blob: 0dfac2ccdf83bfbcb096b64c4e7e31a2c888a096 [file] [log] [blame]
/* Search an insn for pseudo regs that must be in hard regs and are not.
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* This file contains subroutines used only from the file reload1.c.
It knows how to scan one insn for operands and values
that need to be copied into registers to make valid code.
It also finds other operands and values which are valid
but for which equivalent values in registers exist and
ought to be used instead.
Before processing the first insn of the function, call `init_reload'.
To scan an insn, call `find_reloads'. This does two things:
1. sets up tables describing which values must be reloaded
for this insn, and what kind of hard regs they must be reloaded into;
2. optionally record the locations where those values appear in
the data, so they can be replaced properly later.
This is done only if the second arg to `find_reloads' is nonzero.
The third arg to `find_reloads' specifies the number of levels
of indirect addressing supported by the machine. If it is zero,
indirect addressing is not valid. If it is one, (MEM (REG n))
is valid even if (REG n) did not get a hard register; if it is two,
(MEM (MEM (REG n))) is also valid even if (REG n) did not get a
hard register, and similarly for higher values.
Then you must choose the hard regs to reload those pseudo regs into,
and generate appropriate load insns before this insn and perhaps
also store insns after this insn. Set up the array `reload_reg_rtx'
to contain the REG rtx's for the registers you used. In some
cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
for certain reloads. Then that tells you which register to use,
so you do not need to allocate one. But you still do need to add extra
instructions to copy the value into and out of that register.
Finally you must call `subst_reloads' to substitute the reload reg rtx's
into the locations already recorded.
NOTE SIDE EFFECTS:
find_reloads can alter the operands of the instruction it is called on.
1. Two operands of any sort may be interchanged, if they are in a
commutative instruction.
This happens only if find_reloads thinks the instruction will compile
better that way.
2. Pseudo-registers that are equivalent to constants are replaced
with those constants if they are not in hard registers.
1 happens every time find_reloads is called.
2 happens only when REPLACE is 1, which is only when
actually doing the reloads, not when just counting them.
Using a reload register for several reloads in one insn:
When an insn has reloads, it is considered as having three parts:
the input reloads, the insn itself after reloading, and the output reloads.
Reloads of values used in memory addresses are often needed for only one part.
When this is so, reload_when_needed records which part needs the reload.
Two reloads for different parts of the insn can share the same reload
register.
When a reload is used for addresses in multiple parts, or when it is
an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
a register with any other reload. */
#define REG_OK_STRICT
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tm_p.h"
#include "insn-config.h"
#include "expr.h"
#include "optabs.h"
#include "recog.h"
#include "reload.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "output.h"
#include "function.h"
#include "toplev.h"
#include "params.h"
#ifndef REGNO_MODE_OK_FOR_BASE_P
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
#endif
#ifndef REG_MODE_OK_FOR_BASE_P
#define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
#endif
/* All reloads of the current insn are recorded here. See reload.h for
comments. */
int n_reloads;
struct reload rld[MAX_RELOADS];
/* All the "earlyclobber" operands of the current insn
are recorded here. */
int n_earlyclobbers;
rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
int reload_n_operands;
/* Replacing reloads.
If `replace_reloads' is nonzero, then as each reload is recorded
an entry is made for it in the table `replacements'.
Then later `subst_reloads' can look through that table and
perform all the replacements needed. */
/* Nonzero means record the places to replace. */
static int replace_reloads;
/* Each replacement is recorded with a structure like this. */
struct replacement
{
rtx *where; /* Location to store in */
rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
a SUBREG; 0 otherwise. */
int what; /* which reload this is for */
enum machine_mode mode; /* mode it must have */
};
static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
/* Number of replacements currently recorded. */
static int n_replacements;
/* Used to track what is modified by an operand. */
struct decomposition
{
int reg_flag; /* Nonzero if referencing a register. */
int safe; /* Nonzero if this can't conflict with anything. */
rtx base; /* Base address for MEM. */
HOST_WIDE_INT start; /* Starting offset or register number. */
HOST_WIDE_INT end; /* Ending offset or register number. */
};
#ifdef SECONDARY_MEMORY_NEEDED
/* Save MEMs needed to copy from one class of registers to another. One MEM
is used per mode, but normally only one or two modes are ever used.
We keep two versions, before and after register elimination. The one
after register elimination is record separately for each operand. This
is done in case the address is not valid to be sure that we separately
reload each. */
static rtx secondary_memlocs[NUM_MACHINE_MODES];
static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
static int secondary_memlocs_elim_used = 0;
#endif
/* The instruction we are doing reloads for;
so we can test whether a register dies in it. */
static rtx this_insn;
/* Nonzero if this instruction is a user-specified asm with operands. */
static int this_insn_is_asm;
/* If hard_regs_live_known is nonzero,
we can tell which hard regs are currently live,
at least enough to succeed in choosing dummy reloads. */
static int hard_regs_live_known;
/* Indexed by hard reg number,
element is nonnegative if hard reg has been spilled.
This vector is passed to `find_reloads' as an argument
and is not changed here. */
static short *static_reload_reg_p;
/* Set to 1 in subst_reg_equivs if it changes anything. */
static int subst_reg_equivs_changed;
/* On return from push_reload, holds the reload-number for the OUT
operand, which can be different for that from the input operand. */
static int output_reloadnum;
/* Compare two RTX's. */
#define MATCHES(x, y) \
(x == y || (x != 0 && (GET_CODE (x) == REG \
? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
: rtx_equal_p (x, y) && ! side_effects_p (x))))
/* Indicates if two reloads purposes are for similar enough things that we
can merge their reloads. */
#define MERGABLE_RELOADS(when1, when2, op1, op2) \
((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
|| ((when1) == (when2) && (op1) == (op2)) \
|| ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
|| ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
&& (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
|| ((when1) == RELOAD_FOR_OTHER_ADDRESS \
&& (when2) == RELOAD_FOR_OTHER_ADDRESS))
/* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
#define MERGE_TO_OTHER(when1, when2, op1, op2) \
((when1) != (when2) \
|| ! ((op1) == (op2) \
|| (when1) == RELOAD_FOR_INPUT \
|| (when1) == RELOAD_FOR_OPERAND_ADDRESS \
|| (when1) == RELOAD_FOR_OTHER_ADDRESS))
/* If we are going to reload an address, compute the reload type to
use. */
#define ADDR_TYPE(type) \
((type) == RELOAD_FOR_INPUT_ADDRESS \
? RELOAD_FOR_INPADDR_ADDRESS \
: ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
? RELOAD_FOR_OUTADDR_ADDRESS \
: (type)))
#ifdef HAVE_SECONDARY_RELOADS
static int push_secondary_reload (int, rtx, int, int, enum reg_class,
enum machine_mode, enum reload_type,
enum insn_code *);
#endif
static enum reg_class find_valid_class (enum machine_mode, int, unsigned int);
static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
static void push_replacement (rtx *, int, enum machine_mode);
static void dup_replacements (rtx *, rtx *);
static void combine_reloads (void);
static int find_reusable_reload (rtx *, rtx, enum reg_class,
enum reload_type, int, int);
static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
enum machine_mode, enum reg_class, int, int);
static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
static struct decomposition decompose (rtx);
static int immune_p (rtx, rtx, struct decomposition);
static int alternative_allows_memconst (const char *, int);
static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
int *);
static rtx make_memloc (rtx, int);
static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
int, enum reload_type, int, rtx);
static rtx subst_reg_equivs (rtx, rtx);
static rtx subst_indexed_address (rtx);
static void update_auto_inc_notes (rtx, int, int);
static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
int, enum reload_type,int, rtx);
static void find_reloads_address_part (rtx, rtx *, enum reg_class,
enum machine_mode, int,
enum reload_type, int);
static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
int, rtx);
static void copy_replacements_1 (rtx *, rtx *, int);
static int find_inc_amount (rtx, rtx);
#ifdef HAVE_SECONDARY_RELOADS
/* Determine if any secondary reloads are needed for loading (if IN_P is
nonzero) or storing (if IN_P is zero) X to or from a reload register of
register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
are needed, push them.
Return the reload number of the secondary reload we made, or -1 if
we didn't need one. *PICODE is set to the insn_code to use if we do
need a secondary reload. */
static int
push_secondary_reload (int in_p, rtx x, int opnum, int optional,
enum reg_class reload_class,
enum machine_mode reload_mode, enum reload_type type,
enum insn_code *picode)
{
enum reg_class class = NO_REGS;
enum machine_mode mode = reload_mode;
enum insn_code icode = CODE_FOR_nothing;
enum reg_class t_class = NO_REGS;
enum machine_mode t_mode = VOIDmode;
enum insn_code t_icode = CODE_FOR_nothing;
enum reload_type secondary_type;
int s_reload, t_reload = -1;
if (type == RELOAD_FOR_INPUT_ADDRESS
|| type == RELOAD_FOR_OUTPUT_ADDRESS
|| type == RELOAD_FOR_INPADDR_ADDRESS
|| type == RELOAD_FOR_OUTADDR_ADDRESS)
secondary_type = type;
else
secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
*picode = CODE_FOR_nothing;
/* If X is a paradoxical SUBREG, use the inner value to determine both the
mode and object being reloaded. */
if (GET_CODE (x) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (x))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
{
x = SUBREG_REG (x);
reload_mode = GET_MODE (x);
}
/* If X is a pseudo-register that has an equivalent MEM (actually, if it
is still a pseudo-register by now, it *must* have an equivalent MEM
but we don't want to assume that), use that equivalent when seeing if
a secondary reload is needed since whether or not a reload is needed
might be sensitive to the form of the MEM. */
if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
&& reg_equiv_mem[REGNO (x)] != 0)
x = reg_equiv_mem[REGNO (x)];
#ifdef SECONDARY_INPUT_RELOAD_CLASS
if (in_p)
class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
#endif
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
if (! in_p)
class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
#endif
/* If we don't need any secondary registers, done. */
if (class == NO_REGS)
return -1;
/* Get a possible insn to use. If the predicate doesn't accept X, don't
use the insn. */
icode = (in_p ? reload_in_optab[(int) reload_mode]
: reload_out_optab[(int) reload_mode]);
if (icode != CODE_FOR_nothing
&& insn_data[(int) icode].operand[in_p].predicate
&& (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
icode = CODE_FOR_nothing;
/* If we will be using an insn, see if it can directly handle the reload
register we will be using. If it can, the secondary reload is for a
scratch register. If it can't, we will use the secondary reload for
an intermediate register and require a tertiary reload for the scratch
register. */
if (icode != CODE_FOR_nothing)
{
/* If IN_P is nonzero, the reload register will be the output in
operand 0. If IN_P is zero, the reload register will be the input
in operand 1. Outputs should have an initial "=", which we must
skip. */
enum reg_class insn_class;
if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
insn_class = ALL_REGS;
else
{
const char *insn_constraint
= &insn_data[(int) icode].operand[!in_p].constraint[in_p];
char insn_letter = *insn_constraint;
insn_class
= (insn_letter == 'r' ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
insn_constraint));
if (insn_class == NO_REGS)
abort ();
if (in_p
&& insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
abort ();
}
/* The scratch register's constraint must start with "=&". */
if (insn_data[(int) icode].operand[2].constraint[0] != '='
|| insn_data[(int) icode].operand[2].constraint[1] != '&')
abort ();
if (reg_class_subset_p (reload_class, insn_class))
mode = insn_data[(int) icode].operand[2].mode;
else
{
const char *t_constraint
= &insn_data[(int) icode].operand[2].constraint[2];
char t_letter = *t_constraint;
class = insn_class;
t_mode = insn_data[(int) icode].operand[2].mode;
t_class = (t_letter == 'r' ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
t_constraint));
t_icode = icode;
icode = CODE_FOR_nothing;
}
}
/* This case isn't valid, so fail. Reload is allowed to use the same
register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
in the case of a secondary register, we actually need two different
registers for correct code. We fail here to prevent the possibility of
silently generating incorrect code later.
