blob: d7c1cb36922c65b232a450a4fbe6810f59bebe9d [file] [log] [blame]
/* Build expressions with type checking for C++ compiler.
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Hacked by Michael Tiemann (tiemann@cygnus.com)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This file is part of the C++ front end.
It contains routines to build C++ expressions given their operands,
including computing the types of the result, C and C++ specific error
checks, and some optimization.
There are also routines to build RETURN_STMT nodes and CASE_STMT nodes,
and to process initializations in declarations (since they work
like a strange sort of assignment). */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "expr.h"
#include "cp-tree.h"
#include "tm_p.h"
#include "flags.h"
#include "output.h"
#include "toplev.h"
#include "diagnostic.h"
#include "target.h"
#include "convert.h"
static tree convert_for_assignment (tree, tree, const char *, tree, int);
static tree cp_pointer_int_sum (enum tree_code, tree, tree);
static tree rationalize_conditional_expr (enum tree_code, tree);
static int comp_ptr_ttypes_real (tree, tree, int);
static int comp_ptr_ttypes_const (tree, tree);
static bool comp_except_types (tree, tree, bool);
static bool comp_array_types (tree, tree, bool);
static tree common_base_type (tree, tree);
static tree pointer_diff (tree, tree, tree);
static tree get_delta_difference (tree, tree, int);
static void casts_away_constness_r (tree *, tree *);
static bool casts_away_constness (tree, tree);
static void maybe_warn_about_returning_address_of_local (tree);
static tree lookup_destructor (tree, tree, tree);
/* Return the target type of TYPE, which means return T for:
T*, T&, T[], T (...), and otherwise, just T. */
tree
target_type (tree type)
{
type = non_reference (type);
while (TREE_CODE (type) == POINTER_TYPE
|| TREE_CODE (type) == ARRAY_TYPE
|| TREE_CODE (type) == FUNCTION_TYPE
|| TREE_CODE (type) == METHOD_TYPE
|| TYPE_PTRMEM_P (type))
type = TREE_TYPE (type);
return type;
}
/* Do `exp = require_complete_type (exp);' to make sure exp
does not have an incomplete type. (That includes void types.)
Returns the error_mark_node if the VALUE does not have
complete type when this function returns. */
tree
require_complete_type (tree value)
{
tree type;
if (processing_template_decl || value == error_mark_node)
return value;
if (TREE_CODE (value) == OVERLOAD)
type = unknown_type_node;
else
type = TREE_TYPE (value);
/* First, detect a valid value with a complete type. */
if (COMPLETE_TYPE_P (type))
return value;
if (complete_type_or_else (type, value))
return value;
else
return error_mark_node;
}
/* Try to complete TYPE, if it is incomplete. For example, if TYPE is
a template instantiation, do the instantiation. Returns TYPE,
whether or not it could be completed, unless something goes
horribly wrong, in which case the error_mark_node is returned. */
tree
complete_type (tree type)
{
if (type == NULL_TREE)
/* Rather than crash, we return something sure to cause an error
at some point. */
return error_mark_node;
if (type == error_mark_node || COMPLETE_TYPE_P (type))
;
else if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
{
tree t = complete_type (TREE_TYPE (type));
if (COMPLETE_TYPE_P (t) && !dependent_type_p (type))
layout_type (type);
TYPE_NEEDS_CONSTRUCTING (type)
= TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (t));
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (t));
}
else if (CLASS_TYPE_P (type) && CLASSTYPE_TEMPLATE_INSTANTIATION (type))
instantiate_class_template (TYPE_MAIN_VARIANT (type));
return type;
}
/* Like complete_type, but issue an error if the TYPE cannot be completed.
VALUE is used for informative diagnostics. DIAG_TYPE indicates the type
of diagnostic: 0 for an error, 1 for a warning, 2 for a pedwarn.
Returns NULL_TREE if the type cannot be made complete. */
tree
complete_type_or_diagnostic (tree type, tree value, int diag_type)
{
type = complete_type (type);
if (type == error_mark_node)
/* We already issued an error. */
return NULL_TREE;
else if (!COMPLETE_TYPE_P (type))
{
cxx_incomplete_type_diagnostic (value, type, diag_type);
return NULL_TREE;
}
else
return type;
}
/* Return truthvalue of whether type of EXP is instantiated. */
int
type_unknown_p (tree exp)
{
return (TREE_CODE (exp) == TREE_LIST
|| TREE_TYPE (exp) == unknown_type_node);
}
/* Return the common type of two parameter lists.
We assume that comptypes has already been done and returned 1;
if that isn't so, this may crash.
As an optimization, free the space we allocate if the parameter
lists are already common. */
tree
commonparms (tree p1, tree p2)
{
tree oldargs = p1, newargs, n;
int i, len;
int any_change = 0;
len = list_length (p1);
newargs = tree_last (p1);
if (newargs == void_list_node)
i = 1;
else
{
i = 0;
newargs = 0;
}
for (; i < len; i++)
newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
n = newargs;
for (i = 0; p1;
p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n), i++)
{
if (TREE_PURPOSE (p1) && !TREE_PURPOSE (p2))
{
TREE_PURPOSE (n) = TREE_PURPOSE (p1);
any_change = 1;
}
else if (! TREE_PURPOSE (p1))
{
if (TREE_PURPOSE (p2))
{
TREE_PURPOSE (n) = TREE_PURPOSE (p2);
any_change = 1;
}
}
else
{
if (1 != simple_cst_equal (TREE_PURPOSE (p1), TREE_PURPOSE (p2)))
any_change = 1;
TREE_PURPOSE (n) = TREE_PURPOSE (p2);
}
if (TREE_VALUE (p1) != TREE_VALUE (p2))
{
any_change = 1;
TREE_VALUE (n) = merge_types (TREE_VALUE (p1), TREE_VALUE (p2));
}
else
TREE_VALUE (n) = TREE_VALUE (p1);
}
if (! any_change)
return oldargs;
return newargs;
}
/* Given a type, perhaps copied for a typedef,
find the "original" version of it. */
tree
original_type (tree t)
{
while (TYPE_NAME (t) != NULL_TREE)
{
tree x = TYPE_NAME (t);
if (TREE_CODE (x) != TYPE_DECL)
break;
x = DECL_ORIGINAL_TYPE (x);
if (x == NULL_TREE)
break;
t = x;
}
return t;
}
/* T1 and T2 are arithmetic or enumeration types. Return the type
that will result from the "usual arithmetic conversions" on T1 and
T2 as described in [expr]. */
tree
type_after_usual_arithmetic_conversions (tree t1, tree t2)
{
enum tree_code code1 = TREE_CODE (t1);
enum tree_code code2 = TREE_CODE (t2);
tree attributes;
/* FIXME: Attributes. */
my_friendly_assert (ARITHMETIC_TYPE_P (t1)
|| TREE_CODE (t1) == COMPLEX_TYPE
|| TREE_CODE (t1) == ENUMERAL_TYPE,
19990725);
my_friendly_assert (ARITHMETIC_TYPE_P (t2)
|| TREE_CODE (t2) == COMPLEX_TYPE
|| TREE_CODE (t2) == ENUMERAL_TYPE,
19990725);
/* In what follows, we slightly generalize the rules given in [expr] so
as to deal with `long long' and `complex'. First, merge the
attributes. */
attributes = (*targetm.merge_type_attributes) (t1, t2);
/* If one type is complex, form the common type of the non-complex
components, then make that complex. Use T1 or T2 if it is the
required type. */
if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
{
tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
tree subtype
= type_after_usual_arithmetic_conversions (subtype1, subtype2);
if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
return build_type_attribute_variant (t1, attributes);
else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
return build_type_attribute_variant (t2, attributes);
else
return build_type_attribute_variant (build_complex_type (subtype),
attributes);
}
/* If only one is real, use it as the result. */
if (code1 == REAL_TYPE && code2 != REAL_TYPE)
return build_type_attribute_variant (t1, attributes);
if (code2 == REAL_TYPE && code1 != REAL_TYPE)
return build_type_attribute_variant (t2, attributes);
/* Perform the integral promotions. */
if (code1 != REAL_TYPE)
{
t1 = type_promotes_to (t1);
t2 = type_promotes_to (t2);
}
/* Both real or both integers; use the one with greater precision. */
if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
return build_type_attribute_variant (t1, attributes);
else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
return build_type_attribute_variant (t2, attributes);
/* The types are the same; no need to do anything fancy. */
if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
return build_type_attribute_variant (t1, attributes);
if (code1 != REAL_TYPE)
{
/* If one is a sizetype, use it so size_binop doesn't blow up. */
if (TYPE_IS_SIZETYPE (t1) > TYPE_IS_SIZETYPE (t2))
return build_type_attribute_variant (t1, attributes);
if (TYPE_IS_SIZETYPE (t2) > TYPE_IS_SIZETYPE (t1))
return build_type_attribute_variant (t2, attributes);
/* If one is unsigned long long, then convert the other to unsigned
long long. */
if (same_type_p (TYPE_MAIN_VARIANT (t1), long_long_unsigned_type_node)
|| same_type_p (TYPE_MAIN_VARIANT (t2), long_long_unsigned_type_node))
return build_type_attribute_variant (long_long_unsigned_type_node,
attributes);
/* If one is a long long, and the other is an unsigned long, and
long long can represent all the values of an unsigned long, then
convert to a long long. Otherwise, convert to an unsigned long
long. Otherwise, if either operand is long long, convert the
other to long long.
Since we're here, we know the TYPE_PRECISION is the same;
therefore converting to long long cannot represent all the values
of an unsigned long, so we choose unsigned long long in that
case. */
if (same_type_p (TYPE_MAIN_VARIANT (t1), long_long_integer_type_node)
|| same_type_p (TYPE_MAIN_VARIANT (t2), long_long_integer_type_node))
{
tree t = ((TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2))
? long_long_unsigned_type_node
: long_long_integer_type_node);
return build_type_attribute_variant (t, attributes);
}
/* Go through the same procedure, but for longs. */
if (same_type_p (TYPE_MAIN_VARIANT (t1), long_unsigned_type_node)
|| same_type_p (TYPE_MAIN_VARIANT (t2), long_unsigned_type_node))
return build_type_attribute_variant (long_unsigned_type_node,
attributes);
if (same_type_p (TYPE_MAIN_VARIANT (t1), long_integer_type_node)
|| same_type_p (TYPE_MAIN_VARIANT (t2), long_integer_type_node))
{
tree t = ((TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2))
? long_unsigned_type_node : long_integer_type_node);
return build_type_attribute_variant (t, attributes);
}
/* Otherwise prefer the unsigned one. */
if (TREE_UNSIGNED (t1))
return build_type_attribute_variant (t1, attributes);
else
return build_type_attribute_variant (t2, attributes);
}
else
{
if (same_type_p (TYPE_MAIN_VARIANT (t1), long_double_type_node)
|| same_type_p (TYPE_MAIN_VARIANT (t2), long_double_type_node))
return build_type_attribute_variant (long_double_type_node,
attributes);
if (same_type_p (TYPE_MAIN_VARIANT (t1), double_type_node)
|| same_type_p (TYPE_MAIN_VARIANT (t2), double_type_node))
return build_type_attribute_variant (double_type_node,
attributes);
if (same_type_p (TYPE_MAIN_VARIANT (t1), float_type_node)
|| same_type_p (TYPE_MAIN_VARIANT (t2), float_type_node))
return build_type_attribute_variant (float_type_node,
attributes);
/* Two floating-point types whose TYPE_MAIN_VARIANTs are none of
the standard C++ floating-point types. Logic earlier in this
function has already eliminated the possibility that
TYPE_PRECISION (t2) != TYPE_PRECISION (t1), so there's no
compelling reason to choose one or the other. */
return build_type_attribute_variant (t1, attributes);
}
}
/* Subroutine of composite_pointer_type to implement the recursive
case. See that function for documentation fo the parameters. */
static tree
composite_pointer_type_r (tree t1, tree t2, const char* location)
{
tree pointee1;
tree pointee2;
tree result_type;
tree attributes;
/* Determine the types pointed to by T1 and T2. */
if (TREE_CODE (t1) == POINTER_TYPE)
{
pointee1 = TREE_TYPE (t1);
pointee2 = TREE_TYPE (t2);
}
else
{
pointee1 = TYPE_PTRMEM_POINTED_TO_TYPE (t1);
pointee2 = TYPE_PTRMEM_POINTED_TO_TYPE (t2);
}
/* [expr.rel]
Otherwise, the composite pointer type is a pointer type
similar (_conv.qual_) to the type of one of the operands,
with a cv-qualification signature (_conv.qual_) that is the
union of the cv-qualification signatures of the operand
types. */
if (same_type_ignoring_top_level_qualifiers_p (pointee1, pointee2))
result_type = pointee1;
else if ((TREE_CODE (pointee1) == POINTER_TYPE
&& TREE_CODE (pointee2) == POINTER_TYPE)
|| (TYPE_PTR_TO_MEMBER_P (pointee1)
&& TYPE_PTR_TO_MEMBER_P (pointee2)))
result_type = composite_pointer_type_r (pointee1, pointee2, location);
else
{
pedwarn ("%s between distinct pointer types `%T' and `%T' "
"lacks a cast",
location, t1, t2);
result_type = void_type_node;
}
result_type = cp_build_qualified_type (result_type,
(cp_type_quals (pointee1)
| cp_type_quals (pointee2)));
/* If the original types were pointers to members, so is the
result. */
if (TYPE_PTR_TO_MEMBER_P (t1))
{
if (!same_type_p (TYPE_PTRMEM_CLASS_TYPE (t1),
TYPE_PTRMEM_CLASS_TYPE (t2)))
pedwarn ("%s between distinct pointer types `%T' and `%T' "
"lacks a cast",
location, t1, t2);
result_type = build_ptrmem_type (TYPE_PTRMEM_CLASS_TYPE (t1),
result_type);
}
else
result_type = build_pointer_type (result_type);
/* Merge the attributes. */
attributes = (*targetm.merge_type_attributes) (t1, t2);
return build_type_attribute_variant (result_type, attributes);
}
/* Return the composite pointer type (see [expr.rel]) for T1 and T2.
