| // The template and inlines for the -*- C++ -*- complex number classes. |
| |
| // Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 |
| // Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 2, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // You should have received a copy of the GNU General Public License along |
| // with this library; see the file COPYING. If not, write to the Free |
| // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, |
| // USA. |
| |
| // As a special exception, you may use this file as part of a free software |
| // library without restriction. Specifically, if other files instantiate |
| // templates or use macros or inline functions from this file, or you compile |
| // this file and link it with other files to produce an executable, this |
| // file does not by itself cause the resulting executable to be covered by |
| // the GNU General Public License. This exception does not however |
| // invalidate any other reasons why the executable file might be covered by |
| // the GNU General Public License. |
| |
| // |
| // ISO C++ 14882: 26.2 Complex Numbers |
| // Note: this is not a conforming implementation. |
| // Initially implemented by Ulrich Drepper <drepper@cygnus.com> |
| // Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr> |
| // |
| |
| /** @file complex |
| * This is a Standard C++ Library header. You should @c #include this header |
| * in your programs, rather than any of the "st[dl]_*.h" implementation files. |
| */ |
| |
| #ifndef _GLIBCXX_COMPLEX |
| #define _GLIBCXX_COMPLEX 1 |
| |
| #pragma GCC system_header |
| |
| #include <bits/c++config.h> |
| #include <bits/cpp_type_traits.h> |
| #include <cmath> |
| #include <sstream> |
| |
| namespace std |
| { |
| // Forward declarations |
| template<typename _Tp> class complex; |
| template<> class complex<float>; |
| template<> class complex<double>; |
| template<> class complex<long double>; |
| |
| /// Return magnitude of @a z. |
| template<typename _Tp> _Tp abs(const complex<_Tp>&); |
| /// Return phase angle of @a z. |
| template<typename _Tp> _Tp arg(const complex<_Tp>&); |
| /// Return @a z magnitude squared. |
| template<typename _Tp> _Tp norm(const complex<_Tp>&); |
| |
| /// Return complex conjugate of @a z. |
| template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&); |
| /// Return complex with magnitude @a rho and angle @a theta. |
| template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0); |
| |
| // Transcendentals: |
| /// Return complex cosine of @a z. |
| template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&); |
| /// Return complex hyperbolic cosine of @a z. |
| template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&); |
| /// Return complex base e exponential of @a z. |
| template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&); |
| /// Return complex natural logarithm of @a z. |
| template<typename _Tp> complex<_Tp> log(const complex<_Tp>&); |
| /// Return complex base 10 logarithm of @a z. |
| template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&); |
| /// Return complex cosine of @a z. |
| template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int); |
| /// Return @a x to the @a y'th power. |
| template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&); |
| /// Return @a x to the @a y'th power. |
| template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, |
| const complex<_Tp>&); |
| /// Return @a x to the @a y'th power. |
| template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&); |
| /// Return complex sine of @a z. |
| template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&); |
| /// Return complex hyperbolic sine of @a z. |
| template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&); |
| /// Return complex square root of @a z. |
| template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&); |
| /// Return complex tangent of @a z. |
| template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&); |