The convention is that secondary input reloads are valid only if the
secondary_class is different from class. If you have such a case, you
can not use secondary reloads, you must work around the problem some
other way.
Allow this when a reload_in/out pattern is being used. I.e. assume
that the generated code handles this case. */
if (in_p && class == reload_class && icode == CODE_FOR_nothing
&& t_icode == CODE_FOR_nothing)
abort ();
/* If we need a tertiary reload, see if we have one we can reuse or else
make a new one. */
if (t_class != NO_REGS)
{
for (t_reload = 0; t_reload < n_reloads; t_reload++)
if (rld[t_reload].secondary_p
&& (reg_class_subset_p (t_class, rld[t_reload].class)
|| reg_class_subset_p (rld[t_reload].class, t_class))
&& ((in_p && rld[t_reload].inmode == t_mode)
|| (! in_p && rld[t_reload].outmode == t_mode))
&& ((in_p && (rld[t_reload].secondary_in_icode
== CODE_FOR_nothing))
|| (! in_p &&(rld[t_reload].secondary_out_icode
== CODE_FOR_nothing)))
&& (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
&& MERGABLE_RELOADS (secondary_type,
rld[t_reload].when_needed,
opnum, rld[t_reload].opnum))
{
if (in_p)
rld[t_reload].inmode = t_mode;
if (! in_p)
rld[t_reload].outmode = t_mode;
if (reg_class_subset_p (t_class, rld[t_reload].class))
rld[t_reload].class = t_class;
rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
rld[t_reload].optional &= optional;
rld[t_reload].secondary_p = 1;
if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
opnum, rld[t_reload].opnum))
rld[t_reload].when_needed = RELOAD_OTHER;
}
if (t_reload == n_reloads)
{
/* We need to make a new tertiary reload for this register class. */
rld[t_reload].in = rld[t_reload].out = 0;
rld[t_reload].class = t_class;
rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
rld[t_reload].reg_rtx = 0;
rld[t_reload].optional = optional;
rld[t_reload].inc = 0;
/* Maybe we could combine these, but it seems too tricky. */
rld[t_reload].nocombine = 1;
rld[t_reload].in_reg = 0;
rld[t_reload].out_reg = 0;
rld[t_reload].opnum = opnum;
rld[t_reload].when_needed = secondary_type;
rld[t_reload].secondary_in_reload = -1;
rld[t_reload].secondary_out_reload = -1;
rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
rld[t_reload].secondary_p = 1;
n_reloads++;
}
}
/* See if we can reuse an existing secondary reload. */
for (s_reload = 0; s_reload < n_reloads; s_reload++)
if (rld[s_reload].secondary_p
&& (reg_class_subset_p (class, rld[s_reload].class)
|| reg_class_subset_p (rld[s_reload].class, class))
&& ((in_p && rld[s_reload].inmode == mode)
|| (! in_p && rld[s_reload].outmode == mode))
&& ((in_p && rld[s_reload].secondary_in_reload == t_reload)
|| (! in_p && rld[s_reload].secondary_out_reload == t_reload))
&& ((in_p && rld[s_reload].secondary_in_icode == t_icode)
|| (! in_p && rld[s_reload].secondary_out_icode == t_icode))
&& (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
&& MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
opnum, rld[s_reload].opnum))
{
if (in_p)
rld[s_reload].inmode = mode;
if (! in_p)
rld[s_reload].outmode = mode;
if (reg_class_subset_p (class, rld[s_reload].class))
rld[s_reload].class = class;
rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
rld[s_reload].optional &= optional;
rld[s_reload].secondary_p = 1;
if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
opnum, rld[s_reload].opnum))
rld[s_reload].when_needed = RELOAD_OTHER;
}
if (s_reload == n_reloads)
{
#ifdef SECONDARY_MEMORY_NEEDED
/* If we need a memory location to copy between the two reload regs,
set it up now. Note that we do the input case before making
the reload and the output case after. This is due to the
way reloads are output. */
if (in_p && icode == CODE_FOR_nothing
&& SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
{
get_secondary_mem (x, reload_mode, opnum, type);
/* We may have just added new reloads. Make sure we add
the new reload at the end. */
s_reload = n_reloads;
}
#endif
/* We need to make a new secondary reload for this register class. */
rld[s_reload].in = rld[s_reload].out = 0;
rld[s_reload].class = class;
rld[s_reload].inmode = in_p ? mode : VOIDmode;
rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
rld[s_reload].reg_rtx = 0;
rld[s_reload].optional = optional;
rld[s_reload].inc = 0;
/* Maybe we could combine these, but it seems too tricky. */
rld[s_reload].nocombine = 1;
rld[s_reload].in_reg = 0;
rld[s_reload].out_reg = 0;
rld[s_reload].opnum = opnum;
rld[s_reload].when_needed = secondary_type;
rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
rld[s_reload].secondary_out_icode
= ! in_p ? t_icode : CODE_FOR_nothing;
rld[s_reload].secondary_p = 1;
n_reloads++;
#ifdef SECONDARY_MEMORY_NEEDED
if (! in_p && icode == CODE_FOR_nothing
&& SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
get_secondary_mem (x, mode, opnum, type);
#endif
}
*picode = icode;
return s_reload;
}
#endif /* HAVE_SECONDARY_RELOADS */
#ifdef SECONDARY_MEMORY_NEEDED
/* Return a memory location that will be used to copy X in mode MODE.
If we haven't already made a location for this mode in this insn,
call find_reloads_address on the location being returned. */
rtx
get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
int opnum, enum reload_type type)
{
rtx loc;
int mem_valid;
/* By default, if MODE is narrower than a word, widen it to a word.
This is required because most machines that require these memory
locations do not support short load and stores from all registers
(e.g., FP registers). */
#ifdef SECONDARY_MEMORY_NEEDED_MODE
mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
#else
if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
#endif
/* If we already have made a MEM for this operand in MODE, return it. */
if (secondary_memlocs_elim[(int) mode][opnum] != 0)
return secondary_memlocs_elim[(int) mode][opnum];
/* If this is the first time we've tried to get a MEM for this mode,
allocate a new one. `something_changed' in reload will get set
by noticing that the frame size has changed. */
if (secondary_memlocs[(int) mode] == 0)
{
#ifdef SECONDARY_MEMORY_NEEDED_RTX
secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
#else
secondary_memlocs[(int) mode]
= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
#endif
}
/* Get a version of the address doing any eliminations needed. If that
didn't give us a new MEM, make a new one if it isn't valid. */
loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
if (! mem_valid && loc == secondary_memlocs[(int) mode])
loc = copy_rtx (loc);
/* The only time the call below will do anything is if the stack
offset is too large. In that case IND_LEVELS doesn't matter, so we
can just pass a zero. Adjust the type to be the address of the
corresponding object. If the address was valid, save the eliminated
address. If it wasn't valid, we need to make a reload each time, so
don't save it. */
if (! mem_valid)
{
type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
: type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
: RELOAD_OTHER);
find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
opnum, type, 0, 0);
}
secondary_memlocs_elim[(int) mode][opnum] = loc;
if (secondary_memlocs_elim_used <= (int)mode)
secondary_memlocs_elim_used = (int)mode + 1;
return loc;
}
/* Clear any secondary memory locations we've made. */
void
clear_secondary_mem (void)
{
memset (secondary_memlocs, 0, sizeof secondary_memlocs);
}
#endif /* SECONDARY_MEMORY_NEEDED */
/* Find the largest class for which every register number plus N is valid in
M1 (if in range) and is cheap to move into REGNO.
Abort if no such class exists. */
static enum reg_class
find_valid_class (enum machine_mode m1 ATTRIBUTE_UNUSED, int n,
unsigned int dest_regno ATTRIBUTE_UNUSED)
{
int best_cost = -1;
int class;
int regno;
enum reg_class best_class = NO_REGS;
enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
unsigned int best_size = 0;
int cost;
for (class = 1; class < N_REG_CLASSES; class++)
{
int bad = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
&& TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
&& ! HARD_REGNO_MODE_OK (regno + n, m1))
bad = 1;
if (bad)
continue;
cost = REGISTER_MOVE_COST (m1, class, dest_class);
if ((reg_class_size[class] > best_size
&& (best_cost < 0 || best_cost >= cost))
|| best_cost > cost)
{
best_class = class;
best_size = reg_class_size[class];
best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
}
}
if (best_size == 0)
abort ();
return best_class;
}
/* Return the number of a previously made reload that can be combined with
a new one, or n_reloads if none of the existing reloads can be used.
OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
push_reload, they determine the kind of the new reload that we try to
combine. P_IN points to the corresponding value of IN, which can be
modified by this function.
DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
static int
find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
enum reload_type type, int opnum, int dont_share)
{
rtx in = *p_in;
int i;
/* We can't merge two reloads if the output of either one is
earlyclobbered. */
if (earlyclobber_operand_p (out))
return n_reloads;
/* We can use an existing reload if the class is right
and at least one of IN and OUT is a match
and the other is at worst neutral.