ARG1 and ARG2 are the values with those types. The LOCATION is a
string describing the current location, in case an error occurs.
This routine also implements the computation of a common type for
pointers-to-members as per [expr.eq]. */
tree
composite_pointer_type (tree t1, tree t2, tree arg1, tree arg2,
const char* location)
{
tree class1;
tree class2;
/* [expr.rel]
If one operand is a null pointer constant, the composite pointer
type is the type of the other operand. */
if (null_ptr_cst_p (arg1))
return t2;
if (null_ptr_cst_p (arg2))
return t1;
/* We have:
[expr.rel]
If one of the operands has type "pointer to cv1 void*", then
the other has type "pointer to cv2T", and the composite pointer
type is "pointer to cv12 void", where cv12 is the union of cv1
and cv2.
If either type is a pointer to void, make sure it is T1. */
if (TREE_CODE (t2) == POINTER_TYPE && VOID_TYPE_P (TREE_TYPE (t2)))
{
tree t;
t = t1;
t1 = t2;
t2 = t;
}
/* Now, if T1 is a pointer to void, merge the qualifiers. */
if (TREE_CODE (t1) == POINTER_TYPE && VOID_TYPE_P (TREE_TYPE (t1)))
{
tree attributes;
tree result_type;
if (pedantic && TYPE_PTRFN_P (t2))
pedwarn ("ISO C++ forbids %s between pointer of type `void *' and pointer-to-function", location);
result_type
= cp_build_qualified_type (void_type_node,
(cp_type_quals (TREE_TYPE (t1))
| cp_type_quals (TREE_TYPE (t2))));
result_type = build_pointer_type (result_type);
/* Merge the attributes. */
attributes = (*targetm.merge_type_attributes) (t1, t2);
return build_type_attribute_variant (result_type, attributes);
}
/* [expr.eq] permits the application of a pointer conversion to
bring the pointers to a common type. */
if (TREE_CODE (t1) == POINTER_TYPE && TREE_CODE (t2) == POINTER_TYPE
&& CLASS_TYPE_P (TREE_TYPE (t1))
&& CLASS_TYPE_P (TREE_TYPE (t2))
&& !same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (t1),
TREE_TYPE (t2)))
{
class1 = TREE_TYPE (t1);
class2 = TREE_TYPE (t2);
if (DERIVED_FROM_P (class1, class2))
t2 = (build_pointer_type
(cp_build_qualified_type (class1, TYPE_QUALS (class2))));
else if (DERIVED_FROM_P (class2, class1))
t1 = (build_pointer_type
(cp_build_qualified_type (class2, TYPE_QUALS (class1))));
else
{
error ("%s between distinct pointer types `%T' and `%T' "
"lacks a cast", location, t1, t2);
return error_mark_node;
}
}
/* [expr.eq] permits the application of a pointer-to-member
conversion to change the class type of one of the types. */
else if (TYPE_PTR_TO_MEMBER_P (t1)
&& !same_type_p (TYPE_PTRMEM_CLASS_TYPE (t1),
TYPE_PTRMEM_CLASS_TYPE (t2)))
{
class1 = TYPE_PTRMEM_CLASS_TYPE (t1);
class2 = TYPE_PTRMEM_CLASS_TYPE (t2);
if (DERIVED_FROM_P (class1, class2))
t1 = build_ptrmem_type (class2, TYPE_PTRMEM_POINTED_TO_TYPE (t1));
else if (DERIVED_FROM_P (class2, class1))
t2 = build_ptrmem_type (class1, TYPE_PTRMEM_POINTED_TO_TYPE (t2));
else
{
error ("%s between distinct pointer-to-member types `%T' and `%T' "
"lacks a cast", location, t1, t2);
return error_mark_node;
}
}
return composite_pointer_type_r (t1, t2, location);
}
/* Return the merged type of two types.
We assume that comptypes has already been done and returned 1;
if that isn't so, this may crash.
This just combines attributes and default arguments; any other
differences would cause the two types to compare unalike. */
tree
merge_types (tree t1, tree t2)
{
enum tree_code code1;
enum tree_code code2;
tree attributes;
/* Save time if the two types are the same. */
if (t1 == t2)
return t1;
if (original_type (t1) == original_type (t2))
return t1;
/* If one type is nonsense, use the other. */
if (t1 == error_mark_node)
return t2;
if (t2 == error_mark_node)
return t1;
/* Merge the attributes. */
attributes = (*targetm.merge_type_attributes) (t1, t2);
if (TYPE_PTRMEMFUNC_P (t1))
t1 = TYPE_PTRMEMFUNC_FN_TYPE (t1);
if (TYPE_PTRMEMFUNC_P (t2))
t2 = TYPE_PTRMEMFUNC_FN_TYPE (t2);
code1 = TREE_CODE (t1);
code2 = TREE_CODE (t2);
switch (code1)
{
case POINTER_TYPE:
case REFERENCE_TYPE:
/* For two pointers, do this recursively on the target type. */
{
tree target = merge_types (TREE_TYPE (t1), TREE_TYPE (t2));
int quals = cp_type_quals (t1);
if (code1 == POINTER_TYPE)
t1 = build_pointer_type (target);
else
t1 = build_reference_type (target);
t1 = build_type_attribute_variant (t1, attributes);
t1 = cp_build_qualified_type (t1, quals);
if (TREE_CODE (target) == METHOD_TYPE)
t1 = build_ptrmemfunc_type (t1);
return t1;
}
case OFFSET_TYPE:
{
int quals;
tree pointee;
quals = cp_type_quals (t1);
pointee = merge_types (TYPE_PTRMEM_POINTED_TO_TYPE (t1),
TYPE_PTRMEM_POINTED_TO_TYPE (t2));
t1 = build_ptrmem_type (TYPE_PTRMEM_CLASS_TYPE (t1),
pointee);
t1 = cp_build_qualified_type (t1, quals);
break;
}
case ARRAY_TYPE:
{
tree elt = merge_types (TREE_TYPE (t1), TREE_TYPE (t2));
/* Save space: see if the result is identical to one of the args. */
if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
return build_type_attribute_variant (t1, attributes);
if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
return build_type_attribute_variant (t2, attributes);
/* Merge the element types, and have a size if either arg has one. */
t1 = build_cplus_array_type
(elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
break;
}
case FUNCTION_TYPE:
/* Function types: prefer the one that specified arg types.
If both do, merge the arg types. Also merge the return types. */
{
tree valtype = merge_types (TREE_TYPE (t1), TREE_TYPE (t2));
tree p1 = TYPE_ARG_TYPES (t1);
tree p2 = TYPE_ARG_TYPES (t2);
tree rval, raises;
/* Save space: see if the result is identical to one of the args. */
if (valtype == TREE_TYPE (t1) && ! p2)
return cp_build_type_attribute_variant (t1, attributes);
if (valtype == TREE_TYPE (t2) && ! p1)
return cp_build_type_attribute_variant (t2, attributes);
/* Simple way if one arg fails to specify argument types. */
if (p1 == NULL_TREE || TREE_VALUE (p1) == void_type_node)
{
rval = build_function_type (valtype, p2);
if ((raises = TYPE_RAISES_EXCEPTIONS (t2)))
rval = build_exception_variant (rval, raises);
return cp_build_type_attribute_variant (rval, attributes);
}
raises = TYPE_RAISES_EXCEPTIONS (t1);
if (p2 == NULL_TREE || TREE_VALUE (p2) == void_type_node)
{
rval = build_function_type (valtype, p1);
if (raises)
rval = build_exception_variant (rval, raises);
return cp_build_type_attribute_variant (rval, attributes);
}
rval = build_function_type (valtype, commonparms (p1, p2));
t1 = build_exception_variant (rval, raises);
break;
}
case METHOD_TYPE:
{
/* Get this value the long way, since TYPE_METHOD_BASETYPE
is just the main variant of this. */
tree basetype = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (t2)));
tree raises = TYPE_RAISES_EXCEPTIONS (t1);
tree t3;
/* If this was a member function type, get back to the
original type of type member function (i.e., without
the class instance variable up front. */
t1 = build_function_type (TREE_TYPE (t1),
TREE_CHAIN (TYPE_ARG_TYPES (t1)));
t2 = build_function_type (TREE_TYPE (t2),
TREE_CHAIN (TYPE_ARG_TYPES (t2)));
t3 = merge_types (t1, t2);
t3 = build_method_type_directly (basetype, TREE_TYPE (t3),
TYPE_ARG_TYPES (t3));
t1 = build_exception_variant (t3, raises);
break;
}
case TYPENAME_TYPE:
/* There is no need to merge attributes into a TYPENAME_TYPE.
When the type is instantiated it will have whatever
attributes result from the instantiation. */
return t1;
default:;
}
return cp_build_type_attribute_variant (t1, attributes);
}
/* Return the common type of two types.
We assume that comptypes has already been done and returned 1;
if that isn't so, this may crash.
This is the type for the result of most arithmetic operations
if the operands have the given two types. */
tree
common_type (tree t1, tree t2)
{
enum tree_code code1;
enum tree_code code2;
/* If one type is nonsense, bail. */
if (t1 == error_mark_node || t2 == error_mark_node)
return error_mark_node;
code1 = TREE_CODE (t1);
code2 = TREE_CODE (t2);
if ((ARITHMETIC_TYPE_P (t1) || code1 == ENUMERAL_TYPE
|| code1 == COMPLEX_TYPE)
&& (ARITHMETIC_TYPE_P (t2) || code2 == ENUMERAL_TYPE
|| code2 == COMPLEX_TYPE))
return type_after_usual_arithmetic_conversions (t1, t2);
else if ((TYPE_PTR_P (t1) && TYPE_PTR_P (t2))
|| (TYPE_PTRMEM_P (t1) && TYPE_PTRMEM_P (t2))
|| (TYPE_PTRMEMFUNC_P (t1) && TYPE_PTRMEMFUNC_P (t2)))
return composite_pointer_type (t1, t2, error_mark_node, error_mark_node,
"conversion");
else
abort ();
}
/* Compare two exception specifier types for exactness or subsetness, if
allowed. Returns false for mismatch, true for match (same, or
derived and !exact).
