| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- S E M _ C H 5 -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2003 Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 2, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING. If not, write -- |
| -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- |
| -- MA 02111-1307, USA. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Atree; use Atree; |
| with Checks; use Checks; |
| with Einfo; use Einfo; |
| with Errout; use Errout; |
| with Expander; use Expander; |
| with Exp_Util; use Exp_Util; |
| with Freeze; use Freeze; |
| with Lib.Xref; use Lib.Xref; |
| with Nlists; use Nlists; |
| with Nmake; use Nmake; |
| with Opt; use Opt; |
| with Sem; use Sem; |
| with Sem_Case; use Sem_Case; |
| with Sem_Ch3; use Sem_Ch3; |
| with Sem_Ch8; use Sem_Ch8; |
| with Sem_Disp; use Sem_Disp; |
| with Sem_Eval; use Sem_Eval; |
| with Sem_Res; use Sem_Res; |
| with Sem_Type; use Sem_Type; |
| with Sem_Util; use Sem_Util; |
| with Sem_Warn; use Sem_Warn; |
| with Stand; use Stand; |
| with Sinfo; use Sinfo; |
| with Targparm; use Targparm; |
| with Tbuild; use Tbuild; |
| with Uintp; use Uintp; |
| |
| package body Sem_Ch5 is |
| |
| Unblocked_Exit_Count : Nat := 0; |
| -- This variable is used when processing if statements or case |
| -- statements, it counts the number of branches of the conditional |
| -- that are not blocked by unconditional transfer instructions. At |
| -- the end of processing, if the count is zero, it means that control |
| -- cannot fall through the conditional statement. This is used for |
| -- the generation of warning messages. This variable is recursively |
| -- saved on entry to processing an if or case, and restored on exit. |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| procedure Analyze_Iteration_Scheme (N : Node_Id); |
| |
| procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id); |
| -- Cnode is N_If_Statement, N_Elsif_Part, or N_Iteration_Scheme |
| -- (the latter when a WHILE condition is present). This call checks |
| -- if Condition (Cnode) is of the form ([NOT] var op val), where var |
| -- is a simple object, val is known at compile time, and op is one |
| -- of the six relational operators. If this is the case, and the |
| -- Current_Value field of "var" is not set, then it is set to Cnode. |
| -- See Exp_Util.Set_Current_Value_Condition for further details. |
| |
| ------------------------ |
| -- Analyze_Assignment -- |
| ------------------------ |
| |
| procedure Analyze_Assignment (N : Node_Id) is |
| Lhs : constant Node_Id := Name (N); |
| Rhs : constant Node_Id := Expression (N); |
| T1 : Entity_Id; |
| T2 : Entity_Id; |
| Decl : Node_Id; |
| Ent : Entity_Id; |
| |
| procedure Diagnose_Non_Variable_Lhs (N : Node_Id); |
| -- N is the node for the left hand side of an assignment, and it |
| -- is not a variable. This routine issues an appropriate diagnostic. |
| |
| procedure Set_Assignment_Type |
| (Opnd : Node_Id; |
| Opnd_Type : in out Entity_Id); |
| -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type |
| -- is the nominal subtype. This procedure is used to deal with cases |
| -- where the nominal subtype must be replaced by the actual subtype. |
| |
| ------------------------------- |
| -- Diagnose_Non_Variable_Lhs -- |
| ------------------------------- |
| |
| procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is |
| begin |
| -- Not worth posting another error if left hand side already |
| -- flagged as being illegal in some respect |
| |
| if Error_Posted (N) then |
| return; |
| |
| -- Some special bad cases of entity names |
| |
| elsif Is_Entity_Name (N) then |
| if Ekind (Entity (N)) = E_In_Parameter then |
| Error_Msg_N |
| ("assignment to IN mode parameter not allowed", N); |
| |
| -- Private declarations in a protected object are turned into |
| -- constants when compiling a protected function. |
| |
| elsif Present (Scope (Entity (N))) |
| and then Is_Protected_Type (Scope (Entity (N))) |
| and then |
| (Ekind (Current_Scope) = E_Function |
| or else |
| Ekind (Enclosing_Dynamic_Scope (Current_Scope)) = E_Function) |
| then |
| Error_Msg_N |
| ("protected function cannot modify protected object", N); |
| |
| elsif Ekind (Entity (N)) = E_Loop_Parameter then |
| Error_Msg_N |
| ("assignment to loop parameter not allowed", N); |
| |
| else |
| Error_Msg_N |
| ("left hand side of assignment must be a variable", N); |
| end if; |
| |
| -- For indexed components or selected components, test prefix |
| |
| elsif Nkind (N) = N_Indexed_Component then |
| Diagnose_Non_Variable_Lhs (Prefix (N)); |
| |
| -- Another special case for assignment to discriminant. |
| |
| elsif Nkind (N) = N_Selected_Component then |
| if Present (Entity (Selector_Name (N))) |
| and then Ekind (Entity (Selector_Name (N))) = E_Discriminant |
| then |
| Error_Msg_N |
| ("assignment to discriminant not allowed", N); |
| else |
| Diagnose_Non_Variable_Lhs (Prefix (N)); |
| end if; |
| |
| else |
| -- If we fall through, we have no special message to issue! |
| |
| Error_Msg_N ("left hand side of assignment must be a variable", N); |
| end if; |
| end Diagnose_Non_Variable_Lhs; |
| |
| ------------------------- |
| -- Set_Assignment_Type -- |
| ------------------------- |
| |
| procedure Set_Assignment_Type |
| (Opnd : Node_Id; |
| Opnd_Type : in out Entity_Id) |
| is |
| begin |
| Require_Entity (Opnd); |
| |
| -- If the assignment operand is an in-out or out parameter, then we |
| -- get the actual subtype (needed for the unconstrained case). |
| -- If the operand is the actual in an entry declaration, then within |
| -- the accept statement it is replaced with a local renaming, which |
| -- may also have an actual subtype. |
| |
| if Is_Entity_Name (Opnd) |