| /// Return complex hyperbolic tangent of @a z. |
| template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&); |
| //@} |
| |
| |
| // 26.2.2 Primary template class complex |
| /** |
| * Template to represent complex numbers. |
| * |
| * Specializations for float, double, and long double are part of the |
| * library. Results with any other type are not guaranteed. |
| * |
| * @param Tp Type of real and imaginary values. |
| */ |
| template<typename _Tp> |
| class complex |
| { |
| public: |
| /// Value typedef. |
| typedef _Tp value_type; |
| |
| /// Default constructor. First parameter is x, second parameter is y. |
| /// Unspecified parameters default to 0. |
| complex(const _Tp& = _Tp(), const _Tp & = _Tp()); |
| |
| // Lets the compiler synthesize the copy constructor |
| // complex (const complex<_Tp>&); |
| /// Copy constructor. |
| template<typename _Up> |
| complex(const complex<_Up>&); |
| |
| /// Return real part of complex number. |
| _Tp& real(); |
| /// Return real part of complex number. |
| const _Tp& real() const; |
| /// Return imaginary part of complex number. |
| _Tp& imag(); |
| /// Return imaginary part of complex number. |
| const _Tp& imag() const; |
| |
| /// Assign this complex number to scalar @a t. |
| complex<_Tp>& operator=(const _Tp&); |
| /// Add @a t to this complex number. |
| complex<_Tp>& operator+=(const _Tp&); |
| /// Subtract @a t from this complex number. |
| complex<_Tp>& operator-=(const _Tp&); |
| /// Multiply this complex number by @a t. |
| complex<_Tp>& operator*=(const _Tp&); |
| /// Divide this complex number by @a t. |
| complex<_Tp>& operator/=(const _Tp&); |
| |
| // Lets the compiler synthesize the |
| // copy and assignment operator |
| // complex<_Tp>& operator= (const complex<_Tp>&); |
| /// Assign this complex number to complex @a z. |
| template<typename _Up> |
| complex<_Tp>& operator=(const complex<_Up>&); |
| /// Add @a z to this complex number. |
| template<typename _Up> |
| complex<_Tp>& operator+=(const complex<_Up>&); |
| /// Subtract @a z from this complex number. |
| template<typename _Up> |
| complex<_Tp>& operator-=(const complex<_Up>&); |
| /// Multiply this complex number by @a z. |
| template<typename _Up> |
| complex<_Tp>& operator*=(const complex<_Up>&); |
| /// Divide this complex number by @a z. |
| template<typename _Up> |
| complex<_Tp>& operator/=(const complex<_Up>&); |
| |
| private: |
| _Tp _M_real; |
| _Tp _M_imag; |
| }; |
| |
| template<typename _Tp> |
| inline _Tp& |
| complex<_Tp>::real() { return _M_real; } |
| |
| template<typename _Tp> |
| inline const _Tp& |
| complex<_Tp>::real() const { return _M_real; } |
| |
| template<typename _Tp> |
| inline _Tp& |
| complex<_Tp>::imag() { return _M_imag; } |
| |
| template<typename _Tp> |
| inline const _Tp& |
| complex<_Tp>::imag() const { return _M_imag; } |
| |
| template<typename _Tp> |
| inline |
| complex<_Tp>::complex(const _Tp& __r, const _Tp& __i) |
| : _M_real(__r), _M_imag(__i) { } |
| |
| template<typename _Tp> |
| template<typename _Up> |
| inline |
| complex<_Tp>::complex(const complex<_Up>& __z) |
| : _M_real(__z.real()), _M_imag(__z.imag()) { } |
| |
| template<typename _Tp> |
| complex<_Tp>& |
| complex<_Tp>::operator=(const _Tp& __t) |
| { |
| _M_real = __t; |
| _M_imag = _Tp(); |
| return *this; |
| } |
| |
| // 26.2.5/1 |
| template<typename _Tp> |
| inline complex<_Tp>& |
| complex<_Tp>::operator+=(const _Tp& __t) |
| { |
| _M_real += __t; |
| return *this; |
| } |
| |
| // 26.2.5/3 |
| template<typename _Tp> |
| inline complex<_Tp>& |
| complex<_Tp>::operator-=(const _Tp& __t) |
| { |
| _M_real -= __t; |
| return *this; |
| } |
| |
| // 26.2.5/5 |
| template<typename _Tp> |
| complex<_Tp>& |
| complex<_Tp>::operator*=(const _Tp& __t) |
| { |
| _M_real *= __t; |
| _M_imag *= __t; |
| return *this; |
| } |
| |
| // 26.2.5/7 |
| template<typename _Tp> |
| complex<_Tp>& |
| complex<_Tp>::operator/=(const _Tp& __t) |
| { |
| _M_real /= __t; |
| _M_imag /= __t; |
| return *this; |
