| /* Definitions for computing resource usage of specific insns. |
| Copyright (C) 1999, 2000, 2001, 2002, 2003 |
| Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to the Free |
| Software Foundation, 59 Temple Place - Suite 330, Boston, MA |
| 02111-1307, USA. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "toplev.h" |
| #include "rtl.h" |
| #include "tm_p.h" |
| #include "hard-reg-set.h" |
| #include "basic-block.h" |
| #include "function.h" |
| #include "regs.h" |
| #include "flags.h" |
| #include "output.h" |
| #include "resource.h" |
| #include "except.h" |
| #include "insn-attr.h" |
| #include "params.h" |
| |
| /* This structure is used to record liveness information at the targets or |
| fallthrough insns of branches. We will most likely need the information |
| at targets again, so save them in a hash table rather than recomputing them |
| each time. */ |
| |
| struct target_info |
| { |
| int uid; /* INSN_UID of target. */ |
| struct target_info *next; /* Next info for same hash bucket. */ |
| HARD_REG_SET live_regs; /* Registers live at target. */ |
| int block; /* Basic block number containing target. */ |
| int bb_tick; /* Generation count of basic block info. */ |
| }; |
| |
| #define TARGET_HASH_PRIME 257 |
| |
| /* Indicates what resources are required at the beginning of the epilogue. */ |
| static struct resources start_of_epilogue_needs; |
| |
| /* Indicates what resources are required at function end. */ |
| static struct resources end_of_function_needs; |
| |
| /* Define the hash table itself. */ |
| static struct target_info **target_hash_table = NULL; |
| |
| /* For each basic block, we maintain a generation number of its basic |
| block info, which is updated each time we move an insn from the |
| target of a jump. This is the generation number indexed by block |
| number. */ |
| |
| static int *bb_ticks; |
| |
| /* Marks registers possibly live at the current place being scanned by |
| mark_target_live_regs. Also used by update_live_status. */ |
| |
| static HARD_REG_SET current_live_regs; |
| |
| /* Marks registers for which we have seen a REG_DEAD note but no assignment. |
| Also only used by the next two functions. */ |
| |
| static HARD_REG_SET pending_dead_regs; |
| |
| static void update_live_status (rtx, rtx, void *); |
| static int find_basic_block (rtx, int); |
| static rtx next_insn_no_annul (rtx); |
| static rtx find_dead_or_set_registers (rtx, struct resources*, |
| rtx*, int, struct resources, |
| struct resources); |
| |
| /* Utility function called from mark_target_live_regs via note_stores. |
| It deadens any CLOBBERed registers and livens any SET registers. */ |
| |
| static void |
| update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED) |
| { |
| int first_regno, last_regno; |
| int i; |
| |
| if (GET_CODE (dest) != REG |
| && (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG)) |
| return; |
| |
| if (GET_CODE (dest) == SUBREG) |
| first_regno = subreg_regno (dest); |
| else |
| first_regno = REGNO (dest); |
| |
| last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest)); |
| |
| if (GET_CODE (x) == CLOBBER) |
| for (i = first_regno; i < last_regno; i++) |
| CLEAR_HARD_REG_BIT (current_live_regs, i); |
| else |
| for (i = first_regno; i < last_regno; i++) |
| { |
| SET_HARD_REG_BIT (current_live_regs, i); |
| CLEAR_HARD_REG_BIT (pending_dead_regs, i); |
| } |
| } |
| |
| /* Find the number of the basic block with correct live register |
| information that starts closest to INSN. Return -1 if we couldn't |
| find such a basic block or the beginning is more than |
| SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for |
| an unlimited search. |
| |
| The delay slot filling code destroys the control-flow graph so, |
| instead of finding the basic block containing INSN, we search |
| backwards toward a BARRIER where the live register information is |
| correct. */ |
| |
| static int |
| find_basic_block (rtx insn, int search_limit) |
| { |
| basic_block bb; |
| |
| /* Scan backwards to the previous BARRIER. Then see if we can find a |
| label that starts a basic block. Return the basic block number. */ |
| for (insn = prev_nonnote_insn (insn); |
| insn && GET_CODE (insn) != BARRIER && search_limit != 0; |
| insn = prev_nonnote_insn (insn), --search_limit) |
| ; |
| |
| /* The closest BARRIER is too far away. */ |
| if (search_limit == 0) |
| return -1; |
| |
| /* The start of the function. */ |
| else if (insn == 0) |
| return ENTRY_BLOCK_PTR->next_bb->index; |
| |
| /* See if any of the upcoming CODE_LABELs start a basic block. If we reach |
| anything other than a CODE_LABEL or note, we can't find this code. */ |
| for (insn = next_nonnote_insn (insn); |
| insn && GET_CODE (insn) == CODE_LABEL; |
| insn = next_nonnote_insn (insn)) |
| { |
| FOR_EACH_BB (bb) |
| if (insn == BB_HEAD (bb)) |
| return bb->index; |
| } |
| |
| return -1; |
