| // Random number extensions -*- C++ -*- |
| |
| // Copyright (C) 2012-2020 Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| /** @file ext/random.tcc |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. @headername{ext/random} |
| */ |
| |
| #ifndef _EXT_RANDOM_TCC |
| #define _EXT_RANDOM_TCC 1 |
| |
| #pragma GCC system_header |
| |
| namespace __gnu_cxx _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| |
| template<typename _UIntType, size_t __m, |
| size_t __pos1, size_t __sl1, size_t __sl2, |
| size_t __sr1, size_t __sr2, |
| uint32_t __msk1, uint32_t __msk2, |
| uint32_t __msk3, uint32_t __msk4, |
| uint32_t __parity1, uint32_t __parity2, |
| uint32_t __parity3, uint32_t __parity4> |
| void simd_fast_mersenne_twister_engine<_UIntType, __m, |
| __pos1, __sl1, __sl2, __sr1, __sr2, |
| __msk1, __msk2, __msk3, __msk4, |
| __parity1, __parity2, __parity3, |
| __parity4>:: |
| seed(_UIntType __seed) |
| { |
| _M_state32[0] = static_cast<uint32_t>(__seed); |
| for (size_t __i = 1; __i < _M_nstate32; ++__i) |
| _M_state32[__i] = (1812433253UL |
| * (_M_state32[__i - 1] ^ (_M_state32[__i - 1] >> 30)) |
| + __i); |
| _M_pos = state_size; |
| _M_period_certification(); |
| } |
| |
| |
| namespace { |
| |
| inline uint32_t _Func1(uint32_t __x) |
| { |
| return (__x ^ (__x >> 27)) * UINT32_C(1664525); |
| } |
| |
| inline uint32_t _Func2(uint32_t __x) |
| { |
| return (__x ^ (__x >> 27)) * UINT32_C(1566083941); |
| } |
| |
| } |
| |
| |
| template<typename _UIntType, size_t __m, |
| size_t __pos1, size_t __sl1, size_t __sl2, |
| size_t __sr1, size_t __sr2, |
| uint32_t __msk1, uint32_t __msk2, |
| uint32_t __msk3, uint32_t __msk4, |
| uint32_t __parity1, uint32_t __parity2, |
| uint32_t __parity3, uint32_t __parity4> |
| template<typename _Sseq> |
| auto |
| simd_fast_mersenne_twister_engine<_UIntType, __m, |
| __pos1, __sl1, __sl2, __sr1, __sr2, |
| __msk1, __msk2, __msk3, __msk4, |
| __parity1, __parity2, __parity3, |
| __parity4>:: |
| seed(_Sseq& __q) |
| -> _If_seed_seq<_Sseq> |
| { |
| size_t __lag; |
| |
| if (_M_nstate32 >= 623) |
| __lag = 11; |
| else if (_M_nstate32 >= 68) |
| __lag = 7; |
| else if (_M_nstate32 >= 39) |
| __lag = 5; |
| else |
| __lag = 3; |
| const size_t __mid = (_M_nstate32 - __lag) / 2; |
| |
| std::fill(_M_state32, _M_state32 + _M_nstate32, UINT32_C(0x8b8b8b8b)); |
| uint32_t __arr[_M_nstate32]; |
| __q.generate(__arr + 0, __arr + _M_nstate32); |
| |
| uint32_t __r = _Func1(_M_state32[0] ^ _M_state32[__mid] |
| ^ _M_state32[_M_nstate32 - 1]); |
| _M_state32[__mid] += __r; |
| __r += _M_nstate32; |
| _M_state32[__mid + __lag] += __r; |
| _M_state32[0] = __r; |
| |
| for (size_t __i = 1, __j = 0; __j < _M_nstate32; ++__j) |
| { |
| __r = _Func1(_M_state32[__i] |
| ^ _M_state32[(__i + __mid) % _M_nstate32] |
| ^ _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]); |
| _M_state32[(__i + __mid) % _M_nstate32] += __r; |
| __r += __arr[__j] + __i; |
| _M_state32[(__i + __mid + __lag) % _M_nstate32] += __r; |
| _M_state32[__i] = __r; |
| __i = (__i + 1) % _M_nstate32; |
| } |
| for (size_t __j = 0; __j < _M_nstate32; ++__j) |
| { |
| const size_t __i = (__j + 1) % _M_nstate32; |
| __r = _Func2(_M_state32[__i] |
| + _M_state32[(__i + __mid) % _M_nstate32] |
| + _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]); |
| _M_state32[(__i + __mid) % _M_nstate32] ^= __r; |
| __r -= __i; |
| _M_state32[(__i + __mid + __lag) % _M_nstate32] ^= __r; |
| _M_state32[__i] = __r; |
| } |
| |
| _M_pos = state_size; |
| _M_period_certification(); |
| } |
| |
| |
| template<typename _UIntType, size_t __m, |
| size_t __pos1, size_t __sl1, size_t __sl2, |
| size_t __sr1, size_t __sr2, |
| uint32_t __msk1, uint32_t __msk2, |
| uint32_t __msk3, uint32_t __msk4, |
| uint32_t __parity1, uint32_t __parity2, |
| uint32_t __parity3, uint32_t __parity4> |
| void simd_fast_mersenne_twister_engine<_UIntType, __m, |
| __pos1, __sl1, __sl2, __sr1, __sr2, |
| __msk1, __msk2, __msk3, __msk4, |
| __parity1, __parity2, __parity3, |
| __parity4>:: |
| _M_period_certification(void) |
| { |
| static const uint32_t __parity[4] = { __parity1, __parity2, |
| __parity3, __parity4 }; |
| uint32_t __inner = 0; |
| for (size_t __i = 0; __i < 4; ++__i) |
| if (__parity[__i] != 0) |
| __inner ^= _M_state32[__i] & __parity[__i]; |
| |
| if (__builtin_parity(__inner) & 1) |
| return; |
| for (size_t __i = 0; __i < 4; ++__i) |
| if (__parity[__i] != 0) |
| { |
| _M_state32[__i] ^= 1 << (__builtin_ffs(__parity[__i]) - 1); |
| return; |
| } |
| __builtin_unreachable(); |
| } |
| |
| |
| template<typename _UIntType, size_t __m, |
| size_t __pos1, size_t __sl1, size_t __sl2, |
| size_t __sr1, size_t __sr2, |
| uint32_t __msk1, uint32_t __msk2, |
| uint32_t __msk3, uint32_t __msk4, |
| uint32_t __parity1, uint32_t __parity2, |
| uint32_t __parity3, uint32_t __parity4> |
| void simd_fast_mersenne_twister_engine<_UIntType, __m, |