(A zero compared against anything is neutral.)
If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
for the same thing since that can cause us to need more reload registers
than we otherwise would. */
for (i = 0; i < n_reloads; i++)
if ((reg_class_subset_p (class, rld[i].class)
|| reg_class_subset_p (rld[i].class, class))
/* If the existing reload has a register, it must fit our class. */
&& (rld[i].reg_rtx == 0
|| TEST_HARD_REG_BIT (reg_class_contents[(int) class],
true_regnum (rld[i].reg_rtx)))
&& ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
&& (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
|| (out != 0 && MATCHES (rld[i].out, out)
&& (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
&& (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
&& MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
return i;
/* Reloading a plain reg for input can match a reload to postincrement
that reg, since the postincrement's value is the right value.
Likewise, it can match a preincrement reload, since we regard
the preincrementation as happening before any ref in this insn
to that register. */
for (i = 0; i < n_reloads; i++)
if ((reg_class_subset_p (class, rld[i].class)
|| reg_class_subset_p (rld[i].class, class))
/* If the existing reload has a register, it must fit our
class. */
&& (rld[i].reg_rtx == 0
|| TEST_HARD_REG_BIT (reg_class_contents[(int) class],
true_regnum (rld[i].reg_rtx)))
&& out == 0 && rld[i].out == 0 && rld[i].in != 0
&& ((GET_CODE (in) == REG
&& GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
&& MATCHES (XEXP (rld[i].in, 0), in))
|| (GET_CODE (rld[i].in) == REG
&& GET_RTX_CLASS (GET_CODE (in)) == 'a'
&& MATCHES (XEXP (in, 0), rld[i].in)))
&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
&& (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
&& MERGABLE_RELOADS (type, rld[i].when_needed,
opnum, rld[i].opnum))
{
/* Make sure reload_in ultimately has the increment,
not the plain register. */
if (GET_CODE (in) == REG)
*p_in = rld[i].in;
return i;
}
return n_reloads;
}
/* Return nonzero if X is a SUBREG which will require reloading of its
SUBREG_REG expression. */
static int
reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
{
rtx inner;
/* Only SUBREGs are problematical. */
if (GET_CODE (x) != SUBREG)
return 0;
inner = SUBREG_REG (x);
/* If INNER is a constant or PLUS, then INNER must be reloaded. */
if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
return 1;
/* If INNER is not a hard register, then INNER will not need to
be reloaded. */
if (GET_CODE (inner) != REG
|| REGNO (inner) >= FIRST_PSEUDO_REGISTER)
return 0;
/* If INNER is not ok for MODE, then INNER will need reloading. */
if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
return 1;
/* If the outer part is a word or smaller, INNER larger than a
word and the number of regs for INNER is not the same as the
number of words in INNER, then INNER will need reloading. */
return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
&& output
&& GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
&& ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
!= (int) HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
}
/* Return nonzero if IN can be reloaded into REGNO with mode MODE without
requiring an extra reload register. The caller has already found that
IN contains some reference to REGNO, so check that we can produce the
new value in a single step. E.g. if we have
(set (reg r13) (plus (reg r13) (const int 1))), and there is an
instruction that adds one to a register, this should succeed.
However, if we have something like
(set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
needs to be loaded into a register first, we need a separate reload
register.
Such PLUS reloads are generated by find_reload_address_part.
The out-of-range PLUS expressions are usually introduced in the instruction
patterns by register elimination and substituting pseudos without a home
by their function-invariant equivalences. */
static int
can_reload_into (rtx in, int regno, enum machine_mode mode)
{
rtx dst, test_insn;
int r = 0;
struct recog_data save_recog_data;
/* For matching constraints, we often get notional input reloads where
we want to use the original register as the reload register. I.e.
technically this is a non-optional input-output reload, but IN is
already a valid register, and has been chosen as the reload register.
Speed this up, since it trivially works. */
if (GET_CODE (in) == REG)
return 1;
/* To test MEMs properly, we'd have to take into account all the reloads
that are already scheduled, which can become quite complicated.
And since we've already handled address reloads for this MEM, it
should always succeed anyway. */
if (GET_CODE (in) == MEM)
return 1;
/* If we can make a simple SET insn that does the job, everything should
be fine. */
dst = gen_rtx_REG (mode, regno);
test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
save_recog_data = recog_data;
if (recog_memoized (test_insn) >= 0)
{
extract_insn (test_insn);
r = constrain_operands (1);
}
recog_data = save_recog_data;
return r;
}
/* Record one reload that needs to be performed.
IN is an rtx saying where the data are to be found before this instruction.
OUT says where they must be stored after the instruction.
(IN is zero for data not read, and OUT is zero for data not written.)
INLOC and OUTLOC point to the places in the instructions where
IN and OUT were found.
If IN and OUT are both nonzero, it means the same register must be used
to reload both IN and OUT.
CLASS is a register class required for the reloaded data.
INMODE is the machine mode that the instruction requires
for the reg that replaces IN and OUTMODE is likewise for OUT.
If IN is zero, then OUT's location and mode should be passed as
INLOC and INMODE.
STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
OPTIONAL nonzero means this reload does not need to be performed:
it can be discarded if that is more convenient.
OPNUM and TYPE say what the purpose of this reload is.
The return value is the reload-number for this reload.
If both IN and OUT are nonzero, in some rare cases we might
want to make two separate reloads. (Actually we never do this now.)
Therefore, the reload-number for OUT is stored in
output_reloadnum when we return; the return value applies to IN.
Usually (presently always), when IN and OUT are nonzero,
the two reload-numbers are equal, but the caller should be careful to
distinguish them. */
int
push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
enum reg_class class, enum machine_mode inmode,
enum machine_mode outmode, int strict_low, int optional,
int opnum, enum reload_type type)
{
int i;
int dont_share = 0;
int dont_remove_subreg = 0;
rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
int secondary_in_reload = -1, secondary_out_reload = -1;
enum insn_code secondary_in_icode = CODE_FOR_nothing;
enum insn_code secondary_out_icode = CODE_FOR_nothing;
/* INMODE and/or OUTMODE could be VOIDmode if no mode
has been specified for the operand. In that case,
use the operand's mode as the mode to reload. */
if (inmode == VOIDmode && in != 0)
inmode = GET_MODE (in);
if (outmode == VOIDmode && out != 0)
outmode = GET_MODE (out);
/* If IN is a pseudo register everywhere-equivalent to a constant, and
it is not in a hard register, reload straight from the constant,
since we want to get rid of such pseudo registers.
Often this is done earlier, but not always in find_reloads_address. */
if (in != 0 && GET_CODE (in) == REG)
{
int regno = REGNO (in);
if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
&& reg_equiv_constant[regno] != 0)
in = reg_equiv_constant[regno];
}
/* Likewise for OUT. Of course, OUT will never be equivalent to
an actual constant, but it might be equivalent to a memory location
(in the case of a parameter). */
if (out != 0 && GET_CODE (out) == REG)
{
int regno = REGNO (out);
if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
&& reg_equiv_constant[regno] != 0)
out = reg_equiv_constant[regno];
}
/* If we have a read-write operand with an address side-effect,
change either IN or OUT so the side-effect happens only once. */
if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
switch (GET_CODE (XEXP (in, 0)))
{
case POST_INC: case POST_DEC: case POST_MODIFY:
in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
break;
case PRE_INC: case PRE_DEC: case PRE_MODIFY:
out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
break;
default:
break;
}
/* If we are reloading a (SUBREG constant ...), really reload just the
inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
a pseudo and hence will become a MEM) with M1 wider than M2 and the
register is a pseudo, also reload the inside expression.
For machines that extend byte loads, do this for any SUBREG of a pseudo
where both M1 and M2 are a word or smaller, M1 is wider than M2, and
M2 is an integral mode that gets extended when loaded.
Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
either M1 is not valid for R or M2 is wider than a word but we only
need one word to store an M2-sized quantity in R.
(However, if OUT is nonzero, we need to reload the reg *and*
the subreg, so do nothing here, and let following statement handle it.)
Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
we can't handle it here because CONST_INT does not indicate a mode.
Similarly, we must reload the inside expression if we have a
STRICT_LOW_PART (presumably, in == out in the cas).
Also reload the inner expression if it does not require a secondary
reload but the SUBREG does.
Finally, reload the inner expression if it is a register that is in
the class whose registers cannot be referenced in a different size
and M1 is not the same size as M2. If subreg_lowpart_p is false, we
cannot reload just the inside since we might end up with the wrong
register class. But if it is inside a STRICT_LOW_PART, we have
no choice, so we hope we do get the right register class there. */
if (in != 0 && GET_CODE (in) == SUBREG
&& (subreg_lowpart_p (in) || strict_low)
#ifdef CANNOT_CHANGE_MODE_CLASS
&& !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
#endif
&& (CONSTANT_P (SUBREG_REG (in))
|| GET_CODE (SUBREG_REG (in)) == PLUS
|| strict_low
|| (((GET_CODE (SUBREG_REG (in)) == REG
&& REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
|| GET_CODE (SUBREG_REG (in)) == MEM)
&& ((GET_MODE_SIZE (inmode)
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
#ifdef LOAD_EXTEND_OP
|| (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
<= UNITS_PER_WORD)
&& (GET_MODE_SIZE (inmode)
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
&& INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
&& LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
#endif
#ifdef WORD_REGISTER_OPERATIONS
|| ((GET_MODE_SIZE (inmode)
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
&& ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
/ UNITS_PER_WORD)))
#endif
))
|| (GET_CODE (SUBREG_REG (in)) == REG
&& REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
/* The case where out is nonzero
is handled differently in the following statement. */
&& (out == 0 || subreg_lowpart_p (in))
&& ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
> UNITS_PER_WORD)
&& ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
/ UNITS_PER_WORD)
!= (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
GET_MODE (SUBREG_REG (in)))))
|| ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|| (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
&& (SECONDARY_INPUT_RELOAD_CLASS (class,
GET_MODE (SUBREG_REG (in)),
SUBREG_REG (in))
== NO_REGS))
#endif
#ifdef CANNOT_CHANGE_MODE_CLASS
|| (GET_CODE (SUBREG_REG (in)) == REG
&& REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
&& REG_CANNOT_CHANGE_MODE_P
(REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
#endif
))
{
in_subreg_loc = inloc;
inloc = &SUBREG_REG (in);
in = *inloc;
#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
if (GET_CODE (in) == MEM)
/* This is supposed to happen only for paradoxical subregs made by
combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
abort ();
#endif
inmode = GET_MODE (in);
}
/* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
either M1 is not valid for R or M2 is wider than a word but we only
need one word to store an M2-sized quantity in R.