| } |
| |
| /* Similar to next_insn, but ignores insns in the delay slots of |
| an annulled branch. */ |
| |
| static rtx |
| next_insn_no_annul (rtx insn) |
| { |
| if (insn) |
| { |
| /* If INSN is an annulled branch, skip any insns from the target |
| of the branch. */ |
| if ((GET_CODE (insn) == JUMP_INSN |
| || GET_CODE (insn) == CALL_INSN |
| || GET_CODE (insn) == INSN) |
| && INSN_ANNULLED_BRANCH_P (insn) |
| && NEXT_INSN (PREV_INSN (insn)) != insn) |
| { |
| rtx next = NEXT_INSN (insn); |
| enum rtx_code code = GET_CODE (next); |
| |
| while ((code == INSN || code == JUMP_INSN || code == CALL_INSN) |
| && INSN_FROM_TARGET_P (next)) |
| { |
| insn = next; |
| next = NEXT_INSN (insn); |
| code = GET_CODE (next); |
| } |
| } |
| |
| insn = NEXT_INSN (insn); |
| if (insn && GET_CODE (insn) == INSN |
| && GET_CODE (PATTERN (insn)) == SEQUENCE) |
| insn = XVECEXP (PATTERN (insn), 0, 0); |
| } |
| |
| return insn; |
| } |
| |
| /* Given X, some rtl, and RES, a pointer to a `struct resource', mark |
| which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS |
| is TRUE, resources used by the called routine will be included for |
| CALL_INSNs. */ |
| |
| void |
| mark_referenced_resources (rtx x, struct resources *res, |
| int include_delayed_effects) |
| { |
| enum rtx_code code = GET_CODE (x); |
| int i, j; |
| unsigned int r; |
| const char *format_ptr; |
| |
| /* Handle leaf items for which we set resource flags. Also, special-case |
| CALL, SET and CLOBBER operators. */ |
| switch (code) |
| { |
| case CONST: |
| case CONST_INT: |
| case CONST_DOUBLE: |
| case CONST_VECTOR: |
| case PC: |
| case SYMBOL_REF: |
| case LABEL_REF: |
| return; |
| |
| case SUBREG: |
| if (GET_CODE (SUBREG_REG (x)) != REG) |
| mark_referenced_resources (SUBREG_REG (x), res, 0); |
| else |
| { |
| unsigned int regno = subreg_regno (x); |
| unsigned int last_regno |
| = regno + HARD_REGNO_NREGS (regno, GET_MODE (x)); |
| |
| if (last_regno > FIRST_PSEUDO_REGISTER) |
| abort (); |
| for (r = regno; r < last_regno; r++) |
| SET_HARD_REG_BIT (res->regs, r); |
| } |
| return; |
| |
| case REG: |
| { |
| unsigned int regno = REGNO (x); |
| unsigned int last_regno |
| = regno + HARD_REGNO_NREGS (regno, GET_MODE (x)); |
| |
| if (last_regno > FIRST_PSEUDO_REGISTER) |
| abort (); |
| for (r = regno; r < last_regno; r++) |
| SET_HARD_REG_BIT (res->regs, r); |
| } |
| return; |
| |
| case MEM: |
| /* If this memory shouldn't change, it really isn't referencing |
| memory. */ |
| if (RTX_UNCHANGING_P (x)) |
| res->unch_memory = 1; |
| else |
| res->memory = 1; |
| res->volatil |= MEM_VOLATILE_P (x); |
| |
| /* Mark registers used to access memory. */ |
| mark_referenced_resources (XEXP (x, 0), res, 0); |
| return; |
| |
| case CC0: |
| res->cc = 1; |
| return; |
| |
| case UNSPEC_VOLATILE: |
| case ASM_INPUT: |
| /* Traditional asm's are always volatile. */ |
| res->volatil = 1; |
| return; |
| |
| case TRAP_IF: |
| res->volatil = 1; |
| break; |
| |
| case ASM_OPERANDS: |
| res->volatil |= MEM_VOLATILE_P (x); |
| |
| /* For all ASM_OPERANDS, we must traverse the vector of input operands. |
| We can not just fall through here since then we would be confused |
| by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate |
| traditional asms unlike their normal usage. */ |
| |
| for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) |
| mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0); |
| return; |
| |
| case CALL: |
| /* The first operand will be a (MEM (xxx)) but doesn't really reference |
| memory. The second operand may be referenced, though. */ |
| mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0); |
| mark_referenced_resources (XEXP (x, 1), res, 0); |
| return; |
| |
| case SET: |
| /* Usually, the first operand of SET is set, not referenced. But |
| registers used to access memory are referenced. SET_DEST is |
| also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */ |
| |
| mark_referenced_resources (SET_SRC (x), res, 0); |
| |
| x = SET_DEST (x); |
| if (GET_CODE (x) == SIGN_EXTRACT |
| || GET_CODE (x) == ZERO_EXTRACT |
| || GET_CODE (x) == STRICT_LOW_PART) |
| mark_referenced_resources (x, res, 0); |
| else if (GET_CODE (x) == SUBREG) |
| x = SUBREG_REG (x); |
| if (GET_CODE (x) == MEM) |
| mark_referenced_resources (XEXP (x, 0), res, 0); |
| return; |
| |
| case CLOBBER: |
| return; |
| |
| case CALL_INSN: |
| if (include_delayed_effects) |
| { |
| /* A CALL references memory, the frame pointer if it exists, the |
| stack pointer, any global registers and any registers given in |
| USE insns immediately in front of the CALL. |
| |
| However, we may have moved some of the parameter loading insns |
| into the delay slot of this CALL. If so, the USE's for them |
| don't count and should be skipped. */ |
| rtx insn = PREV_INSN (x); |
| rtx sequence = 0; |
| int seq_size = 0; |
| int i; |
| |