| __pos1, __sl1, __sl2, __sr1, __sr2, |
| __msk1, __msk2, __msk3, __msk4, |
| __parity1, __parity2, __parity3, |
| __parity4>:: |
| discard(unsigned long long __z) |
| { |
| while (__z > state_size - _M_pos) |
| { |
| __z -= state_size - _M_pos; |
| |
| _M_gen_rand(); |
| } |
| |
| _M_pos += __z; |
| } |
| |
| |
| #ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_GEN_READ |
| |
| namespace { |
| |
| template<size_t __shift> |
| inline void __rshift(uint32_t *__out, const uint32_t *__in) |
| { |
| uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32) |
| | static_cast<uint64_t>(__in[2])); |
| uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32) |
| | static_cast<uint64_t>(__in[0])); |
| |
| uint64_t __oh = __th >> (__shift * 8); |
| uint64_t __ol = __tl >> (__shift * 8); |
| __ol |= __th << (64 - __shift * 8); |
| __out[1] = static_cast<uint32_t>(__ol >> 32); |
| __out[0] = static_cast<uint32_t>(__ol); |
| __out[3] = static_cast<uint32_t>(__oh >> 32); |
| __out[2] = static_cast<uint32_t>(__oh); |
| } |
| |
| |
| template<size_t __shift> |
| inline void __lshift(uint32_t *__out, const uint32_t *__in) |
| { |
| uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32) |
| | static_cast<uint64_t>(__in[2])); |
| uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32) |
| | static_cast<uint64_t>(__in[0])); |
| |
| uint64_t __oh = __th << (__shift * 8); |
| uint64_t __ol = __tl << (__shift * 8); |
| __oh |= __tl >> (64 - __shift * 8); |
| __out[1] = static_cast<uint32_t>(__ol >> 32); |
| __out[0] = static_cast<uint32_t>(__ol); |
| __out[3] = static_cast<uint32_t>(__oh >> 32); |
| __out[2] = static_cast<uint32_t>(__oh); |
| } |
| |
| |
| template<size_t __sl1, size_t __sl2, size_t __sr1, size_t __sr2, |
| uint32_t __msk1, uint32_t __msk2, uint32_t __msk3, uint32_t __msk4> |
| inline void __recursion(uint32_t *__r, |
| const uint32_t *__a, const uint32_t *__b, |
| const uint32_t *__c, const uint32_t *__d) |
| { |
| uint32_t __x[4]; |
| uint32_t __y[4]; |
| |
| __lshift<__sl2>(__x, __a); |
| __rshift<__sr2>(__y, __c); |
| __r[0] = (__a[0] ^ __x[0] ^ ((__b[0] >> __sr1) & __msk1) |
| ^ __y[0] ^ (__d[0] << __sl1)); |
| __r[1] = (__a[1] ^ __x[1] ^ ((__b[1] >> __sr1) & __msk2) |
| ^ __y[1] ^ (__d[1] << __sl1)); |
| __r[2] = (__a[2] ^ __x[2] ^ ((__b[2] >> __sr1) & __msk3) |
| ^ __y[2] ^ (__d[2] << __sl1)); |
| __r[3] = (__a[3] ^ __x[3] ^ ((__b[3] >> __sr1) & __msk4) |
| ^ __y[3] ^ (__d[3] << __sl1)); |
| } |
| |
| } |
| |
| |
| template<typename _UIntType, size_t __m, |
| size_t __pos1, size_t __sl1, size_t __sl2, |
| size_t __sr1, size_t __sr2, |
| uint32_t __msk1, uint32_t __msk2, |
| uint32_t __msk3, uint32_t __msk4, |
| uint32_t __parity1, uint32_t __parity2, |
| uint32_t __parity3, uint32_t __parity4> |
| void simd_fast_mersenne_twister_engine<_UIntType, __m, |
| __pos1, __sl1, __sl2, __sr1, __sr2, |
| __msk1, __msk2, __msk3, __msk4, |
| __parity1, __parity2, __parity3, |
| __parity4>:: |
| _M_gen_rand(void) |
| { |
| const uint32_t *__r1 = &_M_state32[_M_nstate32 - 8]; |
| const uint32_t *__r2 = &_M_state32[_M_nstate32 - 4]; |
| static constexpr size_t __pos1_32 = __pos1 * 4; |
| |
| size_t __i; |
| for (__i = 0; __i < _M_nstate32 - __pos1_32; __i += 4) |
| { |
| __recursion<__sl1, __sl2, __sr1, __sr2, |
| __msk1, __msk2, __msk3, __msk4> |
| (&_M_state32[__i], &_M_state32[__i], |
| &_M_state32[__i + __pos1_32], __r1, __r2); |
| __r1 = __r2; |
| __r2 = &_M_state32[__i]; |
| } |
| |
| for (; __i < _M_nstate32; __i += 4) |
| { |
| __recursion<__sl1, __sl2, __sr1, __sr2, |
| __msk1, __msk2, __msk3, __msk4> |
| (&_M_state32[__i], &_M_state32[__i], |
| &_M_state32[__i + __pos1_32 - _M_nstate32], __r1, __r2); |
| __r1 = __r2; |
| __r2 = &_M_state32[__i]; |
| } |
| |
| _M_pos = 0; |
| } |
| |
| #endif |
| |
| #ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_OPERATOREQUAL |
| template<typename _UIntType, size_t __m, |
| size_t __pos1, size_t __sl1, size_t __sl2, |
| size_t __sr1, size_t __sr2, |
| uint32_t __msk1, uint32_t __msk2, |
| uint32_t __msk3, uint32_t __msk4, |
| uint32_t __parity1, uint32_t __parity2, |
| uint32_t __parity3, uint32_t __parity4> |
| bool |
| operator==(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| __m, __pos1, __sl1, __sl2, __sr1, __sr2, |
| __msk1, __msk2, __msk3, __msk4, |
| __parity1, __parity2, __parity3, __parity4>& __lhs, |
| const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| __m, __pos1, __sl1, __sl2, __sr1, __sr2, |
| __msk1, __msk2, __msk3, __msk4, |
| __parity1, __parity2, __parity3, __parity4>& __rhs) |
| { |
| typedef __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| __m, __pos1, __sl1, __sl2, __sr1, __sr2, |
| __msk1, __msk2, __msk3, __msk4, |
| __parity1, __parity2, __parity3, __parity4> __engine; |
| return (std::equal(__lhs._M_stateT, |
| __lhs._M_stateT + __engine::state_size, |
| __rhs._M_stateT) |
