (N)))
and then Is_Protected_Type (Scope (Entity (N)))
and then
(Ekind (Current_Scope) = E_Function
or else
Ekind (Enclosing_Dynamic_Scope (Current_Scope)) = E_Function)
then
Error_Msg_N
("protected function cannot modify protected object", N);
elsif Ekind (Entity (N)) = E_Loop_Parameter then
Error_Msg_N
("assignment to loop parameter not allowed", N);
else
Error_Msg_N
("left hand side of assignment must be a variable", N);
end if;
-- For indexed components or selected components, test prefix
elsif Nkind (N) = N_Indexed_Component then
Diagnose_Non_Variable_Lhs (Prefix (N));
-- Another special case for assignment to discriminant.
elsif Nkind (N) = N_Selected_Component then
if Present (Entity (Selector_Name (N)))
and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
then
Error_Msg_N
("assignment to discriminant not allowed", N);
else
Diagnose_Non_Variable_Lhs (Prefix (N));
end if;
else
-- If we fall through, we have no special message to issue!
Error_Msg_N ("left hand side of assignment must be a variable", N);
end if;
end Diagnose_Non_Variable_Lhs;
-------------------------
-- Set_Assignment_Type --
-------------------------
procedure Set_Assignment_Type
(Opnd : Node_Id;
Opnd_Type : in out Entity_Id)
is
begin
Require_Entity (Opnd);
-- If the assignment operand is an in-out or out parameter, then we
-- get the actual subtype (needed for the unconstrained case).
-- If the operand is the actual in an entry declaration, then within
-- the accept statement it is replaced with a local renaming, which
-- may also have an actual subtype.
if Is_Entity_Name (Opnd)
and then (Ekind (Entity (Opnd)) = E_Out_Parameter
or else Ekind (Entity (Opnd)) =
E_In_Out_Parameter
or else Ekind (Entity (Opnd)) =
E_Generic_In_Out_Parameter
or else
(Ekind (Entity (Opnd)) = E_Variable
and then Nkind (Parent (Entity (Opnd))) =
N_Object_Renaming_Declaration
and then Nkind (Parent (Parent (Entity (Opnd)))) =
N_Accept_Statement))
then
Opnd_Type := Get_Actual_Subtype (Opnd);
-- If assignment operand is a component reference, then we get the
-- actual subtype of the component for the unconstrained case.
elsif
(Nkind (Opnd) = N_Selected_Component
or else Nkind (Opnd) = N_Explicit_Dereference)
and then not Is_Unchecked_Union (Opnd_Type)
then
Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
if Present (Decl) then
Insert_Action (N, Decl);
Mark_Rewrite_Insertion (Decl);
Analyze (Decl);
Opnd_Type := Defining_Identifier (Decl);
Set_Etype (Opnd, Opnd_Type);
Freeze_Itype (Opnd_Type, N);
elsif Is_Constrained (Etype (Opnd)) then
Opnd_Type := Etype (Opnd);
end if;
-- For slice, use the constrained subtype created for the slice
elsif Nkind (Opnd) = N_Slice then
Opnd_Type := Etype (Opnd);
end if;
end Set_Assignment_Type;
-- Start of processing for Analyze_Assignment
begin
Analyze (Rhs);
Analyze (Lhs);
T1 := Etype (Lhs);
-- In the most general case, both Lhs and Rhs can be overloaded, and we
-- must compute the intersection of the possible types on each side.
if Is_Overloaded (Lhs) then
declare
I : Interp_Index;
It : Interp;
begin
T1 := Any_Type;
Get_First_Interp (Lhs, I, It);
while Present (It.Typ) loop
if Has_Compatible_Type (Rhs, It.Typ) then
if T1 /= Any_Type then
-- An explicit dereference is overloaded if the prefix
-- is. Try to remove the ambiguity on the prefix, the
-- error will be posted there if the ambiguity is real.
if Nkind (Lhs) = N_Explicit_Dereference then
declare
PI : Interp_Index;
PI1 : Interp_Index := 0;
PIt : Interp;
Found : Boolean;
begin
Found := False;
Get_First_Interp (Prefix (Lhs), PI, PIt);
while Present (PIt.Typ) loop
if Is_Access_Type (PIt.Typ)
and then Has_Compatible_Type
(Rhs, Designated_Type (PIt.Typ))
then
if Found then
PIt :=
Disambiguate (Prefix (Lhs),
PI1, PI, Any_Type);
if PIt = No_Interp then
Error_Msg_N
("ambiguous left-hand side"
& " in assignment", Lhs);
exit;
else
Resolve (Prefix (Lhs), PIt.Typ);
end if;
exit;
else
Found := True;
PI1 := PI;
end if;
end if;
Get_Next_Interp (PI, PIt);
end loop;
end;
else
Error_Msg_N
("ambiguous left-hand side in assignment", Lhs);
exit;
end if;
else
T1 := It.Typ;
end if;
end if;
Get_Next_Interp (I, It);
end loop;
end;
if T1 = Any_Type then
Error_Msg_N
("no valid types for left-hand side for assignment", Lhs);
return;
end if;
end if;
Resolve (Lhs, T1);
if not Is_Variable (Lhs) then
Diagnose_Non_Variable_Lhs (Lhs);
return;
elsif Is_Limited_Type (T1)
and then not Assignment_OK (Lhs)
and then not Assignment_OK (Original_Node (Lhs))
then
Error_Msg_N
("left hand of assignment must not be limited type", Lhs);
Explain_Limited_Type (T1, Lhs);
return;
end if;
-- Resolution may have updated the subtype, in case the left-hand
-- side is a private protected component. Use the correct subtype
-- to avoid scoping issues in the back-end.