However, we must reload the inner reg *as well as* the subreg in
that case. */
/* Similar issue for (SUBREG constant ...) if it was not handled by the
code above. This can happen if SUBREG_BYTE != 0. */
if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
{
enum reg_class in_class = class;
if (GET_CODE (SUBREG_REG (in)) == REG)
in_class
= find_valid_class (inmode,
subreg_regno_offset (REGNO (SUBREG_REG (in)),
GET_MODE (SUBREG_REG (in)),
SUBREG_BYTE (in),
GET_MODE (in)),
REGNO (SUBREG_REG (in)));
/* This relies on the fact that emit_reload_insns outputs the
instructions for input reloads of type RELOAD_OTHER in the same
order as the reloads. Thus if the outer reload is also of type
RELOAD_OTHER, we are guaranteed that this inner reload will be
output before the outer reload. */
push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
dont_remove_subreg = 1;
}
/* Similarly for paradoxical and problematical SUBREGs on the output.
Note that there is no reason we need worry about the previous value
of SUBREG_REG (out); even if wider than out,
storing in a subreg is entitled to clobber it all
(except in the case of STRICT_LOW_PART,
and in that case the constraint should label it input-output.) */
if (out != 0 && GET_CODE (out) == SUBREG
&& (subreg_lowpart_p (out) || strict_low)
#ifdef CANNOT_CHANGE_MODE_CLASS
&& !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
#endif
&& (CONSTANT_P (SUBREG_REG (out))
|| strict_low
|| (((GET_CODE (SUBREG_REG (out)) == REG
&& REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
|| GET_CODE (SUBREG_REG (out)) == MEM)
&& ((GET_MODE_SIZE (outmode)
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
#ifdef WORD_REGISTER_OPERATIONS
|| ((GET_MODE_SIZE (outmode)
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
&& ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
/ UNITS_PER_WORD)))
#endif
))
|| (GET_CODE (SUBREG_REG (out)) == REG
&& REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
&& ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
> UNITS_PER_WORD)
&& ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
/ UNITS_PER_WORD)
!= (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
GET_MODE (SUBREG_REG (out)))))
|| ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
|| (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
&& (SECONDARY_OUTPUT_RELOAD_CLASS (class,
GET_MODE (SUBREG_REG (out)),
SUBREG_REG (out))
== NO_REGS))
#endif
#ifdef CANNOT_CHANGE_MODE_CLASS
|| (GET_CODE (SUBREG_REG (out)) == REG
&& REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
&& REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
GET_MODE (SUBREG_REG (out)),
outmode))
#endif
))
{
out_subreg_loc = outloc;
outloc = &SUBREG_REG (out);
out = *outloc;
#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
if (GET_CODE (out) == MEM
&& GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
abort ();
#endif
outmode = GET_MODE (out);
}
/* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
either M1 is not valid for R or M2 is wider than a word but we only
need one word to store an M2-sized quantity in R.
However, we must reload the inner reg *as well as* the subreg in
that case. In this case, the inner reg is an in-out reload. */
if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
{
/* This relies on the fact that emit_reload_insns outputs the
instructions for output reloads of type RELOAD_OTHER in reverse
order of the reloads. Thus if the outer reload is also of type
RELOAD_OTHER, we are guaranteed that this inner reload will be
output after the outer reload. */
dont_remove_subreg = 1;
push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
&SUBREG_REG (out),
find_valid_class (outmode,
subreg_regno_offset (REGNO (SUBREG_REG (out)),
GET_MODE (SUBREG_REG (out)),
SUBREG_BYTE (out),
GET_MODE (out)),
REGNO (SUBREG_REG (out))),
VOIDmode, VOIDmode, 0, 0,
opnum, RELOAD_OTHER);
}
/* If IN appears in OUT, we can't share any input-only reload for IN. */
if (in != 0 && out != 0 && GET_CODE (out) == MEM
&& (GET_CODE (in) == REG || GET_CODE (in) == MEM)
&& reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
dont_share = 1;
/* If IN is a SUBREG of a hard register, make a new REG. This
simplifies some of the cases below. */
if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
&& REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
&& ! dont_remove_subreg)
in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
/* Similarly for OUT. */
if (out != 0 && GET_CODE (out) == SUBREG
&& GET_CODE (SUBREG_REG (out)) == REG
&& REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
&& ! dont_remove_subreg)
out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
/* Narrow down the class of register wanted if that is
desirable on this machine for efficiency. */
if (in != 0)
class = PREFERRED_RELOAD_CLASS (in, class);
/* Output reloads may need analogous treatment, different in detail. */
#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
if (out != 0)
class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
#endif
/* Make sure we use a class that can handle the actual pseudo
inside any subreg. For example, on the 386, QImode regs
can appear within SImode subregs. Although GENERAL_REGS
can handle SImode, QImode needs a smaller class. */
#ifdef LIMIT_RELOAD_CLASS
if (in_subreg_loc)
class = LIMIT_RELOAD_CLASS (inmode, class);
else if (in != 0 && GET_CODE (in) == SUBREG)
class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
if (out_subreg_loc)
class = LIMIT_RELOAD_CLASS (outmode, class);
if (out != 0 && GET_CODE (out) == SUBREG)
class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
#endif
/* Verify that this class is at least possible for the mode that
is specified. */
if (this_insn_is_asm)
{
enum machine_mode mode;
if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
mode = inmode;
else
mode = outmode;
if (mode == VOIDmode)
{
error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
mode = word_mode;
if (in != 0)
inmode = word_mode;
if (out != 0)
outmode = word_mode;
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (HARD_REGNO_MODE_OK (i, mode)
&& TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
{
int nregs = HARD_REGNO_NREGS (i, mode);
int j;
for (j = 1; j < nregs; j++)
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
break;
if (j == nregs)
break;
}
if (i == FIRST_PSEUDO_REGISTER)
{
error_for_asm (this_insn, "impossible register constraint in `asm'");
class = ALL_REGS;
}
}
/* Optional output reloads are always OK even if we have no register class,
since the function of these reloads is only to have spill_reg_store etc.
set, so that the storing insn can be deleted later. */
if (class == NO_REGS
&& (optional == 0 || type != RELOAD_FOR_OUTPUT))
abort ();
i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
if (i == n_reloads)
{
/* See if we need a secondary reload register to move between CLASS
and IN or CLASS and OUT. Get the icode and push any required reloads
needed for each of them if so. */
#ifdef SECONDARY_INPUT_RELOAD_CLASS
if (in != 0)
secondary_in_reload
= push_secondary_reload (1, in, opnum, optional, class, inmode, type,
&secondary_in_icode);
#endif
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
if (out != 0 && GET_CODE (out) != SCRATCH)
secondary_out_reload
= push_secondary_reload (0, out, opnum, optional, class, outmode,
type, &secondary_out_icode);
#endif
/* We found no existing reload suitable for re-use.
So add an additional reload. */
#ifdef SECONDARY_MEMORY_NEEDED
/* If a memory location is needed for the copy, make one. */
if (in != 0 && (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
&& reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
&& SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
class, inmode))
get_secondary_mem (in, inmode, opnum, type);
#endif
i = n_reloads;
rld[i].in = in;
rld[i].out = out;
rld[i].class = class;
rld[i].inmode = inmode;
rld[i].outmode = outmode;
rld[i].reg_rtx = 0;
rld[i].optional = optional;
rld[i].inc = 0;
rld[i].nocombine = 0;
rld[i].in_reg = inloc ? *inloc : 0;
rld[i].out_reg = outloc ? *outloc : 0;
rld[i].opnum = opnum;
rld[i].when_needed = type;
rld[i].secondary_in_reload = secondary_in_reload;
rld[i].secondary_out_reload = secondary_out_reload;
rld[i].secondary_in_icode = secondary_in_icode;
rld[i].secondary_out_icode = secondary_out_icode;
rld[i].secondary_p = 0;
n_reloads++;
#ifdef SECONDARY_MEMORY_NEEDED
if (out != 0 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
&& reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
&& SECONDARY_MEMORY_NEEDED (class,
REGNO_REG_CLASS (reg_or_subregno (out)),
outmode))
get_secondary_mem (out, outmode, opnum, type);
#endif
}
else
{
/* We are reusing an existing reload,
but we may have additional information for it.
For example, we may now have both IN and OUT
while the old one may have just one of them. */
/* The modes can be different. If they are, we want to reload in
the larger mode, so that the value is valid for both modes. */
if (inmode != VOIDmode
&& GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
rld[i].inmode = inmode;
if (outmode != VOIDmode
&& GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
rld[i].outmode = outmode;
if (in != 0)
{
rtx in_reg = inloc ? *inloc : 0;
/* If we merge reloads for two distinct rtl expressions that
are identical in content, there might be duplicate address
reloads. Remove the extra set now, so that if we later find
that we can inherit this reload, we can get rid of the
address reloads altogether.
Do not do this if both reloads are optional since the result
would be an optional reload which could potentially leave
unresolved address replacements.
It is not sufficient to call transfer_replacements since
choose_reload_regs will remove the replacements for address
reloads of inherited reloads which results in the same
problem. */
if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
&& ! (rld[i].optional && optional))
{
/* We must keep the address reload with the lower operand
number alive. */
if (opnum > rld[i].opnum)
{
remove_address_replacements (in);
in = rld[i].in;
in_reg = rld[i].in_reg;
}
else
remove_address_replacements (rld[i].in);
}
rld[i].in = in;
rld[i].in_reg = in_reg;
}
if (out != 0)
{
rld[i].out = out;
rld[i].out_reg = outloc ? *outloc : 0;
}
if (reg_class_subset_p (class, rld[i].class))
rld[i].class = class;
rld[i].optional &= optional;
if (MERGE_TO_OTHER (type, rld[i].when_needed,
opnum, rld[i].opnum))
rld[i].when_needed = RELOAD_OTHER;
rld[i].opnum = MIN (rld[i].opnum, opnum);
}
/* If the ostensible rtx being reloaded differs from the rtx found
in the location to substitute, this reload is not safe to combine
because we cannot reliably tell whether it appears in the insn. */
if (in != 0 && in != *inloc)
rld[i].nocombine = 1;
#if 0
/* This was replaced by changes in find_reloads_address_1 and the new
function inc_for_reload, which go with a new meaning of reload_inc. */
/* If this is an IN/OUT reload in an insn that sets the CC,
it must be for an autoincrement. It doesn't work to store
the incremented value after the insn because that would clobber the CC.