| && __lhs._M_pos == __rhs._M_pos); |
| } |
| #endif |
| |
| template<typename _UIntType, size_t __m, |
| size_t __pos1, size_t __sl1, size_t __sl2, |
| size_t __sr1, size_t __sr2, |
| uint32_t __msk1, uint32_t __msk2, |
| uint32_t __msk3, uint32_t __msk4, |
| uint32_t __parity1, uint32_t __parity2, |
| uint32_t __parity3, uint32_t __parity4, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| __m, __pos1, __sl1, __sl2, __sr1, __sr2, |
| __msk1, __msk2, __msk3, __msk4, |
| __parity1, __parity2, __parity3, __parity4>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| __os.fill(__space); |
| |
| for (size_t __i = 0; __i < __x._M_nstate32; ++__i) |
| __os << __x._M_state32[__i] << __space; |
| __os << __x._M_pos; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| |
| template<typename _UIntType, size_t __m, |
| size_t __pos1, size_t __sl1, size_t __sl2, |
| size_t __sr1, size_t __sr2, |
| uint32_t __msk1, uint32_t __msk2, |
| uint32_t __msk3, uint32_t __msk4, |
| uint32_t __parity1, uint32_t __parity2, |
| uint32_t __parity3, uint32_t __parity4, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| __m, __pos1, __sl1, __sl2, __sr1, __sr2, |
| __msk1, __msk2, __msk3, __msk4, |
| __parity1, __parity2, __parity3, __parity4>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| for (size_t __i = 0; __i < __x._M_nstate32; ++__i) |
| __is >> __x._M_state32[__i]; |
| __is >> __x._M_pos; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| |
| /** |
| * Iteration method due to M.D. J<o:>hnk. |
| * |
| * M.D. J<o:>hnk, Erzeugung von betaverteilten und gammaverteilten |
| * Zufallszahlen, Metrika, Volume 8, 1964 |
| */ |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename beta_distribution<_RealType>::result_type |
| beta_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| |
| result_type __x, __y; |
| do |
| { |
| __x = std::exp(std::log(__aurng()) / __param.alpha()); |
| __y = std::exp(std::log(__aurng()) / __param.beta()); |
| } |
| while (__x + __y > result_type(1)); |
| |
| return __x / (__x + __y); |
| } |
| |
| template<typename _RealType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| beta_distribution<_RealType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| |
| while (__f != __t) |
| { |
| result_type __x, __y; |
| do |
| { |
| __x = std::exp(std::log(__aurng()) / __param.alpha()); |
| __y = std::exp(std::log(__aurng()) / __param.beta()); |
| } |
| while (__x + __y > result_type(1)); |
| |
| *__f++ = __x / (__x + __y); |
| } |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const __gnu_cxx::beta_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.alpha() << __space << __x.beta(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| __gnu_cxx::beta_distribution<_RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __alpha_val, __beta_val; |
| __is >> __alpha_val >> __beta_val; |
| __x.param(typename __gnu_cxx::beta_distribution<_RealType>:: |
| param_type(__alpha_val, __beta_val)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<std::size_t _Dimen, typename _RealType> |
| template<typename _InputIterator1, typename _InputIterator2> |
| void |
| normal_mv_distribution<_Dimen, _RealType>::param_type:: |
| _M_init_full(_InputIterator1 __meanbegin, _InputIterator1 __meanend, |
| _InputIterator2 __varcovbegin, _InputIterator2 __varcovend) |
| { |
| __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) |
| __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) |
| std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()), |
| _M_mean.end(), _RealType(0)); |
| |
| // Perform the Cholesky decomposition |
| auto __w = _M_t.begin(); |
| for (size_t __j = 0; __j < _Dimen; ++__j) |
| { |
| _RealType __sum = _RealType(0); |
| |
| auto __slitbegin = __w; |
| auto __cit = _M_t.begin(); |
| for (size_t __i = 0; __i < __j; ++__i) |
| { |
| auto __slit = __slitbegin; |
| _RealType __s = *__varcovbegin++; |
| for (size_t __k = 0; __k < __i; ++__k) |
| __s -= *__slit++ * *__cit++; |
| |
| *__w++ = __s /= *__cit++; |
| __sum += __s * __s; |
| } |
| |
| __sum = *__varcovbegin - __sum; |
| if (__builtin_expect(__sum <= _RealType(0), 0)) |
| std::__throw_runtime_error(__N("normal_mv_distribution::" |
| "param_type::_M_init_full")); |
| *__w++ = std::sqrt(__sum); |
| |
| std::advance(__varcovbegin, _Dimen - __j); |
| } |
| } |
| |
| template<std::size_t _Dimen, typename _RealType> |
| template<typename _InputIterator1, typename _InputIterator2> |
| void |
| normal_mv_distribution<_Dimen, _RealType>::param_type:: |
| _M_init_lower(_InputIterator1 __meanbegin, _InputIterator1 __meanend, |
| _InputIterator2 __varcovbegin, _InputIterator2 __varcovend) |
| { |
| __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) |
| __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) |
| std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()), |
| _M_mean.end(), _RealType(0)); |