T1 := Etype (Lhs);
Set_Assignment_Type (Lhs, T1);
Resolve (Rhs, T1);
-- Remaining steps are skipped if Rhs was syntactically in error
if Rhs = Error then
return;
end if;
T2 := Etype (Rhs);
Check_Unset_Reference (Rhs);
if Covers (T1, T2) then
null;
else
Wrong_Type (Rhs, Etype (Lhs));
return;
end if;
Set_Assignment_Type (Rhs, T2);
if Total_Errors_Detected /= 0 then
if No (T1) then
T1 := Any_Type;
end if;
if No (T2) then
T2 := Any_Type;
end if;
end if;
if T1 = Any_Type or else T2 = Any_Type then
return;
end if;
if (Is_Class_Wide_Type (T2) or else Is_Dynamically_Tagged (Rhs))
and then not Is_Class_Wide_Type (T1)
then
Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
elsif Is_Class_Wide_Type (T1)
and then not Is_Class_Wide_Type (T2)
and then not Is_Tag_Indeterminate (Rhs)
and then not Is_Dynamically_Tagged (Rhs)
then
Error_Msg_N ("dynamically tagged expression required!", Rhs);
end if;
-- Tag propagation is done only in semantics mode only. If expansion
-- is on, the rhs tag indeterminate function call has been expanded
-- and tag propagation would have happened too late, so the
-- propagation take place in expand_call instead.
if not Expander_Active
and then Is_Class_Wide_Type (T1)
and then Is_Tag_Indeterminate (Rhs)
then
Propagate_Tag (Lhs, Rhs);
end if;
if Is_Scalar_Type (T1) then
Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
elsif Is_Array_Type (T1)
and then
(Nkind (Rhs) /= N_Type_Conversion
or else Is_Constrained (Etype (Rhs)))
then
-- Assignment verifies that the length of the Lsh and Rhs are equal,
-- but of course the indices do not have to match. If the right-hand
-- side is a type conversion to an unconstrained type, a length check
-- is performed on the expression itself during expansion. In rare
-- cases, the redundant length check is computed on an index type
-- with a different representation, triggering incorrect code in
-- the back end.
Apply_Length_Check (Rhs, Etype (Lhs));
else
-- Discriminant checks are applied in the course of expansion.
null;
end if;
-- ??? a real accessibility check is needed when ???
-- Post warning for useless assignment
if Warn_On_Redundant_Constructs
-- We only warn for source constructs
and then Comes_From_Source (N)
-- Where the entity is the same on both sides
and then Is_Entity_Name (Lhs)
and then Is_Entity_Name (Original_Node (Rhs))
and then Entity (Lhs) = Entity (Original_Node (Rhs))
-- But exclude the case where the right side was an operation
-- that got rewritten (e.g. JUNK + K, where K was known to be
-- zero). We don't want to warn in such a case, since it is
-- reasonable to write such expressions especially when K is
-- defined symbolically in some other package.
and then Nkind (Original_Node (Rhs)) not in N_Op
then
Error_Msg_NE
("?useless assignment of & to itself", N, Entity (Lhs));
end if;
Note_Possible_Modification (Lhs);
-- Check for non-allowed composite assignment
if not Support_Composite_Assign_On_Target
and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
then
Error_Msg_CRT ("composite assignment", N);
end if;
-- One more step. Let's see if we have a simple assignment of a
-- known at compile time value to a simple variable. If so, we
-- can record the value as the current value providing that:
-- We still have a simple assignment statement (no expansion
-- activity has modified it in some peculiar manner)
-- The type is a discrete type
-- The assignment is to a named entity
-- The value is known at compile time
if Nkind (N) /= N_Assignment_Statement
or else not Is_Discrete_Type (T1)
or else not Is_Entity_Name (Lhs)
or else not Compile_Time_Known_Value (Rhs)
then
return;
end if;
Ent := Entity (Lhs);
-- Capture value if save to do so
if Safe_To_Capture_Value (N, Ent) then
Set_Current_Value (Ent, Rhs);
end if;
end Analyze_Assignment;
-----------------------------
-- Analyze_Block_Statement --
-----------------------------
procedure Analyze_Block_Statement (N : Node_Id) is
Decls : constant List_Id := Declarations (N);
Id : constant Node_Id := Identifier (N);
Ent : Entity_Id := Empty;
begin
-- If a label is present analyze it and mark it as referenced
if Present (Id) then
Analyze (Id);
Ent := Entity (Id);
-- An error defense. If we have an identifier, but no entity, then
-- something is wrong. If we have previous errors, then just remove
-- the identifier and continue, otherwise raise an exception.