| and then (Ekind (Entity (Opnd)) = E_Out_Parameter |
| or else Ekind (Entity (Opnd)) = |
| E_In_Out_Parameter |
| or else Ekind (Entity (Opnd)) = |
| E_Generic_In_Out_Parameter |
| or else |
| (Ekind (Entity (Opnd)) = E_Variable |
| and then Nkind (Parent (Entity (Opnd))) = |
| N_Object_Renaming_Declaration |
| and then Nkind (Parent (Parent (Entity (Opnd)))) = |
| N_Accept_Statement)) |
| then |
| Opnd_Type := Get_Actual_Subtype (Opnd); |
| |
| -- If assignment operand is a component reference, then we get the |
| -- actual subtype of the component for the unconstrained case. |
| |
| elsif |
| (Nkind (Opnd) = N_Selected_Component |
| or else Nkind (Opnd) = N_Explicit_Dereference) |
| and then not Is_Unchecked_Union (Opnd_Type) |
| then |
| Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd); |
| |
| if Present (Decl) then |
| Insert_Action (N, Decl); |
| Mark_Rewrite_Insertion (Decl); |
| Analyze (Decl); |
| Opnd_Type := Defining_Identifier (Decl); |
| Set_Etype (Opnd, Opnd_Type); |
| Freeze_Itype (Opnd_Type, N); |
| |
| elsif Is_Constrained (Etype (Opnd)) then |
| Opnd_Type := Etype (Opnd); |
| end if; |
| |
| -- For slice, use the constrained subtype created for the slice |
| |
| elsif Nkind (Opnd) = N_Slice then |
| Opnd_Type := Etype (Opnd); |
| end if; |
| end Set_Assignment_Type; |
| |
| -- Start of processing for Analyze_Assignment |
| |
| begin |
| Analyze (Rhs); |
| Analyze (Lhs); |
| T1 := Etype (Lhs); |
| |
| -- In the most general case, both Lhs and Rhs can be overloaded, and we |
| -- must compute the intersection of the possible types on each side. |
| |
| if Is_Overloaded (Lhs) then |
| declare |
| I : Interp_Index; |
| It : Interp; |
| |
| begin |
| T1 := Any_Type; |
| Get_First_Interp (Lhs, I, It); |
| |
| while Present (It.Typ) loop |
| if Has_Compatible_Type (Rhs, It.Typ) then |
| if T1 /= Any_Type then |
| |
| -- An explicit dereference is overloaded if the prefix |
| -- is. Try to remove the ambiguity on the prefix, the |
| -- error will be posted there if the ambiguity is real. |
| |
| if Nkind (Lhs) = N_Explicit_Dereference then |
| declare |
| PI : Interp_Index; |
| PI1 : Interp_Index := 0; |
| PIt : Interp; |
| Found : Boolean; |
| |
| begin |
| Found := False; |
| Get_First_Interp (Prefix (Lhs), PI, PIt); |
| |
| while Present (PIt.Typ) loop |
| if Is_Access_Type (PIt.Typ) |
| and then Has_Compatible_Type |
| (Rhs, Designated_Type (PIt.Typ)) |
| then |
| if Found then |
| PIt := |
| Disambiguate (Prefix (Lhs), |
| PI1, PI, Any_Type); |
| |
| if PIt = No_Interp then |
| Error_Msg_N |
| ("ambiguous left-hand side" |
| & " in assignment", Lhs); |
| exit; |
| else |
| Resolve (Prefix (Lhs), PIt.Typ); |
| end if; |
| |
| exit; |
| else |
| Found := True; |
| PI1 := PI; |
| end if; |
| end if; |
| |
| Get_Next_Interp (PI, PIt); |
| end loop; |
| end; |
| |
| else |
| Error_Msg_N |
| ("ambiguous left-hand side in assignment", Lhs); |
| exit; |
| end if; |
| else |
| T1 := It.Typ; |
| end if; |
| end if; |
| |
| Get_Next_Interp (I, It); |
| end loop; |
| end; |
| |
| if T1 = Any_Type then |
| Error_Msg_N |
| ("no valid types for left-hand side for assignment", Lhs); |
| return; |
| end if; |
| end if; |
| |
| Resolve (Lhs, T1); |
| |
| if not Is_Variable (Lhs) then |
| Diagnose_Non_Variable_Lhs (Lhs); |
| return; |
| |
| elsif Is_Limited_Type (T1) |
| and then not Assignment_OK (Lhs) |
| and then not Assignment_OK (Original_Node (Lhs)) |
| then |
| Error_Msg_N |
| ("left hand of assignment must not be limited type", Lhs); |
| Explain_Limited_Type (T1, Lhs); |
| return; |
| end if; |
| |
| -- Resolution may have updated the subtype, in case the left-hand |
| -- side is a private protected component. Use the correct subtype |
| -- to avoid scoping issues in the back-end. |
| |
| T1 := Etype (Lhs); |
| Set_Assignment_Type (Lhs, T1); |
| |
| Resolve (Rhs, T1); |
| |
| -- Remaining steps are skipped if Rhs was syntactically in error |
| |
| if Rhs = Error then |
| return; |
| end if; |
| |
| T2 := Etype (Rhs); |
| Check_Unset_Reference (Rhs); |
| |
| if Covers (T1, T2) then |
| null; |
| else |
| Wrong_Type (Rhs, Etype (Lhs)); |
| return; |
| end if; |
| |
| Set_Assignment_Type (Rhs, T2); |
| |
| if Total_Errors_Detected /= 0 then |
| if No (T1) then |
| T1 := Any_Type; |
| end if; |
| |
| if No (T2) then |
| T2 := Any_Type; |
| end if; |
| end if; |
| |
| if T1 = Any_Type or else T2 = Any_Type then |
| return; |
| end if; |
| |
| if (Is_Class_Wide_Type (T2) or else Is_Dynamically_Tagged (Rhs)) |
| and then not Is_Class_Wide_Type (T1) |
| then |
| Error_Msg_N ("dynamically tagged expression not allowed!", Rhs); |
| |
| elsif Is_Class_Wide_Type (T1) |
| and then not Is_Class_Wide_Type (T2) |
| and then not Is_Tag_Indeterminate (Rhs) |
| and then not Is_Dynamically_Tagged (Rhs) |
| then |
| Error_Msg_N ("dynamically tagged expression required!", Rhs); |
| end if; |
| |
| -- Tag propagation is done only in semantics mode only. If expansion |
| -- is on, the rhs tag indeterminate function call has been expanded |
| -- and tag propagation would have happened too late, so the |
| -- propagation take place in expand_call instead. |
| |
| if not Expander_Active |
| and then Is_Class_Wide_Type (T1) |
| and then Is_Tag_Indeterminate (Rhs) |
| then |
| Propagate_Tag (Lhs, Rhs); |
| end if; |
| |
| if Is_Scalar_Type (T1) then |
| Apply_Scalar_Range_Check (Rhs, Etype (Lhs)); |
| |
| elsif Is_Array_Type (T1) |
| and then |
| (Nkind (Rhs) /= N_Type_Conversion |
| or else Is_Constrained (Etype (Rhs))) |
| then |
| -- Assignment verifies that the length of the Lsh and Rhs are equal, |
| -- but of course the indices do not have to match. If the right-hand |
| -- side is a type conversion to an unconstrained type, a length check |
| -- is performed on the expression itself during expansion. In rare |