| |
| // Perform the Cholesky decomposition |
| auto __w = _M_t.begin(); |
| for (size_t __j = 0; __j < _Dimen; ++__j) |
| { |
| _RealType __sum = _RealType(0); |
| |
| auto __slitbegin = __w; |
| auto __cit = _M_t.begin(); |
| for (size_t __i = 0; __i < __j; ++__i) |
| { |
| auto __slit = __slitbegin; |
| _RealType __s = *__varcovbegin++; |
| for (size_t __k = 0; __k < __i; ++__k) |
| __s -= *__slit++ * *__cit++; |
| |
| *__w++ = __s /= *__cit++; |
| __sum += __s * __s; |
| } |
| |
| __sum = *__varcovbegin++ - __sum; |
| if (__builtin_expect(__sum <= _RealType(0), 0)) |
| std::__throw_runtime_error(__N("normal_mv_distribution::" |
| "param_type::_M_init_lower")); |
| *__w++ = std::sqrt(__sum); |
| } |
| } |
| |
| template<std::size_t _Dimen, typename _RealType> |
| template<typename _InputIterator1, typename _InputIterator2> |
| void |
| normal_mv_distribution<_Dimen, _RealType>::param_type:: |
| _M_init_diagonal(_InputIterator1 __meanbegin, _InputIterator1 __meanend, |
| _InputIterator2 __varbegin, _InputIterator2 __varend) |
| { |
| __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) |
| __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) |
| std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()), |
| _M_mean.end(), _RealType(0)); |
| |
| auto __w = _M_t.begin(); |
| size_t __step = 0; |
| while (__varbegin != __varend) |
| { |
| std::fill_n(__w, __step, _RealType(0)); |
| __w += __step++; |
| if (__builtin_expect(*__varbegin < _RealType(0), 0)) |
| std::__throw_runtime_error(__N("normal_mv_distribution::" |
| "param_type::_M_init_diagonal")); |
| *__w++ = std::sqrt(*__varbegin++); |
| } |
| } |
| |
| template<std::size_t _Dimen, typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename normal_mv_distribution<_Dimen, _RealType>::result_type |
| normal_mv_distribution<_Dimen, _RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| result_type __ret; |
| |
| _M_nd.__generate(__ret.begin(), __ret.end(), __urng); |
| |
| auto __t_it = __param._M_t.crbegin(); |
| for (size_t __i = _Dimen; __i > 0; --__i) |
| { |
| _RealType __sum = _RealType(0); |
| for (size_t __j = __i; __j > 0; --__j) |
| __sum += __ret[__j - 1] * *__t_it++; |
| __ret[__i - 1] = __sum; |
| } |
| |
| return __ret; |
| } |
| |
| template<std::size_t _Dimen, typename _RealType> |
| template<typename _ForwardIterator, typename _UniformRandomNumberGenerator> |
| void |
| normal_mv_distribution<_Dimen, _RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< |
| _ForwardIterator>) |
| while (__f != __t) |
| *__f++ = this->operator()(__urng, __param); |
| } |
| |
| template<size_t _Dimen, typename _RealType> |
| bool |
| operator==(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& |
| __d1, |
| const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& |
| __d2) |
| { |
| return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; |
| } |
| |
| template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| auto __mean = __x._M_param.mean(); |
| for (auto __it : __mean) |
| __os << __it << __space; |
| auto __t = __x._M_param.varcov(); |
| for (auto __it : __t) |
| __os << __it << __space; |
| |
| __os << __x._M_nd; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| std::array<_RealType, _Dimen> __mean; |
| for (auto& __it : __mean) |
| __is >> __it; |
| std::array<_RealType, _Dimen * (_Dimen + 1) / 2> __varcov; |
| for (auto& __it : __varcov) |
| __is >> __it; |
| |
| __is >> __x._M_nd; |
| |
| // The param_type temporary is built with a private constructor, |
| // to skip the Cholesky decomposition that would be performed |
| // otherwise. |
| __x.param(typename normal_mv_distribution<_Dimen, _RealType>:: |
| param_type(__mean, __varcov)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| rice_distribution<_RealType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| while (__f != __t) |
| { |
| typename std::normal_distribution<result_type>::param_type |
| __px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma()); |
| result_type __x = this->_M_ndx(__px, __urng); |
| result_type __y = this->_M_ndy(__py, __urng); |
| #if _GLIBCXX_USE_C99_MATH_TR1 |
| *__f++ = std::hypot(__x, __y); |
| #else |
| *__f++ = std::sqrt(__x * __x + __y * __y); |
| #endif |
| } |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const rice_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.nu() << __space << __x.sigma(); |
| __os << __space << __x._M_ndx; |
| __os << __space << __x._M_ndy; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| rice_distribution<_RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __nu_val, __sigma_val; |
| __is >> __nu_val >> __sigma_val; |
| __is >> __x._M_ndx; |
| __is >> __x._M_ndy; |
| __x.param(typename rice_distribution<_RealType>:: |
| param_type(__nu_val, __sigma_val)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| nakagami_distribution<_RealType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| typename std::gamma_distribution<result_type>::param_type |