if No (Ent) then
if Total_Errors_Detected /= 0 then
Set_Identifier (N, Empty);
else
raise Program_Error;
end if;
else
Set_Ekind (Ent, E_Block);
Generate_Reference (Ent, N, ' ');
Generate_Definition (Ent);
if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
Set_Label_Construct (Parent (Ent), N);
end if;
end if;
end if;
-- If no entity set, create a label entity
if No (Ent) then
Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
Set_Parent (Ent, N);
end if;
Set_Etype (Ent, Standard_Void_Type);
Set_Block_Node (Ent, Identifier (N));
New_Scope (Ent);
if Present (Decls) then
Analyze_Declarations (Decls);
Check_Completion;
end if;
Analyze (Handled_Statement_Sequence (N));
Process_End_Label (Handled_Statement_Sequence (N), 'e', Ent);
-- Analyze exception handlers if present. Note that the test for
-- HSS being present is an error defence against previous errors.
if Present (Handled_Statement_Sequence (N))
and then Present (Exception_Handlers (Handled_Statement_Sequence (N)))
then
declare
S : Entity_Id := Scope (Ent);
begin
-- Indicate that enclosing scopes contain a block with handlers.
-- Only non-generic scopes need to be marked.
loop
Set_Has_Nested_Block_With_Handler (S);
exit when Is_Overloadable (S)
or else Ekind (S) = E_Package
or else Is_Generic_Unit (S);
S := Scope (S);
end loop;
end;
end if;
Check_References (Ent);
End_Scope;
end Analyze_Block_Statement;
----------------------------
-- Analyze_Case_Statement --
----------------------------
procedure Analyze_Case_Statement (N : Node_Id) is
Statements_Analyzed : Boolean := False;
-- Set True if at least some statement sequences get analyzed.
-- If False on exit, means we had a serious error that prevented
-- full analysis of the case statement, and as a result it is not
-- a good idea to output warning messages about unreachable code.
Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
-- Recursively save value of this global, will be restored on exit
procedure Non_Static_Choice_Error (Choice : Node_Id);
-- Error routine invoked by the generic instantiation below when
-- the case statment has a non static choice.
procedure Process_Statements (Alternative : Node_Id);
-- Analyzes all the statements associated to a case alternative.
-- Needed by the generic instantiation below.
package Case_Choices_Processing is new
Generic_Choices_Processing
(Get_Alternatives => Alternatives,
Get_Choices => Discrete_Choices,
Process_Empty_Choice => No_OP,
Process_Non_Static_Choice => Non_Static_Choice_Error,
Process_Associated_Node => Process_Statements);
use Case_Choices_Processing;
-- Instantiation of the generic choice processing package
-----------------------------
-- Non_Static_Choice_Error --
-----------------------------
procedure Non_Static_Choice_Error (Choice : Node_Id) is
begin
Flag_Non_Static_Expr
("choice given in case statement is not static!", Choice);
end Non_Static_Choice_Error;
------------------------
-- Process_Statements --
------------------------
procedure Process_Statements (Alternative : Node_Id) is
begin
Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
Statements_Analyzed := True;
Analyze_Statements (Statements (Alternative));
end Process_Statements;
-- Variables local to Analyze_Case_Statement.
Exp : Node_Id;
Exp_Type : Entity_Id;
Exp_Btype : Entity_Id;
Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
Last_Choice : Nat;
Dont_Care : Boolean;
Others_Present : Boolean;
-- Start of processing for Analyze_Case_Statement
begin
Unblocked_Exit_Count := 0;
Exp := Expression (N);
Analyze_And_Resolve (Exp, Any_Discrete);
Check_Unset_Reference (Exp);
Exp_Type := Etype (Exp);
Exp_Btype := Base_Type (Exp_Type);
-- The expression must be of a discrete type which must be determinable
-- independently of the context in which the expression occurs, but
-- using the fact that the expression must be of a discrete type.
-- Moreover, the type this expression must not be a character literal
-- (which is always ambiguous) or, for Ada-83, a generic formal type.