[except.spec] "If a class X ... objects of class X or any class publicly
and unambiguously derived from X. Similarly, if a pointer type Y * ...
exceptions of type Y * or that are pointers to any type publicly and
unambiguously derived from Y. Otherwise a function only allows exceptions
that have the same type ..."
This does not mention cv qualifiers and is different to what throw
[except.throw] and catch [except.catch] will do. They will ignore the
top level cv qualifiers, and allow qualifiers in the pointer to class
example.
We implement the letter of the standard. */
static bool
comp_except_types (tree a, tree b, bool exact)
{
if (same_type_p (a, b))
return true;
else if (!exact)
{
if (cp_type_quals (a) || cp_type_quals (b))
return false;
if (TREE_CODE (a) == POINTER_TYPE
&& TREE_CODE (b) == POINTER_TYPE)
{
a = TREE_TYPE (a);
b = TREE_TYPE (b);
if (cp_type_quals (a) || cp_type_quals (b))
return false;
}
if (TREE_CODE (a) != RECORD_TYPE
|| TREE_CODE (b) != RECORD_TYPE)
return false;
if (ACCESSIBLY_UNIQUELY_DERIVED_P (a, b))
return true;
}
return false;
}
/* Return true if TYPE1 and TYPE2 are equivalent exception specifiers.
If EXACT is false, T2 can be stricter than T1 (according to 15.4/7),
otherwise it must be exact. Exception lists are unordered, but
we've already filtered out duplicates. Most lists will be in order,
we should try to make use of that. */
bool
comp_except_specs (tree t1, tree t2, bool exact)
{
tree probe;
tree base;
int length = 0;
if (t1 == t2)
return true;
if (t1 == NULL_TREE) /* T1 is ... */
return t2 == NULL_TREE || !exact;
if (!TREE_VALUE (t1)) /* t1 is EMPTY */
return t2 != NULL_TREE && !TREE_VALUE (t2);
if (t2 == NULL_TREE) /* T2 is ... */
return false;
if (TREE_VALUE (t1) && !TREE_VALUE (t2)) /* T2 is EMPTY, T1 is not */
return !exact;
/* Neither set is ... or EMPTY, make sure each part of T2 is in T1.
Count how many we find, to determine exactness. For exact matching and
ordered T1, T2, this is an O(n) operation, otherwise its worst case is
O(nm). */
for (base = t1; t2 != NULL_TREE; t2 = TREE_CHAIN (t2))
{
for (probe = base; probe != NULL_TREE; probe = TREE_CHAIN (probe))
{
tree a = TREE_VALUE (probe);
tree b = TREE_VALUE (t2);
if (comp_except_types (a, b, exact))
{
if (probe == base && exact)
base = TREE_CHAIN (probe);
length++;
break;
}
}
if (probe == NULL_TREE)
return false;
}
return !exact || base == NULL_TREE || length == list_length (t1);
}
/* Compare the array types T1 and T2. ALLOW_REDECLARATION is true if
[] can match [size]. */
static bool
comp_array_types (tree t1, tree t2, bool allow_redeclaration)
{
tree d1;
tree d2;
tree max1, max2;
if (t1 == t2)
return true;
/* The type of the array elements must be the same. */
if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
return false;
d1 = TYPE_DOMAIN (t1);
d2 = TYPE_DOMAIN (t2);
if (d1 == d2)
return true;
/* If one of the arrays is dimensionless, and the other has a
dimension, they are of different types. However, it is valid to
write:
extern int a[];
int a[3];
by [basic.link]:
declarations for an array object can specify
array types that differ by the presence or absence of a major
array bound (_dcl.array_). */
if (!d1 || !d2)
return allow_redeclaration;
/* Check that the dimensions are the same. */
if (!cp_tree_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2)))
return false;
max1 = TYPE_MAX_VALUE (d1);
max2 = TYPE_MAX_VALUE (d2);
if (processing_template_decl && !abi_version_at_least (2)
&& !value_dependent_expression_p (max1)
&& !value_dependent_expression_p (max2))
{
/* With abi-1 we do not fold non-dependent array bounds, (and
consequently mangle them incorrectly). We must therefore
fold them here, to verify the domains have the same
value. */
max1 = fold (max1);
max2 = fold (max2);
}
if (!cp_tree_equal (max1, max2))
return false;
return true;
}
/* Return true if T1 and T2 are related as allowed by STRICT. STRICT
is a bitwise-or of the COMPARE_* flags. */
bool
comptypes (tree t1, tree t2, int strict)
{
if (t1 == t2)
return true;
/* Suppress errors caused by previously reported errors. */
if (t1 == error_mark_node || t2 == error_mark_node)
return false;
my_friendly_assert (TYPE_P (t1) && TYPE_P (t2), 20030623);
/* TYPENAME_TYPEs should be resolved if the qualifying scope is the
current instantiation. */
if (TREE_CODE (t1) == TYPENAME_TYPE)
{
tree resolved = resolve_typename_type (t1, /*only_current_p=*/true);
if (resolved != error_mark_node)
t1 = resolved;
}
if (TREE_CODE (t2) == TYPENAME_TYPE)
{
tree resolved = resolve_typename_type (t2, /*only_current_p=*/true);
if (resolved != error_mark_node)
t2 = resolved;
}
/* If either type is the internal version of sizetype, use the
language version. */
if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
&& TYPE_DOMAIN (t1))
t1 = TYPE_DOMAIN (t1);
if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
&& TYPE_DOMAIN (t2))
t2 = TYPE_DOMAIN (t2);
if (TYPE_PTRMEMFUNC_P (t1))
t1 = TYPE_PTRMEMFUNC_FN_TYPE (t1);
if (TYPE_PTRMEMFUNC_P (t2))
t2 = TYPE_PTRMEMFUNC_FN_TYPE (t2);
/* Different classes of types can't be compatible. */
if (TREE_CODE (t1) != TREE_CODE (t2))
return false;
/* Qualifiers must match. For array types, we will check when we
recur on the array element types. */
if (TREE_CODE (t1) != ARRAY_TYPE
&& TYPE_QUALS (t1) != TYPE_QUALS (t2))
return false;
if (TYPE_FOR_JAVA (t1) != TYPE_FOR_JAVA (t2))
return false;
/* Allow for two different type nodes which have essentially the same
definition. Note that we already checked for equality of the type
qualifiers (just above). */
if (TREE_CODE (t1) != ARRAY_TYPE
&& TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
return true;
if (!(*targetm.comp_type_attributes) (t1, t2))
return false;
switch (TREE_CODE (t1))
{
case TEMPLATE_TEMPLATE_PARM:
case BOUND_TEMPLATE_TEMPLATE_PARM:
if (TEMPLATE_TYPE_IDX (t1) != TEMPLATE_TYPE_IDX (t2)
|| TEMPLATE_TYPE_LEVEL (t1) != TEMPLATE_TYPE_LEVEL (t2))
return false;
if (!comp_template_parms
(DECL_TEMPLATE_PARMS (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t1)),
DECL_TEMPLATE_PARMS (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t2))))
return false;
if (TREE_CODE (t1) == TEMPLATE_TEMPLATE_PARM)
return true;
/* Don't check inheritance. */
strict = COMPARE_STRICT;
/* Fall through. */
case RECORD_TYPE:
case UNION_TYPE:
if (TYPE_TEMPLATE_INFO (t1) && TYPE_TEMPLATE_INFO (t2)
&& (TYPE_TI_TEMPLATE (t1) == TYPE_TI_TEMPLATE (t2)
|| TREE_CODE (t1) == BOUND_TEMPLATE_TEMPLATE_PARM)
&& comp_template_args (TYPE_TI_ARGS (t1), TYPE_TI_ARGS (t2)))
return true;
if ((strict & COMPARE_BASE) && DERIVED_FROM_P (t1, t2))
return true;
else if ((strict & COMPARE_DERIVED) && DERIVED_FROM_P (t2, t1))
return true;
return false;
case OFFSET_TYPE:
if (!comptypes (TYPE_OFFSET_BASETYPE (t1), TYPE_OFFSET_BASETYPE (t2),
strict & ~COMPARE_REDECLARATION))
return false;
/* Fall through. */
case POINTER_TYPE:
case REFERENCE_TYPE:
return same_type_p (TREE_TYPE (t1), TREE_TYPE (t2));
case METHOD_TYPE:
case FUNCTION_TYPE:
if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
return false;
return compparms (TYPE_ARG_TYPES (t1), TYPE_ARG_TYPES (t2));
case ARRAY_TYPE:
/* Target types must match incl. qualifiers. */
return comp_array_types (t1, t2, !!(strict & COMPARE_REDECLARATION));
case TEMPLATE_TYPE_PARM:
return (TEMPLATE_TYPE_IDX (t1) == TEMPLATE_TYPE_IDX (t2)
&& TEMPLATE_TYPE_LEVEL (t1) == TEMPLATE_TYPE_LEVEL (t2));
case TYPENAME_TYPE:
if (!cp_tree_equal (TYPENAME_TYPE_FULLNAME (t1),
TYPENAME_TYPE_FULLNAME (t2)))
return false;
return same_type_p (TYPE_CONTEXT (t1), TYPE_CONTEXT (t2));
case UNBOUND_CLASS_TEMPLATE:
if (!cp_tree_equal (TYPE_IDENTIFIER (t1), TYPE_IDENTIFIER (t2)))
return false;
return same_type_p (TYPE_CONTEXT (t1), TYPE_CONTEXT (t2));
case COMPLEX_TYPE:
return same_type_p (TREE_TYPE (t1), TREE_TYPE (t2));
default:
break;
}
return false;
}
/* Returns 1 if TYPE1 is at least as qualified as TYPE2. */
bool
at_least_as_qualified_p (tree type1, tree type2)
{
int q1 = cp_type_quals (type1);
int q2 = cp_type_quals (type2);
/* All qualifiers for TYPE2 must also appear in TYPE1. */
return (q1 & q2) == q2;
}
/* Returns 1 if TYPE1 is more qualified than TYPE2. */
bool
more_qualified_p (tree type1, tree type2)
{
int q1 = cp_type_quals (type1);
int q2 = cp_type_quals (type2);
return q1 != q2 && (q1 & q2) == q2;
}
/* Returns 1 if TYPE1 is more cv-qualified than TYPE2, -1 if TYPE2 is
more cv-qualified that TYPE1, and 0 otherwise. */
int
comp_cv_qualification (tree type1, tree type2)
{
int q1 = cp_type_quals (type1);
int q2 = cp_type_quals (type2);
if (q1 == q2)
return 0;
if ((q1 & q2) == q2)
return 1;
else if ((q1 & q2) == q1)
return -1;
return 0;
}
/* Returns 1 if the cv-qualification signature of TYPE1 is a proper
subset of the cv-qualification signature of TYPE2, and the types
are similar. Returns -1 if the other way 'round, and 0 otherwise. */
int
comp_cv_qual_signature (tree type1, tree type2)
{
if (comp_ptr_ttypes_real (type2, type1, -1))
return 1;
else if (comp_ptr_ttypes_real (type1, type2, -1))
return -1;
else
return 0;
}
/* If two types share a common base type, return that basetype.