| } |
| |
| template<typename _Tp> |
| template<typename _Up> |
| complex<_Tp>& |
| complex<_Tp>::operator=(const complex<_Up>& __z) |
| { |
| _M_real = __z.real(); |
| _M_imag = __z.imag(); |
| return *this; |
| } |
| |
| // 26.2.5/9 |
| template<typename _Tp> |
| template<typename _Up> |
| complex<_Tp>& |
| complex<_Tp>::operator+=(const complex<_Up>& __z) |
| { |
| _M_real += __z.real(); |
| _M_imag += __z.imag(); |
| return *this; |
| } |
| |
| // 26.2.5/11 |
| template<typename _Tp> |
| template<typename _Up> |
| complex<_Tp>& |
| complex<_Tp>::operator-=(const complex<_Up>& __z) |
| { |
| _M_real -= __z.real(); |
| _M_imag -= __z.imag(); |
| return *this; |
| } |
| |
| // 26.2.5/13 |
| // XXX: This is a grammar school implementation. |
| template<typename _Tp> |
| template<typename _Up> |
| complex<_Tp>& |
| complex<_Tp>::operator*=(const complex<_Up>& __z) |
| { |
| const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag(); |
| _M_imag = _M_real * __z.imag() + _M_imag * __z.real(); |
| _M_real = __r; |
| return *this; |
| } |
| |
| // 26.2.5/15 |
| // XXX: This is a grammar school implementation. |
| template<typename _Tp> |
| template<typename _Up> |
| complex<_Tp>& |
| complex<_Tp>::operator/=(const complex<_Up>& __z) |
| { |
| const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag(); |
| const _Tp __n = std::norm(__z); |
| _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n; |
| _M_real = __r / __n; |
| return *this; |
| } |
| |
| // Operators: |
| //@{ |
| /// Return new complex value @a x plus @a y. |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator+(const complex<_Tp>& __x, const complex<_Tp>& __y) |
| { |
| complex<_Tp> __r = __x; |
| __r += __y; |
| return __r; |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator+(const complex<_Tp>& __x, const _Tp& __y) |
| { |
| complex<_Tp> __r = __x; |
| __r.real() += __y; |
| return __r; |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator+(const _Tp& __x, const complex<_Tp>& __y) |
| { |
| complex<_Tp> __r = __y; |
| __r.real() += __x; |
| return __r; |
| } |
| //@} |
| |
| //@{ |
| /// Return new complex value @a x minus @a y. |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator-(const complex<_Tp>& __x, const complex<_Tp>& __y) |
| { |
| complex<_Tp> __r = __x; |
| __r -= __y; |
| return __r; |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator-(const complex<_Tp>& __x, const _Tp& __y) |
| { |
| complex<_Tp> __r = __x; |
| __r.real() -= __y; |
| return __r; |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator-(const _Tp& __x, const complex<_Tp>& __y) |
| { |
| complex<_Tp> __r(__x, -__y.imag()); |
| __r.real() -= __y.real(); |
| return __r; |
| } |
| //@} |
| |
| //@{ |
| /// Return new complex value @a x times @a y. |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator*(const complex<_Tp>& __x, const complex<_Tp>& __y) |
| { |
| complex<_Tp> __r = __x; |
| __r *= __y; |
| return __r; |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator*(const complex<_Tp>& __x, const _Tp& __y) |
| { |
| complex<_Tp> __r = __x; |
| __r *= __y; |
| return __r; |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator*(const _Tp& __x, const complex<_Tp>& __y) |
| { |
| complex<_Tp> __r = __y; |
| __r *= __x; |
| return __r; |
| } |
| //@} |
| |
| //@{ |
| /// Return new complex value @a x divided by @a y. |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator/(const complex<_Tp>& __x, const complex<_Tp>& __y) |
| { |
| complex<_Tp> __r = __x; |
| __r /= __y; |
| return __r; |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator/(const complex<_Tp>& __x, const _Tp& __y) |
| { |
| complex<_Tp> __r = __x; |
| __r /= __y; |
| return __r; |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator/(const _Tp& __x, const complex<_Tp>& __y) |
| { |
| complex<_Tp> __r = __x; |
| __r /= __y; |
| return __r; |
| } |
| //@} |
| |
| /// Return @a x. |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator+(const complex<_Tp>& __x) |