-- If error already reported by Resolve, nothing more to do
if Exp_Btype = Any_Discrete
or else Exp_Btype = Any_Type
then
return;
elsif Exp_Btype = Any_Character then
Error_Msg_N
("character literal as case expression is ambiguous", Exp);
return;
elsif Ada_83
and then (Is_Generic_Type (Exp_Btype)
or else Is_Generic_Type (Root_Type (Exp_Btype)))
then
Error_Msg_N
("(Ada 83) case expression cannot be of a generic type", Exp);
return;
end if;
-- If the case expression is a formal object of mode in out, then
-- treat it as having a nonstatic subtype by forcing use of the base
-- type (which has to get passed to Check_Case_Choices below). Also
-- use base type when the case expression is parenthesized.
if Paren_Count (Exp) > 0
or else (Is_Entity_Name (Exp)
and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
then
Exp_Type := Exp_Btype;
end if;
-- Call instantiated Analyze_Choices which does the rest of the work
Analyze_Choices
(N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
if Exp_Type = Universal_Integer and then not Others_Present then
Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
end if;
-- If all our exits were blocked by unconditional transfers of control,
-- then the entire CASE statement acts as an unconditional transfer of
-- control, so treat it like one, and check unreachable code. Skip this
-- test if we had serious errors preventing any statement analysis.
if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
Check_Unreachable_Code (N);
else
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
end if;
if not Expander_Active
and then Compile_Time_Known_Value (Expression (N))
and then Serious_Errors_Detected = 0
then
declare
Chosen : constant Node_Id := Find_Static_Alternative (N);
Alt : Node_Id;
begin
Alt := First (Alternatives (N));
while Present (Alt) loop
if Alt /= Chosen then
Remove_Warning_Messages (Statements (Alt));
end if;
Next (Alt);
end loop;
end;
end if;
end Analyze_Case_Statement;
----------------------------
-- Analyze_Exit_Statement --
----------------------------
-- If the exit includes a name, it must be the name of a currently open
-- loop. Otherwise there must be an innermost open loop on the stack,
-- to which the statement implicitly refers.
procedure Analyze_Exit_Statement (N : Node_Id) is
Target : constant Node_Id := Name (N);
Cond : constant Node_Id := Condition (N);
Scope_Id : Entity_Id;
U_Name : Entity_Id;
Kind : Entity_Kind;
begin
if No (Cond) then
Check_Unreachable_Code (N);
end if;
if Present (Target) then
Analyze (Target);
U_Name := Entity (Target);
if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
Error_Msg_N ("invalid loop name in exit statement", N);
return;
else
Set_Has_Exit (U_Name);
end if;
else
U_Name := Empty;
end if;
for J in reverse 0 .. Scope_Stack.Last loop
Scope_Id := Scope_Stack.Table (J).Entity;
Kind := Ekind (Scope_Id);
if Kind = E_Loop
and then (No (Target) or else Scope_Id = U_Name) then
Set_Has_Exit (Scope_Id);
exit;
elsif Kind = E_Block or else Kind = E_Loop then
null;
else
Error_Msg_N
("cannot exit from program unit or accept statement", N);
exit;
end if;
end loop;
-- Verify that if present the condition is a Boolean expression
if Present (Cond) then
Analyze_And_Resolve (Cond, Any_Boolean);
Check_Unset_Reference (Cond);
end if;
end Analyze_Exit_Statement;
----------------------------
-- Analyze_Goto_Statement --
----------------------------
procedure Analyze_Goto_Statement (N : Node_Id) is
Label : constant Node_Id := Name (N);
Scope_Id : Entity_Id;
Label_Scope : Entity_Id;
begin
Check_Unreachable_Code (N);
Analyze (Label);
if Entity (Label) = Any_Id then
return;
elsif Ekind (Entity (Label)) /= E_Label then
Error_Msg_N ("target of goto statement must be a label", Label);
return;
elsif not Reachable (Entity (Label)) then
Error_Msg_N ("target of goto statement is not reachable", Label);
return;
end if;
Label_Scope := Enclosing_Scope (Entity (Label));
for J in reverse 0 .. Scope_Stack.Last loop
Scope_Id := Scope_Stack.Table (J).Entity;
if Label_Scope = Scope_Id
or else (Ekind (Scope_Id) /= E_Block
and then Ekind (Scope_Id) /= E_Loop)
then
if Scope_Id /= Label_Scope then
Error_Msg_N
("cannot exit from program unit or accept statement", N);
end if;
return;
end if;
end loop;
raise Program_Error;
end Analyze_Goto_Statement;
--------------------------
-- Analyze_If_Statement --
--------------------------
-- A special complication arises in the analysis of if statements.