| -- cases, the redundant length check is computed on an index type |
| -- with a different representation, triggering incorrect code in |
| -- the back end. |
| |
| Apply_Length_Check (Rhs, Etype (Lhs)); |
| |
| else |
| -- Discriminant checks are applied in the course of expansion. |
| null; |
| end if; |
| |
| -- ??? a real accessibility check is needed when ??? |
| |
| -- Post warning for useless assignment |
| |
| if Warn_On_Redundant_Constructs |
| |
| -- We only warn for source constructs |
| |
| and then Comes_From_Source (N) |
| |
| -- Where the entity is the same on both sides |
| |
| and then Is_Entity_Name (Lhs) |
| and then Is_Entity_Name (Original_Node (Rhs)) |
| and then Entity (Lhs) = Entity (Original_Node (Rhs)) |
| |
| -- But exclude the case where the right side was an operation |
| -- that got rewritten (e.g. JUNK + K, where K was known to be |
| -- zero). We don't want to warn in such a case, since it is |
| -- reasonable to write such expressions especially when K is |
| -- defined symbolically in some other package. |
| |
| and then Nkind (Original_Node (Rhs)) not in N_Op |
| then |
| Error_Msg_NE |
| ("?useless assignment of & to itself", N, Entity (Lhs)); |
| end if; |
| |
| Note_Possible_Modification (Lhs); |
| |
| -- Check for non-allowed composite assignment |
| |
| if not Support_Composite_Assign_On_Target |
| and then (Is_Array_Type (T1) or else Is_Record_Type (T1)) |
| and then (not Has_Size_Clause (T1) or else Esize (T1) > 64) |
| then |
| Error_Msg_CRT ("composite assignment", N); |
| end if; |
| |
| -- One more step. Let's see if we have a simple assignment of a |
| -- known at compile time value to a simple variable. If so, we |
| -- can record the value as the current value providing that: |
| |
| -- We still have a simple assignment statement (no expansion |
| -- activity has modified it in some peculiar manner) |
| |
| -- The type is a discrete type |
| |
| -- The assignment is to a named entity |
| |
| -- The value is known at compile time |
| |
| if Nkind (N) /= N_Assignment_Statement |
| or else not Is_Discrete_Type (T1) |
| or else not Is_Entity_Name (Lhs) |
| or else not Compile_Time_Known_Value (Rhs) |
| then |
| return; |
| end if; |
| |
| Ent := Entity (Lhs); |
| |
| -- Capture value if save to do so |
| |
| if Safe_To_Capture_Value (N, Ent) then |
| Set_Current_Value (Ent, Rhs); |
| end if; |
| end Analyze_Assignment; |
| |
| ----------------------------- |
| -- Analyze_Block_Statement -- |
| ----------------------------- |
| |
| procedure Analyze_Block_Statement (N : Node_Id) is |
| Decls : constant List_Id := Declarations (N); |
| Id : constant Node_Id := Identifier (N); |
| Ent : Entity_Id := Empty; |
| |
| begin |
| -- If a label is present analyze it and mark it as referenced |
| |
| if Present (Id) then |
| Analyze (Id); |
| Ent := Entity (Id); |
| |
| -- An error defense. If we have an identifier, but no entity, then |
| -- something is wrong. If we have previous errors, then just remove |
| -- the identifier and continue, otherwise raise an exception. |
| |
| if No (Ent) then |
| if Total_Errors_Detected /= 0 then |
| Set_Identifier (N, Empty); |
| else |
| raise Program_Error; |
| end if; |
| |
| else |
| Set_Ekind (Ent, E_Block); |
| Generate_Reference (Ent, N, ' '); |
| Generate_Definition (Ent); |
| |
| if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then |
| Set_Label_Construct (Parent (Ent), N); |
| end if; |
| end if; |
| end if; |
| |
| -- If no entity set, create a label entity |
| |
| if No (Ent) then |
| Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B'); |
| Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N))); |
| Set_Parent (Ent, N); |
| end if; |
| |
| Set_Etype (Ent, Standard_Void_Type); |
| Set_Block_Node (Ent, Identifier (N)); |
| New_Scope (Ent); |
| |
| if Present (Decls) then |
| Analyze_Declarations (Decls); |
| Check_Completion; |
| end if; |
| |
| Analyze (Handled_Statement_Sequence (N)); |
| Process_End_Label (Handled_Statement_Sequence (N), 'e', Ent); |
| |
| -- Analyze exception handlers if present. Note that the test for |
| -- HSS being present is an error defence against previous errors. |
| |
| if Present (Handled_Statement_Sequence (N)) |
| and then Present (Exception_Handlers (Handled_Statement_Sequence (N))) |
| then |
| declare |
| S : Entity_Id := Scope (Ent); |
| |
| begin |
| -- Indicate that enclosing scopes contain a block with handlers. |
| -- Only non-generic scopes need to be marked. |
| |
| loop |
| Set_Has_Nested_Block_With_Handler (S); |
| exit when Is_Overloadable (S) |
| or else Ekind (S) = E_Package |
| or else Is_Generic_Unit (S); |
| S := Scope (S); |
| end loop; |
| end; |
| end if; |
| |
| Check_References (Ent); |
| End_Scope; |
| end Analyze_Block_Statement; |
| |
| ---------------------------- |
| -- Analyze_Case_Statement -- |
| ---------------------------- |
| |
| procedure Analyze_Case_Statement (N : Node_Id) is |
| |
| Statements_Analyzed : Boolean := False; |
| -- Set True if at least some statement sequences get analyzed. |
| -- If False on exit, means we had a serious error that prevented |
| -- full analysis of the case statement, and as a result it is not |
| -- a good idea to output warning messages about unreachable code. |
| |
| Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count; |
| -- Recursively save value of this global, will be restored on exit |
| |
| procedure Non_Static_Choice_Error (Choice : Node_Id); |
| -- Error routine invoked by the generic instantiation below when |
| -- the case statment has a non static choice. |
| |
| procedure Process_Statements (Alternative : Node_Id); |
| -- Analyzes all the statements associated to a case alternative. |
| -- Needed by the generic instantiation below. |
| |
| package Case_Choices_Processing is new |