| /* If we are part of a delay slot sequence, point at the SEQUENCE. */ |
| if (NEXT_INSN (insn) != x) |
| { |
| sequence = PATTERN (NEXT_INSN (insn)); |
| seq_size = XVECLEN (sequence, 0); |
| if (GET_CODE (sequence) != SEQUENCE) |
| abort (); |
| } |
| |
| res->memory = 1; |
| SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM); |
| if (frame_pointer_needed) |
| { |
| SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM); |
| #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM |
| SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM); |
| #endif |
| } |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (global_regs[i]) |
| SET_HARD_REG_BIT (res->regs, i); |
| |
| /* Check for a REG_SETJMP. If it exists, then we must |
| assume that this call can need any register. |
| |
| This is done to be more conservative about how we handle setjmp. |
| We assume that they both use and set all registers. Using all |
| registers ensures that a register will not be considered dead |
| just because it crosses a setjmp call. A register should be |
| considered dead only if the setjmp call returns nonzero. */ |
| if (find_reg_note (x, REG_SETJMP, NULL)) |
| SET_HARD_REG_SET (res->regs); |
| |
| { |
| rtx link; |
| |
| for (link = CALL_INSN_FUNCTION_USAGE (x); |
| link; |
| link = XEXP (link, 1)) |
| if (GET_CODE (XEXP (link, 0)) == USE) |
| { |
| for (i = 1; i < seq_size; i++) |
| { |
| rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i)); |
| if (GET_CODE (slot_pat) == SET |
| && rtx_equal_p (SET_DEST (slot_pat), |
| XEXP (XEXP (link, 0), 0))) |
| break; |
| } |
| if (i >= seq_size) |
| mark_referenced_resources (XEXP (XEXP (link, 0), 0), |
| res, 0); |
| } |
| } |
| } |
| |
| /* ... fall through to other INSN processing ... */ |
| |
| case INSN: |
| case JUMP_INSN: |
| |
| #ifdef INSN_REFERENCES_ARE_DELAYED |
| if (! include_delayed_effects |
| && INSN_REFERENCES_ARE_DELAYED (x)) |
| return; |
| #endif |
| |
| /* No special processing, just speed up. */ |
| mark_referenced_resources (PATTERN (x), res, include_delayed_effects); |
| return; |
| |
| default: |
| break; |
| } |
| |
| /* Process each sub-expression and flag what it needs. */ |
| format_ptr = GET_RTX_FORMAT (code); |
| for (i = 0; i < GET_RTX_LENGTH (code); i++) |
| switch (*format_ptr++) |
| { |
| case 'e': |
| mark_referenced_resources (XEXP (x, i), res, include_delayed_effects); |
| break; |
| |
| case 'E': |
| for (j = 0; j < XVECLEN (x, i); j++) |
| mark_referenced_resources (XVECEXP (x, i, j), res, |
| include_delayed_effects); |
| break; |
| } |
| } |
| |
| /* A subroutine of mark_target_live_regs. Search forward from TARGET |
| looking for registers that are set before they are used. These are dead. |
| Stop after passing a few conditional jumps, and/or a small |
| number of unconditional branches. */ |
| |
| static rtx |
| find_dead_or_set_registers (rtx target, struct resources *res, |
| rtx *jump_target, int jump_count, |
| struct resources set, struct resources needed) |
| { |
| HARD_REG_SET scratch; |
| rtx insn, next; |
| rtx jump_insn = 0; |
| int i; |
| |
| for (insn = target; insn; insn = next) |
| { |
| rtx this_jump_insn = insn; |
| |
| next = NEXT_INSN (insn); |
| |
| /* If this instruction can throw an exception, then we don't |
| know where we might end up next. That means that we have to |
| assume that whatever we have already marked as live really is |
| live. */ |
| if (can_throw_internal (insn)) |
| break; |
| |
| switch (GET_CODE (insn)) |
| { |
| case CODE_LABEL: |
| /* After a label, any pending dead registers that weren't yet |
| used can be made dead. */ |
| AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs); |
| AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs); |
| CLEAR_HARD_REG_SET (pending_dead_regs); |
| |
| continue; |
| |
| case BARRIER: |
| case NOTE: |
| continue; |
| |
| case INSN: |
| if (GET_CODE (PATTERN (insn)) == USE) |
| { |
| /* If INSN is a USE made by update_block, we care about the |
| underlying insn. Any registers set by the underlying insn |
| are live since the insn is being done somewhere else. */ |
| if (INSN_P (XEXP (PATTERN (insn), 0))) |
| mark_set_resources (XEXP (PATTERN (insn), 0), res, 0, |
| MARK_SRC_DEST_CALL); |
| |
| /* All other USE insns are to be ignored. */ |
| continue; |
| } |
| else if (GET_CODE (PATTERN (insn)) == CLOBBER) |
| continue; |
| else if (GET_CODE (PATTERN (insn)) == SEQUENCE) |
| { |
| /* An unconditional jump can be used to fill the delay slot |
| of a call, so search for a JUMP_INSN in any position. */ |
| for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) |
| { |
| this_jump_insn = XVECEXP (PATTERN (insn), 0, i); |
| if (GET_CODE (this_jump_insn) == JUMP_INSN) |
| break; |
| } |
| } |
| |
| default: |
| break; |
| } |
| |
| if (GET_CODE (this_jump_insn) == JUMP_INSN) |
| { |
| if (jump_count++ < 10) |
| { |
| if (any_uncondjump_p (this_jump_insn) |