-- The expander has circuitry to completely delete code that it
-- can tell will not be executed (as a result of compile time known
-- conditions). In the analyzer, we ensure that code that will be
-- deleted in this manner is analyzed but not expanded. This is
-- obviously more efficient, but more significantly, difficulties
-- arise if code is expanded and then eliminated (e.g. exception
-- table entries disappear). Similarly, itypes generated in deleted
-- code must be frozen from start, because the nodes on which they
-- depend will not be available at the freeze point.
procedure Analyze_If_Statement (N : Node_Id) is
E : Node_Id;
Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
-- Recursively save value of this global, will be restored on exit
Save_In_Deleted_Code : Boolean;
Del : Boolean := False;
-- This flag gets set True if a True condition has been found,
-- which means that remaining ELSE/ELSIF parts are deleted.
procedure Analyze_Cond_Then (Cnode : Node_Id);
-- This is applied to either the N_If_Statement node itself or
-- to an N_Elsif_Part node. It deals with analyzing the condition
-- and the THEN statements associated with it.
-----------------------
-- Analyze_Cond_Then --
-----------------------
procedure Analyze_Cond_Then (Cnode : Node_Id) is
Cond : constant Node_Id := Condition (Cnode);
Tstm : constant List_Id := Then_Statements (Cnode);
begin
Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
Analyze_And_Resolve (Cond, Any_Boolean);
Check_Unset_Reference (Cond);
Check_Possible_Current_Value_Condition (Cnode);
-- If already deleting, then just analyze then statements
if Del then
Analyze_Statements (Tstm);
-- Compile time known value, not deleting yet
elsif Compile_Time_Known_Value (Cond) then
Save_In_Deleted_Code := In_Deleted_Code;
-- If condition is True, then analyze the THEN statements
-- and set no expansion for ELSE and ELSIF parts.
if Is_True (Expr_Value (Cond)) then
Analyze_Statements (Tstm);
Del := True;
Expander_Mode_Save_And_Set (False);
In_Deleted_Code := True;
-- If condition is False, analyze THEN with expansion off
else -- Is_False (Expr_Value (Cond))
Expander_Mode_Save_And_Set (False);
In_Deleted_Code := True;
Analyze_Statements (Tstm);
Expander_Mode_Restore;
In_Deleted_Code := Save_In_Deleted_Code;
end if;
-- Not known at compile time, not deleting, normal analysis
else
Analyze_Statements (Tstm);
end if;
end Analyze_Cond_Then;
-- Start of Analyze_If_Statement
begin
-- Initialize exit count for else statements. If there is no else
-- part, this count will stay non-zero reflecting the fact that the
-- uncovered else case is an unblocked exit.
Unblocked_Exit_Count := 1;
Analyze_Cond_Then (N);
-- Now to analyze the elsif parts if any are present
if Present (Elsif_Parts (N)) then
E := First (Elsif_Parts (N));
while Present (E) loop
Analyze_Cond_Then (E);
Next (E);
end loop;
end if;
if Present (Else_Statements (N)) then
Analyze_Statements (Else_Statements (N));
end if;
-- If all our exits were blocked by unconditional transfers of control,
-- then the entire IF statement acts as an unconditional transfer of
-- control, so treat it like one, and check unreachable code.
if Unblocked_Exit_Count = 0 then
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
Check_Unreachable_Code (N);
else
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
end if;
if Del then
Expander_Mode_Restore;
In_Deleted_Code := Save_In_Deleted_Code;
end if;
if not Expander_Active
and then Compile_Time_Known_Value (Condition (N))
and then Serious_Errors_Detected = 0
then
if Is_True (Expr_Value (Condition (N))) then
Remove_Warning_Messages (Else_Statements (N));
if Present (Elsif_Parts (N)) then
E := First (Elsif_Parts (N));
while Present (E) loop
Remove_Warning_Messages (Then_Statements (E));
Next (E);
end loop;
end if;
else
Remove_Warning_Messages (Then_Statements (N));
end if;
end if;
end Analyze_If_Statement;
----------------------------------------
-- Analyze_Implicit_Label_Declaration --
----------------------------------------
-- An implicit label declaration is generated in the innermost
-- enclosing declarative part. This is done for labels as well as
-- block and loop names.
-- Note: any changes in this routine may need to be reflected in
-- Analyze_Label_Entity.
procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
Id : constant Node_Id := Defining_Identifier (N);
begin
Enter_Name (Id);
Set_Ekind (Id, E_Label);
Set_Etype (Id, Standard_Void_Type);
Set_Enclosing_Scope (Id, Current_Scope);
end Analyze_Implicit_Label_Declaration;
------------------------------
-- Analyze_Iteration_Scheme --
------------------------------
procedure Analyze_Iteration_Scheme (N : Node_Id) is
procedure Check_Controlled_Array_Attribute (DS : Node_Id);
-- If the bounds are given by a 'Range reference on a function call
-- that returns a controlled array, introduce an explicit declaration
-- to capture the bounds, so that the function result can be finalized
-- in timely fashion.
