blob: dcd972c7cd8fa92281bc73813b61b18719c8efe5 [file] [log] [blame]
/* Expands front end tree to back end RTL for GCC.
Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* This file handles the generation of rtl code from tree structure
at the level of the function as a whole.
It creates the rtl expressions for parameters and auto variables
and has full responsibility for allocating stack slots.
`expand_function_start' is called at the beginning of a function,
before the function body is parsed, and `expand_function_end' is
called after parsing the body.
Call `assign_stack_local' to allocate a stack slot for a local variable.
This is usually done during the RTL generation for the function body,
but it can also be done in the reload pass when a pseudo-register does
not get a hard register.
Call `put_var_into_stack' when you learn, belatedly, that a variable
previously given a pseudo-register must in fact go in the stack.
This function changes the DECL_RTL to be a stack slot instead of a reg
then scans all the RTL instructions so far generated to correct them. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "libfuncs.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
#include "basic-block.h"
#include "toplev.h"
#include "hashtab.h"
#include "ggc.h"
#include "tm_p.h"
#include "integrate.h"
#include "langhooks.h"
#include "target.h"
#ifndef TRAMPOLINE_ALIGNMENT
#define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
#endif
#ifndef LOCAL_ALIGNMENT
#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
#endif
#ifndef STACK_ALIGNMENT_NEEDED
#define STACK_ALIGNMENT_NEEDED 1
#endif
#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
/* Some systems use __main in a way incompatible with its use in gcc, in these
cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
give the same symbol without quotes for an alternative entry point. You
must define both, or neither. */
#ifndef NAME__MAIN
#define NAME__MAIN "__main"
#endif
/* Round a value to the lowest integer less than it that is a multiple of
the required alignment. Avoid using division in case the value is
negative. Assume the alignment is a power of two. */
#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
/* Similar, but round to the next highest integer that meets the
alignment. */
#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
/* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
during rtl generation. If they are different register numbers, this is
always true. It may also be true if
FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
generation. See fix_lexical_addr for details. */
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
#define NEED_SEPARATE_AP
#endif
/* Nonzero if function being compiled doesn't contain any calls
(ignoring the prologue and epilogue). This is set prior to
local register allocation and is valid for the remaining
compiler passes. */
int current_function_is_leaf;
/* Nonzero if function being compiled doesn't contain any instructions
that can throw an exception. This is set prior to final. */
int current_function_nothrow;
/* Nonzero if function being compiled doesn't modify the stack pointer
(ignoring the prologue and epilogue). This is only valid after
life_analysis has run. */
int current_function_sp_is_unchanging;
/* Nonzero if the function being compiled is a leaf function which only
uses leaf registers. This is valid after reload (specifically after
sched2) and is useful only if the port defines LEAF_REGISTERS. */
int current_function_uses_only_leaf_regs;
/* Nonzero once virtual register instantiation has been done.
assign_stack_local uses frame_pointer_rtx when this is nonzero.
calls.c:emit_library_call_value_1 uses it to set up
post-instantiation libcalls. */
int virtuals_instantiated;
/* Nonzero if at least one trampoline has been created. */
int trampolines_created;
/* Assign unique numbers to labels generated for profiling, debugging, etc. */
static GTY(()) int funcdef_no;
/* These variables hold pointers to functions to create and destroy
target specific, per-function data structures. */
struct machine_function * (*init_machine_status) (void);
/* The FUNCTION_DECL for an inline function currently being expanded. */
tree inline_function_decl;
/* The currently compiled function. */
struct function *cfun = 0;
/* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
static GTY(()) varray_type prologue;
static GTY(()) varray_type epilogue;
/* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
in this function. */
static GTY(()) varray_type sibcall_epilogue;
/* In order to evaluate some expressions, such as function calls returning
structures in memory, we need to temporarily allocate stack locations.
We record each allocated temporary in the following structure.
Associated with each temporary slot is a nesting level. When we pop up
one level, all temporaries associated with the previous level are freed.
Normally, all temporaries are freed after the execution of the statement
in which they were created. However, if we are inside a ({...}) grouping,
the result may be in a temporary and hence must be preserved. If the
result could be in a temporary, we preserve it if we can determine which
one it is in. If we cannot determine which temporary may contain the
result, all temporaries are preserved. A temporary is preserved by
pretending it was allocated at the previous nesting level.
Automatic variables are also assigned temporary slots, at the nesting
level where they are defined. They are marked a "kept" so that
free_temp_slots will not free them. */
struct temp_slot GTY(())
{
/* Points to next temporary slot. */
struct temp_slot *next;
/* The rtx to used to reference the slot. */
rtx slot;
/* The rtx used to represent the address if not the address of the
slot above. May be an EXPR_LIST if multiple addresses exist. */
rtx address;
/* The alignment (in bits) of the slot. */
unsigned int align;
/* The size, in units, of the slot. */
HOST_WIDE_INT size;
/* The type of the object in the slot, or zero if it doesn't correspond
to a type. We use this to determine whether a slot can be reused.
It can be reused if objects of the type of the new slot will always
conflict with objects of the type of the old slot. */
tree type;
/* The value of `sequence_rtl_expr' when this temporary is allocated. */
tree rtl_expr;
/* Nonzero if this temporary is currently in use. */
char in_use;
/* Nonzero if this temporary has its address taken. */
char addr_taken;
/* Nesting level at which this slot is being used. */
int level;
/* Nonzero if this should survive a call to free_temp_slots. */
int keep;
/* The offset of the slot from the frame_pointer, including extra space
for alignment. This info is for combine_temp_slots. */
HOST_WIDE_INT base_offset;
/* The size of the slot, including extra space for alignment. This
info is for combine_temp_slots. */
HOST_WIDE_INT full_size;
};
/* This structure is used to record MEMs or pseudos used to replace VAR, any
SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
maintain this list in case two operands of an insn were required to match;
in that case we must ensure we use the same replacement. */
struct fixup_replacement GTY(())
{
rtx old;
rtx new;
struct fixup_replacement *next;
};
struct insns_for_mem_entry
{
/* A MEM. */
rtx key;
/* These are the INSNs which reference the MEM. */
rtx insns;
};
/* Forward declarations. */
static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
struct function *);
static struct temp_slot *find_temp_slot_from_address (rtx);
static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
enum machine_mode, int, unsigned int, int, htab_t);
static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
htab_t);
static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
static struct fixup_replacement
*find_fixup_replacement (struct fixup_replacement **, rtx);
static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
struct fixup_replacement **, rtx);
static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
static rtx walk_fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
static rtx fixup_stack_1 (rtx, rtx);
static void optimize_bit_field (rtx, rtx, rtx *);
static void instantiate_decls (tree, int);
static void instantiate_decls_1 (tree, int);
static void instantiate_decl (rtx, HOST_WIDE_INT, int);
static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
static int instantiate_virtual_regs_1 (rtx *, rtx, int);
static void delete_handlers (void);
static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
static void pad_below (struct args_size *, enum machine_mode, tree);
static rtx round_trampoline_addr (rtx);
static rtx adjust_trampoline_addr (rtx);
static tree *identify_blocks_1 (rtx, tree *, tree *, tree *);
static void reorder_blocks_0 (tree);
static void reorder_blocks_1 (rtx, tree, varray_type *);
static void reorder_fix_fragments (tree);
static tree blocks_nreverse (tree);
static int all_blocks (tree, tree *);
static tree *get_block_vector (tree, int *);
extern tree debug_find_var_in_block_tree (tree, tree);
/* We always define `record_insns' even if its not used so that we
can always export `prologue_epilogue_contains'. */
static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
static int contains (rtx, varray_type);
#ifdef HAVE_return
static void emit_return_into_block (basic_block, rtx);
#endif
static void put_addressof_into_stack (rtx, htab_t);
static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
static void purge_single_hard_subreg_set (rtx);
#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
static rtx keep_stack_depressed (rtx);
#endif
static int is_addressof (rtx *, void *);
static hashval_t insns_for_mem_hash (const void *);
static int insns_for_mem_comp (const void *, const void *);
static int insns_for_mem_walk (rtx *, void *);
static void compute_insns_for_mem (rtx, rtx, htab_t);
static void prepare_function_start (tree);
static void do_clobber_return_reg (rtx, void *);
static void do_use_return_reg (rtx, void *);
static void instantiate_virtual_regs_lossage (rtx);
static tree split_complex_args (tree);
static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
/* Pointer to chain of `struct function' for containing functions. */
struct function *outer_function_chain;
/* List of insns that were postponed by purge_addressof_1. */
static rtx postponed_insns;
/* Given a function decl for a containing function,
return the `struct function' for it. */
struct function *
find_function_data (tree decl)
{
struct function *p;
for (p = outer_function_chain; p; p = p->outer)
if (p->decl == decl)
return p;
abort ();
}
/* Save the current context for compilation of a nested function.
This is called from language-specific code. The caller should use
the enter_nested langhook to save any language-specific state,
since this function knows only about language-independent
variables. */
void
push_function_context_to (tree context)
{
struct function *p;
if (context)
{
if (context == current_function_decl)
cfun->contains_functions = 1;
else
{
struct function *containing = find_function_data (context);
containing->contains_functions = 1;
}
}
if (cfun == 0)
init_dummy_function_start ();
p = cfun;
p->outer = outer_function_chain;
outer_function_chain = p;
p->fixup_var_refs_queue = 0;
(*lang_hooks.function.enter_nested) (p);
cfun = 0;
}
void
push_function_context (void)
{
push_function_context_to (current_function_decl);
}
/* Restore the last saved context, at the end of a nested function.