So we must do the increment of the value reloaded from,
increment it, store it back, then decrement again. */
if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
{
out = 0;
rld[i].out = 0;
rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
/* If we did not find a nonzero amount-to-increment-by,
that contradicts the belief that IN is being incremented
in an address in this insn. */
if (rld[i].inc == 0)
abort ();
}
#endif
/* If we will replace IN and OUT with the reload-reg,
record where they are located so that substitution need
not do a tree walk. */
if (replace_reloads)
{
if (inloc != 0)
{
struct replacement *r = &replacements[n_replacements++];
r->what = i;
r->subreg_loc = in_subreg_loc;
r->where = inloc;
r->mode = inmode;
}
if (outloc != 0 && outloc != inloc)
{
struct replacement *r = &replacements[n_replacements++];
r->what = i;
r->where = outloc;
r->subreg_loc = out_subreg_loc;
r->mode = outmode;
}
}
/* If this reload is just being introduced and it has both
an incoming quantity and an outgoing quantity that are
supposed to be made to match, see if either one of the two
can serve as the place to reload into.
If one of them is acceptable, set rld[i].reg_rtx
to that one. */
if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
{
rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
inmode, outmode,
rld[i].class, i,
earlyclobber_operand_p (out));
/* If the outgoing register already contains the same value
as the incoming one, we can dispense with loading it.
The easiest way to tell the caller that is to give a phony
value for the incoming operand (same as outgoing one). */
if (rld[i].reg_rtx == out
&& (GET_CODE (in) == REG || CONSTANT_P (in))
&& 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
static_reload_reg_p, i, inmode))
rld[i].in = out;
}
/* If this is an input reload and the operand contains a register that
dies in this insn and is used nowhere else, see if it is the right class
to be used for this reload. Use it if so. (This occurs most commonly
in the case of paradoxical SUBREGs and in-out reloads). We cannot do
this if it is also an output reload that mentions the register unless
the output is a SUBREG that clobbers an entire register.
Note that the operand might be one of the spill regs, if it is a
pseudo reg and we are in a block where spilling has not taken place.
But if there is no spilling in this block, that is OK.
An explicitly used hard reg cannot be a spill reg. */
if (rld[i].reg_rtx == 0 && in != 0)
{
rtx note;
int regno;
enum machine_mode rel_mode = inmode;
if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
rel_mode = outmode;
for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_DEAD
&& GET_CODE (XEXP (note, 0)) == REG
&& (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
&& reg_mentioned_p (XEXP (note, 0), in)
&& ! refers_to_regno_for_reload_p (regno,
(regno
+ HARD_REGNO_NREGS (regno,
rel_mode)),
PATTERN (this_insn), inloc)
/* If this is also an output reload, IN cannot be used as
the reload register if it is set in this insn unless IN
is also OUT. */
&& (out == 0 || in == out
|| ! hard_reg_set_here_p (regno,
(regno
+ HARD_REGNO_NREGS (regno,
rel_mode)),
PATTERN (this_insn)))
/* ??? Why is this code so different from the previous?
Is there any simple coherent way to describe the two together?
What's going on here. */
&& (in != out
|| (GET_CODE (in) == SUBREG
&& (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
/ UNITS_PER_WORD)
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
/* Make sure the operand fits in the reg that dies. */
&& (GET_MODE_SIZE (rel_mode)
<= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
&& HARD_REGNO_MODE_OK (regno, inmode)
&& HARD_REGNO_MODE_OK (regno, outmode))
{
unsigned int offs;
unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
HARD_REGNO_NREGS (regno, outmode));
for (offs = 0; offs < nregs; offs++)
if (fixed_regs[regno + offs]
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
regno + offs))
break;
if (offs == nregs
&& (! (refers_to_regno_for_reload_p
(regno, (regno + HARD_REGNO_NREGS (regno, inmode)),
in, (rtx *)0))
|| can_reload_into (in, regno, inmode)))
{
rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
break;
}
}
}
if (out)
output_reloadnum = i;
return i;
}
/* Record an additional place we must replace a value
for which we have already recorded a reload.
RELOADNUM is the value returned by push_reload
when the reload was recorded.
This is used in insn patterns that use match_dup. */
static void
push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
{
if (replace_reloads)
{
struct replacement *r = &replacements[n_replacements++];
r->what = reloadnum;
r->where = loc;
r->subreg_loc = 0;
r->mode = mode;
}
}
/* Duplicate any replacement we have recorded to apply at
location ORIG_LOC to also be performed at DUP_LOC.
This is used in insn patterns that use match_dup. */
static void
dup_replacements (rtx *dup_loc, rtx *orig_loc)
{
int i, n = n_replacements;
for (i = 0; i < n; i++)
{
struct replacement *r = &replacements[i];
if (r->where == orig_loc)
push_replacement (dup_loc, r->what, r->mode);
}
}
/* Transfer all replacements that used to be in reload FROM to be in
reload TO. */
void
transfer_replacements (int to, int from)
{
int i;
for (i = 0; i < n_replacements; i++)
if (replacements[i].what == from)
replacements[i].what = to;
}
/* IN_RTX is the value loaded by a reload that we now decided to inherit,
or a subpart of it. If we have any replacements registered for IN_RTX,
cancel the reloads that were supposed to load them.
Return nonzero if we canceled any reloads. */
int
remove_address_replacements (rtx in_rtx)
{
int i, j;
char reload_flags[MAX_RELOADS];
int something_changed = 0;
memset (reload_flags, 0, sizeof reload_flags);
for (i = 0, j = 0; i < n_replacements; i++)
{
if (loc_mentioned_in_p (replacements[i].where, in_rtx))
reload_flags[replacements[i].what] |= 1;
else
{
replacements[j++] = replacements[i];
reload_flags[replacements[i].what] |= 2;
}
}
/* Note that the following store must be done before the recursive calls. */
n_replacements = j;
for (i = n_reloads - 1; i >= 0; i--)
{
if (reload_flags[i] == 1)
{
deallocate_reload_reg (i);
remove_address_replacements (rld[i].in);
rld[i].in = 0;
something_changed = 1;
}
}
return something_changed;
}
/* If there is only one output reload, and it is not for an earlyclobber
operand, try to combine it with a (logically unrelated) input reload
to reduce the number of reload registers needed.
This is safe if the input reload does not appear in
the value being output-reloaded, because this implies
it is not needed any more once the original insn completes.
If that doesn't work, see we can use any of the registers that
die in this insn as a reload register. We can if it is of the right
class and does not appear in the value being output-reloaded. */
static void
combine_reloads (void)
{
int i;
int output_reload = -1;
int secondary_out = -1;
rtx note;
/* Find the output reload; return unless there is exactly one
and that one is mandatory. */
for (i = 0; i < n_reloads; i++)
if (rld[i].out != 0)
{
if (output_reload >= 0)
return;
output_reload = i;
}
if (output_reload < 0 || rld[output_reload].optional)
return;
/* An input-output reload isn't combinable. */
if (rld[output_reload].in != 0)
return;
/* If this reload is for an earlyclobber operand, we can't do anything. */
if (earlyclobber_operand_p (rld[output_reload].out))
return;
/* If there is a reload for part of the address of this operand, we would
need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
its life to the point where doing this combine would not lower the
number of spill registers needed. */
for (i = 0; i < n_reloads; i++)
if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
&& rld[i].opnum == rld[output_reload].opnum)
return;
/* Check each input reload; can we combine it? */
for (i = 0; i < n_reloads; i++)
if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
/* Life span of this reload must not extend past main insn. */
&& rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
&& rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
&& rld[i].when_needed != RELOAD_OTHER
&& (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
== CLASS_MAX_NREGS (rld[output_reload].class,
rld[output_reload].outmode))
&& rld[i].inc == 0
&& rld[i].reg_rtx == 0
#ifdef SECONDARY_MEMORY_NEEDED
/* Don't combine two reloads with different secondary
memory locations. */
&& (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
|| secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
|| rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
#endif
&& (SMALL_REGISTER_CLASSES
? (rld[i].class == rld[output_reload].class)
: (reg_class_subset_p (rld[i].class,
rld[output_reload].class)
|| reg_class_subset_p (rld[output_reload].class,
rld[i].class)))
&& (MATCHES (rld[i].in, rld[output_reload].out)
/* Args reversed because the first arg seems to be
the one that we imagine being modified
while the second is the one that might be affected. */
|| (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
rld[i].in)
/* However, if the input is a register that appears inside
the output, then we also can't share.
Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
If the same reload reg is used for both reg 69 and the
result to be stored in memory, then that result
will clobber the address of the memory ref. */
&& ! (GET_CODE (rld[i].in) == REG
&& reg_overlap_mentioned_for_reload_p (rld[i].in,
rld[output_reload].out))))
&& ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
rld[i].when_needed != RELOAD_FOR_INPUT)
&& (reg_class_size[(int) rld[i].class]
|| SMALL_REGISTER_CLASSES)
/* We will allow making things slightly worse by combining an
input and an output, but no worse than that. */
&& (rld[i].when_needed == RELOAD_FOR_INPUT
|| rld[i].when_needed == RELOAD_FOR_OUTPUT))
{
int j;
/* We have found a reload to combine with! */
rld[i].out = rld[output_reload].out;
rld[i].out_reg = rld[output_reload].out_reg;
rld[i].outmode = rld[output_reload].outmode;
/* Mark the old output reload as inoperative. */
rld[output_reload].out = 0;
/* The combined reload is needed for the entire insn. */
rld[i].when_needed = RELOAD_OTHER;
/* If the output reload had a secondary reload, copy it. */
if (rld[output_reload].secondary_out_reload != -1)
{
rld[i].secondary_out_reload
= rld[output_reload].secondary_out_reload;
rld[i].secondary_out_icode
= rld[output_reload].secondary_out_icode;
}
#ifdef SECONDARY_MEMORY_NEEDED
/* Copy any secondary MEM. */
if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
= secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
#endif
/* If required, minimize the register class. */
if (reg_class_subset_p (rld[output_reload].class,
rld[i].class))
rld[i].class = rld[output_reload].class;
/* Transfer all replacements from the old reload to the combined. */
for (j = 0; j < n_replacements; j++)
if (replacements[j].what == output_reload)
replacements[j].what = i;
return;
}
/* If this insn has only one operand that is modified or written (assumed
to be the first), it must be the one corresponding to this reload. It
is safe to use anything that dies in this insn for that output provided
that it does not occur in the output (we already know it isn't an
earlyclobber. If this is an asm insn, give up. */
if (INSN_CODE (this_insn) == -1)
return;
for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
|| insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
return;
/* See if some hard register that dies in this insn and is not used in
the output is the right class. Only works if the register we pick
up can fully hold our output reload. */
for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_DEAD
&& GET_CODE (XEXP (note, 0)) == REG
&& ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
rld[output_reload].out)
&& REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
&& HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
&& TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
REGNO (XEXP (note, 0)))
&& (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
<= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
/* Ensure that a secondary or tertiary reload for this output
won't want this register. */
&& ((secondary_out = rld[output_reload].secondary_out_reload) == -1
|| (! (TEST_HARD_REG_BIT
(reg_class_contents[(int) rld[secondary_out].class],
REGNO (XEXP (note, 0))))
&& ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
|| ! (TEST_HARD_REG_BIT
(reg_class_contents[(int) rld[secondary_out].class],
REGNO (XEXP (note, 0)))))))
&& ! fixed_regs[REGNO (XEXP (note, 0))])
{
rld[output_reload].reg_rtx
= gen_rtx_REG (rld[output_reload].outmode,
REGNO (XEXP (note, 0)));
return;
}
}
/* Try to find a reload register for an in-out reload (expressions IN and OUT).