--------------------------------------
-- Check_Controlled_Array_Attribute --
--------------------------------------
procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
begin
if Nkind (DS) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (DS))
and then Ekind (Entity (Prefix (DS))) = E_Function
and then Is_Array_Type (Etype (Entity (Prefix (DS))))
and then
Is_Controlled (
Component_Type (Etype (Entity (Prefix (DS)))))
and then Expander_Active
then
declare
Loc : constant Source_Ptr := Sloc (N);
Arr : constant Entity_Id :=
Etype (Entity (Prefix (DS)));
Indx : constant Entity_Id :=
Base_Type (Etype (First_Index (Arr)));
Subt : constant Entity_Id :=
Make_Defining_Identifier
(Loc, New_Internal_Name ('S'));
Decl : Node_Id;
begin
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Indx, Loc),
Constraint =>
Make_Range_Constraint (Loc,
Relocate_Node (DS))));
Insert_Before (Parent (N), Decl);
Analyze (Decl);
Rewrite (DS,
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Subt, Loc),
Attribute_Name => Attribute_Name (DS)));
Analyze (DS);
end;
end if;
end Check_Controlled_Array_Attribute;
-- Start of processing for Analyze_Iteration_Scheme
begin
-- For an infinite loop, there is no iteration scheme
if No (N) then
return;
else
declare
Cond : constant Node_Id := Condition (N);
begin
-- For WHILE loop, verify that the condition is a Boolean
-- expression and resolve and check it.
if Present (Cond) then
Analyze_And_Resolve (Cond, Any_Boolean);
Check_Unset_Reference (Cond);
-- Else we have a FOR loop
else
declare
LP : constant Node_Id := Loop_Parameter_Specification (N);
Id : constant Entity_Id := Defining_Identifier (LP);
DS : constant Node_Id := Discrete_Subtype_Definition (LP);
begin
Enter_Name (Id);
-- We always consider the loop variable to be referenced,
-- since the loop may be used just for counting purposes.
Generate_Reference (Id, N, ' ');
-- Check for case of loop variable hiding a local
-- variable (used later on to give a nice warning
-- if the hidden variable is never assigned).
declare
H : constant Entity_Id := Homonym (Id);
begin
if Present (H)
and then Enclosing_Dynamic_Scope (H) =
Enclosing_Dynamic_Scope (Id)
and then Ekind (H) = E_Variable
and then Is_Discrete_Type (Etype (H))
then
Set_Hiding_Loop_Variable (H, Id);
end if;
end;
-- Now analyze the subtype definition
Analyze (DS);
if DS = Error then
return;
end if;
-- The subtype indication may denote the completion
-- of an incomplete type declaration.
if Is_Entity_Name (DS)
and then Present (Entity (DS))
and then Is_Type (Entity (DS))
and then Ekind (Entity (DS)) = E_Incomplete_Type
then
Set_Entity (DS, Get_Full_View (Entity (DS)));
Set_Etype (DS, Entity (DS));
end if;
if not Is_Discrete_Type (Etype (DS)) then
Wrong_Type (DS, Any_Discrete);
Set_Etype (DS, Any_Type);
end if;
Check_Controlled_Array_Attribute (DS);
Make_Index (DS, LP);
Set_Ekind (Id, E_Loop_Parameter);
Set_Etype (Id, Etype (DS));
Set_Is_Known_Valid (Id, True);
-- The loop is not a declarative part, so the only entity
-- declared "within" must be frozen explicitly.
declare
Flist : constant List_Id := Freeze_Entity (Id, Sloc (N));
begin
if Is_Non_Empty_List (Flist) then
Insert_Actions (N, Flist);
end if;
end;
-- Check for null or possibly null range and issue warning.
-- We suppress such messages in generic templates and
-- instances, because in practice they tend to be dubious
-- in these cases.
if Nkind (DS) = N_Range
and then Comes_From_Source (N)
then
declare
L : constant Node_Id := Low_Bound (DS);
H : constant Node_Id := High_Bound (DS);
Llo : Uint;
Lhi : Uint;
LOK : Boolean;
Hlo : Uint;
Hhi : Uint;
HOK : Boolean;
begin
Determine_Range (L, LOK, Llo, Lhi);
Determine_Range (H, HOK, Hlo, Hhi);
-- If range of loop is null, issue warning
if (LOK and HOK) and then Llo > Hhi then
-- Suppress the warning if inside a generic
-- template or instance, since in practice
-- they tend to be dubious in these cases since
-- they can result from intended parametrization.
if not Inside_A_Generic
and then not In_Instance
then
Error_Msg_N
("?loop range is null, loop will not execute",
DS);
end if;
-- Since we know the range of the loop is null,
-- set the appropriate flag to suppress any
-- warnings that would otherwise be issued in
-- the body of the loop that will not execute.
-- We do this even in the generic case, since
-- if it is dubious to warn on the null loop
-- itself, it is certainly dubious to warn for
-- conditions that occur inside it!