| || GET_CODE (PATTERN (this_jump_insn)) == RETURN) |
| { |
| next = JUMP_LABEL (this_jump_insn); |
| if (jump_insn == 0) |
| { |
| jump_insn = insn; |
| if (jump_target) |
| *jump_target = JUMP_LABEL (this_jump_insn); |
| } |
| } |
| else if (any_condjump_p (this_jump_insn)) |
| { |
| struct resources target_set, target_res; |
| struct resources fallthrough_res; |
| |
| /* We can handle conditional branches here by following |
| both paths, and then IOR the results of the two paths |
| together, which will give us registers that are dead |
| on both paths. Since this is expensive, we give it |
| a much higher cost than unconditional branches. The |
| cost was chosen so that we will follow at most 1 |
| conditional branch. */ |
| |
| jump_count += 4; |
| if (jump_count >= 10) |
| break; |
| |
| mark_referenced_resources (insn, &needed, 1); |
| |
| /* For an annulled branch, mark_set_resources ignores slots |
| filled by instructions from the target. This is correct |
| if the branch is not taken. Since we are following both |
| paths from the branch, we must also compute correct info |
| if the branch is taken. We do this by inverting all of |
| the INSN_FROM_TARGET_P bits, calling mark_set_resources, |
| and then inverting the INSN_FROM_TARGET_P bits again. */ |
| |
| if (GET_CODE (PATTERN (insn)) == SEQUENCE |
| && INSN_ANNULLED_BRANCH_P (this_jump_insn)) |
| { |
| for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++) |
| INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) |
| = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)); |
| |
| target_set = set; |
| mark_set_resources (insn, &target_set, 0, |
| MARK_SRC_DEST_CALL); |
| |
| for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++) |
| INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) |
| = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)); |
| |
| mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL); |
| } |
| else |
| { |
| mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL); |
| target_set = set; |
| } |
| |
| target_res = *res; |
| COPY_HARD_REG_SET (scratch, target_set.regs); |
| AND_COMPL_HARD_REG_SET (scratch, needed.regs); |
| AND_COMPL_HARD_REG_SET (target_res.regs, scratch); |
| |
| fallthrough_res = *res; |
| COPY_HARD_REG_SET (scratch, set.regs); |
| AND_COMPL_HARD_REG_SET (scratch, needed.regs); |
| AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch); |
| |
| find_dead_or_set_registers (JUMP_LABEL (this_jump_insn), |
| &target_res, 0, jump_count, |
| target_set, needed); |
| find_dead_or_set_registers (next, |
| &fallthrough_res, 0, jump_count, |
| set, needed); |
| IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs); |
| AND_HARD_REG_SET (res->regs, fallthrough_res.regs); |
| break; |
| } |
| else |
| break; |
| } |
| else |
| { |
| /* Don't try this optimization if we expired our jump count |
| above, since that would mean there may be an infinite loop |
| in the function being compiled. */ |
| jump_insn = 0; |
| break; |
| } |
| } |
| |
| mark_referenced_resources (insn, &needed, 1); |
| mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL); |
| |
| COPY_HARD_REG_SET (scratch, set.regs); |
| AND_COMPL_HARD_REG_SET (scratch, needed.regs); |
| AND_COMPL_HARD_REG_SET (res->regs, scratch); |
| } |
| |
| return jump_insn; |
| } |
| |
| /* Given X, a part of an insn, and a pointer to a `struct resource', |
| RES, indicate which resources are modified by the insn. If |
| MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially |
| set by the called routine. |
| |
| If IN_DEST is nonzero, it means we are inside a SET. Otherwise, |
| objects are being referenced instead of set. |
| |
| We never mark the insn as modifying the condition code unless it explicitly |
| SETs CC0 even though this is not totally correct. The reason for this is |
| that we require a SET of CC0 to immediately precede the reference to CC0. |
| So if some other insn sets CC0 as a side-effect, we know it cannot affect |
| our computation and thus may be placed in a delay slot. */ |
| |
| void |
| mark_set_resources (rtx x, struct resources *res, int in_dest, |
| enum mark_resource_type mark_type) |
| { |
| enum rtx_code code; |
| int i, j; |
| unsigned int r; |
| const char *format_ptr; |
| |
| restart: |
| |
| code = GET_CODE (x); |
| |
| switch (code) |
| { |
| case NOTE: |
| case BARRIER: |
| case CODE_LABEL: |
| case USE: |
| case CONST_INT: |
| case CONST_DOUBLE: |
| case CONST_VECTOR: |
| case LABEL_REF: |
| case SYMBOL_REF: |
| case CONST: |
| case PC: |
| /* These don't set any resources. */ |
| return; |
| |
| case CC0: |
| if (in_dest) |
| res->cc = 1; |
| return; |
| |
| case CALL_INSN: |
| /* Called routine modifies the condition code, memory, any registers |
| that aren't saved across calls, global registers and anything |
| explicitly CLOBBERed immediately after the CALL_INSN. */ |
| |
| if (mark_type == MARK_SRC_DEST_CALL) |