If there is not a unique most-derived base type, this function
returns ERROR_MARK_NODE. */
static tree
common_base_type (tree tt1, tree tt2)
{
tree best = NULL_TREE;
int i;
/* If one is a baseclass of another, that's good enough. */
if (UNIQUELY_DERIVED_FROM_P (tt1, tt2))
return tt1;
if (UNIQUELY_DERIVED_FROM_P (tt2, tt1))
return tt2;
/* Otherwise, try to find a unique baseclass of TT1
that is shared by TT2, and follow that down. */
for (i = CLASSTYPE_N_BASECLASSES (tt1)-1; i >= 0; i--)
{
tree basetype = TYPE_BINFO_BASETYPE (tt1, i);
tree trial = common_base_type (basetype, tt2);
if (trial)
{
if (trial == error_mark_node)
return trial;
if (best == NULL_TREE)
best = trial;
else if (best != trial)
return error_mark_node;
}
}
/* Same for TT2. */
for (i = CLASSTYPE_N_BASECLASSES (tt2)-1; i >= 0; i--)
{
tree basetype = TYPE_BINFO_BASETYPE (tt2, i);
tree trial = common_base_type (tt1, basetype);
if (trial)
{
if (trial == error_mark_node)
return trial;
if (best == NULL_TREE)
best = trial;
else if (best != trial)
return error_mark_node;
}
}
return best;
}
/* Subroutines of `comptypes'. */
/* Return true if two parameter type lists PARMS1 and PARMS2 are
equivalent in the sense that functions with those parameter types
can have equivalent types. The two lists must be equivalent,
element by element. */
bool
compparms (tree parms1, tree parms2)
{
tree t1, t2;
/* An unspecified parmlist matches any specified parmlist
whose argument types don't need default promotions. */
for (t1 = parms1, t2 = parms2;
t1 || t2;
t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
{
/* If one parmlist is shorter than the other,
they fail to match. */
if (!t1 || !t2)
return false;
if (!same_type_p (TREE_VALUE (t1), TREE_VALUE (t2)))
return false;
}
return true;
}
/* Process a sizeof or alignof expression where the operand is a
type. */
tree
cxx_sizeof_or_alignof_type (tree type, enum tree_code op, bool complain)
{
enum tree_code type_code;
tree value;
const char *op_name;
my_friendly_assert (op == SIZEOF_EXPR || op == ALIGNOF_EXPR, 20020720);
if (type == error_mark_node)
return error_mark_node;
if (processing_template_decl)
{
value = build_min (op, size_type_node, type);
TREE_READONLY (value) = 1;
return value;
}
op_name = operator_name_info[(int) op].name;
type = non_reference (type);
type_code = TREE_CODE (type);
if (type_code == METHOD_TYPE)
{
if (complain && (pedantic || warn_pointer_arith))
pedwarn ("invalid application of `%s' to a member function", op_name);
value = size_one_node;
}
else
value = c_sizeof_or_alignof_type (complete_type (type), op, complain);
return value;
}
/* Process a sizeof or alignof expression where the operand is an
expression. */
tree
cxx_sizeof_or_alignof_expr (tree e, enum tree_code op)
{
const char *op_name = operator_name_info[(int) op].name;
if (e == error_mark_node)
return error_mark_node;
if (processing_template_decl)
{
e = build_min (op, size_type_node, e);
TREE_SIDE_EFFECTS (e) = 0;
TREE_READONLY (e) = 1;
return e;
}
if (TREE_CODE (e) == COMPONENT_REF
&& TREE_CODE (TREE_OPERAND (e, 1)) == FIELD_DECL
&& DECL_C_BIT_FIELD (TREE_OPERAND (e, 1)))
{
error ("invalid application of `%s' to a bit-field", op_name);
e = char_type_node;
}
else if (is_overloaded_fn (e))
{
pedwarn ("ISO C++ forbids applying `%s' to an expression of function type", op_name);
e = char_type_node;
}
else if (type_unknown_p (e))
{
cxx_incomplete_type_error (e, TREE_TYPE (e));
e = char_type_node;
}
else
e = TREE_TYPE (e);
return cxx_sizeof_or_alignof_type (e, op, true);
}
/* EXPR is being used in a context that is not a function call.
Enforce:
[expr.ref]
The expression can be used only as the left-hand operand of a
member function call.
[expr.mptr.operator]
If the result of .* or ->* is a function, then that result can be
used only as the operand for the function call operator ().
by issuing an error message if appropriate. Returns true iff EXPR
violates these rules. */
bool
invalid_nonstatic_memfn_p (tree expr)
{
if (TREE_CODE (TREE_TYPE (expr)) == METHOD_TYPE)
{
error ("invalid use of non-static member function");
return true;
}
return false;
}
/* Perform the conversions in [expr] that apply when an lvalue appears
in an rvalue context: the lvalue-to-rvalue, array-to-pointer, and
function-to-pointer conversions.
In addition manifest constants are replaced by their values. */
tree
decay_conversion (tree exp)
{
tree type;
enum tree_code code;
type = TREE_TYPE (exp);
code = TREE_CODE (type);
if (code == REFERENCE_TYPE)
{
exp = convert_from_reference (exp);
type = TREE_TYPE (exp);
code = TREE_CODE (type);
}
if (type == error_mark_node)
return error_mark_node;
if (type_unknown_p (exp))
{
cxx_incomplete_type_error (exp, TREE_TYPE (exp));
return error_mark_node;
}
/* Constants can be used directly unless they're not loadable. */
if (TREE_CODE (exp) == CONST_DECL)
exp = DECL_INITIAL (exp);
/* Replace a nonvolatile const static variable with its value. We
don't do this for arrays, though; we want the address of the
first element of the array, not the address of the first element
of its initializing constant. */
else if (code != ARRAY_TYPE)
{
exp = decl_constant_value (exp);
type = TREE_TYPE (exp);
}
/* build_c_cast puts on a NOP_EXPR to make the result not an lvalue.
Leave such NOP_EXPRs, since RHS is being used in non-lvalue context. */
if (code == VOID_TYPE)
{
error ("void value not ignored as it ought to be");
return error_mark_node;
}
if (invalid_nonstatic_memfn_p (exp))
return error_mark_node;
if (code == FUNCTION_TYPE || is_overloaded_fn (exp))
return build_unary_op (ADDR_EXPR, exp, 0);
if (code == ARRAY_TYPE)
{
tree adr;
tree ptrtype;
if (TREE_CODE (exp) == INDIRECT_REF)
return build_nop (build_pointer_type (TREE_TYPE (type)),
TREE_OPERAND (exp, 0));
if (TREE_CODE (exp) == COMPOUND_EXPR)
{
tree op1 = decay_conversion (TREE_OPERAND (exp, 1));
return build (COMPOUND_EXPR, TREE_TYPE (op1),
TREE_OPERAND (exp, 0), op1);
}
if (!lvalue_p (exp)
&& ! (TREE_CODE (exp) == CONSTRUCTOR && TREE_STATIC (exp)))
{
error ("invalid use of non-lvalue array");
return error_mark_node;
}
ptrtype = build_pointer_type (TREE_TYPE (type));
if (TREE_CODE (exp) == VAR_DECL)
{
if (!cxx_mark_addressable (exp))
return error_mark_node;
adr = build_nop (ptrtype, build_address (exp));
TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
return adr;
}
/* This way is better for a COMPONENT_REF since it can
simplify the offset for a component. */
adr = build_unary_op (ADDR_EXPR, exp, 1);
return cp_convert (ptrtype, adr);
}
/* [basic.lval]: Class rvalues can have cv-qualified types; non-class
rvalues always have cv-unqualified types. */
if (! CLASS_TYPE_P (type))
exp = cp_convert (TYPE_MAIN_VARIANT (type), exp);
return exp;
}
tree
default_conversion (tree exp)
{
exp = decay_conversion (exp);
if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (exp)))
exp = perform_integral_promotions (exp);
return exp;
}
/* EXPR is an expression with an integral or enumeration type.
Perform the integral promotions in [conv.prom], and return the
converted value. */
tree
perform_integral_promotions (tree expr)
{
tree type;
tree promoted_type;
type = TREE_TYPE (expr);
my_friendly_assert (INTEGRAL_OR_ENUMERATION_TYPE_P (type), 20030703);
promoted_type = type_promotes_to (type);
if (type != promoted_type)
expr = cp_convert (promoted_type, expr);
return expr;
}
/* Take the address of an inline function without setting TREE_ADDRESSABLE
or TREE_USED. */
tree
inline_conversion (tree exp)
{
if (TREE_CODE (exp) == FUNCTION_DECL)
exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp);
return exp;
}
/* Returns nonzero iff exp is a STRING_CST or the result of applying
decay_conversion to one. */
int
string_conv_p (tree totype, tree exp, int warn)
{
tree t;
if (! flag_const_strings || TREE_CODE (totype) != POINTER_TYPE)
return 0;
t = TREE_TYPE (totype);
if (!same_type_p (t, char_type_node)
&& !same_type_p (t, wchar_type_node))
return 0;
if (TREE_CODE (exp) == STRING_CST)
{
/* Make sure that we don't try to convert between char and wchar_t. */
if (!same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (exp))), t))
return 0;
}
else
{
/* Is this a string constant which has decayed to 'const char *'? */
t = build_pointer_type (build_qualified_type (t, TYPE_QUAL_CONST));
if (!same_type_p (TREE_TYPE (exp), t))
return 0;
STRIP_NOPS (exp);
if (TREE_CODE (exp) != ADDR_EXPR
|| TREE_CODE (TREE_OPERAND (exp, 0)) != STRING_CST)
return 0;
}
/* This warning is not very useful, as it complains about printf. */
if (warn && warn_write_strings)
warning ("deprecated conversion from string constant to `%T'", totype);
return 1;
}
/* Given a COND_EXPR, MIN_EXPR, or MAX_EXPR in T, return it in a form that we
can, for example, use as an lvalue. This code used to be in
unary_complex_lvalue, but we needed it to deal with `a = (d == c) ? b : c'
expressions, where we're dealing with aggregates. But now it's again only
called from unary_complex_lvalue. The case (in particular) that led to
this was with CODE == ADDR_EXPR, since it's not an lvalue when we'd
get it there. */
static tree
rationalize_conditional_expr (enum tree_code code, tree t)
{
/* For MIN_EXPR or MAX_EXPR, fold-const.c has arranged things so that
the first operand is always the one to be used if both operands
are equal, so we know what conditional expression this used to be. */
if (TREE_CODE (t) == MIN_EXPR || TREE_CODE (t) == MAX_EXPR)
{
return
build_conditional_expr (build_x_binary_op ((TREE_CODE (t) == MIN_EXPR
? LE_EXPR : GE_EXPR),
TREE_OPERAND (t, 0),
TREE_OPERAND (t, 1),
/*overloaded_p=*/NULL),
build_unary_op (code, TREE_OPERAND (t, 0), 0),
build_unary_op (code, TREE_OPERAND (t, 1), 0));
}
return
build_conditional_expr (TREE_OPERAND (t, 0),
build_unary_op (code, TREE_OPERAND (t, 1), 0),
build_unary_op (code, TREE_OPERAND (t, 2), 0));
}
/* Given the TYPE of an anonymous union field inside T, return the
FIELD_DECL for the field. If not found return NULL_TREE. Because
anonymous unions can nest, we must also search all anonymous unions
that are directly reachable. */
tree
lookup_anon_field (tree t, tree type)
{
tree field;
for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
{
if (TREE_STATIC (field))
continue;
if (TREE_CODE (field) != FIELD_DECL || DECL_ARTIFICIAL (field))
continue;
/* If we find it directly, return the field. */
if (DECL_NAME (field) == NULL_TREE
&& type == TYPE_MAIN_VARIANT (TREE_TYPE (field)))
{
return field;
}
/* Otherwise, it could be nested, search harder. */
if (DECL_NAME (field) == NULL_TREE
&& ANON_AGGR_TYPE_P (TREE_TYPE (field)))
{
tree subfield = lookup_anon_field (TREE_TYPE (field), type);
if (subfield)
return subfield;
}
}
return NULL_TREE;
}
/* Build an expression representing OBJECT.MEMBER. OBJECT is an
expression; MEMBER is a DECL or baselink. If ACCESS_PATH is
non-NULL, it indicates the path to the base used to name MEMBER.
If PRESERVE_REFERENCE is true, the expression returned will have
REFERENCE_TYPE if the MEMBER does. Otherwise, the expression
returned will have the type referred to by the reference.