Set_Is_Null_Loop (Parent (N));
-- The other case for a warning is a reverse loop
-- where the upper bound is the integer literal
-- zero or one, and the lower bound can be positive.
-- For example, we have
-- for J in reverse N .. 1 loop
-- In practice, this is very likely to be a case
-- of reversing the bounds incorrectly in the range.
elsif Reverse_Present (LP)
and then Nkind (H) = N_Integer_Literal
and then (Intval (H) = Uint_0
or else
Intval (H) = Uint_1)
and then Lhi > Hhi
then
Error_Msg_N ("?loop range may be null", DS);
end if;
end;
end if;
end;
end if;
end;
end if;
end Analyze_Iteration_Scheme;
-------------------
-- Analyze_Label --
-------------------
-- Note: the semantic work required for analyzing labels (setting them as
-- reachable) was done in a prepass through the statements in the block,
-- so that forward gotos would be properly handled. See Analyze_Statements
-- for further details. The only processing required here is to deal with
-- optimizations that depend on an assumption of sequential control flow,
-- since of course the occurrence of a label breaks this assumption.
procedure Analyze_Label (N : Node_Id) is
pragma Warnings (Off, N);
begin
Kill_Current_Values;
end Analyze_Label;
--------------------------
-- Analyze_Label_Entity --
--------------------------
procedure Analyze_Label_Entity (E : Entity_Id) is
begin
Set_Ekind (E, E_Label);
Set_Etype (E, Standard_Void_Type);
Set_Enclosing_Scope (E, Current_Scope);
Set_Reachable (E, True);
end Analyze_Label_Entity;
----------------------------
-- Analyze_Loop_Statement --
----------------------------
procedure Analyze_Loop_Statement (N : Node_Id) is
Id : constant Node_Id := Identifier (N);
Ent : Entity_Id;
begin
if Present (Id) then
-- Make name visible, e.g. for use in exit statements. Loop
-- labels are always considered to be referenced.
Analyze (Id);
Ent := Entity (Id);
Generate_Reference (Ent, N, ' ');
Generate_Definition (Ent);
-- If we found a label, mark its type. If not, ignore it, since it
-- means we have a conflicting declaration, which would already have
-- been diagnosed at declaration time. Set Label_Construct of the
-- implicit label declaration, which is not created by the parser
-- for generic units.
if Ekind (Ent) = E_Label then
Set_Ekind (Ent, E_Loop);
if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
Set_Label_Construct (Parent (Ent), N);
end if;
end if;
-- Case of no identifier present
else
Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
Set_Etype (Ent, Standard_Void_Type);
Set_Parent (Ent, N);
end if;
-- Kill current values on entry to loop, since statements in body
-- of loop may have been executed before the loop is entered.
-- Similarly we kill values after the loop, since we do not know
-- that the body of the loop was executed.
Kill_Current_Values;
New_Scope (Ent);
Analyze_Iteration_Scheme (Iteration_Scheme (N));
Analyze_Statements (Statements (N));
Process_End_Label (N, 'e', Ent);
End_Scope;
Kill_Current_Values;
end Analyze_Loop_Statement;
----------------------------
-- Analyze_Null_Statement --
----------------------------
-- Note: the semantics of the null statement is implemented by a single
-- null statement, too bad everything isn't as simple as this!
procedure Analyze_Null_Statement (N : Node_Id) is
pragma Warnings (Off, N);
begin
null;
end Analyze_Null_Statement;
------------------------
-- Analyze_Statements --
------------------------
procedure Analyze_Statements (L : List_Id) is
S : Node_Id;
Lab : Entity_Id;
begin
-- The labels declared in the statement list are reachable from
-- statements in the list. We do this as a prepass so that any
-- goto statement will be properly flagged if its target is not
-- reachable. This is not required, but is nice behavior!
S := First (L);
while Present (S) loop
if Nkind (S) = N_Label then
Analyze (Identifier (S));
Lab := Entity (Identifier (S));
-- If we found a label mark it as reachable.
if Ekind (Lab) = E_Label then
Generate_Definition (Lab);
Set_Reachable (Lab);
if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
Set_Label_Construct (Parent (Lab), S);
end if;
-- If we failed to find a label, it means the implicit declaration
-- of the label was hidden. A for-loop parameter can do this to
-- a label with the same name inside the loop, since the implicit
-- label declaration is in the innermost enclosing body or block
-- statement.
else
Error_Msg_Sloc := Sloc (Lab);
Error_Msg_N
("implicit label declaration for & is hidden#",
Identifier (S));
end if;
end if;
Next (S);
end loop;
-- Perform semantic analysis on all statements
Conditional_Statements_Begin;
S := First (L);
while Present (S) loop
Analyze (S);
Next (S);
end loop;
Conditional_Statements_End;
-- Make labels unreachable. Visibility is not sufficient, because
-- labels in one if-branch for example are not reachable from the
-- other branch, even though their declarations are in the enclosing
-- declarative part.