| { |
| rtx link; |
| |
| res->cc = res->memory = 1; |
| for (r = 0; r < FIRST_PSEUDO_REGISTER; r++) |
| if (call_used_regs[r] || global_regs[r]) |
| SET_HARD_REG_BIT (res->regs, r); |
| |
| for (link = CALL_INSN_FUNCTION_USAGE (x); |
| link; link = XEXP (link, 1)) |
| if (GET_CODE (XEXP (link, 0)) == CLOBBER) |
| mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1, |
| MARK_SRC_DEST); |
| |
| /* Check for a REG_SETJMP. If it exists, then we must |
| assume that this call can clobber any register. */ |
| if (find_reg_note (x, REG_SETJMP, NULL)) |
| SET_HARD_REG_SET (res->regs); |
| } |
| |
| /* ... and also what its RTL says it modifies, if anything. */ |
| |
| case JUMP_INSN: |
| case INSN: |
| |
| /* An insn consisting of just a CLOBBER (or USE) is just for flow |
| and doesn't actually do anything, so we ignore it. */ |
| |
| #ifdef INSN_SETS_ARE_DELAYED |
| if (mark_type != MARK_SRC_DEST_CALL |
| && INSN_SETS_ARE_DELAYED (x)) |
| return; |
| #endif |
| |
| x = PATTERN (x); |
| if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER) |
| goto restart; |
| return; |
| |
| case SET: |
| /* If the source of a SET is a CALL, this is actually done by |
| the called routine. So only include it if we are to include the |
| effects of the calling routine. */ |
| |
| mark_set_resources (SET_DEST (x), res, |
| (mark_type == MARK_SRC_DEST_CALL |
| || GET_CODE (SET_SRC (x)) != CALL), |
| mark_type); |
| |
| mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST); |
| return; |
| |
| case CLOBBER: |
| mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST); |
| return; |
| |
| case SEQUENCE: |
| for (i = 0; i < XVECLEN (x, 0); i++) |
| if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0)) |
| && INSN_FROM_TARGET_P (XVECEXP (x, 0, i)))) |
| mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type); |
| return; |
| |
| case POST_INC: |
| case PRE_INC: |
| case POST_DEC: |
| case PRE_DEC: |
| mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST); |
| return; |
| |
| case PRE_MODIFY: |
| case POST_MODIFY: |
| mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST); |
| mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST); |
| mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST); |
| return; |
| |
| case SIGN_EXTRACT: |
| case ZERO_EXTRACT: |
| mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST); |
| mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST); |
| mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST); |
| return; |
| |
| case MEM: |
| if (in_dest) |
| { |
| res->memory = 1; |
| res->unch_memory |= RTX_UNCHANGING_P (x); |
| res->volatil |= MEM_VOLATILE_P (x); |
| } |
| |
| mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST); |
| return; |
| |
| case SUBREG: |
| if (in_dest) |
| { |
| if (GET_CODE (SUBREG_REG (x)) != REG) |
| mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type); |
| else |
| { |
| unsigned int regno = subreg_regno (x); |
| unsigned int last_regno |
| = regno + HARD_REGNO_NREGS (regno, GET_MODE (x)); |
| |
| if (last_regno > FIRST_PSEUDO_REGISTER) |
| abort (); |
| for (r = regno; r < last_regno; r++) |
| SET_HARD_REG_BIT (res->regs, r); |
| } |
| } |
| return; |
| |
| case REG: |
| if (in_dest) |
| { |
| unsigned int regno = REGNO (x); |
| unsigned int last_regno |
| = regno + HARD_REGNO_NREGS (regno, GET_MODE (x)); |
| |
| if (last_regno > FIRST_PSEUDO_REGISTER) |
| abort (); |
| for (r = regno; r < last_regno; r++) |
| SET_HARD_REG_BIT (res->regs, r); |
| } |
| return; |
| |
| case UNSPEC_VOLATILE: |
| case ASM_INPUT: |
| /* Traditional asm's are always volatile. */ |
| res->volatil = 1; |
| return; |
| |
| case TRAP_IF: |
| res->volatil = 1; |
| break; |
| |
| case ASM_OPERANDS: |
| res->volatil |= MEM_VOLATILE_P (x); |
| |
| /* For all ASM_OPERANDS, we must traverse the vector of input operands. |
| We can not just fall through here since then we would be confused |
| by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate |
| traditional asms unlike their normal usage. */ |
| |
| for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) |
| mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest, |
| MARK_SRC_DEST); |
| return; |
| |
| default: |
| break; |
| } |
| |
| /* Process each sub-expression and flag what it needs. */ |
| format_ptr = GET_RTX_FORMAT (code); |
| for (i = 0; i < GET_RTX_LENGTH (code); i++) |
| switch (*format_ptr++) |
| { |
| case 'e': |
| mark_set_resources (XEXP (x, i), res, in_dest, mark_type); |
| break; |
| |
| case 'E': |
| for (j = 0; j < XVECLEN (x, i); j++) |
| mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type); |
| break; |
| } |
| } |
| |
| /* Set the resources that are live at TARGET. |
| |
| If TARGET is zero, we refer to the end of the current function and can |
| return our precomputed value. |
| |
| Otherwise, we try to find out what is live by consulting the basic block |