This function does not perform access control; that is either done
earlier by the parser when the name of MEMBER is resolved to MEMBER
itself, or later when overload resolution selects one of the
functions indicated by MEMBER. */
tree
build_class_member_access_expr (tree object, tree member,
tree access_path, bool preserve_reference)
{
tree object_type;
tree member_scope;
tree result = NULL_TREE;
if (object == error_mark_node || member == error_mark_node)
return error_mark_node;
if (TREE_CODE (member) == PSEUDO_DTOR_EXPR)
return member;
my_friendly_assert (DECL_P (member) || BASELINK_P (member),
20020801);
/* [expr.ref]
The type of the first expression shall be "class object" (of a
complete type). */
object_type = TREE_TYPE (object);
if (!currently_open_class (object_type)
&& !complete_type_or_else (object_type, object))
return error_mark_node;
if (!CLASS_TYPE_P (object_type))
{
error ("request for member `%D' in `%E', which is of non-class type `%T'",
member, object, object_type);
return error_mark_node;
}
/* The standard does not seem to actually say that MEMBER must be a
member of OBJECT_TYPE. However, that is clearly what is
intended. */
if (DECL_P (member))
{
member_scope = DECL_CLASS_CONTEXT (member);
mark_used (member);
if (TREE_DEPRECATED (member))
warn_deprecated_use (member);
}
else
member_scope = BINFO_TYPE (BASELINK_BINFO (member));
/* If MEMBER is from an anonymous aggregate, MEMBER_SCOPE will
presently be the anonymous union. Go outwards until we find a
type related to OBJECT_TYPE. */
while (ANON_AGGR_TYPE_P (member_scope)
&& !same_type_ignoring_top_level_qualifiers_p (member_scope,
object_type))
member_scope = TYPE_CONTEXT (member_scope);
if (!member_scope || !DERIVED_FROM_P (member_scope, object_type))
{
if (TREE_CODE (member) == FIELD_DECL)
error ("invalid use of nonstatic data member '%E'", member);
else
error ("`%D' is not a member of `%T'", member, object_type);
return error_mark_node;
}
/* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x' into
`(*(a ? &b : &c)).x', and so on. A COND_EXPR is only an lvalue
in the frontend; only _DECLs and _REFs are lvalues in the backend. */
{
tree temp = unary_complex_lvalue (ADDR_EXPR, object);
if (temp)
object = build_indirect_ref (temp, NULL);
}
/* In [expr.ref], there is an explicit list of the valid choices for
MEMBER. We check for each of those cases here. */
if (TREE_CODE (member) == VAR_DECL)
{
/* A static data member. */
result = member;
/* If OBJECT has side-effects, they are supposed to occur. */
if (TREE_SIDE_EFFECTS (object))
result = build (COMPOUND_EXPR, TREE_TYPE (result), object, result);
}
else if (TREE_CODE (member) == FIELD_DECL)
{
/* A non-static data member. */
bool null_object_p;
int type_quals;
tree member_type;
null_object_p = (TREE_CODE (object) == INDIRECT_REF
&& integer_zerop (TREE_OPERAND (object, 0)));
/* Convert OBJECT to the type of MEMBER. */
if (!same_type_p (TYPE_MAIN_VARIANT (object_type),
TYPE_MAIN_VARIANT (member_scope)))
{
tree binfo;
base_kind kind;
binfo = lookup_base (access_path ? access_path : object_type,
member_scope, ba_ignore, &kind);
if (binfo == error_mark_node)
return error_mark_node;
/* It is invalid to try to get to a virtual base of a
NULL object. The most common cause is invalid use of
offsetof macro. */
if (null_object_p && kind == bk_via_virtual)
{
error ("invalid access to non-static data member `%D' of NULL object",
member);
error ("(perhaps the `offsetof' macro was used incorrectly)");
return error_mark_node;
}
/* Convert to the base. */
object = build_base_path (PLUS_EXPR, object, binfo,
/*nonnull=*/1);
/* If we found the base successfully then we should be able
to convert to it successfully. */
my_friendly_assert (object != error_mark_node,
20020801);
}
/* Complain about other invalid uses of offsetof, even though they will
give the right answer. Note that we complain whether or not they
actually used the offsetof macro, since there's no way to know at this
point. So we just give a warning, instead of a pedwarn. */
if (null_object_p && warn_invalid_offsetof
&& CLASSTYPE_NON_POD_P (object_type))
{
warning ("invalid access to non-static data member `%D' of NULL object",
member);
warning ("(perhaps the `offsetof' macro was used incorrectly)");
}
/* If MEMBER is from an anonymous aggregate, we have converted
OBJECT so that it refers to the class containing the
anonymous union. Generate a reference to the anonymous union
itself, and recur to find MEMBER. */
if (ANON_AGGR_TYPE_P (DECL_CONTEXT (member))
/* When this code is called from build_field_call, the
object already has the type of the anonymous union.
That is because the COMPONENT_REF was already
constructed, and was then disassembled before calling
build_field_call. After the function-call code is
cleaned up, this waste can be eliminated. */
&& (!same_type_ignoring_top_level_qualifiers_p
(TREE_TYPE (object), DECL_CONTEXT (member))))
{
tree anonymous_union;
anonymous_union = lookup_anon_field (TREE_TYPE (object),
DECL_CONTEXT (member));
object = build_class_member_access_expr (object,
anonymous_union,
/*access_path=*/NULL_TREE,
preserve_reference);
}
/* Compute the type of the field, as described in [expr.ref]. */
type_quals = TYPE_UNQUALIFIED;
member_type = TREE_TYPE (member);
if (TREE_CODE (member_type) != REFERENCE_TYPE)
{
type_quals = (cp_type_quals (member_type)
| cp_type_quals (object_type));
/* A field is const (volatile) if the enclosing object, or the
field itself, is const (volatile). But, a mutable field is
not const, even within a const object. */
if (DECL_MUTABLE_P (member))
type_quals &= ~TYPE_QUAL_CONST;
member_type = cp_build_qualified_type (member_type, type_quals);
}
result = fold (build (COMPONENT_REF, member_type, object, member));
/* Mark the expression const or volatile, as appropriate. Even
though we've dealt with the type above, we still have to mark the
expression itself. */
if (type_quals & TYPE_QUAL_CONST)
TREE_READONLY (result) = 1;
else if (type_quals & TYPE_QUAL_VOLATILE)
TREE_THIS_VOLATILE (result) = 1;
}
else if (BASELINK_P (member))
{
/* The member is a (possibly overloaded) member function. */
tree functions;
tree type;
/* If the MEMBER is exactly one static member function, then we
know the type of the expression. Otherwise, we must wait
until overload resolution has been performed. */
functions = BASELINK_FUNCTIONS (member);
if (TREE_CODE (functions) == FUNCTION_DECL
&& DECL_STATIC_FUNCTION_P (functions))
type = TREE_TYPE (functions);
else
type = unknown_type_node;
/* Note that we do not convert OBJECT to the BASELINK_BINFO
base. That will happen when the function is called. */
result = build (COMPONENT_REF, type, object, member);
}
else if (TREE_CODE (member) == CONST_DECL)
{
/* The member is an enumerator. */
result = member;
/* If OBJECT has side-effects, they are supposed to occur. */
if (TREE_SIDE_EFFECTS (object))
result = build (COMPOUND_EXPR, TREE_TYPE (result),
object, result);
}
else
{
error ("invalid use of `%D'", member);
return error_mark_node;
}
if (!preserve_reference)
/* [expr.ref]
If E2 is declared to have type "reference to T", then ... the
type of E1.E2 is T. */
result = convert_from_reference (result);
return result;
}
/* Return the destructor denoted by OBJECT.SCOPE::~DTOR_NAME, or, if
SCOPE is NULL, by OBJECT.~DTOR_NAME. */
static tree
lookup_destructor (tree object, tree scope, tree dtor_name)
{
tree object_type = TREE_TYPE (object);
tree dtor_type = TREE_OPERAND (dtor_name, 0);
tree expr;
if (scope && !check_dtor_name (scope, dtor_name))
{
error ("qualified type `%T' does not match destructor name `~%T'",
scope, dtor_type);
return error_mark_node;
}
if (!DERIVED_FROM_P (dtor_type, TYPE_MAIN_VARIANT (object_type)))
{
error ("the type being destroyed is `%T', but the destructor refers to `%T'",
TYPE_MAIN_VARIANT (object_type), dtor_type);
return error_mark_node;
}
if (!TYPE_HAS_DESTRUCTOR (dtor_type))
return build (PSEUDO_DTOR_EXPR, void_type_node, object, scope,
dtor_type);
expr = lookup_member (dtor_type, complete_dtor_identifier,
/*protect=*/1, /*want_type=*/false);
expr = (adjust_result_of_qualified_name_lookup
(expr, dtor_type, object_type));
return expr;
}
/* This function is called by the parser to process a class member
access expression of the form OBJECT.NAME. NAME is a node used by
the parser to represent a name; it is not yet a DECL. It may,
however, be a BASELINK where the BASELINK_FUNCTIONS is a
TEMPLATE_ID_EXPR. Templates must be looked up by the parser, and
there is no reason to do the lookup twice, so the parser keeps the
BASELINK. */
tree
finish_class_member_access_expr (tree object, tree name)
{
tree expr;
tree object_type;
tree member;
tree access_path = NULL_TREE;
tree orig_object = object;
tree orig_name = name;
if (object == error_mark_node || name == error_mark_node)
return error_mark_node;
object_type = TREE_TYPE (object);
if (processing_template_decl)
{
if (/* If OBJECT_TYPE is dependent, so is OBJECT.NAME. */
dependent_type_p (object_type)
/* If NAME is just an IDENTIFIER_NODE, then the expression
is dependent. */
|| TREE_CODE (object) == IDENTIFIER_NODE
/* If NAME is "f<args>", where either 'f' or 'args' is
dependent, then the expression is dependent. */
|| (TREE_CODE (name) == TEMPLATE_ID_EXPR
&& dependent_template_id_p (TREE_OPERAND (name, 0),
TREE_OPERAND (name, 1)))
/* If NAME is "T::X" where "T" is dependent, then the
expression is dependent. */
|| (TREE_CODE (name) == SCOPE_REF
&& TYPE_P (TREE_OPERAND (name, 0))
&& dependent_type_p (TREE_OPERAND (name, 0))))
return build_min_nt (COMPONENT_REF, object, name);
object = build_non_dependent_expr (object);
}
if (TREE_CODE (object_type) == REFERENCE_TYPE)
{
object = convert_from_reference (object);
object_type = TREE_TYPE (object);
}
/* [expr.ref]
The type of the first expression shall be "class object" (of a
complete type). */
if (!currently_open_class (object_type)
&& !complete_type_or_else (object_type, object))
return error_mark_node;
if (!CLASS_TYPE_P (object_type))
{
error ("request for member `%D' in `%E', which is of non-class type `%T'",
name, object, object_type);
return error_mark_node;
}
if (BASELINK_P (name))
{
/* A member function that has already been looked up. */
my_friendly_assert ((TREE_CODE (BASELINK_FUNCTIONS (name))
== TEMPLATE_ID_EXPR),
20020805);
member = name;
}
else
{
bool is_template_id = false;
tree template_args = NULL_TREE;
tree scope;
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
{
is_template_id = true;
template_args = TREE_OPERAND (name, 1);
name = TREE_OPERAND (name, 0);
if (TREE_CODE (name) == OVERLOAD)
name = DECL_NAME (get_first_fn (name));
else if (DECL_P (name))
name = DECL_NAME (name);
}
if (TREE_CODE (name) == SCOPE_REF)
{
/* A qualified name. The qualifying class or namespace `S' has
already been looked up; it is either a TYPE or a
NAMESPACE_DECL. The member name is either an IDENTIFIER_NODE
or a BIT_NOT_EXPR. */
scope = TREE_OPERAND (name, 0);
name = TREE_OPERAND (name, 1);
my_friendly_assert ((CLASS_TYPE_P (scope)
|| TREE_CODE (scope) == NAMESPACE_DECL),
20020804);
my_friendly_assert ((TREE_CODE (name) == IDENTIFIER_NODE
|| TREE_CODE (name) == BIT_NOT_EXPR),
20020804);
/* If SCOPE is a namespace, then the qualified name does not
name a member of OBJECT_TYPE. */
if (TREE_CODE (scope) == NAMESPACE_DECL)
{
error ("`%D::%D' is not a member of `%T'",
scope, name, object_type);
return error_mark_node;
}
/* Find the base of OBJECT_TYPE corresponding to SCOPE. */
access_path = lookup_base (object_type, scope, ba_check, NULL);
if (access_path == error_mark_node)
return error_mark_node;
if (!access_path)
{
error ("`%T' is not a base of `%T'", scope, object_type);
return error_mark_node;
}
}
else
{
scope = NULL_TREE;
access_path = object_type;
}
if (TREE_CODE (name) == BIT_NOT_EXPR)
member = lookup_destructor (object, scope, name);
else
{
/* Look up the member. */
member = lookup_member (access_path, name, /*protect=*/1,
/*want_type=*/false);
if (member == NULL_TREE)
{
error ("'%D' has no member named '%E'", object_type, name);
return error_mark_node;
}
if (member == error_mark_node)
return error_mark_node;
}
if (is_template_id)
{
tree template = member;
if (BASELINK_P (template))
template = lookup_template_function (template, template_args);
else
{
error ("`%D' is not a member template function", name);
return error_mark_node;
}
}
}
if (TREE_DEPRECATED (member))
warn_deprecated_use (member);
expr = build_class_member_access_expr (object, member, access_path,
/*preserve_reference=*/false);
if (processing_template_decl && expr != error_mark_node)
return build_min_non_dep (COMPONENT_REF, expr,
orig_object, orig_name);
return expr;
}
/* Return an expression for the MEMBER_NAME field in the internal
representation of PTRMEM, a pointer-to-member function. (Each
pointer-to-member function type gets its own RECORD_TYPE so it is
more convenient to access the fields by name than by FIELD_DECL.)