| Generic_Choices_Processing |
| (Get_Alternatives => Alternatives, |
| Get_Choices => Discrete_Choices, |
| Process_Empty_Choice => No_OP, |
| Process_Non_Static_Choice => Non_Static_Choice_Error, |
| Process_Associated_Node => Process_Statements); |
| use Case_Choices_Processing; |
| -- Instantiation of the generic choice processing package |
| |
| ----------------------------- |
| -- Non_Static_Choice_Error -- |
| ----------------------------- |
| |
| procedure Non_Static_Choice_Error (Choice : Node_Id) is |
| begin |
| Flag_Non_Static_Expr |
| ("choice given in case statement is not static!", Choice); |
| end Non_Static_Choice_Error; |
| |
| ------------------------ |
| -- Process_Statements -- |
| ------------------------ |
| |
| procedure Process_Statements (Alternative : Node_Id) is |
| begin |
| Unblocked_Exit_Count := Unblocked_Exit_Count + 1; |
| Statements_Analyzed := True; |
| Analyze_Statements (Statements (Alternative)); |
| end Process_Statements; |
| |
| -- Variables local to Analyze_Case_Statement. |
| |
| Exp : Node_Id; |
| Exp_Type : Entity_Id; |
| Exp_Btype : Entity_Id; |
| |
| Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N)); |
| Last_Choice : Nat; |
| Dont_Care : Boolean; |
| Others_Present : Boolean; |
| |
| -- Start of processing for Analyze_Case_Statement |
| |
| begin |
| Unblocked_Exit_Count := 0; |
| Exp := Expression (N); |
| Analyze_And_Resolve (Exp, Any_Discrete); |
| Check_Unset_Reference (Exp); |
| Exp_Type := Etype (Exp); |
| Exp_Btype := Base_Type (Exp_Type); |
| |
| -- The expression must be of a discrete type which must be determinable |
| -- independently of the context in which the expression occurs, but |
| -- using the fact that the expression must be of a discrete type. |
| -- Moreover, the type this expression must not be a character literal |
| -- (which is always ambiguous) or, for Ada-83, a generic formal type. |
| |
| -- If error already reported by Resolve, nothing more to do |
| |
| if Exp_Btype = Any_Discrete |
| or else Exp_Btype = Any_Type |
| then |
| return; |
| |
| elsif Exp_Btype = Any_Character then |
| Error_Msg_N |
| ("character literal as case expression is ambiguous", Exp); |
| return; |
| |
| elsif Ada_83 |
| and then (Is_Generic_Type (Exp_Btype) |
| or else Is_Generic_Type (Root_Type (Exp_Btype))) |
| then |
| Error_Msg_N |
| ("(Ada 83) case expression cannot be of a generic type", Exp); |
| return; |
| end if; |
| |
| -- If the case expression is a formal object of mode in out, then |
| -- treat it as having a nonstatic subtype by forcing use of the base |
| -- type (which has to get passed to Check_Case_Choices below). Also |
| -- use base type when the case expression is parenthesized. |
| |
| if Paren_Count (Exp) > 0 |
| or else (Is_Entity_Name (Exp) |
| and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter) |
| then |
| Exp_Type := Exp_Btype; |
| end if; |
| |
| -- Call instantiated Analyze_Choices which does the rest of the work |
| |
| Analyze_Choices |
| (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present); |
| |
| if Exp_Type = Universal_Integer and then not Others_Present then |
| Error_Msg_N ("case on universal integer requires OTHERS choice", Exp); |
| end if; |
| |
| -- If all our exits were blocked by unconditional transfers of control, |
| -- then the entire CASE statement acts as an unconditional transfer of |
| -- control, so treat it like one, and check unreachable code. Skip this |
| -- test if we had serious errors preventing any statement analysis. |
| |
| if Unblocked_Exit_Count = 0 and then Statements_Analyzed then |
| Unblocked_Exit_Count := Save_Unblocked_Exit_Count; |
| Check_Unreachable_Code (N); |
| else |
| Unblocked_Exit_Count := Save_Unblocked_Exit_Count; |
| end if; |
| |
| if not Expander_Active |
| and then Compile_Time_Known_Value (Expression (N)) |
| and then Serious_Errors_Detected = 0 |
| then |
| declare |
| Chosen : constant Node_Id := Find_Static_Alternative (N); |
| Alt : Node_Id; |
| |
| begin |
| Alt := First (Alternatives (N)); |
| |
| while Present (Alt) loop |
| if Alt /= Chosen then |
| Remove_Warning_Messages (Statements (Alt)); |
| end if; |
| |
| Next (Alt); |
| end loop; |
| end; |
| end if; |
| end Analyze_Case_Statement; |
| |
| ---------------------------- |
| -- Analyze_Exit_Statement -- |
| ---------------------------- |
| |
| -- If the exit includes a name, it must be the name of a currently open |
| -- loop. Otherwise there must be an innermost open loop on the stack, |
| -- to which the statement implicitly refers. |
| |
| procedure Analyze_Exit_Statement (N : Node_Id) is |
| Target : constant Node_Id := Name (N); |
| Cond : constant Node_Id := Condition (N); |
| Scope_Id : Entity_Id; |
| U_Name : Entity_Id; |
| Kind : Entity_Kind; |
| |
| begin |
| if No (Cond) then |
| Check_Unreachable_Code (N); |
| end if; |
| |
| if Present (Target) then |
| Analyze (Target); |
| U_Name := Entity (Target); |
| |
| if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then |
| Error_Msg_N ("invalid loop name in exit statement", N); |
| return; |
| else |
| Set_Has_Exit (U_Name); |
| end if; |
| |
| else |
| U_Name := Empty; |
| end if; |
| |
| for J in reverse 0 .. Scope_Stack.Last loop |
| Scope_Id := Scope_Stack.Table (J).Entity; |
| Kind := Ekind (Scope_Id); |
| |
| if Kind = E_Loop |
| and then (No (Target) or else Scope_Id = U_Name) then |
| Set_Has_Exit (Scope_Id); |
| exit; |
| |
| elsif Kind = E_Block or else Kind = E_Loop then |
| null; |
| |
| else |
| Error_Msg_N |
| ("cannot exit from program unit or accept statement", N); |
| exit; |
| end if; |
| end loop; |
| |
| -- Verify that if present the condition is a Boolean expression |
| |
| if Present (Cond) then |
| Analyze_And_Resolve (Cond, Any_Boolean); |
| Check_Unset_Reference (Cond); |