| information. This is tricky, because we must consider the actions of |
| reload and jump optimization, which occur after the basic block information |
| has been computed. |
| |
| Accordingly, we proceed as follows:: |
| |
| We find the previous BARRIER and look at all immediately following labels |
| (with no intervening active insns) to see if any of them start a basic |
| block. If we hit the start of the function first, we use block 0. |
| |
| Once we have found a basic block and a corresponding first insns, we can |
| accurately compute the live status from basic_block_live_regs and |
| reg_renumber. (By starting at a label following a BARRIER, we are immune |
| to actions taken by reload and jump.) Then we scan all insns between |
| that point and our target. For each CLOBBER (or for call-clobbered regs |
| when we pass a CALL_INSN), mark the appropriate registers are dead. For |
| a SET, mark them as live. |
| |
| We have to be careful when using REG_DEAD notes because they are not |
| updated by such things as find_equiv_reg. So keep track of registers |
| marked as dead that haven't been assigned to, and mark them dead at the |
| next CODE_LABEL since reload and jump won't propagate values across labels. |
| |
| If we cannot find the start of a basic block (should be a very rare |
| case, if it can happen at all), mark everything as potentially live. |
| |
| Next, scan forward from TARGET looking for things set or clobbered |
| before they are used. These are not live. |
| |
| Because we can be called many times on the same target, save our results |
| in a hash table indexed by INSN_UID. This is only done if the function |
| init_resource_info () was invoked before we are called. */ |
| |
| void |
| mark_target_live_regs (rtx insns, rtx target, struct resources *res) |
| { |
| int b = -1; |
| unsigned int i; |
| struct target_info *tinfo = NULL; |
| rtx insn; |
| rtx jump_insn = 0; |
| rtx jump_target; |
| HARD_REG_SET scratch; |
| struct resources set, needed; |
| |
| /* Handle end of function. */ |
| if (target == 0) |
| { |
| *res = end_of_function_needs; |
| return; |
| } |
| |
| /* We have to assume memory is needed, but the CC isn't. */ |
| res->memory = 1; |
| res->volatil = res->unch_memory = 0; |
| res->cc = 0; |
| |
| /* See if we have computed this value already. */ |
| if (target_hash_table != NULL) |
| { |
| for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME]; |
| tinfo; tinfo = tinfo->next) |
| if (tinfo->uid == INSN_UID (target)) |
| break; |
| |
| /* Start by getting the basic block number. If we have saved |
| information, we can get it from there unless the insn at the |
| start of the basic block has been deleted. */ |
| if (tinfo && tinfo->block != -1 |
| && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block)))) |
| b = tinfo->block; |
| } |
| |
| if (b == -1) |
| b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH); |
| |
| if (target_hash_table != NULL) |
| { |
| if (tinfo) |
| { |
| /* If the information is up-to-date, use it. Otherwise, we will |
| update it below. */ |
| if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b]) |
| { |
| COPY_HARD_REG_SET (res->regs, tinfo->live_regs); |
| return; |
| } |
| } |
| else |
| { |
| /* Allocate a place to put our results and chain it into the |
| hash table. */ |
| tinfo = xmalloc (sizeof (struct target_info)); |
| tinfo->uid = INSN_UID (target); |
| tinfo->block = b; |
| tinfo->next |
| = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME]; |
| target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo; |
| } |
| } |
| |
| CLEAR_HARD_REG_SET (pending_dead_regs); |
| |
| /* If we found a basic block, get the live registers from it and update |
| them with anything set or killed between its start and the insn before |
| TARGET. Otherwise, we must assume everything is live. */ |
| if (b != -1) |
| { |
| regset regs_live = BASIC_BLOCK (b)->global_live_at_start; |
| unsigned int j; |
| unsigned int regno; |
| rtx start_insn, stop_insn; |
| |
| /* Compute hard regs live at start of block -- this is the real hard regs |
| marked live, plus live pseudo regs that have been renumbered to |
| hard regs. */ |
| |
| REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live); |
| |
| EXECUTE_IF_SET_IN_REG_SET |
| (regs_live, FIRST_PSEUDO_REGISTER, i, |
| { |
| if (reg_renumber[i] >= 0) |
| { |
| regno = reg_renumber[i]; |
| for (j = regno; |
| j < regno + HARD_REGNO_NREGS (regno, |
| PSEUDO_REGNO_MODE (i)); |
| j++) |
| SET_HARD_REG_BIT (current_live_regs, j); |
| } |
| }); |
| |
| /* Get starting and ending insn, handling the case where each might |
| be a SEQUENCE. */ |
| start_insn = (b == 0 ? insns : BB_HEAD (BASIC_BLOCK (b))); |
| stop_insn = target; |
| |
| if (GET_CODE (start_insn) == INSN |
| && GET_CODE (PATTERN (start_insn)) == SEQUENCE) |
| start_insn = XVECEXP (PATTERN (start_insn), 0, 0); |
| |