This function is called from language-specific code. */
void
pop_function_context_from (tree context ATTRIBUTE_UNUSED)
{
struct function *p = outer_function_chain;
struct var_refs_queue *queue;
cfun = p;
outer_function_chain = p->outer;
current_function_decl = p->decl;
reg_renumber = 0;
restore_emit_status (p);
(*lang_hooks.function.leave_nested) (p);
/* Finish doing put_var_into_stack for any of our variables which became
addressable during the nested function. If only one entry has to be
fixed up, just do that one. Otherwise, first make a list of MEMs that
are not to be unshared. */
if (p->fixup_var_refs_queue == 0)
;
else if (p->fixup_var_refs_queue->next == 0)
fixup_var_refs (p->fixup_var_refs_queue->modified,
p->fixup_var_refs_queue->promoted_mode,
p->fixup_var_refs_queue->unsignedp,
p->fixup_var_refs_queue->modified, 0);
else
{
rtx list = 0;
for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
fixup_var_refs (queue->modified, queue->promoted_mode,
queue->unsignedp, list, 0);
}
p->fixup_var_refs_queue = 0;
/* Reset variables that have known state during rtx generation. */
rtx_equal_function_value_matters = 1;
virtuals_instantiated = 0;
generating_concat_p = 1;
}
void
pop_function_context (void)
{
pop_function_context_from (current_function_decl);
}
/* Clear out all parts of the state in F that can safely be discarded
after the function has been parsed, but not compiled, to let
garbage collection reclaim the memory. */
void
free_after_parsing (struct function *f)
{
/* f->expr->forced_labels is used by code generation. */
/* f->emit->regno_reg_rtx is used by code generation. */
/* f->varasm is used by code generation. */
/* f->eh->eh_return_stub_label is used by code generation. */
(*lang_hooks.function.final) (f);
f->stmt = NULL;
}
/* Clear out all parts of the state in F that can safely be discarded
after the function has been compiled, to let garbage collection
reclaim the memory. */
void
free_after_compilation (struct function *f)
{
f->eh = NULL;
f->expr = NULL;
f->emit = NULL;
f->varasm = NULL;
f->machine = NULL;
f->x_temp_slots = NULL;
f->arg_offset_rtx = NULL;
f->return_rtx = NULL;
f->internal_arg_pointer = NULL;
f->x_nonlocal_labels = NULL;
f->x_nonlocal_goto_handler_slots = NULL;
f->x_nonlocal_goto_handler_labels = NULL;
f->x_nonlocal_goto_stack_level = NULL;
f->x_cleanup_label = NULL;
f->x_return_label = NULL;
f->x_naked_return_label = NULL;
f->computed_goto_common_label = NULL;
f->computed_goto_common_reg = NULL;
f->x_save_expr_regs = NULL;
f->x_stack_slot_list = NULL;
f->x_rtl_expr_chain = NULL;
f->x_tail_recursion_label = NULL;
f->x_tail_recursion_reentry = NULL;
f->x_arg_pointer_save_area = NULL;
f->x_clobber_return_insn = NULL;
f->x_context_display = NULL;
f->x_trampoline_list = NULL;
f->x_parm_birth_insn = NULL;
f->x_last_parm_insn = NULL;
f->x_parm_reg_stack_loc = NULL;
f->fixup_var_refs_queue = NULL;
f->original_arg_vector = NULL;
f->original_decl_initial = NULL;
f->inl_last_parm_insn = NULL;
f->epilogue_delay_list = NULL;
}
/* Allocate fixed slots in the stack frame of the current function. */
/* Return size needed for stack frame based on slots so far allocated in
function F.
This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
the caller may have to do that. */
HOST_WIDE_INT
get_func_frame_size (struct function *f)
{
#ifdef FRAME_GROWS_DOWNWARD
return -f->x_frame_offset;
#else
return f->x_frame_offset;
#endif
}
/* Return size needed for stack frame based on slots so far allocated.
This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
the caller may have to do that. */
HOST_WIDE_INT
get_frame_size (void)
{
return get_func_frame_size (cfun);
}
/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
with machine mode MODE.
ALIGN controls the amount of alignment for the address of the slot:
0 means according to MODE,
-1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
positive specifies alignment boundary in bits.
We do not round to stack_boundary here.
FUNCTION specifies the function to allocate in. */
static rtx
assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
struct function *function)
{
rtx x, addr;
int bigend_correction = 0;
int alignment;
int frame_off, frame_alignment, frame_phase;
if (align == 0)
{
tree type;
if (mode == BLKmode)
alignment = BIGGEST_ALIGNMENT;
else
alignment = GET_MODE_ALIGNMENT (mode);
/* Allow the target to (possibly) increase the alignment of this
stack slot. */
type = (*lang_hooks.types.type_for_mode) (mode, 0);
if (type)
alignment = LOCAL_ALIGNMENT (type, alignment);
alignment /= BITS_PER_UNIT;
}
else if (align == -1)
{
alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
size = CEIL_ROUND (size, alignment);
}
else
alignment = align / BITS_PER_UNIT;
#ifdef FRAME_GROWS_DOWNWARD
function->x_frame_offset -= size;
#endif
/* Ignore alignment we can't do with expected alignment of the boundary. */
if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
function->stack_alignment_needed = alignment * BITS_PER_UNIT;
/* Calculate how many bytes the start of local variables is off from
stack alignment. */
frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
frame_off = STARTING_FRAME_OFFSET % frame_alignment;
frame_phase = frame_off ? frame_alignment - frame_off : 0;
/* Round the frame offset to the specified alignment. The default is
to always honor requests to align the stack but a port may choose to
do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
if (STACK_ALIGNMENT_NEEDED
|| mode != BLKmode
|| size != 0)
{
/* We must be careful here, since FRAME_OFFSET might be negative and
division with a negative dividend isn't as well defined as we might
like. So we instead assume that ALIGNMENT is a power of two and
use logical operations which are unambiguous. */
#ifdef FRAME_GROWS_DOWNWARD
function->x_frame_offset
= (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
+ frame_phase);
#else
function->x_frame_offset
= (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
+ frame_phase);
#endif
}
/* On a big-endian machine, if we are allocating more space than we will use,
use the least significant bytes of those that are allocated. */
if (BYTES_BIG_ENDIAN && mode != BLKmode)
bigend_correction = size - GET_MODE_SIZE (mode);
/* If we have already instantiated virtual registers, return the actual
address relative to the frame pointer. */
if (function == cfun && virtuals_instantiated)
addr = plus_constant (frame_pointer_rtx,
trunc_int_for_mode
(frame_offset + bigend_correction
+ STARTING_FRAME_OFFSET, Pmode));
else
addr = plus_constant (virtual_stack_vars_rtx,
trunc_int_for_mode
(function->x_frame_offset + bigend_correction,
Pmode));
#ifndef FRAME_GROWS_DOWNWARD
function->x_frame_offset += size;
#endif
x = gen_rtx_MEM (mode, addr);
function->x_stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
return x;
}
/* Wrapper around assign_stack_local_1; assign a local stack slot for the
current function. */
rtx
assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
{
return assign_stack_local_1 (mode, size, align, cfun);
}
/* Allocate a temporary stack slot and record it for possible later
reuse.
MODE is the machine mode to be given to the returned rtx.
SIZE is the size in units of the space required. We do no rounding here
since assign_stack_local will do any required rounding.
KEEP is 1 if this slot is to be retained after a call to
free_temp_slots. Automatic variables for a block are allocated
with this flag. KEEP is 2 if we allocate a longer term temporary,
whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
if we are to allocate something at an inner level to be treated as
a variable in the block (e.g., a SAVE_EXPR).
TYPE is the type that will be used for the stack slot. */
rtx
assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
tree type)
{
unsigned int align;
struct temp_slot *p, *best_p = 0;
rtx slot;
/* If SIZE is -1 it means that somebody tried to allocate a temporary
of a variable size. */
if (size == -1)
abort ();
if (mode == BLKmode)
align = BIGGEST_ALIGNMENT;
else
align = GET_MODE_ALIGNMENT (mode);
if (! type)
type = (*lang_hooks.types.type_for_mode) (mode, 0);
if (type)
align = LOCAL_ALIGNMENT (type, align);
/* Try to find an available, already-allocated temporary of the proper
mode which meets the size and alignment requirements. Choose the
smallest one with the closest alignment. */
for (p = temp_slots; p; p = p->next)
if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
&& ! p->in_use
&& objects_must_conflict_p (p->type, type)
&& (best_p == 0 || best_p->size > p->size
|| (best_p->size == p->size && best_p->align > p->align)))
{
if (p->align == align && p->size == size)
{
best_p = 0;
break;
}
best_p = p;
}
/* Make our best, if any, the one to use. */
if (best_p)
{
/* If there are enough aligned bytes left over, make them into a new
temp_slot so that the extra bytes don't get wasted. Do this only
for BLKmode slots, so that we can be sure of the alignment. */
if (GET_MODE (best_p->slot) == BLKmode)
{
int alignment = best_p->align / BITS_PER_UNIT;
HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
if (best_p->size - rounded_size >= alignment)
{
p = ggc_alloc (sizeof (struct temp_slot));
p->in_use = p->addr_taken = 0;
p->size = best_p->size - rounded_size;
p->base_offset = best_p->base_offset + rounded_size;
p->full_size = best_p->full_size - rounded_size;
p->slot = gen_rtx_MEM (BLKmode,
plus_constant (XEXP (best_p->slot, 0),
rounded_size));
p->align = best_p->align;
p->address = 0;
p->rtl_expr = 0;
p->type = best_p->type;
p->next = temp_slots;
temp_slots = p;
stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
stack_slot_list);
best_p->size = rounded_size;
best_p->full_size = rounded_size;
}
}
p = best_p;
}
/* If we still didn't find one, make a new temporary. */
if (p == 0)
{
HOST_WIDE_INT frame_offset_old = frame_offset;
p = ggc_alloc (sizeof (struct temp_slot));
/* We are passing an explicit alignment request to assign_stack_local.
One side effect of that is assign_stack_local will not round SIZE
to ensure the frame offset remains suitably aligned.