| __pg(__p.mu(), __p.omega() / __p.mu()); |
| while (__f != __t) |
| *__f++ = std::sqrt(this->_M_gd(__pg, __urng)); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const nakagami_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.mu() << __space << __x.omega(); |
| __os << __space << __x._M_gd; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| nakagami_distribution<_RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __mu_val, __omega_val; |
| __is >> __mu_val >> __omega_val; |
| __is >> __x._M_gd; |
| __x.param(typename nakagami_distribution<_RealType>:: |
| param_type(__mu_val, __omega_val)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| pareto_distribution<_RealType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| result_type __mu_val = __p.mu(); |
| result_type __malphinv = -result_type(1) / __p.alpha(); |
| while (__f != __t) |
| *__f++ = __mu_val * std::pow(this->_M_ud(__urng), __malphinv); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const pareto_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.alpha() << __space << __x.mu(); |
| __os << __space << __x._M_ud; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| pareto_distribution<_RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __alpha_val, __mu_val; |
| __is >> __alpha_val >> __mu_val; |
| __is >> __x._M_ud; |
| __x.param(typename pareto_distribution<_RealType>:: |
| param_type(__alpha_val, __mu_val)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename k_distribution<_RealType>::result_type |
| k_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { |
| result_type __x = this->_M_gd1(__urng); |
| result_type __y = this->_M_gd2(__urng); |
| return std::sqrt(__x * __y); |
| } |
| |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename k_distribution<_RealType>::result_type |
| k_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| typename std::gamma_distribution<result_type>::param_type |
| __p1(__p.lambda(), result_type(1) / __p.lambda()), |
| __p2(__p.nu(), __p.mu() / __p.nu()); |
| result_type __x = this->_M_gd1(__p1, __urng); |
| result_type __y = this->_M_gd2(__p2, __urng); |
| return std::sqrt(__x * __y); |
| } |
| |
| template<typename _RealType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| k_distribution<_RealType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| typename std::gamma_distribution<result_type>::param_type |
| __p1(__p.lambda(), result_type(1) / __p.lambda()), |
| __p2(__p.nu(), __p.mu() / __p.nu()); |
| while (__f != __t) |
| { |
| result_type __x = this->_M_gd1(__p1, __urng); |
| result_type __y = this->_M_gd2(__p2, __urng); |
| *__f++ = std::sqrt(__x * __y); |
| } |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const k_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.lambda() << __space << __x.mu() << __space << __x.nu(); |
| __os << __space << __x._M_gd1; |
| __os << __space << __x._M_gd2; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| k_distribution<_RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __lambda_val, __mu_val, __nu_val; |
| __is >> __lambda_val >> __mu_val >> __nu_val; |
| __is >> __x._M_gd1; |
| __is >> __x._M_gd2; |
| __x.param(typename k_distribution<_RealType>:: |
| param_type(__lambda_val, __mu_val, __nu_val)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| arcsine_distribution<_RealType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| result_type __dif = __p.b() - __p.a(); |
| result_type __sum = __p.a() + __p.b(); |
| while (__f != __t) |
| { |
| result_type __x = std::sin(this->_M_ud(__urng)); |
| *__f++ = (__x * __dif + __sum) / result_type(2); |
| } |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const arcsine_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.a() << __space << __x.b(); |
| __os << __space << __x._M_ud; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| arcsine_distribution<_RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __a, __b; |
| __is >> __a >> __b; |
| __is >> __x._M_ud; |
| __x.param(typename arcsine_distribution<_RealType>:: |
| param_type(__a, __b)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename hoyt_distribution<_RealType>::result_type |
| hoyt_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { |
| result_type __x = this->_M_ad(__urng); |
| result_type __y = this->_M_ed(__urng); |
| return (result_type(2) * this->q() |
| / (result_type(1) + this->q() * this->q())) |
| * std::sqrt(this->omega() * __x * __y); |
| } |
| |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename hoyt_distribution<_RealType>::result_type |
| hoyt_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| result_type __q2 = __p.q() * __p.q(); |
| result_type __num = result_type(0.5L) * (result_type(1) + __q2); |
| typename __gnu_cxx::arcsine_distribution<result_type>::param_type |