See if one of IN and OUT is a register that may be used;
this is desirable since a spill-register won't be needed.
If so, return the register rtx that proves acceptable.
INLOC and OUTLOC are locations where IN and OUT appear in the insn.
CLASS is the register class required for the reload.
If FOR_REAL is >= 0, it is the number of the reload,
and in some cases when it can be discovered that OUT doesn't need
to be computed, clear out rld[FOR_REAL].out.
If FOR_REAL is -1, this should not be done, because this call
is just to see if a register can be found, not to find and install it.
EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
puts an additional constraint on being able to use IN for OUT since
IN must not appear elsewhere in the insn (it is assumed that IN itself
is safe from the earlyclobber). */
static rtx
find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
enum machine_mode inmode, enum machine_mode outmode,
enum reg_class class, int for_real, int earlyclobber)
{
rtx in = real_in;
rtx out = real_out;
int in_offset = 0;
int out_offset = 0;
rtx value = 0;
/* If operands exceed a word, we can't use either of them
unless they have the same size. */
if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
&& (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
|| GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
return 0;
/* Note that {in,out}_offset are needed only when 'in' or 'out'
respectively refers to a hard register. */
/* Find the inside of any subregs. */
while (GET_CODE (out) == SUBREG)
{
if (GET_CODE (SUBREG_REG (out)) == REG
&& REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
GET_MODE (SUBREG_REG (out)),
SUBREG_BYTE (out),
GET_MODE (out));
out = SUBREG_REG (out);
}
while (GET_CODE (in) == SUBREG)
{
if (GET_CODE (SUBREG_REG (in)) == REG
&& REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
GET_MODE (SUBREG_REG (in)),
SUBREG_BYTE (in),
GET_MODE (in));
in = SUBREG_REG (in);
}
/* Narrow down the reg class, the same way push_reload will;
otherwise we might find a dummy now, but push_reload won't. */
class = PREFERRED_RELOAD_CLASS (in, class);
/* See if OUT will do. */
if (GET_CODE (out) == REG
&& REGNO (out) < FIRST_PSEUDO_REGISTER)
{
unsigned int regno = REGNO (out) + out_offset;
unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
rtx saved_rtx;
/* When we consider whether the insn uses OUT,
ignore references within IN. They don't prevent us
from copying IN into OUT, because those refs would
move into the insn that reloads IN.
However, we only ignore IN in its role as this reload.
If the insn uses IN elsewhere and it contains OUT,
that counts. We can't be sure it's the "same" operand
so it might not go through this reload. */
saved_rtx = *inloc;
*inloc = const0_rtx;
if (regno < FIRST_PSEUDO_REGISTER
&& HARD_REGNO_MODE_OK (regno, outmode)
&& ! refers_to_regno_for_reload_p (regno, regno + nwords,
PATTERN (this_insn), outloc))
{
unsigned int i;
for (i = 0; i < nwords; i++)
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
regno + i))
break;
if (i == nwords)
{
if (GET_CODE (real_out) == REG)
value = real_out;
else
value = gen_rtx_REG (outmode, regno);
}
}
*inloc = saved_rtx;
}
/* Consider using IN if OUT was not acceptable
or if OUT dies in this insn (like the quotient in a divmod insn).
We can't use IN unless it is dies in this insn,
which means we must know accurately which hard regs are live.
Also, the result can't go in IN if IN is used within OUT,
or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
if (hard_regs_live_known
&& GET_CODE (in) == REG
&& REGNO (in) < FIRST_PSEUDO_REGISTER
&& (value == 0
|| find_reg_note (this_insn, REG_UNUSED, real_out))
&& find_reg_note (this_insn, REG_DEAD, real_in)
&& !fixed_regs[REGNO (in)]
&& HARD_REGNO_MODE_OK (REGNO (in),
/* The only case where out and real_out might
have different modes is where real_out
is a subreg, and in that case, out
has a real mode. */
(GET_MODE (out) != VOIDmode
? GET_MODE (out) : outmode)))
{
unsigned int regno = REGNO (in) + in_offset;
unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
&& ! hard_reg_set_here_p (regno, regno + nwords,
PATTERN (this_insn))
&& (! earlyclobber
|| ! refers_to_regno_for_reload_p (regno, regno + nwords,
PATTERN (this_insn), inloc)))
{
unsigned int i;
for (i = 0; i < nwords; i++)
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
regno + i))
break;
if (i == nwords)
{
/* If we were going to use OUT as the reload reg
and changed our mind, it means OUT is a dummy that
dies here. So don't bother copying value to it. */
if (for_real >= 0 && value == real_out)
rld[for_real].out = 0;
if (GET_CODE (real_in) == REG)
value = real_in;
else
value = gen_rtx_REG (inmode, regno);
}
}
}
return value;
}
/* This page contains subroutines used mainly for determining
whether the IN or an OUT of a reload can serve as the
reload register. */
/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
int
earlyclobber_operand_p (rtx x)
{
int i;
for (i = 0; i < n_earlyclobbers; i++)
if (reload_earlyclobbers[i] == x)
return 1;
return 0;
}
/* Return 1 if expression X alters a hard reg in the range
from BEG_REGNO (inclusive) to END_REGNO (exclusive),
either explicitly or in the guise of a pseudo-reg allocated to REGNO.
X should be the body of an instruction. */
static int
hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
{
if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
{
rtx op0 = SET_DEST (x);
while (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
if (GET_CODE (op0) == REG)
{
unsigned int r = REGNO (op0);
/* See if this reg overlaps range under consideration. */
if (r < end_regno
&& r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
return 1;
}
}
else if (GET_CODE (x) == PARALLEL)
{
int i = XVECLEN (x, 0) - 1;
for (; i >= 0; i--)
if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
return 1;
}
return 0;
}
/* Return 1 if ADDR is a valid memory address for mode MODE,
and check that each pseudo reg has the proper kind of
hard reg. */
int
strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
{
GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
return 0;
win:
return 1;
}
/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
if they are the same hard reg, and has special hacks for
autoincrement and autodecrement.
This is specifically intended for find_reloads to use
in determining whether two operands match.
X is the operand whose number is the lower of the two.
The value is 2 if Y contains a pre-increment that matches
a non-incrementing address in X. */
/* ??? To be completely correct, we should arrange to pass
for X the output operand and for Y the input operand.
For now, we assume that the output operand has the lower number
because that is natural in (SET output (... input ...)). */
int
operands_match_p (rtx x, rtx y)
{
int i;
RTX_CODE code = GET_CODE (x);
const char *fmt;
int success_2;
if (x == y)
return 1;
if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
&& (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
&& GET_CODE (SUBREG_REG (y)) == REG)))
{
int j;
if (code == SUBREG)
{
i = REGNO (SUBREG_REG (x));
if (i >= FIRST_PSEUDO_REGISTER)
goto slow;
i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x),
GET_MODE (x));
}
else
i = REGNO (x);
if (GET_CODE (y) == SUBREG)
{
j = REGNO (SUBREG_REG (y));
if (j >= FIRST_PSEUDO_REGISTER)
goto slow;
j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
GET_MODE (SUBREG_REG (y)),
SUBREG_BYTE (y),
GET_MODE (y));
}
else
j = REGNO (y);
/* On a WORDS_BIG_ENDIAN machine, point to the last register of a
multiple hard register group, so that for example (reg:DI 0) and
(reg:SI 1) will be considered the same register. */
if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
&& i < FIRST_PSEUDO_REGISTER)
i += HARD_REGNO_NREGS (i, GET_MODE (x)) - 1;
if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
&& j < FIRST_PSEUDO_REGISTER)
j += HARD_REGNO_NREGS (j, GET_MODE (y)) - 1;
return i == j;
}
/* If two operands must match, because they are really a single
operand of an assembler insn, then two postincrements are invalid
because the assembler insn would increment only once.
On the other hand, a postincrement matches ordinary indexing
if the postincrement is the output operand. */
if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
return operands_match_p (XEXP (x, 0), y);
/* Two preincrements are invalid
because the assembler insn would increment only once.
On the other hand, a preincrement matches ordinary indexing
if the preincrement is the input operand.
In this case, return 2, since some callers need to do special
things when this happens. */
if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
|| GET_CODE (y) == PRE_MODIFY)
return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
slow:
/* Now we have disposed of all the cases
in which different rtx codes can match. */
if (code != GET_CODE (y))
return 0;
if (code == LABEL_REF)
return XEXP (x, 0) == XEXP (y, 0);
if (code == SYMBOL_REF)
return XSTR (x, 0) == XSTR (y, 0);
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
return 0;
/* Compare the elements. If any pair of corresponding elements
fail to match, return 0 for the whole things. */
success_2 = 0;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
int val, j;
switch (fmt[i])
{
case 'w':
if (XWINT (x, i) != XWINT (y, i))
return 0;
break;
case 'i':
if (XINT (x, i) != XINT (y, i))
return 0;
break;
case 'e':
val = operands_match_p (XEXP (x, i), XEXP (y, i));
if (val == 0)
return 0;
/* If any subexpression returns 2,
we should return 2 if we are successful. */
if (val == 2)
success_2 = 1;
break;
case '0':
break;
case 'E':
if (XVECLEN (x, i) != XVECLEN (y, i))
return 0;
for (j = XVECLEN (x, i) - 1; j >= 0; --j)
{
val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
if (val == 0)
return 0;
if (val == 2)
success_2 = 1;
}
break;
/* It is believed that rtx's at this level will never
contain anything but integers and other rtx's,
except for within LABEL_REFs and SYMBOL_REFs. */
default:
abort ();
}
}
return 1 + success_2;
}
/* Describe the range of registers or memory referenced by X.