So for requests which depended on the rounding of SIZE, we go ahead
and round it now. We also make sure ALIGNMENT is at least
BIGGEST_ALIGNMENT. */
if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
abort ();
p->slot = assign_stack_local (mode,
(mode == BLKmode
? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
: size),
align);
p->align = align;
/* The following slot size computation is necessary because we don't
know the actual size of the temporary slot until assign_stack_local
has performed all the frame alignment and size rounding for the
requested temporary. Note that extra space added for alignment
can be either above or below this stack slot depending on which
way the frame grows. We include the extra space if and only if it
is above this slot. */
#ifdef FRAME_GROWS_DOWNWARD
p->size = frame_offset_old - frame_offset;
#else
p->size = size;
#endif
/* Now define the fields used by combine_temp_slots. */
#ifdef FRAME_GROWS_DOWNWARD
p->base_offset = frame_offset;
p->full_size = frame_offset_old - frame_offset;
#else
p->base_offset = frame_offset_old;
p->full_size = frame_offset - frame_offset_old;
#endif
p->address = 0;
p->next = temp_slots;
temp_slots = p;
}
p->in_use = 1;
p->addr_taken = 0;
p->rtl_expr = seq_rtl_expr;
p->type = type;
if (keep == 2)
{
p->level = target_temp_slot_level;
p->keep = 1;
}
else if (keep == 3)
{
p->level = var_temp_slot_level;
p->keep = 0;
}
else
{
p->level = temp_slot_level;
p->keep = keep;
}
/* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
/* If we know the alias set for the memory that will be used, use
it. If there's no TYPE, then we don't know anything about the
alias set for the memory. */
set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
set_mem_align (slot, align);
/* If a type is specified, set the relevant flags. */
if (type != 0)
{
RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
&& TYPE_READONLY (type));
MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
}
return slot;
}
/* Allocate a temporary stack slot and record it for possible later
reuse. First three arguments are same as in preceding function. */
rtx
assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
{
return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
}
/* Assign a temporary.
If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
and so that should be used in error messages. In either case, we
allocate of the given type.
KEEP is as for assign_stack_temp.
MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
it is 0 if a register is OK.
DONT_PROMOTE is 1 if we should not promote values in register
to wider modes. */
rtx
assign_temp (tree type_or_decl, int keep, int memory_required,
int dont_promote ATTRIBUTE_UNUSED)
{
tree type, decl;
enum machine_mode mode;
#ifndef PROMOTE_FOR_CALL_ONLY
int unsignedp;
#endif
if (DECL_P (type_or_decl))
decl = type_or_decl, type = TREE_TYPE (decl);
else
decl = NULL, type = type_or_decl;
mode = TYPE_MODE (type);
#ifndef PROMOTE_FOR_CALL_ONLY
unsignedp = TREE_UNSIGNED (type);
#endif
if (mode == BLKmode || memory_required)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
rtx tmp;
/* Zero sized arrays are GNU C extension. Set size to 1 to avoid
problems with allocating the stack space. */
if (size == 0)
size = 1;
/* Unfortunately, we don't yet know how to allocate variable-sized
temporaries. However, sometimes we have a fixed upper limit on
the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
instead. This is the case for Chill variable-sized strings. */
if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
&& TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
&& host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
/* The size of the temporary may be too large to fit into an integer. */
/* ??? Not sure this should happen except for user silliness, so limit
this to things that aren't compiler-generated temporaries. The
rest of the time we'll abort in assign_stack_temp_for_type. */
if (decl && size == -1
&& TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
{
error ("%Jsize of variable '%D' is too large", decl, decl);
size = 1;
}
tmp = assign_stack_temp_for_type (mode, size, keep, type);
return tmp;
}
#ifndef PROMOTE_FOR_CALL_ONLY
if (! dont_promote)
mode = promote_mode (type, mode, &unsignedp, 0);
#endif
return gen_reg_rtx (mode);
}
/* Combine temporary stack slots which are adjacent on the stack.
This allows for better use of already allocated stack space. This is only
done for BLKmode slots because we can be sure that we won't have alignment
problems in this case. */
void
combine_temp_slots (void)
{
struct temp_slot *p, *q;
struct temp_slot *prev_p, *prev_q;
int num_slots;
/* We can't combine slots, because the information about which slot
is in which alias set will be lost. */
if (flag_strict_aliasing)
return;
/* If there are a lot of temp slots, don't do anything unless
high levels of optimization. */
if (! flag_expensive_optimizations)
for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
if (num_slots > 100 || (num_slots > 10 && optimize == 0))
return;
for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
{
int delete_p = 0;
if (! p->in_use && GET_MODE (p->slot) == BLKmode)
for (q = p->next, prev_q = p; q; q = prev_q->next)
{
int delete_q = 0;
if (! q->in_use && GET_MODE (q->slot) == BLKmode)
{
if (p->base_offset + p->full_size == q->base_offset)
{
/* Q comes after P; combine Q into P. */
p->size += q->size;
p->full_size += q->full_size;
delete_q = 1;
}
else if (q->base_offset + q->full_size == p->base_offset)
{
/* P comes after Q; combine P into Q. */
q->size += p->size;
q->full_size += p->full_size;
delete_p = 1;
break;
}
}
/* Either delete Q or advance past it. */
if (delete_q)
prev_q->next = q->next;
else
prev_q = q;
}
/* Either delete P or advance past it. */
if (delete_p)
{
if (prev_p)
prev_p->next = p->next;
else
temp_slots = p->next;
}
else
prev_p = p;
}
}
/* Find the temp slot corresponding to the object at address X. */
static struct temp_slot *
find_temp_slot_from_address (rtx x)
{
struct temp_slot *p;
rtx next;
for (p = temp_slots; p; p = p->next)
{
if (! p->in_use)
continue;
else if (XEXP (p->slot, 0) == x
|| p->address == x
|| (GET_CODE (x) == PLUS
&& XEXP (x, 0) == virtual_stack_vars_rtx
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= p->base_offset
&& INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
return p;
else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
for (next = p->address; next; next = XEXP (next, 1))
if (XEXP (next, 0) == x)
return p;
}
/* If we have a sum involving a register, see if it points to a temp
slot. */
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
&& (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
return p;
else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
&& (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
return p;
return 0;
}
/* Indicate that NEW is an alternate way of referring to the temp slot
that previously was known by OLD. */
void
update_temp_slot_address (rtx old, rtx new)
{
struct temp_slot *p;
if (rtx_equal_p (old, new))
return;
p = find_temp_slot_from_address (old);
/* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
is a register, see if one operand of the PLUS is a temporary
location. If so, NEW points into it. Otherwise, if both OLD and
NEW are a PLUS and if there is a register in common between them.
If so, try a recursive call on those values. */
if (p == 0)
{
if (GET_CODE (old) != PLUS)
return;
if (GET_CODE (new) == REG)
{
update_temp_slot_address (XEXP (old, 0), new);
update_temp_slot_address (XEXP (old, 1), new);
return;
}
else if (GET_CODE (new) != PLUS)
return;
if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
return;
}
/* Otherwise add an alias for the temp's address. */
else if (p->address == 0)
p->address = new;
else
{
if (GET_CODE (p->address) != EXPR_LIST)
p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
}
}
/* If X could be a reference to a temporary slot, mark the fact that its
address was taken. */
void
mark_temp_addr_taken (rtx x)
{
struct temp_slot *p;
if (x == 0)
return;
/* If X is not in memory or is at a constant address, it cannot be in
a temporary slot. */
if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
return;
p = find_temp_slot_from_address (XEXP (x, 0));
if (p != 0)
p->addr_taken = 1;
}
/* If X could be a reference to a temporary slot, mark that slot as
belonging to the to one level higher than the current level. If X
matched one of our slots, just mark that one. Otherwise, we can't
easily predict which it is, so upgrade all of them. Kept slots
need not be touched.
This is called when an ({...}) construct occurs and a statement
returns a value in memory. */
void
preserve_temp_slots (rtx x)
{
struct temp_slot *p = 0;
/* If there is no result, we still might have some objects whose address
were taken, so we need to make sure they stay around. */
if (x == 0)
{
for (p = temp_slots; p; p = p->next)
if (p->in_use && p->level == temp_slot_level && p->addr_taken)
p->level--;
return;
}
/* If X is a register that is being used as a pointer, see if we have
a temporary slot we know it points to. To be consistent with
the code below, we really should preserve all non-kept slots
if we can't find a match, but that seems to be much too costly. */
if (GET_CODE (x) == REG && REG_POINTER (x))
p = find_temp_slot_from_address (x);
/* If X is not in memory or is at a constant address, it cannot be in
a temporary slot, but it can contain something whose address was
taken. */
if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
{
for (p = temp_slots; p; p = p->next)
if (p->in_use && p->level == temp_slot_level && p->addr_taken)
p->level--;
return;
}
/* First see if we can find a match. */
if (p == 0)
p = find_temp_slot_from_address (XEXP (x, 0));
if (p != 0)
{
/* Move everything at our level whose address was taken to our new
level in case we used its address. */
struct temp_slot *q;
if (p->level == temp_slot_level)
{
for (q = temp_slots; q; q = q->next)
if (q != p && q->addr_taken && q->level == p->level)
q->level--;
p->level--;
p->addr_taken = 0;
}
return;
}
/* Otherwise, preserve all non-kept slots at this level. */
for (p = temp_slots; p; p = p->next)
if (p->in_use && p->level == temp_slot_level && ! p->keep)
p->level--;
}
/* X is the result of an RTL_EXPR. If it is a temporary slot associated
with that RTL_EXPR, promote it into a temporary slot at the present
level so it will not be freed when we free slots made in the
RTL_EXPR. */
void
preserve_rtl_expr_result (rtx x)
{
struct temp_slot *p;
/* If X is not in memory or is at a constant address, it cannot be in
a temporary slot. */
if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
return;
/* If we can find a match, move it to our level unless it is already at
an upper level. */
p = find_temp_slot_from_address (XEXP (x, 0));
if (p != 0)
{
p->level = MIN (p->level, temp_slot_level);
p->rtl_expr = 0;
}
return;
}
/* Free all temporaries used so far. This is normally called at the end
of generating code for a statement. Don't free any temporaries
currently in use for an RTL_EXPR that hasn't yet been emitted.