| __pa(__num, __num / __q2); |
| result_type __x = this->_M_ad(__pa, __urng); |
| result_type __y = this->_M_ed(__urng); |
| return (result_type(2) * __p.q() / (result_type(1) + __q2)) |
| * std::sqrt(__p.omega() * __x * __y); |
| } |
| |
| template<typename _RealType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| hoyt_distribution<_RealType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| result_type __2q = result_type(2) * __p.q(); |
| result_type __q2 = __p.q() * __p.q(); |
| result_type __q2p1 = result_type(1) + __q2; |
| result_type __num = result_type(0.5L) * __q2p1; |
| result_type __omega = __p.omega(); |
| typename __gnu_cxx::arcsine_distribution<result_type>::param_type |
| __pa(__num, __num / __q2); |
| while (__f != __t) |
| { |
| result_type __x = this->_M_ad(__pa, __urng); |
| result_type __y = this->_M_ed(__urng); |
| *__f++ = (__2q / __q2p1) * std::sqrt(__omega * __x * __y); |
| } |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const hoyt_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.q() << __space << __x.omega(); |
| __os << __space << __x._M_ad; |
| __os << __space << __x._M_ed; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| hoyt_distribution<_RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __q, __omega; |
| __is >> __q >> __omega; |
| __is >> __x._M_ad; |
| __is >> __x._M_ed; |
| __x.param(typename hoyt_distribution<_RealType>:: |
| param_type(__q, __omega)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| triangular_distribution<_RealType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| while (__f != __t) |
| *__f++ = this->operator()(__urng, __param); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const __gnu_cxx::triangular_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.a() << __space << __x.b() << __space << __x.c(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| __gnu_cxx::triangular_distribution<_RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __a, __b, __c; |
| __is >> __a >> __b >> __c; |
| __x.param(typename __gnu_cxx::triangular_distribution<_RealType>:: |
| param_type(__a, __b, __c)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename von_mises_distribution<_RealType>::result_type |
| von_mises_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| const result_type __pi |
| = __gnu_cxx::__math_constants<result_type>::__pi; |
| std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| |
| result_type __f; |
| while (1) |
| { |
| result_type __rnd = std::cos(__pi * __aurng()); |
| __f = (result_type(1) + __p._M_r * __rnd) / (__p._M_r + __rnd); |
| result_type __c = __p._M_kappa * (__p._M_r - __f); |
| |
| result_type __rnd2 = __aurng(); |
| if (__c * (result_type(2) - __c) > __rnd2) |
| break; |
| if (std::log(__c / __rnd2) >= __c - result_type(1)) |
| break; |
| } |
| |
| result_type __res = std::acos(__f); |
| #if _GLIBCXX_USE_C99_MATH_TR1 |
| __res = std::copysign(__res, __aurng() - result_type(0.5)); |
| #else |
| if (__aurng() < result_type(0.5)) |
| __res = -__res; |
| #endif |
| __res += __p._M_mu; |
| if (__res > __pi) |
| __res -= result_type(2) * __pi; |
| else if (__res < -__pi) |
| __res += result_type(2) * __pi; |
| return __res; |
| } |
| |
| template<typename _RealType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| von_mises_distribution<_RealType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| while (__f != __t) |
| *__f++ = this->operator()(__urng, __param); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const __gnu_cxx::von_mises_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.mu() << __space << __x.kappa(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| __gnu_cxx::von_mises_distribution<_RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __mu, __kappa; |
| __is >> __mu >> __kappa; |
| __x.param(typename __gnu_cxx::von_mises_distribution<_RealType>:: |
| param_type(__mu, __kappa)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _UIntType> |
| template<typename _UniformRandomNumberGenerator> |
| typename hypergeometric_distribution<_UIntType>::result_type |
| hypergeometric_distribution<_UIntType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| std::__detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| |
| result_type __a = __param.successful_size(); |
| result_type __b = __param.total_size(); |
| result_type __k = 0; |
| |
| if (__param.total_draws() < __param.total_size() / 2) |
| { |
| for (result_type __i = 0; __i < __param.total_draws(); ++__i) |
| { |
| if (__b * __aurng() < __a) |
| { |
| ++__k; |
| if (__k == __param.successful_size()) |
| return __k; |
| --__a; |
| } |
| --__b; |
| } |
| return __k; |
| } |
| else |
| { |
| for (result_type __i = 0; __i < __param.unsuccessful_size(); ++__i) |
| { |
| if (__b * __aurng() < __a) |
| { |
| ++__k; |
| if (__k == __param.successful_size()) |