| end if; |
| end Analyze_Exit_Statement; |
| |
| ---------------------------- |
| -- Analyze_Goto_Statement -- |
| ---------------------------- |
| |
| procedure Analyze_Goto_Statement (N : Node_Id) is |
| Label : constant Node_Id := Name (N); |
| Scope_Id : Entity_Id; |
| Label_Scope : Entity_Id; |
| |
| begin |
| Check_Unreachable_Code (N); |
| |
| Analyze (Label); |
| |
| if Entity (Label) = Any_Id then |
| return; |
| |
| elsif Ekind (Entity (Label)) /= E_Label then |
| Error_Msg_N ("target of goto statement must be a label", Label); |
| return; |
| |
| elsif not Reachable (Entity (Label)) then |
| Error_Msg_N ("target of goto statement is not reachable", Label); |
| return; |
| end if; |
| |
| Label_Scope := Enclosing_Scope (Entity (Label)); |
| |
| for J in reverse 0 .. Scope_Stack.Last loop |
| Scope_Id := Scope_Stack.Table (J).Entity; |
| |
| if Label_Scope = Scope_Id |
| or else (Ekind (Scope_Id) /= E_Block |
| and then Ekind (Scope_Id) /= E_Loop) |
| then |
| if Scope_Id /= Label_Scope then |
| Error_Msg_N |
| ("cannot exit from program unit or accept statement", N); |
| end if; |
| |
| return; |
| end if; |
| end loop; |
| |
| raise Program_Error; |
| end Analyze_Goto_Statement; |
| |
| -------------------------- |
| -- Analyze_If_Statement -- |
| -------------------------- |
| |
| -- A special complication arises in the analysis of if statements. |
| |
| -- The expander has circuitry to completely delete code that it |
| -- can tell will not be executed (as a result of compile time known |
| -- conditions). In the analyzer, we ensure that code that will be |
| -- deleted in this manner is analyzed but not expanded. This is |
| -- obviously more efficient, but more significantly, difficulties |
| -- arise if code is expanded and then eliminated (e.g. exception |
| -- table entries disappear). Similarly, itypes generated in deleted |
| -- code must be frozen from start, because the nodes on which they |
| -- depend will not be available at the freeze point. |
| |
| procedure Analyze_If_Statement (N : Node_Id) is |
| E : Node_Id; |
| |
| Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count; |
| -- Recursively save value of this global, will be restored on exit |
| |
| Save_In_Deleted_Code : Boolean; |
| |
| Del : Boolean := False; |
| -- This flag gets set True if a True condition has been found, |
| -- which means that remaining ELSE/ELSIF parts are deleted. |
| |
| procedure Analyze_Cond_Then (Cnode : Node_Id); |
| -- This is applied to either the N_If_Statement node itself or |
| -- to an N_Elsif_Part node. It deals with analyzing the condition |
| -- and the THEN statements associated with it. |
| |
| ----------------------- |
| -- Analyze_Cond_Then -- |
| ----------------------- |
| |
| procedure Analyze_Cond_Then (Cnode : Node_Id) is |
| Cond : constant Node_Id := Condition (Cnode); |
| Tstm : constant List_Id := Then_Statements (Cnode); |
| |
| begin |
| Unblocked_Exit_Count := Unblocked_Exit_Count + 1; |
| Analyze_And_Resolve (Cond, Any_Boolean); |
| Check_Unset_Reference (Cond); |
| Check_Possible_Current_Value_Condition (Cnode); |
| |
| -- If already deleting, then just analyze then statements |
| |
| if Del then |
| Analyze_Statements (Tstm); |
| |
| -- Compile time known value, not deleting yet |
| |
| elsif Compile_Time_Known_Value (Cond) then |
| Save_In_Deleted_Code := In_Deleted_Code; |
| |
| -- If condition is True, then analyze the THEN statements |
| -- and set no expansion for ELSE and ELSIF parts. |
| |
| if Is_True (Expr_Value (Cond)) then |
| Analyze_Statements (Tstm); |
| Del := True; |
| Expander_Mode_Save_And_Set (False); |
| In_Deleted_Code := True; |
| |
| -- If condition is False, analyze THEN with expansion off |
| |
| else -- Is_False (Expr_Value (Cond)) |
| Expander_Mode_Save_And_Set (False); |
| In_Deleted_Code := True; |
| Analyze_Statements (Tstm); |
| Expander_Mode_Restore; |
| In_Deleted_Code := Save_In_Deleted_Code; |
| end if; |
| |
| -- Not known at compile time, not deleting, normal analysis |
| |
| else |
| Analyze_Statements (Tstm); |
| end if; |
| end Analyze_Cond_Then; |
| |
| -- Start of Analyze_If_Statement |
| |
| begin |
| -- Initialize exit count for else statements. If there is no else |
| -- part, this count will stay non-zero reflecting the fact that the |
| -- uncovered else case is an unblocked exit. |
| |
| Unblocked_Exit_Count := 1; |
| Analyze_Cond_Then (N); |
| |
| -- Now to analyze the elsif parts if any are present |
| |
| if Present (Elsif_Parts (N)) then |
| E := First (Elsif_Parts (N)); |
| while Present (E) loop |
| Analyze_Cond_Then (E); |
| Next (E); |
| end loop; |
| end if; |
| |
| if Present (Else_Statements (N)) then |
| Analyze_Statements (Else_Statements (N)); |
| end if; |
| |
| -- If all our exits were blocked by unconditional transfers of control, |
| -- then the entire IF statement acts as an unconditional transfer of |
| -- control, so treat it like one, and check unreachable code. |
| |
| if Unblocked_Exit_Count = 0 then |
| Unblocked_Exit_Count := Save_Unblocked_Exit_Count; |
| Check_Unreachable_Code (N); |
| else |
| Unblocked_Exit_Count := Save_Unblocked_Exit_Count; |
| end if; |
| |
| if Del then |
| Expander_Mode_Restore; |
| In_Deleted_Code := Save_In_Deleted_Code; |
| end if; |
| |
| if not Expander_Active |
| and then Compile_Time_Known_Value (Condition (N)) |
| and then Serious_Errors_Detected = 0 |
| then |
| if Is_True (Expr_Value (Condition (N))) then |
| Remove_Warning_Messages (Else_Statements (N)); |
| |
| if Present (Elsif_Parts (N)) then |
| E := First (Elsif_Parts (N)); |
| |
| while Present (E) loop |
| Remove_Warning_Messages (Then_Statements (E)); |
| Next (E); |
| end loop; |
| end if; |
| |
| else |
| Remove_Warning_Messages (Then_Statements (N)); |
| end if; |
| end if; |