This routine converts the NAME to a FIELD_DECL and then creates the
node for the complete expression. */
tree
build_ptrmemfunc_access_expr (tree ptrmem, tree member_name)
{
tree ptrmem_type;
tree member;
tree member_type;
/* This code is a stripped down version of
build_class_member_access_expr. It does not work to use that
routine directly because it expects the object to be of class
type. */
ptrmem_type = TREE_TYPE (ptrmem);
my_friendly_assert (TYPE_PTRMEMFUNC_P (ptrmem_type), 20020804);
member = lookup_member (ptrmem_type, member_name, /*protect=*/0,
/*want_type=*/false);
member_type = cp_build_qualified_type (TREE_TYPE (member),
cp_type_quals (ptrmem_type));
return fold (build (COMPONENT_REF, member_type, ptrmem, member));
}
/* Given an expression PTR for a pointer, return an expression
for the value pointed to.
ERRORSTRING is the name of the operator to appear in error messages.
This function may need to overload OPERATOR_FNNAME.
Must also handle REFERENCE_TYPEs for C++. */
tree
build_x_indirect_ref (tree expr, const char *errorstring)
{
tree orig_expr = expr;
tree rval;
if (processing_template_decl)
{
if (type_dependent_expression_p (expr))
return build_min_nt (INDIRECT_REF, expr);
expr = build_non_dependent_expr (expr);
}
rval = build_new_op (INDIRECT_REF, LOOKUP_NORMAL, expr, NULL_TREE,
NULL_TREE, /*overloaded_p=*/NULL);
if (!rval)
rval = build_indirect_ref (expr, errorstring);
if (processing_template_decl && rval != error_mark_node)
return build_min_non_dep (INDIRECT_REF, rval, orig_expr);
else
return rval;
}
tree
build_indirect_ref (tree ptr, const char *errorstring)
{
tree pointer, type;
if (ptr == error_mark_node)
return error_mark_node;
if (ptr == current_class_ptr)
return current_class_ref;
pointer = (TREE_CODE (TREE_TYPE (ptr)) == REFERENCE_TYPE
? ptr : decay_conversion (ptr));
type = TREE_TYPE (pointer);
if (TYPE_PTR_P (type) || TREE_CODE (type) == REFERENCE_TYPE)
{
/* [expr.unary.op]
If the type of the expression is "pointer to T," the type
of the result is "T."
We must use the canonical variant because certain parts of
the back end, like fold, do pointer comparisons between
types. */
tree t = canonical_type_variant (TREE_TYPE (type));
if (VOID_TYPE_P (t))
{
/* A pointer to incomplete type (other than cv void) can be
dereferenced [expr.unary.op]/1 */
error ("`%T' is not a pointer-to-object type", type);
return error_mark_node;
}
else if (TREE_CODE (pointer) == ADDR_EXPR
&& same_type_p (t, TREE_TYPE (TREE_OPERAND (pointer, 0))))
/* The POINTER was something like `&x'. We simplify `*&x' to
`x'. */
return TREE_OPERAND (pointer, 0);
else
{
tree ref = build1 (INDIRECT_REF, t, pointer);
/* We *must* set TREE_READONLY when dereferencing a pointer to const,
so that we get the proper error message if the result is used
to assign to. Also, &* is supposed to be a no-op. */
TREE_READONLY (ref) = CP_TYPE_CONST_P (t);
TREE_THIS_VOLATILE (ref) = CP_TYPE_VOLATILE_P (t);
TREE_SIDE_EFFECTS (ref)
= (TREE_THIS_VOLATILE (ref) || TREE_SIDE_EFFECTS (pointer));
return ref;
}
}
/* `pointer' won't be an error_mark_node if we were given a
pointer to member, so it's cool to check for this here. */
else if (TYPE_PTR_TO_MEMBER_P (type))
error ("invalid use of `%s' on pointer to member", errorstring);
else if (pointer != error_mark_node)
{
if (errorstring)
error ("invalid type argument of `%s'", errorstring);
else
error ("invalid type argument");
}
return error_mark_node;
}
/* This handles expressions of the form "a[i]", which denotes
an array reference.
This is logically equivalent in C to *(a+i), but we may do it differently.
If A is a variable or a member, we generate a primitive ARRAY_REF.
This avoids forcing the array out of registers, and can work on
arrays that are not lvalues (for example, members of structures returned
by functions).
If INDEX is of some user-defined type, it must be converted to
integer type. Otherwise, to make a compatible PLUS_EXPR, it
will inherit the type of the array, which will be some pointer type. */
tree
build_array_ref (tree array, tree idx)
{
if (idx == 0)
{
error ("subscript missing in array reference");
return error_mark_node;
}
if (TREE_TYPE (array) == error_mark_node
|| TREE_TYPE (idx) == error_mark_node)
return error_mark_node;
/* If ARRAY is a COMPOUND_EXPR or COND_EXPR, move our reference
inside it. */
switch (TREE_CODE (array))
{
case COMPOUND_EXPR:
{
tree value = build_array_ref (TREE_OPERAND (array, 1), idx);
return build (COMPOUND_EXPR, TREE_TYPE (value),
TREE_OPERAND (array, 0), value);
}
case COND_EXPR:
return build_conditional_expr
(TREE_OPERAND (array, 0),
build_array_ref (TREE_OPERAND (array, 1), idx),
build_array_ref (TREE_OPERAND (array, 2), idx));
default:
break;
}
if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE
&& TREE_CODE (array) != INDIRECT_REF)
{
tree rval, type;
/* Subscripting with type char is likely to lose
on a machine where chars are signed.
So warn on any machine, but optionally.
Don't warn for unsigned char since that type is safe.
Don't warn for signed char because anyone who uses that
must have done so deliberately. */
if (warn_char_subscripts
&& TYPE_MAIN_VARIANT (TREE_TYPE (idx)) == char_type_node)
warning ("array subscript has type `char'");
if (!INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (idx)))
{
error ("array subscript is not an integer");
return error_mark_node;
}
/* Apply integral promotions *after* noticing character types.
(It is unclear why we do these promotions -- the standard
does not say that we should. In fact, the natual thing would
seem to be to convert IDX to ptrdiff_t; we're performing
pointer arithmetic.) */
idx = perform_integral_promotions (idx);
/* An array that is indexed by a non-constant
cannot be stored in a register; we must be able to do
address arithmetic on its address.
Likewise an array of elements of variable size. */
if (TREE_CODE (idx) != INTEGER_CST
|| (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
&& (TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array))))
!= INTEGER_CST)))
{
if (!cxx_mark_addressable (array))
return error_mark_node;
}
/* An array that is indexed by a constant value which is not within
the array bounds cannot be stored in a register either; because we
would get a crash in store_bit_field/extract_bit_field when trying
to access a non-existent part of the register. */
if (TREE_CODE (idx) == INTEGER_CST
&& TYPE_VALUES (TREE_TYPE (array))
&& ! int_fits_type_p (idx, TYPE_VALUES (TREE_TYPE (array))))
{
if (!cxx_mark_addressable (array))
return error_mark_node;
}
if (pedantic && !lvalue_p (array))
pedwarn ("ISO C++ forbids subscripting non-lvalue array");
/* Note in C++ it is valid to subscript a `register' array, since
it is valid to take the address of something with that
storage specification. */
if (extra_warnings)
{
tree foo = array;
while (TREE_CODE (foo) == COMPONENT_REF)
foo = TREE_OPERAND (foo, 0);
if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo))
warning ("subscripting array declared `register'");
}
type = TREE_TYPE (TREE_TYPE (array));
rval = build (ARRAY_REF, type, array, idx);
/* Array ref is const/volatile if the array elements are
or if the array is.. */
TREE_READONLY (rval)
|= (CP_TYPE_CONST_P (type) | TREE_READONLY (array));
TREE_SIDE_EFFECTS (rval)
|= (CP_TYPE_VOLATILE_P (type) | TREE_SIDE_EFFECTS (array));
TREE_THIS_VOLATILE (rval)
|= (CP_TYPE_VOLATILE_P (type) | TREE_THIS_VOLATILE (array));
return require_complete_type (fold (rval));
}
{
tree ar = default_conversion (array);
tree ind = default_conversion (idx);
/* Put the integer in IND to simplify error checking. */
if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
{
tree temp = ar;
ar = ind;
ind = temp;
}
if (ar == error_mark_node)
return ar;
if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE)
{
error ("subscripted value is neither array nor pointer");
return error_mark_node;
}
if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
{
error ("array subscript is not an integer");
return error_mark_node;
}
return build_indirect_ref (cp_build_binary_op (PLUS_EXPR, ar, ind),
"array indexing");
}
}
/* Resolve a pointer to member function. INSTANCE is the object
instance to use, if the member points to a virtual member.
This used to avoid checking for virtual functions if basetype
has no virtual functions, according to an earlier ANSI draft.