If X is a register, set REG_FLAG and put the first register
number into START and the last plus one into END.
If X is a memory reference, put a base address into BASE
and a range of integer offsets into START and END.
If X is pushing on the stack, we can assume it causes no trouble,
so we set the SAFE field. */
static struct decomposition
decompose (rtx x)
{
struct decomposition val;
int all_const = 0;
val.reg_flag = 0;
val.safe = 0;
val.base = 0;
if (GET_CODE (x) == MEM)
{
rtx base = NULL_RTX, offset = 0;
rtx addr = XEXP (x, 0);
if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
|| GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
{
val.base = XEXP (addr, 0);
val.start = -GET_MODE_SIZE (GET_MODE (x));
val.end = GET_MODE_SIZE (GET_MODE (x));
val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
return val;
}
if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
{
if (GET_CODE (XEXP (addr, 1)) == PLUS
&& XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
&& CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
{
val.base = XEXP (addr, 0);
val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
return val;
}
}
if (GET_CODE (addr) == CONST)
{
addr = XEXP (addr, 0);
all_const = 1;
}
if (GET_CODE (addr) == PLUS)
{
if (CONSTANT_P (XEXP (addr, 0)))
{
base = XEXP (addr, 1);
offset = XEXP (addr, 0);
}
else if (CONSTANT_P (XEXP (addr, 1)))
{
base = XEXP (addr, 0);
offset = XEXP (addr, 1);
}
}
if (offset == 0)
{
base = addr;
offset = const0_rtx;
}
if (GET_CODE (offset) == CONST)
offset = XEXP (offset, 0);
if (GET_CODE (offset) == PLUS)
{
if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
{
base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
offset = XEXP (offset, 0);
}
else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
{
base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
offset = XEXP (offset, 1);
}
else
{
base = gen_rtx_PLUS (GET_MODE (base), base, offset);
offset = const0_rtx;
}
}
else if (GET_CODE (offset) != CONST_INT)
{
base = gen_rtx_PLUS (GET_MODE (base), base, offset);
offset = const0_rtx;
}
if (all_const && GET_CODE (base) == PLUS)
base = gen_rtx_CONST (GET_MODE (base), base);
if (GET_CODE (offset) != CONST_INT)
abort ();
val.start = INTVAL (offset);
val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
val.base = base;
return val;
}
else if (GET_CODE (x) == REG)
{
val.reg_flag = 1;
val.start = true_regnum (x);
if (val.start < 0)
{
/* A pseudo with no hard reg. */
val.start = REGNO (x);
val.end = val.start + 1;
}
else
/* A hard reg. */
val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
}
else if (GET_CODE (x) == SUBREG)
{
if (GET_CODE (SUBREG_REG (x)) != REG)
/* This could be more precise, but it's good enough. */
return decompose (SUBREG_REG (x));
val.reg_flag = 1;
val.start = true_regnum (x);
if (val.start < 0)
return decompose (SUBREG_REG (x));
else
/* A hard reg. */
val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
}
else if (CONSTANT_P (x)
/* This hasn't been assigned yet, so it can't conflict yet. */
|| GET_CODE (x) == SCRATCH)
val.safe = 1;
else
abort ();
return val;
}
/* Return 1 if altering Y will not modify the value of X.
Y is also described by YDATA, which should be decompose (Y). */
static int
immune_p (rtx x, rtx y, struct decomposition ydata)
{
struct decomposition xdata;
if (ydata.reg_flag)
return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
if (ydata.safe)
return 1;
if (GET_CODE (y) != MEM)
abort ();
/* If Y is memory and X is not, Y can't affect X. */
if (GET_CODE (x) != MEM)
return 1;
xdata = decompose (x);
if (! rtx_equal_p (xdata.base, ydata.base))
{
/* If bases are distinct symbolic constants, there is no overlap. */
if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
return 1;
/* Constants and stack slots never overlap. */
if (CONSTANT_P (xdata.base)
&& (ydata.base == frame_pointer_rtx
|| ydata.base == hard_frame_pointer_rtx
|| ydata.base == stack_pointer_rtx))
return 1;
if (CONSTANT_P (ydata.base)
&& (xdata.base == frame_pointer_rtx
|| xdata.base == hard_frame_pointer_rtx
|| xdata.base == stack_pointer_rtx))
return 1;
/* If either base is variable, we don't know anything. */
return 0;
}
return (xdata.start >= ydata.end || ydata.start >= xdata.end);
}
/* Similar, but calls decompose. */
int
safe_from_earlyclobber (rtx op, rtx clobber)
{
struct decomposition early_data;
early_data = decompose (clobber);
return immune_p (op, clobber, early_data);
}
/* Main entry point of this file: search the body of INSN
for values that need reloading and record them with push_reload.
REPLACE nonzero means record also where the values occur
so that subst_reloads can be used.
IND_LEVELS says how many levels of indirection are supported by this
machine; a value of zero means that a memory reference is not a valid
memory address.
LIVE_KNOWN says we have valid information about which hard
regs are live at each point in the program; this is true when
we are called from global_alloc but false when stupid register
allocation has been done.
RELOAD_REG_P if nonzero is a vector indexed by hard reg number
which is nonnegative if the reg has been commandeered for reloading into.
It is copied into STATIC_RELOAD_REG_P and referenced from there
by various subroutines.
Return TRUE if some operands need to be changed, because of swapping
commutative operands, reg_equiv_address substitution, or whatever. */
int
find_reloads (rtx insn, int replace, int ind_levels, int live_known,
short *reload_reg_p)
{
int insn_code_number;
int i, j;
int noperands;
/* These start out as the constraints for the insn
and they are chewed up as we consider alternatives. */
char *constraints[MAX_RECOG_OPERANDS];
/* These are the preferred classes for an operand, or NO_REGS if it isn't
a register. */
enum reg_class preferred_class[MAX_RECOG_OPERANDS];
char pref_or_nothing[MAX_RECOG_OPERANDS];
/* Nonzero for a MEM operand whose entire address needs a reload. */
int address_reloaded[MAX_RECOG_OPERANDS];
/* Nonzero for an address operand that needs to be completely reloaded. */
int address_operand_reloaded[MAX_RECOG_OPERANDS];
/* Value of enum reload_type to use for operand. */
enum reload_type operand_type[MAX_RECOG_OPERANDS];
/* Value of enum reload_type to use within address of operand. */
enum reload_type address_type[MAX_RECOG_OPERANDS];
/* Save the usage of each operand. */
enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
int no_input_reloads = 0, no_output_reloads = 0;
int n_alternatives;
int this_alternative[MAX_RECOG_OPERANDS];
char this_alternative_match_win[MAX_RECOG_OPERANDS];
char this_alternative_win[MAX_RECOG_OPERANDS];
char this_alternative_offmemok[MAX_RECOG_OPERANDS];
char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
int this_alternative_matches[MAX_RECOG_OPERANDS];
int swapped;
int goal_alternative[MAX_RECOG_OPERANDS];
int this_alternative_number;
int goal_alternative_number = 0;
int operand_reloadnum[MAX_RECOG_OPERANDS];
int goal_alternative_matches[MAX_RECOG_OPERANDS];
int goal_alternative_matched[MAX_RECOG_OPERANDS];
char goal_alternative_match_win[MAX_RECOG_OPERANDS];
char goal_alternative_win[MAX_RECOG_OPERANDS];
char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
int goal_alternative_swapped;
int best;
int commutative;
char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
rtx substed_operand[MAX_RECOG_OPERANDS];
rtx body = PATTERN (insn);
rtx set = single_set (insn);
int goal_earlyclobber = 0, this_earlyclobber;
enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
int retval = 0;
this_insn = insn;
n_reloads = 0;
n_replacements = 0;
n_earlyclobbers = 0;
replace_reloads = replace;
hard_regs_live_known = live_known;
static_reload_reg_p = reload_reg_p;
/* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
neither are insns that SET cc0. Insns that use CC0 are not allowed
to have any input reloads. */
if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
no_output_reloads = 1;
#ifdef HAVE_cc0
if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
no_input_reloads = 1;
if (reg_set_p (cc0_rtx, PATTERN (insn)))
no_output_reloads = 1;
#endif
#ifdef SECONDARY_MEMORY_NEEDED
/* The eliminated forms of any secondary memory locations are per-insn, so
clear them out here. */
if (secondary_memlocs_elim_used)
{
memset (secondary_memlocs_elim, 0,
sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
secondary_memlocs_elim_used = 0;
}
#endif
/* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
is cheap to move between them. If it is not, there may not be an insn
to do the copy, so we may need a reload. */
if (GET_CODE (body) == SET
&& GET_CODE (SET_DEST (body)) == REG
&& REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
&& GET_CODE (SET_SRC (body)) == REG
&& REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
&& REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
REGNO_REG_CLASS (REGNO (SET_SRC (body))),
REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
return 0;
extract_insn (insn);
noperands = reload_n_operands = recog_data.n_operands;
n_alternatives = recog_data.n_alternatives;
/* Just return "no reloads" if insn has no operands with constraints. */
if (noperands == 0 || n_alternatives == 0)
return 0;
insn_code_number = INSN_CODE (insn);
this_insn_is_asm = insn_code_number < 0;
memcpy (operand_mode, recog_data.operand_mode,
noperands * sizeof (enum machine_mode));
memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
commutative = -1;
/* If we will need to know, later, whether some pair of operands
are the same, we must compare them now and save the result.