| end Analyze_If_Statement; |
| |
| ---------------------------------------- |
| -- Analyze_Implicit_Label_Declaration -- |
| ---------------------------------------- |
| |
| -- An implicit label declaration is generated in the innermost |
| -- enclosing declarative part. This is done for labels as well as |
| -- block and loop names. |
| |
| -- Note: any changes in this routine may need to be reflected in |
| -- Analyze_Label_Entity. |
| |
| procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is |
| Id : constant Node_Id := Defining_Identifier (N); |
| begin |
| Enter_Name (Id); |
| Set_Ekind (Id, E_Label); |
| Set_Etype (Id, Standard_Void_Type); |
| Set_Enclosing_Scope (Id, Current_Scope); |
| end Analyze_Implicit_Label_Declaration; |
| |
| ------------------------------ |
| -- Analyze_Iteration_Scheme -- |
| ------------------------------ |
| |
| procedure Analyze_Iteration_Scheme (N : Node_Id) is |
| procedure Check_Controlled_Array_Attribute (DS : Node_Id); |
| -- If the bounds are given by a 'Range reference on a function call |
| -- that returns a controlled array, introduce an explicit declaration |
| -- to capture the bounds, so that the function result can be finalized |
| -- in timely fashion. |
| |
| -------------------------------------- |
| -- Check_Controlled_Array_Attribute -- |
| -------------------------------------- |
| |
| procedure Check_Controlled_Array_Attribute (DS : Node_Id) is |
| begin |
| if Nkind (DS) = N_Attribute_Reference |
| and then Is_Entity_Name (Prefix (DS)) |
| and then Ekind (Entity (Prefix (DS))) = E_Function |
| and then Is_Array_Type (Etype (Entity (Prefix (DS)))) |
| and then |
| Is_Controlled ( |
| Component_Type (Etype (Entity (Prefix (DS))))) |
| and then Expander_Active |
| then |
| declare |
| Loc : constant Source_Ptr := Sloc (N); |
| Arr : constant Entity_Id := |
| Etype (Entity (Prefix (DS))); |
| Indx : constant Entity_Id := |
| Base_Type (Etype (First_Index (Arr))); |
| Subt : constant Entity_Id := |
| Make_Defining_Identifier |
| (Loc, New_Internal_Name ('S')); |
| Decl : Node_Id; |
| |
| begin |
| Decl := |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => Subt, |
| Subtype_Indication => |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => New_Reference_To (Indx, Loc), |
| Constraint => |
| Make_Range_Constraint (Loc, |
| Relocate_Node (DS)))); |
| Insert_Before (Parent (N), Decl); |
| Analyze (Decl); |
| |
| Rewrite (DS, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Reference_To (Subt, Loc), |
| Attribute_Name => Attribute_Name (DS))); |
| Analyze (DS); |
| end; |
| end if; |
| end Check_Controlled_Array_Attribute; |
| |
| -- Start of processing for Analyze_Iteration_Scheme |
| |
| begin |
| -- For an infinite loop, there is no iteration scheme |
| |
| if No (N) then |
| return; |
| |
| else |
| declare |
| Cond : constant Node_Id := Condition (N); |
| |
| begin |
| -- For WHILE loop, verify that the condition is a Boolean |
| -- expression and resolve and check it. |
| |
| if Present (Cond) then |
| Analyze_And_Resolve (Cond, Any_Boolean); |
| Check_Unset_Reference (Cond); |
| |
| -- Else we have a FOR loop |
| |
| else |
| declare |
| LP : constant Node_Id := Loop_Parameter_Specification (N); |
| Id : constant Entity_Id := Defining_Identifier (LP); |
| DS : constant Node_Id := Discrete_Subtype_Definition (LP); |
| |
| begin |
| Enter_Name (Id); |
| |
| -- We always consider the loop variable to be referenced, |
| -- since the loop may be used just for counting purposes. |
| |
| Generate_Reference (Id, N, ' '); |
| |
| -- Check for case of loop variable hiding a local |
| -- variable (used later on to give a nice warning |
| -- if the hidden variable is never assigned). |
| |
| declare |
| H : constant Entity_Id := Homonym (Id); |
| begin |
| if Present (H) |
| and then Enclosing_Dynamic_Scope (H) = |
| Enclosing_Dynamic_Scope (Id) |
| and then Ekind (H) = E_Variable |
| and then Is_Discrete_Type (Etype (H)) |
| then |
| Set_Hiding_Loop_Variable (H, Id); |
| end if; |
| end; |
| |
| -- Now analyze the subtype definition |
| |
| Analyze (DS); |
| |
| if DS = Error then |
| return; |
| end if; |
| |
| -- The subtype indication may denote the completion |
| -- of an incomplete type declaration. |
| |
| if Is_Entity_Name (DS) |
| and then Present (Entity (DS)) |
| and then Is_Type (Entity (DS)) |
| and then Ekind (Entity (DS)) = E_Incomplete_Type |
| then |
| Set_Entity (DS, Get_Full_View (Entity (DS))); |
| Set_Etype (DS, Entity (DS)); |
| end if; |
| |
| if not Is_Discrete_Type (Etype (DS)) then |
| Wrong_Type (DS, Any_Discrete); |
| Set_Etype (DS, Any_Type); |
| end if; |
| |
| Check_Controlled_Array_Attribute (DS); |
| Make_Index (DS, LP); |
| |
| Set_Ekind (Id, E_Loop_Parameter); |
| Set_Etype (Id, Etype (DS)); |
| Set_Is_Known_Valid (Id, True); |
| |
| -- The loop is not a declarative part, so the only entity |
| -- declared "within" must be frozen explicitly. |
| |
| declare |
| Flist : constant List_Id := Freeze_Entity (Id, Sloc (N)); |
| begin |
| if Is_Non_Empty_List (Flist) then |
| Insert_Actions (N, Flist); |
| end if; |
| end; |
| |
| -- Check for null or possibly null range and issue warning. |
| -- We suppress such messages in generic templates and |
| -- instances, because in practice they tend to be dubious |
| -- in these cases. |
| |
| if Nkind (DS) = N_Range |
| and then Comes_From_Source (N) |
| then |
| declare |
| L : constant Node_Id := Low_Bound (DS); |
| H : constant Node_Id := High_Bound (DS); |
| |
| Llo : Uint; |
| Lhi : Uint; |
| LOK : Boolean; |
| Hlo : Uint; |
| Hhi : Uint; |
| HOK : Boolean; |
| |
| begin |
| Determine_Range (L, LOK, Llo, Lhi); |
| Determine_Range (H, HOK, Hlo, Hhi); |
| |
| -- If range of loop is null, issue warning |
| |
| if (LOK and HOK) and then Llo > Hhi then |