| { return __x; } |
| |
| /// Return complex negation of @a x. |
| template<typename _Tp> |
| inline complex<_Tp> |
| operator-(const complex<_Tp>& __x) |
| { return complex<_Tp>(-__x.real(), -__x.imag()); } |
| |
| //@{ |
| /// Return true if @a x is equal to @a y. |
| template<typename _Tp> |
| inline bool |
| operator==(const complex<_Tp>& __x, const complex<_Tp>& __y) |
| { return __x.real() == __y.real() && __x.imag() == __y.imag(); } |
| |
| template<typename _Tp> |
| inline bool |
| operator==(const complex<_Tp>& __x, const _Tp& __y) |
| { return __x.real() == __y && __x.imag() == _Tp(); } |
| |
| template<typename _Tp> |
| inline bool |
| operator==(const _Tp& __x, const complex<_Tp>& __y) |
| { return __x == __y.real() && _Tp() == __y.imag(); } |
| //@} |
| |
| //@{ |
| /// Return false if @a x is equal to @a y. |
| template<typename _Tp> |
| inline bool |
| operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y) |
| { return __x.real() != __y.real() || __x.imag() != __y.imag(); } |
| |
| template<typename _Tp> |
| inline bool |
| operator!=(const complex<_Tp>& __x, const _Tp& __y) |
| { return __x.real() != __y || __x.imag() != _Tp(); } |
| |
| template<typename _Tp> |
| inline bool |
| operator!=(const _Tp& __x, const complex<_Tp>& __y) |
| { return __x != __y.real() || _Tp() != __y.imag(); } |
| //@} |
| |
| /// Extraction operator for complex values. |
| template<typename _Tp, typename _CharT, class _Traits> |
| basic_istream<_CharT, _Traits>& |
| operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x) |
| { |
| _Tp __re_x, __im_x; |
| _CharT __ch; |
| __is >> __ch; |
| if (__ch == '(') |
| { |
| __is >> __re_x >> __ch; |
| if (__ch == ',') |
| { |
| __is >> __im_x >> __ch; |
| if (__ch == ')') |
| __x = complex<_Tp>(__re_x, __im_x); |
| else |
| __is.setstate(ios_base::failbit); |
| } |
| else if (__ch == ')') |
| __x = __re_x; |
| else |
| __is.setstate(ios_base::failbit); |
| } |
| else |
| { |
| __is.putback(__ch); |
| __is >> __re_x; |
| __x = __re_x; |
| } |
| return __is; |
| } |
| |
| /// Insertion operator for complex values. |
| template<typename _Tp, typename _CharT, class _Traits> |
| basic_ostream<_CharT, _Traits>& |
| operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x) |
| { |
| basic_ostringstream<_CharT, _Traits> __s; |
| __s.flags(__os.flags()); |
| __s.imbue(__os.getloc()); |
| __s.precision(__os.precision()); |
| __s << '(' << __x.real() << ',' << __x.imag() << ')'; |
| return __os << __s.str(); |
| } |
| |
| // Values |
| template<typename _Tp> |
| inline _Tp& |
| real(complex<_Tp>& __z) |
| { return __z.real(); } |
| |
| template<typename _Tp> |
| inline const _Tp& |
| real(const complex<_Tp>& __z) |
| { return __z.real(); } |
| |
| template<typename _Tp> |
| inline _Tp& |
| imag(complex<_Tp>& __z) |
| { return __z.imag(); } |
| |
| template<typename _Tp> |
| inline const _Tp& |
| imag(const complex<_Tp>& __z) |
| { return __z.imag(); } |
| |
| template<typename _Tp> |
| inline _Tp |
| abs(const complex<_Tp>& __z) |
| { |
| _Tp __x = __z.real(); |
| _Tp __y = __z.imag(); |
| const _Tp __s = std::max(abs(__x), abs(__y)); |
| if (__s == _Tp()) // well ... |
| return __s; |
| __x /= __s; |
| __y /= __s; |
| return __s * sqrt(__x * __x + __y * __y); |
| } |
| |
| template<typename _Tp> |
| inline _Tp |
| arg(const complex<_Tp>& __z) |
| { return atan2(__z.imag(), __z.real()); } |
| |
| // 26.2.7/5: norm(__z) returns the squared magintude of __z. |
| // As defined, norm() is -not- a norm is the common mathematical |
| // sens used in numerics. The helper class _Norm_helper<> tries to |
| // distinguish between builtin floating point and the rest, so as |
| // to deliver an answer as close as possible to the real value. |
| template<bool> |
| struct _Norm_helper |
| { |
| template<typename _Tp> |
| static inline _Tp _S_do_it(const complex<_Tp>& __z) |
| { |
| const _Tp __x = __z.real(); |
| const _Tp __y = __z.imag(); |
| return __x * __x + __y * __y; |
| } |
| }; |
| |
| template<> |