| if (GET_CODE (stop_insn) == INSN |
| && GET_CODE (PATTERN (stop_insn)) == SEQUENCE) |
| stop_insn = next_insn (PREV_INSN (stop_insn)); |
| |
| for (insn = start_insn; insn != stop_insn; |
| insn = next_insn_no_annul (insn)) |
| { |
| rtx link; |
| rtx real_insn = insn; |
| enum rtx_code code = GET_CODE (insn); |
| |
| /* If this insn is from the target of a branch, it isn't going to |
| be used in the sequel. If it is used in both cases, this |
| test will not be true. */ |
| if ((code == INSN || code == JUMP_INSN || code == CALL_INSN) |
| && INSN_FROM_TARGET_P (insn)) |
| continue; |
| |
| /* If this insn is a USE made by update_block, we care about the |
| underlying insn. */ |
| if (code == INSN && GET_CODE (PATTERN (insn)) == USE |
| && INSN_P (XEXP (PATTERN (insn), 0))) |
| real_insn = XEXP (PATTERN (insn), 0); |
| |
| if (GET_CODE (real_insn) == CALL_INSN) |
| { |
| /* CALL clobbers all call-used regs that aren't fixed except |
| sp, ap, and fp. Do this before setting the result of the |
| call live. */ |
| AND_COMPL_HARD_REG_SET (current_live_regs, |
| regs_invalidated_by_call); |
| |
| /* A CALL_INSN sets any global register live, since it may |
| have been modified by the call. */ |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (global_regs[i]) |
| SET_HARD_REG_BIT (current_live_regs, i); |
| } |
| |
| /* Mark anything killed in an insn to be deadened at the next |
| label. Ignore USE insns; the only REG_DEAD notes will be for |
| parameters. But they might be early. A CALL_INSN will usually |
| clobber registers used for parameters. It isn't worth bothering |
| with the unlikely case when it won't. */ |
| if ((GET_CODE (real_insn) == INSN |
| && GET_CODE (PATTERN (real_insn)) != USE |
| && GET_CODE (PATTERN (real_insn)) != CLOBBER) |
| || GET_CODE (real_insn) == JUMP_INSN |
| || GET_CODE (real_insn) == CALL_INSN) |
| { |
| for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_DEAD |
| && GET_CODE (XEXP (link, 0)) == REG |
| && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER) |
| { |
| unsigned int first_regno = REGNO (XEXP (link, 0)); |
| unsigned int last_regno |
| = (first_regno |
| + HARD_REGNO_NREGS (first_regno, |
| GET_MODE (XEXP (link, 0)))); |
| |
| for (i = first_regno; i < last_regno; i++) |
| SET_HARD_REG_BIT (pending_dead_regs, i); |
| } |
| |
| note_stores (PATTERN (real_insn), update_live_status, NULL); |
| |
| /* If any registers were unused after this insn, kill them. |
| These notes will always be accurate. */ |
| for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_UNUSED |
| && GET_CODE (XEXP (link, 0)) == REG |
| && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER) |
| { |
| unsigned int first_regno = REGNO (XEXP (link, 0)); |
| unsigned int last_regno |
| = (first_regno |
| + HARD_REGNO_NREGS (first_regno, |
| GET_MODE (XEXP (link, 0)))); |
| |
| for (i = first_regno; i < last_regno; i++) |
| CLEAR_HARD_REG_BIT (current_live_regs, i); |
| } |
| } |
| |
| else if (GET_CODE (real_insn) == CODE_LABEL) |
| { |
| /* A label clobbers the pending dead registers since neither |
| reload nor jump will propagate a value across a label. */ |
| AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs); |
| CLEAR_HARD_REG_SET (pending_dead_regs); |
| } |
| |
| /* The beginning of the epilogue corresponds to the end of the |
| RTL chain when there are no epilogue insns. Certain resources |
| are implicitly required at that point. */ |
| else if (GET_CODE (real_insn) == NOTE |
| && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG) |
| IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs); |
| } |
| |
| COPY_HARD_REG_SET (res->regs, current_live_regs); |
| if (tinfo != NULL) |
| { |
| tinfo->block = b; |
| tinfo->bb_tick = bb_ticks[b]; |
| } |
| } |
| else |
| /* We didn't find the start of a basic block. Assume everything |
| in use. This should happen only extremely rarely. */ |
| SET_HARD_REG_SET (res->regs); |
| |
| CLEAR_RESOURCE (&set); |
| CLEAR_RESOURCE (&needed); |
| |
| jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0, |
| set, needed); |
| |
| /* If we hit an unconditional branch, we have another way of finding out |
| what is live: we can see what is live at the branch target and include |
| anything used but not set before the branch. We add the live |
| resources found using the test below to those found until now. */ |
| |
| if (jump_insn) |
| { |
| struct resources new_resources; |
| rtx stop_insn = next_active_insn (jump_insn); |
| |
| mark_target_live_regs (insns, next_active_insn (jump_target), |
| &new_resources); |
| CLEAR_RESOURCE (&set); |
| CLEAR_RESOURCE (&needed); |
| |
| /* Include JUMP_INSN in the needed registers. */ |
| for (insn = target; insn != stop_insn; insn = next_active_insn (insn)) |
| { |
| mark_referenced_resources (insn, &needed, 1); |
| |
| COPY_HARD_REG_SET (scratch, needed.regs); |
| AND_COMPL_HARD_REG_SET (scratch, set.regs); |