| |
| -- Suppress the warning if inside a generic |
| -- template or instance, since in practice |
| -- they tend to be dubious in these cases since |
| -- they can result from intended parametrization. |
| |
| if not Inside_A_Generic |
| and then not In_Instance |
| then |
| Error_Msg_N |
| ("?loop range is null, loop will not execute", |
| DS); |
| end if; |
| |
| -- Since we know the range of the loop is null, |
| -- set the appropriate flag to suppress any |
| -- warnings that would otherwise be issued in |
| -- the body of the loop that will not execute. |
| -- We do this even in the generic case, since |
| -- if it is dubious to warn on the null loop |
| -- itself, it is certainly dubious to warn for |
| -- conditions that occur inside it! |
| |
| Set_Is_Null_Loop (Parent (N)); |
| |
| -- The other case for a warning is a reverse loop |
| -- where the upper bound is the integer literal |
| -- zero or one, and the lower bound can be positive. |
| |
| -- For example, we have |
| |
| -- for J in reverse N .. 1 loop |
| |
| -- In practice, this is very likely to be a case |
| -- of reversing the bounds incorrectly in the range. |
| |
| elsif Reverse_Present (LP) |
| and then Nkind (H) = N_Integer_Literal |
| and then (Intval (H) = Uint_0 |
| or else |
| Intval (H) = Uint_1) |
| and then Lhi > Hhi |
| then |
| Error_Msg_N ("?loop range may be null", DS); |
| end if; |
| end; |
| end if; |
| end; |
| end if; |
| end; |
| end if; |
| end Analyze_Iteration_Scheme; |
| |
| ------------------- |
| -- Analyze_Label -- |
| ------------------- |
| |
| -- Note: the semantic work required for analyzing labels (setting them as |
| -- reachable) was done in a prepass through the statements in the block, |
| -- so that forward gotos would be properly handled. See Analyze_Statements |
| -- for further details. The only processing required here is to deal with |
| -- optimizations that depend on an assumption of sequential control flow, |
| -- since of course the occurrence of a label breaks this assumption. |
| |
| procedure Analyze_Label (N : Node_Id) is |
| pragma Warnings (Off, N); |
| begin |
| Kill_Current_Values; |
| end Analyze_Label; |
| |
| -------------------------- |
| -- Analyze_Label_Entity -- |
| -------------------------- |
| |
| procedure Analyze_Label_Entity (E : Entity_Id) is |
| begin |
| Set_Ekind (E, E_Label); |
| Set_Etype (E, Standard_Void_Type); |
| Set_Enclosing_Scope (E, Current_Scope); |
| Set_Reachable (E, True); |
| end Analyze_Label_Entity; |
| |
| ---------------------------- |
| -- Analyze_Loop_Statement -- |
| ---------------------------- |
| |
| procedure Analyze_Loop_Statement (N : Node_Id) is |
| Id : constant Node_Id := Identifier (N); |
| Ent : Entity_Id; |
| |
| begin |
| if Present (Id) then |
| |
| -- Make name visible, e.g. for use in exit statements. Loop |
| -- labels are always considered to be referenced. |
| |
| Analyze (Id); |
| Ent := Entity (Id); |
| Generate_Reference (Ent, N, ' '); |
| Generate_Definition (Ent); |
| |
| -- If we found a label, mark its type. If not, ignore it, since it |
| -- means we have a conflicting declaration, which would already have |
| -- been diagnosed at declaration time. Set Label_Construct of the |
| -- implicit label declaration, which is not created by the parser |
| -- for generic units. |
| |
| if Ekind (Ent) = E_Label then |
| Set_Ekind (Ent, E_Loop); |
| |
| if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then |
| Set_Label_Construct (Parent (Ent), N); |
| end if; |
| end if; |
| |
| -- Case of no identifier present |
| |
| else |
| Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L'); |
| Set_Etype (Ent, Standard_Void_Type); |
| Set_Parent (Ent, N); |
| end if; |
| |
| -- Kill current values on entry to loop, since statements in body |
| -- of loop may have been executed before the loop is entered. |
| -- Similarly we kill values after the loop, since we do not know |
| -- that the body of the loop was executed. |
| |
| Kill_Current_Values; |
| New_Scope (Ent); |
| Analyze_Iteration_Scheme (Iteration_Scheme (N)); |
| Analyze_Statements (Statements (N)); |
| Process_End_Label (N, 'e', Ent); |
| End_Scope; |
| Kill_Current_Values; |
| end Analyze_Loop_Statement; |
| |
| ---------------------------- |
| -- Analyze_Null_Statement -- |
| ---------------------------- |
| |
| -- Note: the semantics of the null statement is implemented by a single |
| -- null statement, too bad everything isn't as simple as this! |
| |
| procedure Analyze_Null_Statement (N : Node_Id) is |
| pragma Warnings (Off, N); |
| begin |
| null; |
| end Analyze_Null_Statement; |
| |
| ------------------------ |
| -- Analyze_Statements -- |
| ------------------------ |
| |
| procedure Analyze_Statements (L : List_Id) is |
| S : Node_Id; |
| Lab : Entity_Id; |
| |
| begin |
| -- The labels declared in the statement list are reachable from |
| -- statements in the list. We do this as a prepass so that any |
| -- goto statement will be properly flagged if its target is not |
| -- reachable. This is not required, but is nice behavior! |
| |
| S := First (L); |
| while Present (S) loop |
| if Nkind (S) = N_Label then |
| Analyze (Identifier (S)); |
| Lab := Entity (Identifier (S)); |
| |
| -- If we found a label mark it as reachable. |
| |
| if Ekind (Lab) = E_Label then |
| Generate_Definition (Lab); |
| Set_Reachable (Lab); |
| |
| if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then |
| Set_Label_Construct (Parent (Lab), S); |
| end if; |
| |
| -- If we failed to find a label, it means the implicit declaration |
| -- of the label was hidden. A for-loop parameter can do this to |
| -- a label with the same name inside the loop, since the implicit |
| -- label declaration is in the innermost enclosing body or block |
| -- statement. |