| struct _Norm_helper<true> |
| { |
| template<typename _Tp> |
| static inline _Tp _S_do_it(const complex<_Tp>& __z) |
| { |
| _Tp __res = std::abs(__z); |
| return __res * __res; |
| } |
| }; |
| |
| template<typename _Tp> |
| inline _Tp |
| norm(const complex<_Tp>& __z) |
| { |
| return _Norm_helper<__is_floating<_Tp>::_M_type && !_GLIBCXX_FAST_MATH>::_S_do_it(__z); |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| polar(const _Tp& __rho, const _Tp& __theta) |
| { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| conj(const complex<_Tp>& __z) |
| { return complex<_Tp>(__z.real(), -__z.imag()); } |
| |
| // Transcendentals |
| template<typename _Tp> |
| inline complex<_Tp> |
| cos(const complex<_Tp>& __z) |
| { |
| const _Tp __x = __z.real(); |
| const _Tp __y = __z.imag(); |
| return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y)); |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| cosh(const complex<_Tp>& __z) |
| { |
| const _Tp __x = __z.real(); |
| const _Tp __y = __z.imag(); |
| return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y)); |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| exp(const complex<_Tp>& __z) |
| { return std::polar(exp(__z.real()), __z.imag()); } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| log(const complex<_Tp>& __z) |
| { return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| log10(const complex<_Tp>& __z) |
| { return std::log(__z) / log(_Tp(10.0)); } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| sin(const complex<_Tp>& __z) |
| { |
| const _Tp __x = __z.real(); |
| const _Tp __y = __z.imag(); |
| return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y)); |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| sinh(const complex<_Tp>& __z) |
| { |
| const _Tp __x = __z.real(); |
| const _Tp __y = __z.imag(); |
| return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y)); |
| } |
| |
| template<typename _Tp> |
| complex<_Tp> |
| sqrt(const complex<_Tp>& __z) |
| { |
| _Tp __x = __z.real(); |
| _Tp __y = __z.imag(); |
| |
| if (__x == _Tp()) |
| { |
| _Tp __t = sqrt(abs(__y) / 2); |
| return complex<_Tp>(__t, __y < _Tp() ? -__t : __t); |
| } |
| else |
| { |
| _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x))); |
| _Tp __u = __t / 2; |
| return __x > _Tp() |
| ? complex<_Tp>(__u, __y / __t) |
| : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u); |
| } |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| tan(const complex<_Tp>& __z) |
| { |
| return std::sin(__z) / std::cos(__z); |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| tanh(const complex<_Tp>& __z) |
| { |
| return std::sinh(__z) / std::cosh(__z); |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| pow(const complex<_Tp>& __z, int __n) |
| { |
| return std::__pow_helper(__z, __n); |
| } |
| |
| template<typename _Tp> |
| complex<_Tp> |
| pow(const complex<_Tp>& __x, const _Tp& __y) |
| { |
| if (__x.imag() == _Tp() && __x.real() > _Tp()) |
| return pow(__x.real(), __y); |
| |
| complex<_Tp> __t = std::log(__x); |
| return std::polar(exp(__y * __t.real()), __y * __t.imag()); |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| pow(const complex<_Tp>& __x, const complex<_Tp>& __y) |
| { |
| return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x)); |
| } |
| |
| template<typename _Tp> |
| inline complex<_Tp> |
| pow(const _Tp& __x, const complex<_Tp>& __y) |
| { |
| return __x > _Tp() ? std::polar(pow(__x, __y.real()), |
| __y.imag() * log(__x)) |
| : std::pow(complex<_Tp>(__x, _Tp()), __y); |
| } |
| |
| // 26.2.3 complex specializations |
| // complex<float> specialization |
| template<> class complex<float> |
| { |
| public: |
| typedef float value_type; |
| |
| complex(float = 0.0f, float = 0.0f); |
| #ifdef _GLIBCXX_BUGGY_COMPLEX |
| complex(const complex& __z) : _M_value(__z._M_value) { } |
| #endif |
| explicit complex(const complex<double>&); |
| explicit complex(const complex<long double>&); |
| |
| float& real(); |