We could eventually do better than this since it can be reused while
generating the same RTL_EXPR, but this is complex and probably not
worthwhile. */
void
free_temp_slots (void)
{
struct temp_slot *p;
for (p = temp_slots; p; p = p->next)
if (p->in_use && p->level == temp_slot_level && ! p->keep
&& p->rtl_expr == 0)
p->in_use = 0;
combine_temp_slots ();
}
/* Free all temporary slots used in T, an RTL_EXPR node. */
void
free_temps_for_rtl_expr (tree t)
{
struct temp_slot *p;
for (p = temp_slots; p; p = p->next)
if (p->rtl_expr == t)
{
/* If this slot is below the current TEMP_SLOT_LEVEL, then it
needs to be preserved. This can happen if a temporary in
the RTL_EXPR was addressed; preserve_temp_slots will move
the temporary into a higher level. */
if (temp_slot_level <= p->level)
p->in_use = 0;
else
p->rtl_expr = NULL_TREE;
}
combine_temp_slots ();
}
/* Mark all temporaries ever allocated in this function as not suitable
for reuse until the current level is exited. */
void
mark_all_temps_used (void)
{
struct temp_slot *p;
for (p = temp_slots; p; p = p->next)
{
p->in_use = p->keep = 1;
p->level = MIN (p->level, temp_slot_level);
}
}
/* Push deeper into the nesting level for stack temporaries. */
void
push_temp_slots (void)
{
temp_slot_level++;
}
/* Pop a temporary nesting level. All slots in use in the current level
are freed. */
void
pop_temp_slots (void)
{
struct temp_slot *p;
for (p = temp_slots; p; p = p->next)
if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
p->in_use = 0;
combine_temp_slots ();
temp_slot_level--;
}
/* Initialize temporary slots. */
void
init_temp_slots (void)
{
/* We have not allocated any temporaries yet. */
temp_slots = 0;
temp_slot_level = 0;
var_temp_slot_level = 0;
target_temp_slot_level = 0;
}
/* Retroactively move an auto variable from a register to a stack
slot. This is done when an address-reference to the variable is
seen. If RESCAN is true, all previously emitted instructions are
examined and modified to handle the fact that DECL is now
addressable. */
void
put_var_into_stack (tree decl, int rescan)
{
rtx reg;
enum machine_mode promoted_mode, decl_mode;
struct function *function = 0;
tree context;
int can_use_addressof;
int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
int usedp = (TREE_USED (decl)
|| (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
context = decl_function_context (decl);
/* Get the current rtl used for this object and its original mode. */
reg = (TREE_CODE (decl) == SAVE_EXPR
? SAVE_EXPR_RTL (decl)
: DECL_RTL_IF_SET (decl));
/* No need to do anything if decl has no rtx yet
since in that case caller is setting TREE_ADDRESSABLE
and a stack slot will be assigned when the rtl is made. */
if (reg == 0)
return;
/* Get the declared mode for this object. */
decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
: DECL_MODE (decl));
/* Get the mode it's actually stored in. */
promoted_mode = GET_MODE (reg);
/* If this variable comes from an outer function, find that
function's saved context. Don't use find_function_data here,
because it might not be in any active function.
FIXME: Is that really supposed to happen?
It does in ObjC at least. */
if (context != current_function_decl && context != inline_function_decl)
for (function = outer_function_chain; function; function = function->outer)
if (function->decl == context)
break;
/* If this is a variable-sized object or a structure passed by invisible
reference, with a pseudo to address it, put that pseudo into the stack
if the var is non-local. */
if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
&& GET_CODE (reg) == MEM
&& GET_CODE (XEXP (reg, 0)) == REG
&& REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
{
reg = XEXP (reg, 0);
decl_mode = promoted_mode = GET_MODE (reg);
}
/* If this variable lives in the current function and we don't need to put it
in the stack for the sake of setjmp or the non-locality, try to keep it in
a register until we know we actually need the address. */
can_use_addressof
= (function == 0
&& ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl))
&& optimize > 0
/* FIXME make it work for promoted modes too */
&& decl_mode == promoted_mode
#ifdef NON_SAVING_SETJMP
&& ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
#endif
);
/* If we can't use ADDRESSOF, make sure we see through one we already
generated. */
if (! can_use_addressof && GET_CODE (reg) == MEM
&& GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
reg = XEXP (XEXP (reg, 0), 0);
/* Now we should have a value that resides in one or more pseudo regs. */
if (GET_CODE (reg) == REG)
{
if (can_use_addressof)
gen_mem_addressof (reg, decl, rescan);
else
put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
decl_mode, volatilep, 0, usedp, 0);
}
else if (GET_CODE (reg) == CONCAT)
{
/* A CONCAT contains two pseudos; put them both in the stack.
We do it so they end up consecutive.
We fixup references to the parts only after we fixup references
to the whole CONCAT, lest we do double fixups for the latter
references. */
enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
rtx lopart = XEXP (reg, 0);
rtx hipart = XEXP (reg, 1);
#ifdef FRAME_GROWS_DOWNWARD
/* Since part 0 should have a lower address, do it second. */
put_reg_into_stack (function, hipart, part_type, part_mode,
part_mode, volatilep, 0, 0, 0);
put_reg_into_stack (function, lopart, part_type, part_mode,
part_mode, volatilep, 0, 0, 0);
#else
put_reg_into_stack (function, lopart, part_type, part_mode,
part_mode, volatilep, 0, 0, 0);
put_reg_into_stack (function, hipart, part_type, part_mode,
part_mode, volatilep, 0, 0, 0);
#endif
/* Change the CONCAT into a combined MEM for both parts. */
PUT_CODE (reg, MEM);
MEM_ATTRS (reg) = 0;
/* set_mem_attributes uses DECL_RTL to avoid re-generating of
already computed alias sets. Here we want to re-generate. */
if (DECL_P (decl))
SET_DECL_RTL (decl, NULL);
set_mem_attributes (reg, decl, 1);
if (DECL_P (decl))
SET_DECL_RTL (decl, reg);
/* The two parts are in memory order already.
Use the lower parts address as ours. */
XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
/* Prevent sharing of rtl that might lose. */
if (GET_CODE (XEXP (reg, 0)) == PLUS)
XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
if (usedp && rescan)
{
schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
promoted_mode, 0);
schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
}
}
else
return;
}
/* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
into the stack frame of FUNCTION (0 means the current function).
DECL_MODE is the machine mode of the user-level data type.
PROMOTED_MODE is the machine mode of the register.
VOLATILE_P is nonzero if this is for a "volatile" decl.
USED_P is nonzero if this reg might have already been used in an insn. */
static void
put_reg_into_stack (struct function *function, rtx reg, tree type,
enum machine_mode promoted_mode,
enum machine_mode decl_mode, int volatile_p,
unsigned int original_regno, int used_p, htab_t ht)
{
struct function *func = function ? function : cfun;
rtx new = 0;
unsigned int regno = original_regno;
if (regno == 0)
regno = REGNO (reg);
if (regno < func->x_max_parm_reg)
{
if (!func->x_parm_reg_stack_loc)
abort ();
new = func->x_parm_reg_stack_loc[regno];
}
if (new == 0)
new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
PUT_CODE (reg, MEM);
PUT_MODE (reg, decl_mode);
XEXP (reg, 0) = XEXP (new, 0);
MEM_ATTRS (reg) = 0;
/* `volatil' bit means one thing for MEMs, another entirely for REGs. */
MEM_VOLATILE_P (reg) = volatile_p;
/* If this is a memory ref that contains aggregate components,
mark it as such for cse and loop optimize. If we are reusing a
previously generated stack slot, then we need to copy the bit in
case it was set for other reasons. For instance, it is set for
__builtin_va_alist. */
if (type)
{
MEM_SET_IN_STRUCT_P (reg,
AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
set_mem_alias_set (reg, get_alias_set (type));
}
if (used_p)
schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
}
/* Make sure that all refs to the variable, previously made
when it was a register, are fixed up to be valid again.
See function above for meaning of arguments. */
static void
schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
enum machine_mode promoted_mode, htab_t ht)
{
int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
if (function != 0)
{
struct var_refs_queue *temp;
temp = ggc_alloc (sizeof (struct var_refs_queue));
temp->modified = reg;
temp->promoted_mode = promoted_mode;
temp->unsignedp = unsigned_p;
temp->next = function->fixup_var_refs_queue;
function->fixup_var_refs_queue = temp;
}
else
/* Variable is local; fix it up now. */
fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
}
static void
fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
rtx may_share, htab_t ht)
{
tree pending;
rtx first_insn = get_insns ();
struct sequence_stack *stack = seq_stack;
tree rtl_exps = rtl_expr_chain;
/* If there's a hash table, it must record all uses of VAR. */
if (ht)
{
if (stack != 0)
abort ();
fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
may_share);
return;
}
fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
stack == 0, may_share);
/* Scan all pending sequences too. */
for (; stack; stack = stack->next)
{
push_to_full_sequence (stack->first, stack->last);
fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
stack->next != 0, may_share);
/* Update remembered end of sequence
in case we added an insn at the end. */
stack->last = get_last_insn ();
end_sequence ();
}
/* Scan all waiting RTL_EXPRs too. */
for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
{
rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
if (seq != const0_rtx && seq != 0)
{
push_to_sequence (seq);
fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
may_share);
end_sequence ();
}
}
}
/* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
some part of an insn. Return a struct fixup_replacement whose OLD
value is equal to X. Allocate a new structure if no such entry exists. */
static struct fixup_replacement *
find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
{
struct fixup_replacement *p;
/* See if we have already replaced this. */
for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
;
if (p == 0)
{
p = xmalloc (sizeof (struct fixup_replacement));
p->old = x;
p->new = 0;
p->next = *replacements;
*replacements = p;
}
return p;
}
/* Scan the insn-chain starting with INSN for refs to VAR and fix them
up. TOPLEVEL is nonzero if this chain is the main chain of insns
for the current function. MAY_SHARE is either a MEM that is not
to be unshared or a list of them. */
static void
fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
int unsignedp, int toplevel, rtx may_share)
{
while (insn)
{
/* fixup_var_refs_insn might modify insn, so save its next
pointer now. */
rtx next = NEXT_INSN (insn);
/* CALL_PLACEHOLDERs are special; we have to switch into each of
the three sequences they (potentially) contain, and process
them recursively. The CALL_INSN itself is not interesting. */
if (GET_CODE (insn) == CALL_INSN
&& GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
{
int i;
/* Look at the Normal call, sibling call and tail recursion
sequences attached to the CALL_PLACEHOLDER. */
for (i = 0; i < 3; i++)
{
rtx seq = XEXP (PATTERN (insn), i);
if (seq)
{
push_to_sequence (seq);
fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
may_share);
XEXP (PATTERN (insn), i) = get_insns ();
end_sequence ();
}
}
}
else if (INSN_P (insn))
fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
may_share);
insn = next;
}
}
/* Look up the insns which reference VAR in HT and fix them up. Other
arguments are the same as fixup_var_refs_insns.