| IOR_HARD_REG_SET (new_resources.regs, scratch); |
| |
| mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL); |
| } |
| |
| IOR_HARD_REG_SET (res->regs, new_resources.regs); |
| } |
| |
| if (tinfo != NULL) |
| { |
| COPY_HARD_REG_SET (tinfo->live_regs, res->regs); |
| } |
| } |
| |
| /* Initialize the resources required by mark_target_live_regs (). |
| This should be invoked before the first call to mark_target_live_regs. */ |
| |
| void |
| init_resource_info (rtx epilogue_insn) |
| { |
| int i; |
| |
| /* Indicate what resources are required to be valid at the end of the current |
| function. The condition code never is and memory always is. If the |
| frame pointer is needed, it is and so is the stack pointer unless |
| EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the |
| stack pointer is. Registers used to return the function value are |
| needed. Registers holding global variables are needed. */ |
| |
| end_of_function_needs.cc = 0; |
| end_of_function_needs.memory = 1; |
| end_of_function_needs.unch_memory = 0; |
| CLEAR_HARD_REG_SET (end_of_function_needs.regs); |
| |
| if (frame_pointer_needed) |
| { |
| SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM); |
| #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM |
| SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM); |
| #endif |
| if (! EXIT_IGNORE_STACK |
| || current_function_sp_is_unchanging) |
| SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM); |
| } |
| else |
| SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM); |
| |
| if (current_function_return_rtx != 0) |
| mark_referenced_resources (current_function_return_rtx, |
| &end_of_function_needs, 1); |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (global_regs[i] |
| #ifdef EPILOGUE_USES |
| || EPILOGUE_USES (i) |
| #endif |
| ) |
| SET_HARD_REG_BIT (end_of_function_needs.regs, i); |
| |
| /* The registers required to be live at the end of the function are |
| represented in the flow information as being dead just prior to |
| reaching the end of the function. For example, the return of a value |
| might be represented by a USE of the return register immediately |
| followed by an unconditional jump to the return label where the |
| return label is the end of the RTL chain. The end of the RTL chain |
| is then taken to mean that the return register is live. |
| |
| This sequence is no longer maintained when epilogue instructions are |
| added to the RTL chain. To reconstruct the original meaning, the |
| start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the |
| point where these registers become live (start_of_epilogue_needs). |
| If epilogue instructions are present, the registers set by those |
| instructions won't have been processed by flow. Thus, those |
| registers are additionally required at the end of the RTL chain |
| (end_of_function_needs). */ |
| |
| start_of_epilogue_needs = end_of_function_needs; |
| |
| while ((epilogue_insn = next_nonnote_insn (epilogue_insn))) |
| mark_set_resources (epilogue_insn, &end_of_function_needs, 0, |
| MARK_SRC_DEST_CALL); |
| |
| /* Allocate and initialize the tables used by mark_target_live_regs. */ |
| target_hash_table = xcalloc (TARGET_HASH_PRIME, sizeof (struct target_info *)); |
| bb_ticks = xcalloc (last_basic_block, sizeof (int)); |
| } |
| |
| /* Free up the resources allocated to mark_target_live_regs (). This |
| should be invoked after the last call to mark_target_live_regs (). */ |
| |
| void |
| free_resource_info (void) |
| { |
| if (target_hash_table != NULL) |
| { |
| int i; |
| |
| for (i = 0; i < TARGET_HASH_PRIME; ++i) |
| { |
| struct target_info *ti = target_hash_table[i]; |
| |
| while (ti) |
| { |
| struct target_info *next = ti->next; |
| free (ti); |
| ti = next; |
| } |
| } |
| |
| free (target_hash_table); |
| target_hash_table = NULL; |
| } |
| |
| if (bb_ticks != NULL) |
| { |
| free (bb_ticks); |
| bb_ticks = NULL; |
| } |
| } |
| |
| /* Clear any hashed information that we have stored for INSN. */ |
| |
| void |
| clear_hashed_info_for_insn (rtx insn) |
| { |
| struct target_info *tinfo; |
| |
| if (target_hash_table != NULL) |
| { |
| for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME]; |
| tinfo; tinfo = tinfo->next) |
| if (tinfo->uid == INSN_UID (insn)) |
| break; |
| |
| if (tinfo) |
| tinfo->block = -1; |
| } |
| } |
| |
| /* Increment the tick count for the basic block that contains INSN. */ |
| |
| void |
| incr_ticks_for_insn (rtx insn) |
| { |
| int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH); |
| |
| if (b != -1) |
| bb_ticks[b]++; |
| } |
| |
| /* Add TRIAL to the set of resources used at the end of the current |
| function. */ |
| void |
| mark_end_of_function_resources (rtx trial, int include_delayed_effects) |
| { |
| mark_referenced_resources (trial, &end_of_function_needs, |
| include_delayed_effects); |
| } |