| const float& real() const; |
| float& imag(); |
| const float& imag() const; |
| |
| complex<float>& operator=(float); |
| complex<float>& operator+=(float); |
| complex<float>& operator-=(float); |
| complex<float>& operator*=(float); |
| complex<float>& operator/=(float); |
| |
| // Let's the compiler synthetize the copy and assignment |
| // operator. It always does a pretty good job. |
| // complex& operator= (const complex&); |
| template<typename _Tp> |
| complex<float>&operator=(const complex<_Tp>&); |
| template<typename _Tp> |
| complex<float>& operator+=(const complex<_Tp>&); |
| template<class _Tp> |
| complex<float>& operator-=(const complex<_Tp>&); |
| template<class _Tp> |
| complex<float>& operator*=(const complex<_Tp>&); |
| template<class _Tp> |
| complex<float>&operator/=(const complex<_Tp>&); |
| |
| private: |
| typedef __complex__ float _ComplexT; |
| _ComplexT _M_value; |
| |
| complex(_ComplexT __z) : _M_value(__z) { } |
| |
| friend class complex<double>; |
| friend class complex<long double>; |
| }; |
| |
| inline float& |
| complex<float>::real() |
| { return __real__ _M_value; } |
| |
| inline const float& |
| complex<float>::real() const |
| { return __real__ _M_value; } |
| |
| inline float& |
| complex<float>::imag() |
| { return __imag__ _M_value; } |
| |
| inline const float& |
| complex<float>::imag() const |
| { return __imag__ _M_value; } |
| |
| inline |
| complex<float>::complex(float r, float i) |
| { |
| __real__ _M_value = r; |
| __imag__ _M_value = i; |
| } |
| |
| inline complex<float>& |
| complex<float>::operator=(float __f) |
| { |
| __real__ _M_value = __f; |
| __imag__ _M_value = 0.0f; |
| return *this; |
| } |
| |
| inline complex<float>& |
| complex<float>::operator+=(float __f) |
| { |
| __real__ _M_value += __f; |
| return *this; |
| } |
| |
| inline complex<float>& |
| complex<float>::operator-=(float __f) |
| { |
| __real__ _M_value -= __f; |
| return *this; |
| } |
| |
| inline complex<float>& |
| complex<float>::operator*=(float __f) |
| { |
| _M_value *= __f; |
| return *this; |
| } |
| |
| inline complex<float>& |
| complex<float>::operator/=(float __f) |
| { |
| _M_value /= __f; |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<float>& |
| complex<float>::operator=(const complex<_Tp>& __z) |
| { |
| __real__ _M_value = __z.real(); |
| __imag__ _M_value = __z.imag(); |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<float>& |
| complex<float>::operator+=(const complex<_Tp>& __z) |
| { |
| __real__ _M_value += __z.real(); |
| __imag__ _M_value += __z.imag(); |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<float>& |
| complex<float>::operator-=(const complex<_Tp>& __z) |
| { |
| __real__ _M_value -= __z.real(); |
| __imag__ _M_value -= __z.imag(); |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<float>& |
| complex<float>::operator*=(const complex<_Tp>& __z) |
| { |
| _ComplexT __t; |
| __real__ __t = __z.real(); |
| __imag__ __t = __z.imag(); |
| _M_value *= __t; |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<float>& |
| complex<float>::operator/=(const complex<_Tp>& __z) |
| { |
| _ComplexT __t; |
| __real__ __t = __z.real(); |
| __imag__ __t = __z.imag(); |
| _M_value /= __t; |
| return *this; |
| } |
| |
| // 26.2.3 complex specializations |
| // complex<double> specialization |
| template<> class complex<double> |
| { |
| public: |
| typedef double value_type; |
| |
| complex(double =0.0, double =0.0); |
| #ifdef _GLIBCXX_BUGGY_COMPLEX |
| complex(const complex& __z) : _M_value(__z._M_value) { } |
| #endif |
| complex(const complex<float>&); |
| explicit complex(const complex<long double>&); |
| |
| double& real(); |
| const double& real() const; |
| double& imag(); |
| const double& imag() const; |
| |
| complex<double>& operator=(double); |
| complex<double>& operator+=(double); |
| complex<double>& operator-=(double); |
| complex<double>& operator*=(double); |
| complex<double>& operator/=(double); |
| |
| // The compiler will synthetize this, efficiently. |