N.B. No need for special processing of CALL_PLACEHOLDERs here,
because the hash table will point straight to the interesting insn
(inside the CALL_PLACEHOLDER). */
static void
fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
int unsignedp, rtx may_share)
{
struct insns_for_mem_entry tmp;
struct insns_for_mem_entry *ime;
rtx insn_list;
tmp.key = var;
ime = htab_find (ht, &tmp);
for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
if (INSN_P (XEXP (insn_list, 0)))
fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
unsignedp, 1, may_share);
}
/* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
the insn under examination, VAR is the variable to fix up
references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
TOPLEVEL is nonzero if this is the main insn chain for this
function. */
static void
fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
int unsignedp, int toplevel, rtx no_share)
{
rtx call_dest = 0;
rtx set, prev, prev_set;
rtx note;
/* Remember the notes in case we delete the insn. */
note = REG_NOTES (insn);
/* If this is a CLOBBER of VAR, delete it.
If it has a REG_LIBCALL note, delete the REG_LIBCALL
and REG_RETVAL notes too. */
if (GET_CODE (PATTERN (insn)) == CLOBBER
&& (XEXP (PATTERN (insn), 0) == var
|| (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
&& (XEXP (XEXP (PATTERN (insn), 0), 0) == var
|| XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
{
if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
/* The REG_LIBCALL note will go away since we are going to
turn INSN into a NOTE, so just delete the
corresponding REG_RETVAL note. */
remove_note (XEXP (note, 0),
find_reg_note (XEXP (note, 0), REG_RETVAL,
NULL_RTX));
delete_insn (insn);
}
/* The insn to load VAR from a home in the arglist
is now a no-op. When we see it, just delete it.
Similarly if this is storing VAR from a register from which
it was loaded in the previous insn. This will occur
when an ADDRESSOF was made for an arglist slot. */
else if (toplevel
&& (set = single_set (insn)) != 0
&& SET_DEST (set) == var
/* If this represents the result of an insn group,
don't delete the insn. */
&& find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
&& (rtx_equal_p (SET_SRC (set), var)
|| (GET_CODE (SET_SRC (set)) == REG
&& (prev = prev_nonnote_insn (insn)) != 0
&& (prev_set = single_set (prev)) != 0
&& SET_DEST (prev_set) == SET_SRC (set)
&& rtx_equal_p (SET_SRC (prev_set), var))))
{
delete_insn (insn);
}
else
{
struct fixup_replacement *replacements = 0;
rtx next_insn = NEXT_INSN (insn);
if (SMALL_REGISTER_CLASSES)
{
/* If the insn that copies the results of a CALL_INSN
into a pseudo now references VAR, we have to use an
intermediate pseudo since we want the life of the
return value register to be only a single insn.
If we don't use an intermediate pseudo, such things as
address computations to make the address of VAR valid
if it is not can be placed between the CALL_INSN and INSN.
To make sure this doesn't happen, we record the destination
of the CALL_INSN and see if the next insn uses both that
and VAR. */
if (call_dest != 0 && GET_CODE (insn) == INSN
&& reg_mentioned_p (var, PATTERN (insn))
&& reg_mentioned_p (call_dest, PATTERN (insn)))
{
rtx temp = gen_reg_rtx (GET_MODE (call_dest));
emit_insn_before (gen_move_insn (temp, call_dest), insn);
PATTERN (insn) = replace_rtx (PATTERN (insn),
call_dest, temp);
}
if (GET_CODE (insn) == CALL_INSN
&& GET_CODE (PATTERN (insn)) == SET)
call_dest = SET_DEST (PATTERN (insn));
else if (GET_CODE (insn) == CALL_INSN
&& GET_CODE (PATTERN (insn)) == PARALLEL
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
else
call_dest = 0;
}
/* See if we have to do anything to INSN now that VAR is in
memory. If it needs to be loaded into a pseudo, use a single
pseudo for the entire insn in case there is a MATCH_DUP
between two operands. We pass a pointer to the head of
a list of struct fixup_replacements. If fixup_var_refs_1
needs to allocate pseudos or replacement MEMs (for SUBREGs),
it will record them in this list.
If it allocated a pseudo for any replacement, we copy into
it here. */
fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
&replacements, no_share);
/* If this is last_parm_insn, and any instructions were output
after it to fix it up, then we must set last_parm_insn to
the last such instruction emitted. */
if (insn == last_parm_insn)
last_parm_insn = PREV_INSN (next_insn);
while (replacements)
{
struct fixup_replacement *next;
if (GET_CODE (replacements->new) == REG)
{
rtx insert_before;
rtx seq;
/* OLD might be a (subreg (mem)). */
if (GET_CODE (replacements->old) == SUBREG)
replacements->old
= fixup_memory_subreg (replacements->old, insn,
promoted_mode, 0);
else
replacements->old
= fixup_stack_1 (replacements->old, insn);
insert_before = insn;
/* If we are changing the mode, do a conversion.
This might be wasteful, but combine.c will
eliminate much of the waste. */
if (GET_MODE (replacements->new)
!= GET_MODE (replacements->old))
{
start_sequence ();
convert_move (replacements->new,
replacements->old, unsignedp);
seq = get_insns ();
end_sequence ();
}
else
seq = gen_move_insn (replacements->new,
replacements->old);
emit_insn_before (seq, insert_before);
}
next = replacements->next;
free (replacements);
replacements = next;
}
}
/* Also fix up any invalid exprs in the REG_NOTES of this insn.
But don't touch other insns referred to by reg-notes;
we will get them elsewhere. */
while (note)
{
if (GET_CODE (note) != INSN_LIST)
XEXP (note, 0)
= walk_fixup_memory_subreg (XEXP (note, 0), insn,
promoted_mode, 1);
note = XEXP (note, 1);
}
}
/* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
See if the rtx expression at *LOC in INSN needs to be changed.
REPLACEMENTS is a pointer to a list head that starts out zero, but may
contain a list of original rtx's and replacements. If we find that we need
to modify this insn by replacing a memory reference with a pseudo or by
making a new MEM to implement a SUBREG, we consult that list to see if
we have already chosen a replacement. If none has already been allocated,
we allocate it and update the list. fixup_var_refs_insn will copy VAR
or the SUBREG, as appropriate, to the pseudo. */
static void
fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
struct fixup_replacement **replacements, rtx no_share)
{
int i;
rtx x = *loc;
RTX_CODE code = GET_CODE (x);
const char *fmt;
rtx tem, tem1;
struct fixup_replacement *replacement;
switch (code)
{
case ADDRESSOF:
if (XEXP (x, 0) == var)
{
/* Prevent sharing of rtl that might lose. */
rtx sub = copy_rtx (XEXP (var, 0));
if (! validate_change (insn, loc, sub, 0))
{
rtx y = gen_reg_rtx (GET_MODE (sub));
rtx seq, new_insn;
/* We should be able to replace with a register or all is lost.
Note that we can't use validate_change to verify this, since
we're not caring for replacing all dups simultaneously. */
if (! validate_replace_rtx (*loc, y, insn))
abort ();
/* Careful! First try to recognize a direct move of the
value, mimicking how things are done in gen_reload wrt
PLUS. Consider what happens when insn is a conditional
move instruction and addsi3 clobbers flags. */
start_sequence ();
new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
seq = get_insns ();
end_sequence ();
if (recog_memoized (new_insn) < 0)
{
/* That failed. Fall back on force_operand and hope. */
start_sequence ();
sub = force_operand (sub, y);
if (sub != y)
emit_insn (gen_move_insn (y, sub));
seq = get_insns ();
end_sequence ();
}
#ifdef HAVE_cc0
/* Don't separate setter from user. */
if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
insn = PREV_INSN (insn);
#endif
emit_insn_before (seq, insn);
}
}
return;
case MEM:
if (var == x)
{
/* If we already have a replacement, use it. Otherwise,
try to fix up this address in case it is invalid. */
replacement = find_fixup_replacement (replacements, var);
if (replacement->new)
{
*loc = replacement->new;
return;
}
*loc = replacement->new = x = fixup_stack_1 (x, insn);
/* Unless we are forcing memory to register or we changed the mode,
we can leave things the way they are if the insn is valid. */
INSN_CODE (insn) = -1;
if (! flag_force_mem && GET_MODE (x) == promoted_mode
&& recog_memoized (insn) >= 0)
return;
*loc = replacement->new = gen_reg_rtx (promoted_mode);
return;
}
/* If X contains VAR, we need to unshare it here so that we update
each occurrence separately. But all identical MEMs in one insn
must be replaced with the same rtx because of the possibility of
MATCH_DUPs. */
if (reg_mentioned_p (var, x))
{
replacement = find_fixup_replacement (replacements, x);
if (replacement->new == 0)
replacement->new = copy_most_rtx (x, no_share);
*loc = x = replacement->new;
code = GET_CODE (x);
}
break;
case REG:
case CC0:
case PC:
case CONST_INT:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
case CONST_DOUBLE:
case CONST_VECTOR:
return;
case SIGN_EXTRACT:
case ZERO_EXTRACT:
/* Note that in some cases those types of expressions are altered
by optimize_bit_field, and do not survive to get here. */
if (XEXP (x, 0) == var
|| (GET_CODE (XEXP (x, 0)) == SUBREG
&& SUBREG_REG (XEXP (x, 0)) == var))
{
/* Get TEM as a valid MEM in the mode presently in the insn.