With the final ISO C++ rules, such an optimization is
incorrect: A pointer to a derived member can be static_cast
to pointer-to-base-member, as long as the dynamic object
later has the right member. */
tree
get_member_function_from_ptrfunc (tree *instance_ptrptr, tree function)
{
if (TREE_CODE (function) == OFFSET_REF)
function = TREE_OPERAND (function, 1);
if (TYPE_PTRMEMFUNC_P (TREE_TYPE (function)))
{
tree idx, delta, e1, e2, e3, vtbl, basetype;
tree fntype = TYPE_PTRMEMFUNC_FN_TYPE (TREE_TYPE (function));
tree instance_ptr = *instance_ptrptr;
tree instance_save_expr = 0;
if (instance_ptr == error_mark_node)
{
if (TREE_CODE (function) == PTRMEM_CST)
{
/* Extracting the function address from a pmf is only
allowed with -Wno-pmf-conversions. It only works for
pmf constants. */
e1 = build_addr_func (PTRMEM_CST_MEMBER (function));
e1 = convert (fntype, e1);
return e1;
}
else
{
error ("object missing in use of `%E'", function);
return error_mark_node;
}
}
if (TREE_SIDE_EFFECTS (instance_ptr))
instance_ptr = instance_save_expr = save_expr (instance_ptr);
if (TREE_SIDE_EFFECTS (function))
function = save_expr (function);
/* Start by extracting all the information from the PMF itself. */
e3 = PFN_FROM_PTRMEMFUNC (function);
delta = build_ptrmemfunc_access_expr (function, delta_identifier);
idx = build1 (NOP_EXPR, vtable_index_type, e3);
switch (TARGET_PTRMEMFUNC_VBIT_LOCATION)
{
case ptrmemfunc_vbit_in_pfn:
e1 = cp_build_binary_op (BIT_AND_EXPR, idx, integer_one_node);
idx = cp_build_binary_op (MINUS_EXPR, idx, integer_one_node);
break;
case ptrmemfunc_vbit_in_delta:
e1 = cp_build_binary_op (BIT_AND_EXPR, delta, integer_one_node);
delta = cp_build_binary_op (RSHIFT_EXPR, delta, integer_one_node);
break;
default:
abort ();
}
/* Convert down to the right base before using the instance. First
use the type... */
basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (fntype));
basetype = lookup_base (TREE_TYPE (TREE_TYPE (instance_ptr)),
basetype, ba_check, NULL);
instance_ptr = build_base_path (PLUS_EXPR, instance_ptr, basetype, 1);
if (instance_ptr == error_mark_node)
return error_mark_node;
/* ...and then the delta in the PMF. */
instance_ptr = build (PLUS_EXPR, TREE_TYPE (instance_ptr),
instance_ptr, delta);
/* Hand back the adjusted 'this' argument to our caller. */
*instance_ptrptr = instance_ptr;
/* Next extract the vtable pointer from the object. */
vtbl = build1 (NOP_EXPR, build_pointer_type (vtbl_ptr_type_node),
instance_ptr);
vtbl = build_indirect_ref (vtbl, NULL);
/* Finally, extract the function pointer from the vtable. */
e2 = fold (build (PLUS_EXPR, TREE_TYPE (vtbl), vtbl, idx));
e2 = build_indirect_ref (e2, NULL);
TREE_CONSTANT (e2) = 1;
/* When using function descriptors, the address of the
vtable entry is treated as a function pointer. */
if (TARGET_VTABLE_USES_DESCRIPTORS)
e2 = build1 (NOP_EXPR, TREE_TYPE (e2),
build_unary_op (ADDR_EXPR, e2, /*noconvert=*/1));
TREE_TYPE (e2) = TREE_TYPE (e3);
e1 = build_conditional_expr (e1, e2, e3);
/* Make sure this doesn't get evaluated first inside one of the
branches of the COND_EXPR. */
if (instance_save_expr)
e1 = build (COMPOUND_EXPR, TREE_TYPE (e1),
instance_save_expr, e1);
function = e1;
}
return function;
}
tree
build_function_call (tree function, tree params)
{
tree fntype, fndecl;
tree coerced_params;
tree result;
tree name = NULL_TREE, assembler_name = NULL_TREE;
int is_method;
tree original = function;
/* build_c_cast puts on a NOP_EXPR to make the result not an lvalue.
Strip such NOP_EXPRs, since FUNCTION is used in non-lvalue context. */
if (TREE_CODE (function) == NOP_EXPR
&& TREE_TYPE (function) == TREE_TYPE (TREE_OPERAND (function, 0)))
function = TREE_OPERAND (function, 0);
if (TREE_CODE (function) == FUNCTION_DECL)
{
name = DECL_NAME (function);
assembler_name = DECL_ASSEMBLER_NAME (function);
mark_used (function);
fndecl = function;
/* Convert anything with function type to a pointer-to-function. */
if (pedantic && DECL_MAIN_P (function))
pedwarn ("ISO C++ forbids calling `::main' from within program");
/* Differs from default_conversion by not setting TREE_ADDRESSABLE
(because calling an inline function does not mean the function
needs to be separately compiled). */
if (DECL_INLINE (function))
function = inline_conversion (function);
else
function = build_addr_func (function);
}
else
{
fndecl = NULL_TREE;
function = build_addr_func (function);
}
if (function == error_mark_node)
return error_mark_node;
fntype = TREE_TYPE (function);
if (TYPE_PTRMEMFUNC_P (fntype))
{
error ("must use .* or ->* to call pointer-to-member function in `%E (...)'",
original);
return error_mark_node;
}
is_method = (TREE_CODE (fntype) == POINTER_TYPE
&& TREE_CODE (TREE_TYPE (fntype)) == METHOD_TYPE);
if (!((TREE_CODE (fntype) == POINTER_TYPE
&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE)
|| is_method
|| TREE_CODE (function) == TEMPLATE_ID_EXPR))
{
error ("`%E' cannot be used as a function", original);
return error_mark_node;
}
/* fntype now gets the type of function pointed to. */
fntype = TREE_TYPE (fntype);
/* Convert the parameters to the types declared in the
function prototype, or apply default promotions. */
coerced_params = convert_arguments (TYPE_ARG_TYPES (fntype),
params, fndecl, LOOKUP_NORMAL);
if (coerced_params == error_mark_node)
return error_mark_node;
/* Check for errors in format strings. */
if (warn_format)
check_function_format (NULL, TYPE_ATTRIBUTES (fntype), coerced_params);
/* Recognize certain built-in functions so we can make tree-codes
other than CALL_EXPR. We do this when it enables fold-const.c
to do something useful. */
if (TREE_CODE (function) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL
&& DECL_BUILT_IN (TREE_OPERAND (function, 0)))
{
result = expand_tree_builtin (TREE_OPERAND (function, 0),
params, coerced_params);
if (result)
return result;
}
return build_cxx_call (function, params, coerced_params);
}
/* Convert the actual parameter expressions in the list VALUES
to the types in the list TYPELIST.
If parmdecls is exhausted, or when an element has NULL as its type,
perform the default conversions.
NAME is an IDENTIFIER_NODE or 0. It is used only for error messages.
This is also where warnings about wrong number of args are generated.
Return a list of expressions for the parameters as converted.
Both VALUES and the returned value are chains of TREE_LIST nodes
with the elements of the list in the TREE_VALUE slots of those nodes.
In C++, unspecified trailing parameters can be filled in with their
default arguments, if such were specified. Do so here. */
tree
convert_arguments (tree typelist, tree values, tree fndecl, int flags)
{
tree typetail, valtail;
tree result = NULL_TREE;
const char *called_thing = 0;
int i = 0;
/* Argument passing is always copy-initialization. */
flags |= LOOKUP_ONLYCONVERTING;
if (fndecl)
{
if (TREE_CODE (TREE_TYPE (fndecl)) == METHOD_TYPE)
{
if (DECL_NAME (fndecl) == NULL_TREE
|| IDENTIFIER_HAS_TYPE_VALUE (DECL_NAME (fndecl)))
called_thing = "constructor";
else
called_thing = "member function";
}
else
called_thing = "function";
}
for (valtail = values, typetail = typelist;
valtail;
valtail = TREE_CHAIN (valtail), i++)
{
tree type = typetail ? TREE_VALUE (typetail) : 0;
tree val = TREE_VALUE (valtail);
if (val == error_mark_node)
return error_mark_node;
if (type == void_type_node)
{
if (fndecl)
{
cp_error_at ("too many arguments to %s `%+#D'", called_thing,
fndecl);
error ("at this point in file");
}
else
error ("too many arguments to function");
/* In case anybody wants to know if this argument
list is valid. */
if (result)
TREE_TYPE (tree_last (result)) = error_mark_node;
break;
}
/* build_c_cast puts on a NOP_EXPR to make the result not an lvalue.
Strip such NOP_EXPRs, since VAL is used in non-lvalue context. */
if (TREE_CODE (val) == NOP_EXPR
&& TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0))
&& (type == 0 || TREE_CODE (type) != REFERENCE_TYPE))
val = TREE_OPERAND (val, 0);
if (type == 0 || TREE_CODE (type) != REFERENCE_TYPE)
{
if (TREE_CODE (TREE_TYPE (val)) == ARRAY_TYPE
|| TREE_CODE (TREE_TYPE (val)) == FUNCTION_TYPE
|| TREE_CODE (TREE_TYPE (val)) == METHOD_TYPE)
val = decay_conversion (val);
}
if (val == error_mark_node)
return error_mark_node;
if (type != 0)
{
/* Formal parm type is specified by a function prototype. */
tree parmval;
if (!COMPLETE_TYPE_P (complete_type (type)))
{
if (fndecl)
error ("parameter %P of `%D' has incomplete type `%T'",
i, fndecl, type);
else
error ("parameter %P has incomplete type `%T'", i, type);
parmval = error_mark_node;
}
else
{
parmval = convert_for_initialization
(NULL_TREE, type, val, flags,
"argument passing", fndecl, i);
parmval = convert_for_arg_passing (type, parmval);
}
if (parmval == error_mark_node)
return error_mark_node;
result = tree_cons (NULL_TREE, parmval, result);
}
else
{
if (TREE_CODE (TREE_TYPE (val)) == REFERENCE_TYPE)
val = convert_from_reference (val);
if (fndecl && DECL_BUILT_IN (fndecl)
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
/* Don't do ellipsis conversion for __built_in_constant_p
as this will result in spurious warnings for non-POD
types. */
val = require_complete_type (val);
else
val = convert_arg_to_ellipsis (val);
result = tree_cons (NULL_TREE, val, result);
}
if (typetail)
typetail = TREE_CHAIN (typetail);
}
if (typetail != 0 && typetail != void_list_node)
{
/* See if there are default arguments that can be used. */
if (TREE_PURPOSE (typetail)
&& TREE_CODE (TREE_PURPOSE (typetail)) != DEFAULT_ARG)
{
for (; typetail != void_list_node; ++i)
{
tree parmval
= convert_default_arg (TREE_VALUE (typetail),
TREE_PURPOSE (typetail),
fndecl, i);
if (parmval == error_mark_node)
return error_mark_node;
result = tree_cons (0, parmval, result);
typetail = TREE_CHAIN (typetail);
/* ends with `...'. */
if (typetail == NULL_TREE)
break;
}
}
else
{
if (fndecl)
{
cp_error_at ("too few arguments to %s `%+#D'",
called_thing, fndecl);
error ("at this point in file");
}
else
error ("too few arguments to function");
return error_mark_list;
}
}
return nreverse (result);
}
/* Build a binary-operation expression, after performing default
conversions on the operands. CODE is the kind of expression to build. */
tree
build_x_binary_op (enum tree_code code, tree arg1, tree arg2,
bool *overloaded_p)
{
tree orig_arg1;
tree orig_arg2;
tree expr;
orig_arg1 = arg1;
orig_arg2 = arg2;
if (processing_template_decl)
{
if (type_dependent_expression_p (arg1)
|| type_dependent_expression_p (arg2))
return build_min_nt (code, arg1, arg2);
arg1 = build_non_dependent_expr (arg1);
arg2 = build_non_dependent_expr (arg2);
}
if (code == DOTSTAR_EXPR)
expr = build_m_component_ref (arg1, arg2);
else
expr = build_new_op (code, LOOKUP_NORMAL, arg1, arg2, NULL_TREE,
overloaded_p);
if (processing_template_decl && expr != error_mark_node)
return build_min_non_dep (code, expr, orig_arg1, orig_arg2);
return expr;
}
/* Build a binary-operation expression without default conversions.
CODE is the kind of expression to build.
This function differs from `build' in several ways:
the data type of the result is computed and recorded in it,
warnings are generated if arg data types are invalid,
special handling for addition and subtraction of pointers is known,
and some optimization is done (operations on narrow ints
are done in the narrower type when that gives the same result).
Constant folding is also done before the result is returned.
Note that the operands will never have enumeral types
because either they have just had the default conversions performed
or they have both just been converted to some other type in which
the arithmetic is to be done.
C++: must do special pointer arithmetic when implementing
multiple inheritance, and deal with pointer to member functions. */
tree
build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
int convert_p ATTRIBUTE_UNUSED)
{
tree op0, op1;
enum tree_code code0, code1;
tree type0, type1;
/* Expression code to give to the expression when it is built.
Normally this is CODE, which is what the caller asked for,
but in some special cases we change it. */
enum tree_code resultcode = code;
/* Data type in which the computation is to be performed.
In the simplest cases this is the common type of the arguments. */
tree result_type = NULL;
/* Nonzero means operands have already been type-converted
in whatever way is necessary.
Zero means they need to be converted to RESULT_TYPE. */
int converted = 0;
/* Nonzero means create the expression with this type, rather than
RESULT_TYPE. */
tree build_type = 0;
/* Nonzero means after finally constructing the expression
convert it to this type. */
tree final_type = 0;
/* Nonzero if this is an operation like MIN or MAX which can
safely be computed in short if both args are promoted shorts.