| // complex& operator= (const complex&); |
| template<typename _Tp> |
| complex<double>& operator=(const complex<_Tp>&); |
| template<typename _Tp> |
| complex<double>& operator+=(const complex<_Tp>&); |
| template<typename _Tp> |
| complex<double>& operator-=(const complex<_Tp>&); |
| template<typename _Tp> |
| complex<double>& operator*=(const complex<_Tp>&); |
| template<typename _Tp> |
| complex<double>& operator/=(const complex<_Tp>&); |
| |
| private: |
| typedef __complex__ double _ComplexT; |
| _ComplexT _M_value; |
| |
| complex(_ComplexT __z) : _M_value(__z) { } |
| |
| friend class complex<float>; |
| friend class complex<long double>; |
| }; |
| |
| inline double& |
| complex<double>::real() |
| { return __real__ _M_value; } |
| |
| inline const double& |
| complex<double>::real() const |
| { return __real__ _M_value; } |
| |
| inline double& |
| complex<double>::imag() |
| { return __imag__ _M_value; } |
| |
| inline const double& |
| complex<double>::imag() const |
| { return __imag__ _M_value; } |
| |
| inline |
| complex<double>::complex(double __r, double __i) |
| { |
| __real__ _M_value = __r; |
| __imag__ _M_value = __i; |
| } |
| |
| inline complex<double>& |
| complex<double>::operator=(double __d) |
| { |
| __real__ _M_value = __d; |
| __imag__ _M_value = 0.0; |
| return *this; |
| } |
| |
| inline complex<double>& |
| complex<double>::operator+=(double __d) |
| { |
| __real__ _M_value += __d; |
| return *this; |
| } |
| |
| inline complex<double>& |
| complex<double>::operator-=(double __d) |
| { |
| __real__ _M_value -= __d; |
| return *this; |
| } |
| |
| inline complex<double>& |
| complex<double>::operator*=(double __d) |
| { |
| _M_value *= __d; |
| return *this; |
| } |
| |
| inline complex<double>& |
| complex<double>::operator/=(double __d) |
| { |
| _M_value /= __d; |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<double>& |
| complex<double>::operator=(const complex<_Tp>& __z) |
| { |
| __real__ _M_value = __z.real(); |
| __imag__ _M_value = __z.imag(); |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<double>& |
| complex<double>::operator+=(const complex<_Tp>& __z) |
| { |
| __real__ _M_value += __z.real(); |
| __imag__ _M_value += __z.imag(); |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<double>& |
| complex<double>::operator-=(const complex<_Tp>& __z) |
| { |
| __real__ _M_value -= __z.real(); |
| __imag__ _M_value -= __z.imag(); |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<double>& |
| complex<double>::operator*=(const complex<_Tp>& __z) |
| { |
| _ComplexT __t; |
| __real__ __t = __z.real(); |
| __imag__ __t = __z.imag(); |
| _M_value *= __t; |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<double>& |
| complex<double>::operator/=(const complex<_Tp>& __z) |
| { |
| _ComplexT __t; |
| __real__ __t = __z.real(); |
| __imag__ __t = __z.imag(); |
| _M_value /= __t; |
| return *this; |
| } |
| |
| // 26.2.3 complex specializations |
| // complex<long double> specialization |
| template<> class complex<long double> |
| { |
| public: |
| typedef long double value_type; |
| |
| complex(long double = 0.0L, long double = 0.0L); |
| #ifdef _GLIBCXX_BUGGY_COMPLEX |
| complex(const complex& __z) : _M_value(__z._M_value) { } |
| #endif |
| complex(const complex<float>&); |
| complex(const complex<double>&); |
| |
| long double& real(); |
| const long double& real() const; |
| long double& imag(); |
| const long double& imag() const; |
| |
| complex<long double>& operator= (long double); |
| complex<long double>& operator+= (long double); |
| complex<long double>& operator-= (long double); |
| complex<long double>& operator*= (long double); |
| complex<long double>& operator/= (long double); |
| |
| // The compiler knows how to do this efficiently |
| // complex& operator= (const complex&); |
| template<typename _Tp> |
| complex<long double>& operator=(const complex<_Tp>&); |
| template<typename _Tp> |
| complex<long double>& operator+=(const complex<_Tp>&); |