S := First (L);
while Present (S) loop
if Nkind (S) = N_Label then
Set_Reachable (Entity (Identifier (S)), False);
end if;
Next (S);
end loop;
end Analyze_Statements;
--------------------------------------------
-- Check_Possible_Current_Value_Condition --
--------------------------------------------
procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id) is
Cond : Node_Id;
begin
-- Loop to deal with (ignore for now) any NOT operators present
Cond := Condition (Cnode);
while Nkind (Cond) = N_Op_Not loop
Cond := Right_Opnd (Cond);
end loop;
-- Check possible relational operator
if Nkind (Cond) = N_Op_Eq
or else
Nkind (Cond) = N_Op_Ne
or else
Nkind (Cond) = N_Op_Ge
or else
Nkind (Cond) = N_Op_Le
or else
Nkind (Cond) = N_Op_Gt
or else
Nkind (Cond) = N_Op_Lt
then
if Compile_Time_Known_Value (Right_Opnd (Cond))
and then Nkind (Left_Opnd (Cond)) = N_Identifier
then
declare
Ent : constant Entity_Id := Entity (Left_Opnd (Cond));
begin
if Ekind (Ent) = E_Variable
or else
Ekind (Ent) = E_Constant
or else
Is_Formal (Ent)
or else
Ekind (Ent) = E_Loop_Parameter
then
-- Here we have a case where the Current_Value field
-- may need to be set. We set it if it is not already
-- set to a compile time expression value.
-- Note that this represents a decision that one
-- condition blots out another previous one. That's
-- certainly right if they occur at the same level.
-- If the second one is nested, then the decision is
-- neither right nor wrong (it would be equally OK
-- to leave the outer one in place, or take the new
-- inner one. Really we should record both, but our
-- data structures are not that elaborate.
if Nkind (Current_Value (Ent)) not in N_Subexpr then
Set_Current_Value (Ent, Cnode);
end if;
end if;
end;
end if;
end if;
end Check_Possible_Current_Value_Condition;
----------------------------
-- Check_Unreachable_Code --
----------------------------
procedure Check_Unreachable_Code (N : Node_Id) is
Error_Loc : Source_Ptr;
P : Node_Id;
begin
if Is_List_Member (N)
and then Comes_From_Source (N)
then
declare
Nxt : Node_Id;
begin
Nxt := Original_Node (Next (N));
if Present (Nxt)
and then Comes_From_Source (Nxt)
and then Is_Statement (Nxt)
then
-- Special very annoying exception. If we have a return that
-- follows a raise, then we allow it without a warning, since
-- the Ada RM annoyingly requires a useless return here!
if Nkind (Original_Node (N)) /= N_Raise_Statement
or else Nkind (Nxt) /= N_Return_Statement
then
-- The rather strange shenanigans with the warning message
-- here reflects the fact that Kill_Dead_Code is very good
-- at removing warnings in deleted code, and this is one
-- warning we would prefer NOT to have removed :-)
Error_Loc := Sloc (Nxt);
-- If we have unreachable code, analyze and remove the
-- unreachable code, since it is useless and we don't
-- want to generate junk warnings.
-- We skip this step if we are not in code generation mode.
-- This is the one case where we remove dead code in the
-- semantics as opposed to the expander, and we do not want
-- to remove code if we are not in code generation mode,
-- since this messes up the ASIS trees.
-- Note that one might react by moving the whole circuit to
-- exp_ch5, but then we lose the warning in -gnatc mode.
if Operating_Mode = Generate_Code then
loop
Nxt := Next (N);
-- Quit deleting when we have nothing more to delete
-- or if we hit a label (since someone could transfer
-- control to a label, so we should not delete it).
exit when No (Nxt) or else Nkind (Nxt) = N_Label;
-- Statement/declaration is to be deleted
Analyze (Nxt);
Remove (Nxt);
Kill_Dead_Code (Nxt);
end loop;
end if;
-- Now issue the warning
Error_Msg ("?unreachable code", Error_Loc);
end if;
-- If the unconditional transfer of control instruction is
-- the last statement of a sequence, then see if our parent
-- is an IF statement, and if so adjust the unblocked exit
-- count of the if statement to reflect the fact that this
-- branch of the if is indeed blocked by a transfer of control.
else
P := Parent (N);
if Nkind (P) = N_If_Statement then
null;
elsif Nkind (P) = N_Elsif_Part then
P := Parent (P);
pragma Assert (Nkind (P) = N_If_Statement);
elsif Nkind (P) = N_Case_Statement_Alternative then
P := Parent (P);
pragma Assert (Nkind (P) = N_Case_Statement);
else
return;
end if;
Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
end if;
end;
end if;
end Check_Unreachable_Code;
end Sem_Ch5;