Also implies COMMON.
-1 indicates a bitwise operation; this makes a difference
in the exact conditions for when it is safe to do the operation
in a narrower mode. */
int shorten = 0;
/* Nonzero if this is a comparison operation;
if both args are promoted shorts, compare the original shorts.
Also implies COMMON. */
int short_compare = 0;
/* Nonzero if this is a right-shift operation, which can be computed on the
original short and then promoted if the operand is a promoted short. */
int short_shift = 0;
/* Nonzero means set RESULT_TYPE to the common type of the args. */
int common = 0;
/* Apply default conversions. */
op0 = orig_op0;
op1 = orig_op1;
if (code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
|| code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
|| code == TRUTH_XOR_EXPR)
{
if (!really_overloaded_fn (op0))
op0 = decay_conversion (op0);
if (!really_overloaded_fn (op1))
op1 = decay_conversion (op1);
}
else
{
if (!really_overloaded_fn (op0))
op0 = default_conversion (op0);
if (!really_overloaded_fn (op1))
op1 = default_conversion (op1);
}
/* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
STRIP_TYPE_NOPS (op0);
STRIP_TYPE_NOPS (op1);
/* DTRT if one side is an overloaded function, but complain about it. */
if (type_unknown_p (op0))
{
tree t = instantiate_type (TREE_TYPE (op1), op0, tf_none);
if (t != error_mark_node)
{
pedwarn ("assuming cast to type `%T' from overloaded function",
TREE_TYPE (t));
op0 = t;
}
}
if (type_unknown_p (op1))
{
tree t = instantiate_type (TREE_TYPE (op0), op1, tf_none);
if (t != error_mark_node)
{
pedwarn ("assuming cast to type `%T' from overloaded function",
TREE_TYPE (t));
op1 = t;
}
}
type0 = TREE_TYPE (op0);
type1 = TREE_TYPE (op1);
/* The expression codes of the data types of the arguments tell us
whether the arguments are integers, floating, pointers, etc. */
code0 = TREE_CODE (type0);
code1 = TREE_CODE (type1);
/* If an error was already reported for one of the arguments,
avoid reporting another error. */
if (code0 == ERROR_MARK || code1 == ERROR_MARK)
return error_mark_node;
switch (code)
{
case PLUS_EXPR:
/* Handle the pointer + int case. */
if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
return cp_pointer_int_sum (PLUS_EXPR, op0, op1);
else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
return cp_pointer_int_sum (PLUS_EXPR, op1, op0);
else
common = 1;
break;
case MINUS_EXPR:
/* Subtraction of two similar pointers.
We must subtract them as integers, then divide by object size. */
if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
&& same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (type0),
TREE_TYPE (type1)))
return pointer_diff (op0, op1, common_type (type0, type1));
/* Handle pointer minus int. Just like pointer plus int. */
else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
return cp_pointer_int_sum (MINUS_EXPR, op0, op1);
else
common = 1;
break;
case MULT_EXPR:
common = 1;
break;
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case EXACT_DIV_EXPR:
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
|| code0 == COMPLEX_TYPE)
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE
|| code1 == COMPLEX_TYPE))
{
if (TREE_CODE (op1) == INTEGER_CST && integer_zerop (op1))
warning ("division by zero in `%E / 0'", op0);
else if (TREE_CODE (op1) == REAL_CST && real_zerop (op1))
warning ("division by zero in `%E / 0.'", op0);
if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
resultcode = RDIV_EXPR;
else
/* When dividing two signed integers, we have to promote to int.
unless we divide by a constant != -1. Note that default
conversion will have been performed on the operands at this
point, so we have to dig out the original type to find out if
it was unsigned. */
shorten = ((TREE_CODE (op0) == NOP_EXPR
&& TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0))))
|| (TREE_CODE (op1) == INTEGER_CST
&& ! integer_all_onesp (op1)));
common = 1;
}
break;
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
shorten = -1;
break;
case TRUNC_MOD_EXPR:
case FLOOR_MOD_EXPR:
if (code1 == INTEGER_TYPE && integer_zerop (op1))
warning ("division by zero in `%E %% 0'", op0);
else if (code1 == REAL_TYPE && real_zerop (op1))
warning ("division by zero in `%E %% 0.'", op0);
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
{
/* Although it would be tempting to shorten always here, that loses
on some targets, since the modulo instruction is undefined if the
quotient can't be represented in the computation mode. We shorten
only if unsigned or if dividing by something we know != -1. */
shorten = ((TREE_CODE (op0) == NOP_EXPR
&& TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0))))
|| (TREE_CODE (op1) == INTEGER_CST
&& ! integer_all_onesp (op1)));
common = 1;
}
break;
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
result_type = boolean_type_node;
break;
/* Shift operations: result has same type as first operand;
always convert second operand to int.
Also set SHORT_SHIFT if shifting rightward. */
case RSHIFT_EXPR:
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
{
result_type = type0;
if (TREE_CODE (op1) == INTEGER_CST)
{
if (tree_int_cst_lt (op1, integer_zero_node))
warning ("right shift count is negative");
else
{
if (! integer_zerop (op1))
short_shift = 1;
if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
warning ("right shift count >= width of type");
}
}
/* Convert the shift-count to an integer, regardless of
size of value being shifted. */
if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
op1 = cp_convert (integer_type_node, op1);
/* Avoid converting op1 to result_type later. */
converted = 1;
}
break;
case LSHIFT_EXPR:
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
{
result_type = type0;
if (TREE_CODE (op1) == INTEGER_CST)
{
if (tree_int_cst_lt (op1, integer_zero_node))
warning ("left shift count is negative");
else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
warning ("left shift count >= width of type");
}
/* Convert the shift-count to an integer, regardless of
size of value being shifted. */
if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
op1 = cp_convert (integer_type_node, op1);
/* Avoid converting op1 to result_type later. */
converted = 1;
}
break;
case RROTATE_EXPR:
case LROTATE_EXPR:
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
{
result_type = type0;
if (TREE_CODE (op1) == INTEGER_CST)
{
if (tree_int_cst_lt (op1, integer_zero_node))
warning ("%s rotate count is negative",
(code == LROTATE_EXPR) ? "left" : "right");
else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
warning ("%s rotate count >= width of type",
(code == LROTATE_EXPR) ? "left" : "right");
}
/* Convert the shift-count to an integer, regardless of
size of value being shifted. */
if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
op1 = cp_convert (integer_type_node, op1);
}
break;
case EQ_EXPR:
case NE_EXPR:
if (warn_float_equal && (code0 == REAL_TYPE || code1 == REAL_TYPE))
warning ("comparing floating point with == or != is unsafe");
build_type = boolean_type_node;
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
|| code0 == COMPLEX_TYPE)
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE
|| code1 == COMPLEX_TYPE))
short_compare = 1;
else if ((code0 == POINTER_TYPE && code1 == POINTER_TYPE)
|| (TYPE_PTRMEM_P (type0) && TYPE_PTRMEM_P (type1)))
result_type = composite_pointer_type (type0, type1, op0, op1,
"comparison");
else if ((code0 == POINTER_TYPE || TYPE_PTRMEM_P (type0))
&& null_ptr_cst_p (op1))
result_type = type0;
else if ((code1 == POINTER_TYPE || TYPE_PTRMEM_P (type1))
&& null_ptr_cst_p (op0))
result_type = type1;
else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
{
result_type = type0;
error ("ISO C++ forbids comparison between pointer and integer");
}
else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
{
result_type = type1;
error ("ISO C++ forbids comparison between pointer and integer");
}
else if (TYPE_PTRMEMFUNC_P (type0) && null_ptr_cst_p (op1))
{
op0 = build_ptrmemfunc_access_expr (op0, pfn_identifier);
op1 = cp_convert (TREE_TYPE (op0), integer_zero_node);
result_type = TREE_TYPE (op0);
}
else if (TYPE_PTRMEMFUNC_P (type1) && null_ptr_cst_p (op0))
return cp_build_binary_op (code, op1, op0);
else if (TYPE_PTRMEMFUNC_P (type0) && TYPE_PTRMEMFUNC_P (type1)
&& same_type_p (type0, type1))
{
/* E will be the final comparison. */
tree e;
/* E1 and E2 are for scratch. */
tree e1;
tree e2;
tree pfn0;
tree pfn1;
tree delta0;
tree delta1;
if (TREE_SIDE_EFFECTS (op0))
op0 = save_expr (op0);
if (TREE_SIDE_EFFECTS (op1))
op1 = save_expr (op1);
/* We generate:
(op0.pfn == op1.pfn
&& (!op0.pfn || op0.delta == op1.delta))
The reason for the `!op0.pfn' bit is that a NULL
pointer-to-member is any member with a zero PFN; the
DELTA field is unspecified. */
pfn0 = pfn_from_ptrmemfunc (op0);
pfn1 = pfn_from_ptrmemfunc (op1);
delta0 = build_ptrmemfunc_access_expr (op0,
delta_identifier);
delta1 = build_ptrmemfunc_access_expr (op1,
delta_identifier);
e1 = cp_build_binary_op (EQ_EXPR, delta0, delta1);
e2 = cp_build_binary_op (EQ_EXPR,
pfn0,
cp_convert (TREE_TYPE (pfn0),
integer_zero_node));
e1 = cp_build_binary_op (TRUTH_ORIF_EXPR, e1, e2);
e2 = build (EQ_EXPR, boolean_type_node, pfn0, pfn1);
e = cp_build_binary_op (TRUTH_ANDIF_EXPR, e2, e1);
if (code == EQ_EXPR)
return e;
return cp_build_binary_op (EQ_EXPR, e, integer_zero_node);
}
else if ((TYPE_PTRMEMFUNC_P (type0)
&& same_type_p (TYPE_PTRMEMFUNC_FN_TYPE (type0), type1))
|| (TYPE_PTRMEMFUNC_P (type1)
&& same_type_p (TYPE_PTRMEMFUNC_FN_TYPE (type1), type0)))
abort ();
break;
case MAX_EXPR:
case MIN_EXPR:
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
shorten = 1;
else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
result_type = composite_pointer_type (type0, type1, op0, op1,
"comparison");
break;
case LE_EXPR:
case GE_EXPR:
case LT_EXPR:
case GT_EXPR:
build_type = boolean_type_node;
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
short_compare = 1;
else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
result_type = composite_pointer_type (type0, type1, op0, op1,
"comparison");
else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
&& integer_zerop (op1))
result_type = type0;
else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
&& integer_zerop (op0))
result_type = type1;
else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
{
result_type = type0;
pedwarn ("ISO C++ forbids comparison between pointer and integer");
}
else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
{
result_type = type1;
pedwarn ("ISO C++ forbids comparison between pointer and integer");
}
break;
case UNORDERED_EXPR:
case ORDERED_EXPR:
case UNLT_EXPR:
case UNLE_EXPR:
case UNGT_EXPR:
case UNGE_EXPR:
case UNEQ_EXPR:
build_type = integer_type_node;
if (code0 != REAL_TYPE || code1 != REAL_TYPE)
{
error ("unordered comparison on non-floating point argument");
return error_mark_node;
}
common = 1;
break;
default:
break;
}
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
&&
(code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
{
int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
if (shorten || common || short_compare)
result_type = common_type (type0, type1);
/* For certain operations (which identify themselves by shorten != 0)
if both args were extended from the same smaller type,
do the arithmetic in that type and then extend.
shorten !=0 and !=1 indicates a bitwise operation.
For them, this optimization is safe only if
both args are zero-extended or both are sign-extended.
Otherwise, we might change the result.
Eg, (short)-1 | (unsigned short)-1 is (int)-1
but calculated in (unsigned short) it would be (unsigned short)-1. */
if (shorten && none_complex)
{
int unsigned0, unsigned1;
tree arg0 = get_narrower (op0, &unsigned0);
tree arg1 = get_narrower (op1, &unsigned1);
/* UNS is 1 if the operation to be done is an unsigned one. */
int uns = TREE_UNSIGNED (result_type);
tree type;
final_type = result_type;
/* Handle the case that OP0 does not *contain* a conversion
but it *requires* conversion to FINAL_TYPE. */