| template<typename _Tp> |
| complex<long double>& operator-=(const complex<_Tp>&); |
| template<typename _Tp> |
| complex<long double>& operator*=(const complex<_Tp>&); |
| template<typename _Tp> |
| complex<long double>& operator/=(const complex<_Tp>&); |
| |
| private: |
| typedef __complex__ long double _ComplexT; |
| _ComplexT _M_value; |
| |
| complex(_ComplexT __z) : _M_value(__z) { } |
| |
| friend class complex<float>; |
| friend class complex<double>; |
| }; |
| |
| inline |
| complex<long double>::complex(long double __r, long double __i) |
| { |
| __real__ _M_value = __r; |
| __imag__ _M_value = __i; |
| } |
| |
| inline long double& |
| complex<long double>::real() |
| { return __real__ _M_value; } |
| |
| inline const long double& |
| complex<long double>::real() const |
| { return __real__ _M_value; } |
| |
| inline long double& |
| complex<long double>::imag() |
| { return __imag__ _M_value; } |
| |
| inline const long double& |
| complex<long double>::imag() const |
| { return __imag__ _M_value; } |
| |
| inline complex<long double>& |
| complex<long double>::operator=(long double __r) |
| { |
| __real__ _M_value = __r; |
| __imag__ _M_value = 0.0L; |
| return *this; |
| } |
| |
| inline complex<long double>& |
| complex<long double>::operator+=(long double __r) |
| { |
| __real__ _M_value += __r; |
| return *this; |
| } |
| |
| inline complex<long double>& |
| complex<long double>::operator-=(long double __r) |
| { |
| __real__ _M_value -= __r; |
| return *this; |
| } |
| |
| inline complex<long double>& |
| complex<long double>::operator*=(long double __r) |
| { |
| _M_value *= __r; |
| return *this; |
| } |
| |
| inline complex<long double>& |
| complex<long double>::operator/=(long double __r) |
| { |
| _M_value /= __r; |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<long double>& |
| complex<long double>::operator=(const complex<_Tp>& __z) |
| { |
| __real__ _M_value = __z.real(); |
| __imag__ _M_value = __z.imag(); |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<long double>& |
| complex<long double>::operator+=(const complex<_Tp>& __z) |
| { |
| __real__ _M_value += __z.real(); |
| __imag__ _M_value += __z.imag(); |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<long double>& |
| complex<long double>::operator-=(const complex<_Tp>& __z) |
| { |
| __real__ _M_value -= __z.real(); |
| __imag__ _M_value -= __z.imag(); |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<long double>& |
| complex<long double>::operator*=(const complex<_Tp>& __z) |
| { |
| _ComplexT __t; |
| __real__ __t = __z.real(); |
| __imag__ __t = __z.imag(); |
| _M_value *= __t; |
| return *this; |
| } |
| |
| template<typename _Tp> |
| inline complex<long double>& |
| complex<long double>::operator/=(const complex<_Tp>& __z) |
| { |
| _ComplexT __t; |
| __real__ __t = __z.real(); |
| __imag__ __t = __z.imag(); |
| _M_value /= __t; |
| return *this; |
| } |
| |
| // These bits have to be at the end of this file, so that the |
| // specializations have all been defined. |
| // ??? No, they have to be there because of compiler limitation at |
| // inlining. It suffices that class specializations be defined. |
| inline |
| complex<float>::complex(const complex<double>& __z) |
| : _M_value(_ComplexT(__z._M_value)) { } |
| |
| inline |
| complex<float>::complex(const complex<long double>& __z) |
| : _M_value(_ComplexT(__z._M_value)) { } |
| |
| inline |
| complex<double>::complex(const complex<float>& __z) |
| : _M_value(_ComplexT(__z._M_value)) { } |
| |
| inline |
| complex<double>::complex(const complex<long double>& __z) |
| { |
| __real__ _M_value = __z.real(); |
| __imag__ _M_value = __z.imag(); |
| } |
| |
| inline |
| complex<long double>::complex(const complex<float>& __z) |
| : _M_value(_ComplexT(__z._M_value)) { } |
| |
| inline |
| complex<long double>::complex(const complex<double>& __z) |
| : _M_value(_ComplexT(__z._M_value)) { } |
| } // namespace std |
| |
| #endif /* _GLIBCXX_COMPLEX */ |