We don't worry about the possibility of MATCH_DUP here; it
is highly unlikely and would be tricky to handle. */
tem = XEXP (x, 0);
if (GET_CODE (tem) == SUBREG)
{
if (GET_MODE_BITSIZE (GET_MODE (tem))
> GET_MODE_BITSIZE (GET_MODE (var)))
{
replacement = find_fixup_replacement (replacements, var);
if (replacement->new == 0)
replacement->new = gen_reg_rtx (GET_MODE (var));
SUBREG_REG (tem) = replacement->new;
/* The following code works only if we have a MEM, so we
need to handle the subreg here. We directly substitute
it assuming that a subreg must be OK here. We already
scheduled a replacement to copy the mem into the
subreg. */
XEXP (x, 0) = tem;
return;
}
else
tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
}
else
tem = fixup_stack_1 (tem, insn);
/* Unless we want to load from memory, get TEM into the proper mode
for an extract from memory. This can only be done if the
extract is at a constant position and length. */
if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
&& GET_CODE (XEXP (x, 2)) == CONST_INT
&& ! mode_dependent_address_p (XEXP (tem, 0))
&& ! MEM_VOLATILE_P (tem))
{
enum machine_mode wanted_mode = VOIDmode;
enum machine_mode is_mode = GET_MODE (tem);
HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
if (GET_CODE (x) == ZERO_EXTRACT)
{
enum machine_mode new_mode
= mode_for_extraction (EP_extzv, 1);
if (new_mode != MAX_MACHINE_MODE)
wanted_mode = new_mode;
}
else if (GET_CODE (x) == SIGN_EXTRACT)
{
enum machine_mode new_mode
= mode_for_extraction (EP_extv, 1);
if (new_mode != MAX_MACHINE_MODE)
wanted_mode = new_mode;
}
/* If we have a narrower mode, we can do something. */
if (wanted_mode != VOIDmode
&& GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
{
HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
rtx old_pos = XEXP (x, 2);
rtx newmem;
/* If the bytes and bits are counted differently, we
must adjust the offset. */
if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
offset = (GET_MODE_SIZE (is_mode)
- GET_MODE_SIZE (wanted_mode) - offset);
pos %= GET_MODE_BITSIZE (wanted_mode);
newmem = adjust_address_nv (tem, wanted_mode, offset);
/* Make the change and see if the insn remains valid. */
INSN_CODE (insn) = -1;
XEXP (x, 0) = newmem;
XEXP (x, 2) = GEN_INT (pos);
if (recog_memoized (insn) >= 0)
return;
/* Otherwise, restore old position. XEXP (x, 0) will be
restored later. */
XEXP (x, 2) = old_pos;
}
}
/* If we get here, the bitfield extract insn can't accept a memory
reference. Copy the input into a register. */
tem1 = gen_reg_rtx (GET_MODE (tem));
emit_insn_before (gen_move_insn (tem1, tem), insn);
XEXP (x, 0) = tem1;
return;
}
break;
case SUBREG:
if (SUBREG_REG (x) == var)
{
/* If this is a special SUBREG made because VAR was promoted
from a wider mode, replace it with VAR and call ourself
recursively, this time saying that the object previously
had its current mode (by virtue of the SUBREG). */
if (SUBREG_PROMOTED_VAR_P (x))
{
*loc = var;
fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
no_share);
return;
}
/* If this SUBREG makes VAR wider, it has become a paradoxical
SUBREG with VAR in memory, but these aren't allowed at this
stage of the compilation. So load VAR into a pseudo and take
a SUBREG of that pseudo. */
if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
{
replacement = find_fixup_replacement (replacements, var);
if (replacement->new == 0)
replacement->new = gen_reg_rtx (promoted_mode);
SUBREG_REG (x) = replacement->new;
return;
}
/* See if we have already found a replacement for this SUBREG.
If so, use it. Otherwise, make a MEM and see if the insn
is recognized. If not, or if we should force MEM into a register,
make a pseudo for this SUBREG. */
replacement = find_fixup_replacement (replacements, x);
if (replacement->new)
{
enum machine_mode mode = GET_MODE (x);
*loc = replacement->new;
/* Careful! We may have just replaced a SUBREG by a MEM, which
means that the insn may have become invalid again. We can't
in this case make a new replacement since we already have one
and we must deal with MATCH_DUPs. */
if (GET_CODE (replacement->new) == MEM)
{
INSN_CODE (insn) = -1;
if (recog_memoized (insn) >= 0)
return;
fixup_var_refs_1 (replacement->new, mode, &PATTERN (insn),
insn, replacements, no_share);
}
return;
}
replacement->new = *loc = fixup_memory_subreg (x, insn,
promoted_mode, 0);
INSN_CODE (insn) = -1;
if (! flag_force_mem && recog_memoized (insn) >= 0)
return;
*loc = replacement->new = gen_reg_rtx (GET_MODE (x));
return;
}
break;
case SET:
/* First do special simplification of bit-field references. */
if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
|| GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
optimize_bit_field (x, insn, 0);
if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
|| GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
optimize_bit_field (x, insn, 0);
/* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
into a register and then store it back out. */
if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
&& GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
&& SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
&& (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
> GET_MODE_SIZE (GET_MODE (var))))
{
replacement = find_fixup_replacement (replacements, var);
if (replacement->new == 0)
replacement->new = gen_reg_rtx (GET_MODE (var));
SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
emit_insn_after (gen_move_insn (var, replacement->new), insn);
}
/* If SET_DEST is now a paradoxical SUBREG, put the result of this
insn into a pseudo and store the low part of the pseudo into VAR. */
if (GET_CODE (SET_DEST (x)) == SUBREG
&& SUBREG_REG (SET_DEST (x)) == var
&& (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
> GET_MODE_SIZE (GET_MODE (var))))
{
SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
tem)),
insn);
break;
}
{
rtx dest = SET_DEST (x);
rtx src = SET_SRC (x);
rtx outerdest = dest;
while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == SIGN_EXTRACT
|| GET_CODE (dest) == ZERO_EXTRACT)
dest = XEXP (dest, 0);
if (GET_CODE (src) == SUBREG)
src = SUBREG_REG (src);
/* If VAR does not appear at the top level of the SET
just scan the lower levels of the tree. */
if (src != var && dest != var)
break;
/* We will need to rerecognize this insn. */
INSN_CODE (insn) = -1;
if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
&& mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
{
/* Since this case will return, ensure we fixup all the
operands here. */
fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
insn, replacements, no_share);
fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
insn, replacements, no_share);
fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
insn, replacements, no_share);
tem = XEXP (outerdest, 0);
/* Clean up (SUBREG:SI (MEM:mode ...) 0)
that may appear inside a ZERO_EXTRACT.
This was legitimate when the MEM was a REG. */
if (GET_CODE (tem) == SUBREG
&& SUBREG_REG (tem) == var)
tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
else
tem = fixup_stack_1 (tem, insn);
if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
&& GET_CODE (XEXP (outerdest, 2)) == CONST_INT
&& ! mode_dependent_address_p (XEXP (tem, 0))
&& ! MEM_VOLATILE_P (tem))
{
enum machine_mode wanted_mode;
enum machine_mode is_mode = GET_MODE (tem);
HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
wanted_mode = mode_for_extraction (EP_insv, 0);
/* If we have a narrower mode, we can do something. */
if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
{
HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
rtx old_pos = XEXP (outerdest, 2);
rtx newmem;
if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
offset = (GET_MODE_SIZE (is_mode)
- GET_MODE_SIZE (wanted_mode) - offset);
pos %= GET_MODE_BITSIZE (wanted_mode);
newmem = adjust_address_nv (tem, wanted_mode, offset);
/* Make the change and see if the insn remains valid. */
INSN_CODE (insn) = -1;
XEXP (outerdest, 0) = newmem;
XEXP (outerdest, 2) = GEN_INT (pos);
if (recog_memoized (insn) >= 0)
return;
/* Otherwise, restore old position. XEXP (x, 0) will be
restored later. */
XEXP (outerdest, 2) = old_pos;
}
}
/* If we get here, the bit-field store doesn't allow memory
or isn't located at a constant position. Load the value into
a register, do the store, and put it back into memory. */
tem1 = gen_reg_rtx (GET_MODE (tem));
emit_insn_before (gen_move_insn (tem1, tem), insn);
emit_insn_after (gen_move_insn (tem, tem1), insn);
XEXP (outerdest, 0) = tem1;
return;
}
/* STRICT_LOW_PART is a no-op on memory references
and it can cause combinations to be unrecognizable,
so eliminate it. */
if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
SET_DEST (x) = XEXP (SET_DEST (x), 0);
/* A valid insn to copy VAR into or out of a register
must be left alone, to avoid an infinite loop here.
If the reference to VAR is by a subreg, fix that up,
since SUBREG is not valid for a memref.
Also fix up the address of the stack slot.