Reloading the base and index registers will clobber them
and afterward they will fail to match. */
for (i = 0; i < noperands; i++)
{
char *p;
int c;
substed_operand[i] = recog_data.operand[i];
p = constraints[i];
modified[i] = RELOAD_READ;
/* Scan this operand's constraint to see if it is an output operand,
an in-out operand, is commutative, or should match another. */
while ((c = *p))
{
p += CONSTRAINT_LEN (c, p);
if (c == '=')
modified[i] = RELOAD_WRITE;
else if (c == '+')
modified[i] = RELOAD_READ_WRITE;
else if (c == '%')
{
/* The last operand should not be marked commutative. */
if (i == noperands - 1)
abort ();
/* We currently only support one commutative pair of
operands. Some existing asm code currently uses more
than one pair. Previously, that would usually work,
but sometimes it would crash the compiler. We
continue supporting that case as well as we can by
silently ignoring all but the first pair. In the
future we may handle it correctly. */
if (commutative < 0)
commutative = i;
else if (!this_insn_is_asm)
abort ();
}
else if (ISDIGIT (c))
{
c = strtoul (p - 1, &p, 10);
operands_match[c][i]
= operands_match_p (recog_data.operand[c],
recog_data.operand[i]);
/* An operand may not match itself. */
if (c == i)
abort ();
/* If C can be commuted with C+1, and C might need to match I,
then C+1 might also need to match I. */
if (commutative >= 0)
{
if (c == commutative || c == commutative + 1)
{
int other = c + (c == commutative ? 1 : -1);
operands_match[other][i]
= operands_match_p (recog_data.operand[other],
recog_data.operand[i]);
}
if (i == commutative || i == commutative + 1)
{
int other = i + (i == commutative ? 1 : -1);
operands_match[c][other]
= operands_match_p (recog_data.operand[c],
recog_data.operand[other]);
}
/* Note that C is supposed to be less than I.
No need to consider altering both C and I because in
that case we would alter one into the other. */
}
}
}
}
/* Examine each operand that is a memory reference or memory address
and reload parts of the addresses into index registers.
Also here any references to pseudo regs that didn't get hard regs
but are equivalent to constants get replaced in the insn itself
with those constants. Nobody will ever see them again.
Finally, set up the preferred classes of each operand. */
for (i = 0; i < noperands; i++)
{
RTX_CODE code = GET_CODE (recog_data.operand[i]);
address_reloaded[i] = 0;
address_operand_reloaded[i] = 0;
operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
: modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
: RELOAD_OTHER);
address_type[i]
= (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
: modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
: RELOAD_OTHER);
if (*constraints[i] == 0)
/* Ignore things like match_operator operands. */
;
else if (constraints[i][0] == 'p'
|| EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
{
address_operand_reloaded[i]
= find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
recog_data.operand[i],
recog_data.operand_loc[i],
i, operand_type[i], ind_levels, insn);
/* If we now have a simple operand where we used to have a
PLUS or MULT, re-recognize and try again. */
if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
|| GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
&& (GET_CODE (recog_data.operand[i]) == MULT
|| GET_CODE (recog_data.operand[i]) == PLUS))
{
INSN_CODE (insn) = -1;
retval = find_reloads (insn, replace, ind_levels, live_known,
reload_reg_p);
return retval;
}
recog_data.operand[i] = *recog_data.operand_loc[i];
substed_operand[i] = recog_data.operand[i];
/* Address operands are reloaded in their existing mode,
no matter what is specified in the machine description. */
operand_mode[i] = GET_MODE (recog_data.operand[i]);
}
else if (code == MEM)
{
address_reloaded[i]
= find_reloads_address (GET_MODE (recog_data.operand[i]),
recog_data.operand_loc[i],
XEXP (recog_data.operand[i], 0),
&XEXP (recog_data.operand[i], 0),
i, address_type[i], ind_levels, insn);
recog_data.operand[i] = *recog_data.operand_loc[i];
substed_operand[i] = recog_data.operand[i];
}
else if (code == SUBREG)
{
rtx reg = SUBREG_REG (recog_data.operand[i]);
rtx op
= find_reloads_toplev (recog_data.operand[i], i, address_type[i],
ind_levels,
set != 0
&& &SET_DEST (set) == recog_data.operand_loc[i],
insn,
&address_reloaded[i]);
/* If we made a MEM to load (a part of) the stackslot of a pseudo
that didn't get a hard register, emit a USE with a REG_EQUAL
note in front so that we might inherit a previous, possibly
wider reload. */
if (replace
&& GET_CODE (op) == MEM
&& GET_CODE (reg) == REG
&& (GET_MODE_SIZE (GET_MODE (reg))
>= GET_MODE_SIZE (GET_MODE (op))))
set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
insn),
REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
substed_operand[i] = recog_data.operand[i] = op;
}
else if (code == PLUS || GET_RTX_CLASS (code) == '1')
/* We can get a PLUS as an "operand" as a result of register
elimination. See eliminate_regs and gen_reload. We handle
a unary operator by reloading the operand. */
substed_operand[i] = recog_data.operand[i]
= find_reloads_toplev (recog_data.operand[i], i, address_type[i],
ind_levels, 0, insn,
&address_reloaded[i]);
else if (code == REG)
{
/* This is equivalent to calling find_reloads_toplev.
The code is duplicated for speed.
When we find a pseudo always equivalent to a constant,
we replace it by the constant. We must be sure, however,
that we don't try to replace it in the insn in which it
is being set. */
int regno = REGNO (recog_data.operand[i]);
if (reg_equiv_constant[regno] != 0
&& (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
{
/* Record the existing mode so that the check if constants are
allowed will work when operand_mode isn't specified. */
if (operand_mode[i] == VOIDmode)
operand_mode[i] = GET_MODE (recog_data.operand[i]);
substed_operand[i] = recog_data.operand[i]
= reg_equiv_constant[regno];
}
if (reg_equiv_memory_loc[regno] != 0
&& (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
/* We need not give a valid is_set_dest argument since the case
of a constant equivalence was checked above. */
substed_operand[i] = recog_data.operand[i]
= find_reloads_toplev (recog_data.operand[i], i, address_type[i],
ind_levels, 0, insn,
&address_reloaded[i]);
}
/* If the operand is still a register (we didn't replace it with an
equivalent), get the preferred class to reload it into. */
code = GET_CODE (recog_data.operand[i]);
preferred_class[i]
= ((code == REG && REGNO (recog_data.operand[i])
>= FIRST_PSEUDO_REGISTER)
? reg_preferred_class (REGNO (recog_data.operand[i]))
: NO_REGS);
pref_or_nothing[i]
= (code == REG
&& REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
&& reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
}
/* If this is simply a copy from operand 1 to operand 0, merge the
preferred classes for the operands. */
if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
&& recog_data.operand[1] == SET_SRC (set))
{
preferred_class[0] = preferred_class[1]
= reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
pref_or_nothing[0] |= pref_or_nothing[1];
pref_or_nothing[1] |= pref_or_nothing[0];
}
/* Now see what we need for pseudo-regs that didn't get hard regs
or got the wrong kind of hard reg. For this, we must consider
all the operands together against the register constraints. */
best = MAX_RECOG_OPERANDS * 2 + 600;
swapped = 0;
goal_alternative_swapped = 0;
try_swapped:
/* The constraints are made of several alternatives.
Each operand's constraint looks like foo,bar,... with commas
separating the alternatives. The first alternatives for all
operands go together, the second alternatives go together, etc.
First loop over alternatives. */
for (this_alternative_number = 0;
this_alternative_number < n_alternatives;
this_alternative_number++)
{
/* Loop over operands for one constraint alternative. */
/* LOSERS counts those that don't fit this alternative
and would require loading. */
int losers = 0;
/* BAD is set to 1 if it some operand can't fit this alternative
even after reloading. */
int bad = 0;
/* REJECT is a count of how undesirable this alternative says it is
if any reloading is required. If the alternative matches exactly
then REJECT is ignored, but otherwise it gets this much
counted against it in addition to the reloading needed. Each
? counts three times here since we want the disparaging caused by
a bad register class to only count 1/3 as much. */
int reject = 0;
this_earlyclobber = 0;
for (i = 0; i < noperands; i++)
{
char *p = constraints[i];
char *end;
int len;
int win = 0;
int did_match = 0;
/* 0 => this operand can be reloaded somehow for this alternative. */
int badop = 1;
/* 0 => this operand can be reloaded if the alternative allows regs. */
int winreg = 0;
int c;
int m;
rtx operand = recog_data.operand[i];
int offset = 0;
/* Nonzero means this is a MEM that must be reloaded into a reg
regardless of what the constraint says. */
int force_reload = 0;
int offmemok = 0;
/* Nonzero if a constant forced into memory would be OK for this
operand. */
int constmemok = 0;
int earlyclobber = 0;
/* If the predicate accepts a unary operator, it means that
we need to reload the operand, but do not do this for
match_operator and friends. */
if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
operand = XEXP (operand, 0);
/* If the operand is a SUBREG, extract
the REG or MEM (or maybe even a constant) within.
(Constants can occur as a result of reg_equiv_constant.) */
while (GET_CODE (operand) == SUBREG)
{
/* Offset only matters when operand is a REG and
it is a hard reg. This is because it is passed
to reg_fits_class_p if it is a REG and all pseudos
return 0 from that function. */
if (GET_CODE (SUBREG_REG (operand)) == REG
&& REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
{
if (!subreg_offset_representable_p
(REGNO (SUBREG_REG (operand)),
GET_MODE (SUBREG_REG (operand)),
SUBREG_BYTE (operand),
GET_MODE (operand)))
force_reload = 1;
offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
GET_MODE (SUBREG_REG (operand)),
SUBREG_BYTE (operand),
GET_MODE (operand));
}
operand = SUBREG_REG (operand);
/* Force reload if this is a constant or PLUS or if there may
be a problem accessing OPERAND in the outer mode. */
if (CONSTANT_P (operand)
|| GET_CODE (operand) == PLUS
/* We must force a reload of paradoxical SUBREGs
of a MEM because the alignment of the inner value
may not be enough to do the outer reference. On
big-endian machines, it may also reference outside
the object.
On machines that extend byte operations and we have a
SUBREG where both the inner and outer modes are no wider
than a word and the inner mode is narrower, is integral,
and gets extended when loaded from memory, combine.c has
made assumptions about the behavior of the machine in such
register access. If the data is, in fact, in memory we
must always load using the size assumed to be in the
register and let the insn do the different-sized
accesses.
This is doubly true if WORD_REGISTER_OPERATIONS. In
this case eliminate_regs has left non-paradoxical
subregs for push_reload to see. Make sure it does
by forcing the reload.
??? When is it right at this stage to have a subreg
of a mem that is _not_ to be handled specially? IMO
those should have been reduced to just a mem. */
|| ((GET_CODE (operand) == MEM
|| (GET_CODE (operand)== REG
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER))
#ifndef WORD_REGISTER_OPERATIONS
&& (((GET_MODE_BITSIZE (GET_MODE (operand))
< BIGGEST_ALIGNMENT)