| return __param.successful_size() - __k; |
| --__a; |
| } |
| --__b; |
| } |
| return __param.successful_size() - __k; |
| } |
| } |
| |
| template<typename _UIntType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| hypergeometric_distribution<_UIntType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| while (__f != __t) |
| *__f++ = this->operator()(__urng); |
| } |
| |
| template<typename _UIntType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const __gnu_cxx::hypergeometric_distribution<_UIntType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_UIntType>::max_digits10); |
| |
| __os << __x.total_size() << __space << __x.successful_size() << __space |
| << __x.total_draws(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _UIntType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| __gnu_cxx::hypergeometric_distribution<_UIntType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _UIntType __total_size, __successful_size, __total_draws; |
| __is >> __total_size >> __successful_size >> __total_draws; |
| __x.param(typename __gnu_cxx::hypergeometric_distribution<_UIntType>:: |
| param_type(__total_size, __successful_size, __total_draws)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename logistic_distribution<_RealType>::result_type |
| logistic_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| |
| result_type __arg = result_type(1); |
| while (__arg == result_type(1) || __arg == result_type(0)) |
| __arg = __aurng(); |
| return __p.a() |
| + __p.b() * std::log(__arg / (result_type(1) - __arg)); |
| } |
| |
| template<typename _RealType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| logistic_distribution<_RealType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| |
| while (__f != __t) |
| { |
| result_type __arg = result_type(1); |
| while (__arg == result_type(1) || __arg == result_type(0)) |
| __arg = __aurng(); |
| *__f++ = __p.a() |
| + __p.b() * std::log(__arg / (result_type(1) - __arg)); |
| } |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const logistic_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.a() << __space << __x.b(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| logistic_distribution<_RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __a, __b; |
| __is >> __a >> __b; |
| __x.param(typename logistic_distribution<_RealType>:: |
| param_type(__a, __b)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| namespace { |
| |
| // Helper class for the uniform_on_sphere_distribution generation |
| // function. |
| template<std::size_t _Dimen, typename _RealType> |
| class uniform_on_sphere_helper |
| { |
| typedef typename uniform_on_sphere_distribution<_Dimen, _RealType>:: |
| result_type result_type; |
| |
| public: |
| template<typename _NormalDistribution, |
| typename _UniformRandomNumberGenerator> |
| result_type operator()(_NormalDistribution& __nd, |
| _UniformRandomNumberGenerator& __urng) |
| { |
| result_type __ret; |
| typename result_type::value_type __norm; |
| |
| do |
| { |
| auto __sum = _RealType(0); |
| |
| std::generate(__ret.begin(), __ret.end(), |
| [&__nd, &__urng, &__sum](){ |
| _RealType __t = __nd(__urng); |
| __sum += __t * __t; |
| return __t; }); |
| __norm = std::sqrt(__sum); |
| } |
| while (__norm == _RealType(0) || ! __builtin_isfinite(__norm)); |
| |
| std::transform(__ret.begin(), __ret.end(), __ret.begin(), |
| [__norm](_RealType __val){ return __val / __norm; }); |
| |
| return __ret; |
| } |
| }; |
| |
| |
| template<typename _RealType> |
| class uniform_on_sphere_helper<2, _RealType> |
| { |
| typedef typename uniform_on_sphere_distribution<2, _RealType>:: |
| result_type result_type; |
| |
| public: |
| template<typename _NormalDistribution, |
| typename _UniformRandomNumberGenerator> |
| result_type operator()(_NormalDistribution&, |
| _UniformRandomNumberGenerator& __urng) |
| { |
| result_type __ret; |
| _RealType __sq; |
| std::__detail::_Adaptor<_UniformRandomNumberGenerator, |
| _RealType> __aurng(__urng); |
| |
| do |
| { |
| __ret[0] = _RealType(2) * __aurng() - _RealType(1); |
| __ret[1] = _RealType(2) * __aurng() - _RealType(1); |
| |
| __sq = __ret[0] * __ret[0] + __ret[1] * __ret[1]; |
| } |
| while (__sq == _RealType(0) || __sq > _RealType(1)); |
| |
| #if _GLIBCXX_USE_C99_MATH_TR1 |
| // Yes, we do not just use sqrt(__sq) because hypot() is more |
| // accurate. |
| auto __norm = std::hypot(__ret[0], __ret[1]); |
| #else |
| auto __norm = std::sqrt(__sq); |
| #endif |
| __ret[0] /= __norm; |
| __ret[1] /= __norm; |
| |
| return __ret; |
| } |
| }; |
| |
| } |
| |
| |
| template<std::size_t _Dimen, typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename uniform_on_sphere_distribution<_Dimen, _RealType>::result_type |
| uniform_on_sphere_distribution<_Dimen, _RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| uniform_on_sphere_helper<_Dimen, _RealType> __helper; |