| |
| else |
| Error_Msg_Sloc := Sloc (Lab); |
| Error_Msg_N |
| ("implicit label declaration for & is hidden#", |
| Identifier (S)); |
| end if; |
| end if; |
| |
| Next (S); |
| end loop; |
| |
| -- Perform semantic analysis on all statements |
| |
| Conditional_Statements_Begin; |
| |
| S := First (L); |
| while Present (S) loop |
| Analyze (S); |
| Next (S); |
| end loop; |
| |
| Conditional_Statements_End; |
| |
| -- Make labels unreachable. Visibility is not sufficient, because |
| -- labels in one if-branch for example are not reachable from the |
| -- other branch, even though their declarations are in the enclosing |
| -- declarative part. |
| |
| S := First (L); |
| while Present (S) loop |
| if Nkind (S) = N_Label then |
| Set_Reachable (Entity (Identifier (S)), False); |
| end if; |
| |
| Next (S); |
| end loop; |
| end Analyze_Statements; |
| |
| -------------------------------------------- |
| -- Check_Possible_Current_Value_Condition -- |
| -------------------------------------------- |
| |
| procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id) is |
| Cond : Node_Id; |
| |
| begin |
| -- Loop to deal with (ignore for now) any NOT operators present |
| |
| Cond := Condition (Cnode); |
| while Nkind (Cond) = N_Op_Not loop |
| Cond := Right_Opnd (Cond); |
| end loop; |
| |
| -- Check possible relational operator |
| |
| if Nkind (Cond) = N_Op_Eq |
| or else |
| Nkind (Cond) = N_Op_Ne |
| or else |
| Nkind (Cond) = N_Op_Ge |
| or else |
| Nkind (Cond) = N_Op_Le |
| or else |
| Nkind (Cond) = N_Op_Gt |
| or else |
| Nkind (Cond) = N_Op_Lt |
| then |
| if Compile_Time_Known_Value (Right_Opnd (Cond)) |
| and then Nkind (Left_Opnd (Cond)) = N_Identifier |
| then |
| declare |
| Ent : constant Entity_Id := Entity (Left_Opnd (Cond)); |
| |
| begin |
| if Ekind (Ent) = E_Variable |
| or else |
| Ekind (Ent) = E_Constant |
| or else |
| Is_Formal (Ent) |
| or else |
| Ekind (Ent) = E_Loop_Parameter |
| then |
| -- Here we have a case where the Current_Value field |
| -- may need to be set. We set it if it is not already |
| -- set to a compile time expression value. |
| |
| -- Note that this represents a decision that one |
| -- condition blots out another previous one. That's |
| -- certainly right if they occur at the same level. |
| -- If the second one is nested, then the decision is |
| -- neither right nor wrong (it would be equally OK |
| -- to leave the outer one in place, or take the new |
| -- inner one. Really we should record both, but our |
| -- data structures are not that elaborate. |
| |
| if Nkind (Current_Value (Ent)) not in N_Subexpr then |
| Set_Current_Value (Ent, Cnode); |
| end if; |
| end if; |
| end; |
| end if; |
| end if; |
| end Check_Possible_Current_Value_Condition; |
| |
| ---------------------------- |
| -- Check_Unreachable_Code -- |
| ---------------------------- |
| |
| procedure Check_Unreachable_Code (N : Node_Id) is |
| Error_Loc : Source_Ptr; |
| P : Node_Id; |
| |
| begin |
| if Is_List_Member (N) |
| and then Comes_From_Source (N) |
| then |
| declare |
| Nxt : Node_Id; |
| |
| begin |
| Nxt := Original_Node (Next (N)); |
| |
| if Present (Nxt) |
| and then Comes_From_Source (Nxt) |
| and then Is_Statement (Nxt) |
| then |
| -- Special very annoying exception. If we have a return that |
| -- follows a raise, then we allow it without a warning, since |
| -- the Ada RM annoyingly requires a useless return here! |
| |
| if Nkind (Original_Node (N)) /= N_Raise_Statement |
| or else Nkind (Nxt) /= N_Return_Statement |
| then |
| -- The rather strange shenanigans with the warning message |
| -- here reflects the fact that Kill_Dead_Code is very good |
| -- at removing warnings in deleted code, and this is one |
| -- warning we would prefer NOT to have removed :-) |
| |
| Error_Loc := Sloc (Nxt); |
| |
| -- If we have unreachable code, analyze and remove the |
| -- unreachable code, since it is useless and we don't |
| -- want to generate junk warnings. |
| |
| -- We skip this step if we are not in code generation mode. |
| -- This is the one case where we remove dead code in the |
| -- semantics as opposed to the expander, and we do not want |
| -- to remove code if we are not in code generation mode, |
| -- since this messes up the ASIS trees. |
| |
| -- Note that one might react by moving the whole circuit to |
| -- exp_ch5, but then we lose the warning in -gnatc mode. |
| |
| if Operating_Mode = Generate_Code then |
| loop |
| Nxt := Next (N); |
| |
| -- Quit deleting when we have nothing more to delete |
| -- or if we hit a label (since someone could transfer |
| -- control to a label, so we should not delete it). |
| |
| exit when No (Nxt) or else Nkind (Nxt) = N_Label; |
| |
| -- Statement/declaration is to be deleted |
| |
| Analyze (Nxt); |
| Remove (Nxt); |
| Kill_Dead_Code (Nxt); |
| end loop; |
| end if; |
| |
| -- Now issue the warning |
| |
| Error_Msg ("?unreachable code", Error_Loc); |
| end if; |
| |
| -- If the unconditional transfer of control instruction is |
| -- the last statement of a sequence, then see if our parent |
| -- is an IF statement, and if so adjust the unblocked exit |
| -- count of the if statement to reflect the fact that this |
| -- branch of the if is indeed blocked by a transfer of control. |
| |
| else |
| P := Parent (N); |
| |
| if Nkind (P) = N_If_Statement then |
| null; |
| |
| elsif Nkind (P) = N_Elsif_Part then |
| P := Parent (P); |
| pragma Assert (Nkind (P) = N_If_Statement); |
| |
| elsif Nkind (P) = N_Case_Statement_Alternative then |
| P := Parent (P); |
| pragma Assert (Nkind (P) = N_Case_Statement); |
| |
| else |
| return; |
| end if; |
| |
| Unblocked_Exit_Count := Unblocked_Exit_Count - 1; |
| end if; |
| end; |
| end if; |
| end Check_Unreachable_Code; |
| |
| end Sem_Ch5; |