Note that we must not try to recognize the insn until
after we know that we have valid addresses and no
(subreg (mem ...) ...) constructs, since these interfere
with determining the validity of the insn. */
if ((SET_SRC (x) == var
|| (GET_CODE (SET_SRC (x)) == SUBREG
&& SUBREG_REG (SET_SRC (x)) == var))
&& (GET_CODE (SET_DEST (x)) == REG
|| (GET_CODE (SET_DEST (x)) == SUBREG
&& GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
&& GET_MODE (var) == promoted_mode
&& x == single_set (insn))
{
rtx pat, last;
if (GET_CODE (SET_SRC (x)) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
> GET_MODE_SIZE (GET_MODE (var))))
{
/* This (subreg VAR) is now a paradoxical subreg. We need
to replace VAR instead of the subreg. */
replacement = find_fixup_replacement (replacements, var);
if (replacement->new == NULL_RTX)
replacement->new = gen_reg_rtx (GET_MODE (var));
SUBREG_REG (SET_SRC (x)) = replacement->new;
}
else
{
replacement = find_fixup_replacement (replacements, SET_SRC (x));
if (replacement->new)
SET_SRC (x) = replacement->new;
else if (GET_CODE (SET_SRC (x)) == SUBREG)
SET_SRC (x) = replacement->new
= fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
0);
else
SET_SRC (x) = replacement->new
= fixup_stack_1 (SET_SRC (x), insn);
}
if (recog_memoized (insn) >= 0)
return;
/* INSN is not valid, but we know that we want to
copy SET_SRC (x) to SET_DEST (x) in some way. So
we generate the move and see whether it requires more
than one insn. If it does, we emit those insns and
delete INSN. Otherwise, we can just replace the pattern
of INSN; we have already verified above that INSN has
no other function that to do X. */
pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
if (NEXT_INSN (pat) != NULL_RTX)
{
last = emit_insn_before (pat, insn);
/* INSN might have REG_RETVAL or other important notes, so
we need to store the pattern of the last insn in the
sequence into INSN similarly to the normal case. LAST
should not have REG_NOTES, but we allow them if INSN has
no REG_NOTES. */
if (REG_NOTES (last) && REG_NOTES (insn))
abort ();
if (REG_NOTES (last))
REG_NOTES (insn) = REG_NOTES (last);
PATTERN (insn) = PATTERN (last);
delete_insn (last);
}
else
PATTERN (insn) = PATTERN (pat);
return;
}
if ((SET_DEST (x) == var
|| (GET_CODE (SET_DEST (x)) == SUBREG
&& SUBREG_REG (SET_DEST (x)) == var))
&& (GET_CODE (SET_SRC (x)) == REG
|| (GET_CODE (SET_SRC (x)) == SUBREG
&& GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
&& GET_MODE (var) == promoted_mode
&& x == single_set (insn))
{
rtx pat, last;
if (GET_CODE (SET_DEST (x)) == SUBREG)
SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
promoted_mode, 0);
else
SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
if (recog_memoized (insn) >= 0)
return;
pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
if (NEXT_INSN (pat) != NULL_RTX)
{
last = emit_insn_before (pat, insn);
/* INSN might have REG_RETVAL or other important notes, so
we need to store the pattern of the last insn in the
sequence into INSN similarly to the normal case. LAST
should not have REG_NOTES, but we allow them if INSN has
no REG_NOTES. */
if (REG_NOTES (last) && REG_NOTES (insn))
abort ();
if (REG_NOTES (last))
REG_NOTES (insn) = REG_NOTES (last);
PATTERN (insn) = PATTERN (last);
delete_insn (last);
}
else
PATTERN (insn) = PATTERN (pat);
return;
}
/* Otherwise, storing into VAR must be handled specially
by storing into a temporary and copying that into VAR
with a new insn after this one. Note that this case
will be used when storing into a promoted scalar since
the insn will now have different modes on the input
and output and hence will be invalid (except for the case
of setting it to a constant, which does not need any
change if it is valid). We generate extra code in that case,
but combine.c will eliminate it. */
if (dest == var)
{
rtx temp;
rtx fixeddest = SET_DEST (x);
enum machine_mode temp_mode;
/* STRICT_LOW_PART can be discarded, around a MEM. */
if (GET_CODE (fixeddest) == STRICT_LOW_PART)
fixeddest = XEXP (fixeddest, 0);
/* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
if (GET_CODE (fixeddest) == SUBREG)
{
fixeddest = fixup_memory_subreg (fixeddest, insn,
promoted_mode, 0);
temp_mode = GET_MODE (fixeddest);
}
else
{
fixeddest = fixup_stack_1 (fixeddest, insn);
temp_mode = promoted_mode;
}
temp = gen_reg_rtx (temp_mode);
emit_insn_after (gen_move_insn (fixeddest,
gen_lowpart (GET_MODE (fixeddest),
temp)),
insn);
SET_DEST (x) = temp;
}
}
default:
break;
}
/* Nothing special about this RTX; fix its operands. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
no_share);
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
insn, replacements, no_share);
}
}
}
/* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
The REG was placed on the stack, so X now has the form (SUBREG:m1
(MEM:m2 ...)).
Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
must be emitted to compute NEWADDR, put them before INSN.
UNCRITICAL nonzero means accept paradoxical subregs.
This is used for subregs found inside REG_NOTES. */
static rtx
fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
{
int offset;
rtx mem = SUBREG_REG (x);
rtx addr = XEXP (mem, 0);
enum machine_mode mode = GET_MODE (x);
rtx result, seq;
/* Paradoxical SUBREGs are usually invalid during RTL generation. */
if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
abort ();
offset = SUBREG_BYTE (x);
if (BYTES_BIG_ENDIAN)
/* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
the offset so that it points to the right location within the
MEM. */
offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
if (!flag_force_addr
&& memory_address_p (mode, plus_constant (addr, offset)))
/* Shortcut if no insns need be emitted. */
return adjust_address (mem, mode, offset);
start_sequence ();
result = adjust_address (mem, mode, offset);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
return result;
}
/* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
Replace subexpressions of X in place.
If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
Otherwise return X, with its contents possibly altered.
INSN, PROMOTED_MODE and UNCRITICAL are as for
fixup_memory_subreg. */
static rtx
walk_fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode,
int uncritical)
{
enum rtx_code code;
const char *fmt;
int i;
if (x == 0)
return 0;
code = GET_CODE (x);
if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
/* Nothing special about this RTX; fix its operands. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
promoted_mode, uncritical);
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
XVECEXP (x, i, j)
= walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
promoted_mode, uncritical);
}
}
return x;
}
/* For each memory ref within X, if it refers to a stack slot
with an out of range displacement, put the address in a temp register
(emitting new insns before INSN to load these registers)
and alter the memory ref to use that register.
Replace each such MEM rtx with a copy, to avoid clobberage. */
static rtx
fixup_stack_1 (rtx x, rtx insn)
{
int i;
RTX_CODE code = GET_CODE (x);
const char *fmt;
if (code == MEM)
{
rtx ad = XEXP (x, 0);
/* If we have address of a stack slot but it's not valid
(displacement is too large), compute the sum in a register. */
if (GET_CODE (ad) == PLUS
&& GET_CODE (XEXP (ad, 0)) == REG
&& ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
&& REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
|| REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|| REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
#endif
|| REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
|| REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
|| XEXP (ad, 0) == current_function_internal_arg_pointer)
&& GET_CODE (XEXP (ad, 1)) == CONST_INT)
{
rtx temp, seq;
if (memory_address_p (GET_MODE (x), ad))
return x;
start_sequence ();
temp = copy_to_reg (ad);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
return replace_equiv_address (x, temp);
}
return x;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
}
}
return x;
}
/* Optimization: a bit-field instruction whose field
happens to be a byte or halfword in memory
can be changed to a move instruction.
We call here when INSN is an insn to examine or store into a bit-field.
BODY is the SET-rtx to be altered.
EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
(Currently this is called only from function.c, and EQUIV_MEM
is always 0.) */
static void
optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
{
rtx bitfield;
int destflag;
rtx seq = 0;
enum machine_mode mode;
if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
|| GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
bitfield = SET_DEST (body), destflag = 1;
else
bitfield = SET_SRC (body), destflag = 0;
/* First check that the field being stored has constant size and position
and is in fact a byte or halfword suitably aligned. */
if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
&& GET_CODE (XEXP (bitfield, 2)) == CONST_INT
&& ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
!= BLKmode)
&& INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
{
rtx memref = 0;
/* Now check that the containing word is memory, not a register,
and that it is safe to change the machine mode. */
if (GET_CODE (XEXP (bitfield, 0)) == MEM)
memref = XEXP (bitfield, 0);
else if (GET_CODE (XEXP (bitfield, 0)) == REG
&& equiv_mem != 0)
memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
&& GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
memref = SUBREG_REG (XEXP (bitfield, 0));
else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
&& equiv_mem != 0
&& GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
if (memref
&& ! mode_dependent_address_p (XEXP (memref, 0))
&& ! MEM_VOLATILE_P (memref))
{
/* Now adjust the address, first for any subreg'ing
that we are now getting rid of,
and then for which byte of the word is wanted. */
HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
rtx insns;
/* Adjust OFFSET to count bits from low-address byte. */
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
- offset - INTVAL (XEXP (bitfield, 1)));
/* Adjust OFFSET to count bytes from low-address byte. */
offset /= BITS_PER_UNIT;
if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
{
offset += (SUBREG_BYTE (XEXP (bitfield, 0))
/ UNITS_PER_WORD) * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
offset -= (MIN (UNITS_PER_WORD,
GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
- MIN (UNITS_PER_WORD,
GET_MODE_SIZE (GET_MODE (memref))));
}
start_sequence ();
memref = adjust_address (memref, mode, offset);
insns = get_insns ();
end_sequence ();
emit_insn_before (insns, insn);
/* Store this memory reference where
we found the bit field reference. */
if (destflag)
{
validate_change (insn, &SET_DEST (body), memref, 1);
if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
{
rtx src = SET_SRC (body);
while (GET_CODE (src) == SUBREG
&& SUBREG_BYTE (src) == 0)
src = SUBREG_REG (src);
if (GET_MODE (src) != GET_MODE (memref))
src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
validate_change (insn, &SET_SRC (body), src, 1);
}
else if (GET_MODE (SET_SRC (body)) != VOIDmode
&& GET_MODE (SET_SRC (body)) != GET_MODE (memref))
/* This shouldn't happen because anything that didn't have
one of these modes should have got converted explicitly
and then referenced through a subreg.