| return __helper(_M_nd, __urng); |
| } |
| |
| template<std::size_t _Dimen, typename _RealType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| uniform_on_sphere_distribution<_Dimen, _RealType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| while (__f != __t) |
| *__f++ = this->operator()(__urng, __param); |
| } |
| |
| template<std::size_t _Dimen, typename _RealType, typename _CharT, |
| typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const __gnu_cxx::uniform_on_sphere_distribution<_Dimen, |
| _RealType>& __x) |
| { |
| return __os << __x._M_nd; |
| } |
| |
| template<std::size_t _Dimen, typename _RealType, typename _CharT, |
| typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| __gnu_cxx::uniform_on_sphere_distribution<_Dimen, |
| _RealType>& __x) |
| { |
| return __is >> __x._M_nd; |
| } |
| |
| |
| namespace { |
| |
| // Helper class for the uniform_inside_sphere_distribution generation |
| // function. |
| template<std::size_t _Dimen, bool _SmallDimen, typename _RealType> |
| class uniform_inside_sphere_helper; |
| |
| template<std::size_t _Dimen, typename _RealType> |
| class uniform_inside_sphere_helper<_Dimen, false, _RealType> |
| { |
| using result_type |
| = typename uniform_inside_sphere_distribution<_Dimen, _RealType>:: |
| result_type; |
| |
| public: |
| template<typename _UniformOnSphereDistribution, |
| typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformOnSphereDistribution& __uosd, |
| _UniformRandomNumberGenerator& __urng, |
| _RealType __radius) |
| { |
| std::__detail::_Adaptor<_UniformRandomNumberGenerator, |
| _RealType> __aurng(__urng); |
| |
| _RealType __pow = 1 / _RealType(_Dimen); |
| _RealType __urt = __radius * std::pow(__aurng(), __pow); |
| result_type __ret = __uosd(__aurng); |
| |
| std::transform(__ret.begin(), __ret.end(), __ret.begin(), |
| [__urt](_RealType __val) |
| { return __val * __urt; }); |
| |
| return __ret; |
| } |
| }; |
| |
| // Helper class for the uniform_inside_sphere_distribution generation |
| // function specialized for small dimensions. |
| template<std::size_t _Dimen, typename _RealType> |
| class uniform_inside_sphere_helper<_Dimen, true, _RealType> |
| { |
| using result_type |
| = typename uniform_inside_sphere_distribution<_Dimen, _RealType>:: |
| result_type; |
| |
| public: |
| template<typename _UniformOnSphereDistribution, |
| typename _UniformRandomNumberGenerator> |
| result_type |
| operator()(_UniformOnSphereDistribution&, |
| _UniformRandomNumberGenerator& __urng, |
| _RealType __radius) |
| { |
| result_type __ret; |
| _RealType __sq; |
| _RealType __radsq = __radius * __radius; |
| std::__detail::_Adaptor<_UniformRandomNumberGenerator, |
| _RealType> __aurng(__urng); |
| |
| do |
| { |
| __sq = _RealType(0); |
| for (int i = 0; i < _Dimen; ++i) |
| { |
| __ret[i] = _RealType(2) * __aurng() - _RealType(1); |
| __sq += __ret[i] * __ret[i]; |
| } |
| } |
| while (__sq > _RealType(1)); |
| |
| for (int i = 0; i < _Dimen; ++i) |
| __ret[i] *= __radius; |
| |
| return __ret; |
| } |
| }; |
| } // namespace |
| |
| // |
| // Experiments have shown that rejection is more efficient than transform |
| // for dimensions less than 8. |
| // |
| template<std::size_t _Dimen, typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename uniform_inside_sphere_distribution<_Dimen, _RealType>::result_type |
| uniform_inside_sphere_distribution<_Dimen, _RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| uniform_inside_sphere_helper<_Dimen, _Dimen < 8, _RealType> __helper; |
| return __helper(_M_uosd, __urng, __p.radius()); |
| } |
| |
| template<std::size_t _Dimen, typename _RealType> |
| template<typename _OutputIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| uniform_inside_sphere_distribution<_Dimen, _RealType>:: |
| __generate_impl(_OutputIterator __f, _OutputIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, |
| result_type>) |
| |
| while (__f != __t) |
| *__f++ = this->operator()(__urng, __param); |
| } |
| |
| template<std::size_t _Dimen, typename _RealType, typename _CharT, |
| typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen, |
| _RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.radius() << __space << __x._M_uosd; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| |
| return __os; |
| } |
| |
| template<std::size_t _Dimen, typename _RealType, typename _CharT, |
| typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| __gnu_cxx::uniform_inside_sphere_distribution<_Dimen, |
| _RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __radius_val; |
| __is >> __radius_val >> __x._M_uosd; |
| __x.param(typename uniform_inside_sphere_distribution<_Dimen, _RealType>:: |
| param_type(__radius_val)); |
| |
| __is.flags(__flags); |
| |
| return __is; |
| } |
| |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace __gnu_cxx |
| |
| |
| #endif // _EXT_RANDOM_TCC |