This is so because the original bit-field was
handled by agg_mode and so its tree structure had
the same mode that memref now has. */
abort ();
}
else
{
rtx dest = SET_DEST (body);
while (GET_CODE (dest) == SUBREG
&& SUBREG_BYTE (dest) == 0
&& (GET_MODE_CLASS (GET_MODE (dest))
== GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
<= UNITS_PER_WORD))
dest = SUBREG_REG (dest);
validate_change (insn, &SET_DEST (body), dest, 1);
if (GET_MODE (dest) == GET_MODE (memref))
validate_change (insn, &SET_SRC (body), memref, 1);
else
{
/* Convert the mem ref to the destination mode. */
rtx newreg = gen_reg_rtx (GET_MODE (dest));
start_sequence ();
convert_move (newreg, memref,
GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
seq = get_insns ();
end_sequence ();
validate_change (insn, &SET_SRC (body), newreg, 1);
}
}
/* See if we can convert this extraction or insertion into
a simple move insn. We might not be able to do so if this
was, for example, part of a PARALLEL.
If we succeed, write out any needed conversions. If we fail,
it is hard to guess why we failed, so don't do anything
special; just let the optimization be suppressed. */
if (apply_change_group () && seq)
emit_insn_before (seq, insn);
}
}
}
/* These routines are responsible for converting virtual register references
to the actual hard register references once RTL generation is complete.
The following four variables are used for communication between the
routines. They contain the offsets of the virtual registers from their
respective hard registers. */
static int in_arg_offset;
static int var_offset;
static int dynamic_offset;
static int out_arg_offset;
static int cfa_offset;
/* In most machines, the stack pointer register is equivalent to the bottom
of the stack. */
#ifndef STACK_POINTER_OFFSET
#define STACK_POINTER_OFFSET 0
#endif
/* If not defined, pick an appropriate default for the offset of dynamically
allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
#ifndef STACK_DYNAMIC_OFFSET
/* The bottom of the stack points to the actual arguments. If
REG_PARM_STACK_SPACE is defined, this includes the space for the register
parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
stack space for register parameters is not pushed by the caller, but
rather part of the fixed stack areas and hence not included in
`current_function_outgoing_args_size'. Nevertheless, we must allow
for it when allocating stack dynamic objects. */
#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
#define STACK_DYNAMIC_OFFSET(FNDECL) \
((ACCUMULATE_OUTGOING_ARGS \
? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
+ (STACK_POINTER_OFFSET)) \
#else
#define STACK_DYNAMIC_OFFSET(FNDECL) \
((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
+ (STACK_POINTER_OFFSET))
#endif
#endif
/* On most machines, the CFA coincides with the first incoming parm. */
#ifndef ARG_POINTER_CFA_OFFSET
#define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
#endif
/* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
had its address taken. DECL is the decl or SAVE_EXPR for the
object stored in the register, for later use if we do need to force
REG into the stack. REG is overwritten by the MEM like in
put_reg_into_stack. RESCAN is true if previously emitted
instructions must be rescanned and modified now that the REG has
been transformed. */
rtx
gen_mem_addressof (rtx reg, tree decl, int rescan)
{
rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
REGNO (reg), decl);
/* Calculate this before we start messing with decl's RTL. */
HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
/* If the original REG was a user-variable, then so is the REG whose
address is being taken. Likewise for unchanging. */
REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
PUT_CODE (reg, MEM);
MEM_ATTRS (reg) = 0;
XEXP (reg, 0) = r;
if (decl)
{
tree type = TREE_TYPE (decl);
enum machine_mode decl_mode
= (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
: DECL_RTL_IF_SET (decl));
PUT_MODE (reg, decl_mode);
/* Clear DECL_RTL momentarily so functions below will work
properly, then set it again. */
if (DECL_P (decl) && decl_rtl == reg)
SET_DECL_RTL (decl, 0);
set_mem_attributes (reg, decl, 1);
set_mem_alias_set (reg, set);
if (DECL_P (decl) && decl_rtl == reg)
SET_DECL_RTL (decl, reg);
if (rescan
&& (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
}
else if (rescan)
{
/* This can only happen during reload. Clear the same flag bits as
reload. */
MEM_VOLATILE_P (reg) = 0;
RTX_UNCHANGING_P (reg) = 0;
MEM_IN_STRUCT_P (reg) = 0;
MEM_SCALAR_P (reg) = 0;
MEM_ATTRS (reg) = 0;
fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
}
return reg;
}
/* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
void
flush_addressof (tree decl)
{
if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
&& DECL_RTL (decl) != 0
&& GET_CODE (DECL_RTL (decl)) == MEM
&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
&& GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
}
/* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
static void
put_addressof_into_stack (rtx r, htab_t ht)
{
tree decl, type;
int volatile_p, used_p;
rtx reg = XEXP (r, 0);
if (GET_CODE (reg) != REG)
abort ();
decl = ADDRESSOF_DECL (r);
if (decl)
{
type = TREE_TYPE (decl);
volatile_p = (TREE_CODE (decl) != SAVE_EXPR
&& TREE_THIS_VOLATILE (decl));
used_p = (TREE_USED (decl)
|| (DECL_P (decl) && DECL_INITIAL (decl) != 0));
}
else
{
type = NULL_TREE;
volatile_p = 0;
used_p = 1;
}
put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
}
/* List of replacements made below in purge_addressof_1 when creating
bitfield insertions. */
static rtx purge_bitfield_addressof_replacements;
/* List of replacements made below in purge_addressof_1 for patterns
(MEM (ADDRESSOF (REG ...))). The key of the list entry is the
corresponding (ADDRESSOF (REG ...)) and value is a substitution for
the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
enough in complex cases, e.g. when some field values can be
extracted by usage MEM with narrower mode. */
static rtx purge_addressof_replacements;
/* Helper function for purge_addressof. See if the rtx expression at *LOC
in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
the stack. If the function returns FALSE then the replacement could not
be made. If MAY_POSTPONE is true and we would not put the addressof
to stack, postpone processing of the insn. */
static bool
purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
htab_t ht)
{
rtx x;
RTX_CODE code;
int i, j;
const char *fmt;
bool result = true;
bool libcall = false;
/* Re-start here to avoid recursion in common cases. */
restart:
x = *loc;
if (x == 0)
return true;
/* Is this a libcall? */
if (!insn)
libcall = REG_NOTE_KIND (*loc) == REG_RETVAL;
code = GET_CODE (x);
/* If we don't return in any of the cases below, we will recurse inside
the RTX, which will normally result in any ADDRESSOF being forced into
memory. */
if (code == SET)
{
result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
may_postpone, ht);
result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
may_postpone, ht);
return result;
}
else if (code == ADDRESSOF)
{
rtx sub, insns;
if (GET_CODE (XEXP (x, 0)) != MEM)
put_addressof_into_stack (x, ht);
/* We must create a copy of the rtx because it was created by
overwriting a REG rtx which is always shared. */
sub = copy_rtx (XEXP (XEXP (x, 0), 0));
if (validate_change (insn, loc, sub, 0)
|| validate_replace_rtx (x, sub, insn))
return true;
start_sequence ();
/* If SUB is a hard or virtual register, try it as a pseudo-register.
Otherwise, perhaps SUB is an expression, so generate code to compute
it. */
if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
sub = copy_to_reg (sub);
else
sub = force_operand (sub, NULL_RTX);
if (! validate_change (insn, loc, sub, 0)
&& ! validate_replace_rtx (x, sub, insn))
abort ();
insns = get_insns ();
end_sequence ();
emit_insn_before (insns, insn);
return true;
}
else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
{
rtx sub = XEXP (XEXP (x, 0), 0);
if (GET_CODE (sub) == MEM)
sub = adjust_address_nv (sub, GET_MODE (x), 0);
else if (GET_CODE (sub) == REG
&& (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
;
else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
{
int size_x, size_sub;
if (may_postpone)
{
/* Postpone for now, so that we do not emit bitfield arithmetics
unless there is some benefit from it. */
if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
return true;
}
if (!insn)
{
/* When processing REG_NOTES look at the list of
replacements done on the insn to find the register that X
was replaced by. */
rtx tem;
for (tem = purge_bitfield_addressof_replacements;
tem != NULL_RTX;
tem = XEXP (XEXP (tem, 1), 1))
if (rtx_equal_p (x, XEXP (tem, 0)))
{
*loc = XEXP (XEXP (tem, 1), 0);
return true;
}
/* See comment for purge_addressof_replacements. */
for (tem = purge_addressof_replacements;
tem != NULL_RTX;
tem = XEXP (XEXP (tem, 1), 1))
if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
{
rtx z = XEXP (XEXP (tem, 1), 0);
if (GET_MODE (x) == GET_MODE (z)
|| (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
&& GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
abort ();
/* It can happen that the note may speak of things
in a wider (or just different) mode than the
code did. This is especially true of
REG_RETVAL. */
if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
z = SUBREG_REG (z);
if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
&& (GET_MODE_SIZE (GET_MODE (x))
> GET_MODE_SIZE (GET_MODE (z))))
{
/* This can occur as a result in invalid
pointer casts, e.g. float f; ...
*(long long int *)&f.
??? We could emit a warning here, but
without a line number that wouldn't be
very helpful. */
z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
}
else
z = gen_lowpart (GET_MODE (x), z);
*loc = z;
return true;
}
/* When we are processing the REG_NOTES of the last instruction
of a libcall, there will be typically no replacements
for that insn; the replacements happened before, piecemeal
fashion. OTOH we are not interested in the details of
this for the REG_EQUAL note, we want to know the big picture,
which can be succinctly described with a simple SUBREG.
Note that removing the REG_EQUAL note is not an option
on the last insn of a libcall, so we must do a replacement. */
/* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
we got
(mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
[0 S8 A32]), which can be expressed with a simple
same-size subreg */
if ((GET_MODE_SIZE (GET_MODE (x))
<= GET_MODE_SIZE (GET_MODE