blob: 7a9a0e3037d9b2b3caf75008c34a9197649cefde [file] [log] [blame]
/* { dg-do compile { target c++11 } } */
/* { dg-require-effective-target tls } */
/* { dg-require-effective-target fpic } */
/* { dg-options "-w -O2 -fPIC" } */
namespace CLHEP {
static const double meter = 1000.*10;
static const double meter2 = meter*meter;
static const double megaelectronvolt = 1. ;
static const double gigaelectronvolt = 1.e+3;
static const double GeV = gigaelectronvolt;
static const double megavolt = megaelectronvolt;
static const double volt = 1.e-6*megavolt;
static const double tesla = volt*1.e+9/meter2;
}
using CLHEP::GeV;
using CLHEP::tesla;
namespace std {
typedef long int ptrdiff_t;
}
extern "C" {
extern double cos (double __x) throw ();
extern double sin (double __x) throw ();
extern double sqrt (double __x) throw ();
}
namespace std __attribute__ ((__visibility__ ("default"))) {
using ::cos;
using ::sin;
using ::sqrt;
template<class _CharT> struct char_traits;
template<typename _CharT, typename _Traits = char_traits<_CharT> > struct basic_ostream;
typedef basic_ostream<char> ostream;
template<typename _Iterator> struct iterator_traits { };
template<typename _Tp> struct iterator_traits<_Tp*> {
typedef ptrdiff_t difference_type;
typedef _Tp& reference;
};
}
namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) {
using std::iterator_traits;
template<typename _Iterator, typename _Container> struct __normal_iterator {
_Iterator _M_current;
typedef iterator_traits<_Iterator> __traits_type;
typedef typename __traits_type::difference_type difference_type;
typedef typename __traits_type::reference reference;
explicit __normal_iterator(const _Iterator& __i) : _M_current(__i) { }
reference operator*() const {
return *_M_current;
}
__normal_iterator operator+(difference_type __n) const {
return __normal_iterator(_M_current + __n);
}
};
template<typename _Tp> struct new_allocator {
};
}
namespace std __attribute__ ((__visibility__ ("default"))) {
template<typename _Tp> struct allocator: public __gnu_cxx::new_allocator<_Tp> {
};
struct ios_base { };
template<typename _CharT, typename _Traits> struct basic_ios : public ios_base { };
template<typename _CharT, typename _Traits> struct basic_ostream : virtual public basic_ios<_CharT, _Traits> {
typedef basic_ostream<_CharT, _Traits> __ostream_type;
__ostream_type& operator<<(__ostream_type& (*__pf)(__ostream_type&)) { }
__ostream_type& operator<<(const void* __p) {
return _M_insert(__p);
}
template<typename _ValueT> __ostream_type& _M_insert(_ValueT __v);
};
template<typename _CharT, typename _Traits> inline basic_ostream<_CharT, _Traits>& endl(basic_ostream<_CharT, _Traits>& __os) {
}
}
typedef double G4double;
typedef int G4int;
extern __thread std::ostream *G4cout_p;
struct G4Field;
struct G4FieldManager {
inline G4Field* GetDetectorField() ;
};
namespace CLHEP {
struct Hep3Vector {
Hep3Vector(double x, double y, double z);
inline ~Hep3Vector();
inline double x() const;
inline double y() const;
inline double z() const;
inline double mag() const;
inline Hep3Vector cross(const Hep3Vector &) const;
double dx;
double dy;
double dz;
};
Hep3Vector operator / (const Hep3Vector &, double a);
inline double Hep3Vector::x() const {
return dx;
}
inline double Hep3Vector::y() const {
return dy;
}
inline double Hep3Vector::z() const {
return dz;
}
inline Hep3Vector operator + (const Hep3Vector & a, const Hep3Vector & b) { }
inline Hep3Vector operator * (const Hep3Vector & p, double a) { }
inline double operator * (const Hep3Vector & a, const Hep3Vector & b) { }
inline Hep3Vector::Hep3Vector(double x1, double y1, double z1) : dx(x1), dy(y1), dz(z1) {
}
inline Hep3Vector::~Hep3Vector() { }
inline Hep3Vector Hep3Vector::cross(const Hep3Vector & p) const {
return Hep3Vector(dy*p.dz-p.dy*dz, dz*p.dx-p.dz*dx, dx*p.dy-p.dx*dy);
}
}
typedef CLHEP::Hep3Vector G4ThreeVector;
namespace std __attribute__ ((__visibility__ ("default"))) {
template<typename _Tp, typename _Alloc = std::allocator<_Tp> > struct vector
{
typedef _Tp *pointer;
typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
iterator begin() { }
};
}
struct G4TransportationManager {
static G4TransportationManager* GetTransportationManager();
inline G4FieldManager* GetFieldManager() const;
};
struct G4ErrorMatrix {
G4ErrorMatrix(G4int p, G4int q, G4int i);
virtual ~G4ErrorMatrix();
struct G4ErrorMatrix_row {
inline G4ErrorMatrix_row(G4ErrorMatrix&,G4int);
G4double & operator[](G4int);
G4ErrorMatrix& _a;
G4int _r;
};
inline G4ErrorMatrix_row operator[] (G4int);
std::vector<G4double > m;
G4int nrow, ncol;
};
inline G4ErrorMatrix::G4ErrorMatrix_row G4ErrorMatrix::operator[] (G4int r) {
G4ErrorMatrix_row b(*this,r);
return b;
}
inline G4double &G4ErrorMatrix::G4ErrorMatrix_row::operator[](G4int c) {
return *(_a.m.begin()+_r*_a.ncol+c);
}
inline G4ErrorMatrix:: G4ErrorMatrix_row::G4ErrorMatrix_row(G4ErrorMatrix&a, G4int r) : _a(a) {
_r = r;
};
struct G4DynamicParticle {
G4double GetCharge() const;
};
struct G4Step;
struct G4Track {
const G4DynamicParticle* GetDynamicParticle() const;
const G4ThreeVector& GetPosition() const;
G4ThreeVector GetMomentum() const;
const G4Step* GetStep() const;
};
struct G4StepPoint {
const G4ThreeVector& GetPosition() const;
G4ThreeVector GetMomentum() const;
};
struct G4Step {
G4StepPoint* GetPreStepPoint() const;
G4double GetStepLength() const;
};
namespace HepGeom {
template<class T> struct BasicVector3D {
T v_[3];
BasicVector3D(T x1, T y1, T z1) { }
operator T * () {
return v_;
}
T x() const {
return v_[0];
}
T y() const {
return v_[1];
}
T z() const {
return v_[2];
}
T perp2() const { }
T perp() const {
return std::sqrt(perp2());
}
T mag2() const { }
T mag() const {
return std::sqrt(mag2());
}
T theta() const { }
};
inline BasicVector3D<double> operator-(const BasicVector3D<double> & a,const BasicVector3D<double> & b) { }
inline BasicVector3D<double> operator*(const BasicVector3D<double> & v, double a) { }
template<class T> struct Point3D : public BasicVector3D<T> {
explicit Point3D(const double * a) : BasicVector3D<double>(a[0],a[1],a[2]) { }
Point3D(const CLHEP::Hep3Vector & v) : BasicVector3D<double>(v.dx,v.dy,v.dz) { }
};
}
typedef HepGeom::Point3D<G4double> G4Point3D;
namespace HepGeom {
template<class T> struct Vector3D : public BasicVector3D<T> {
Vector3D(const BasicVector3D<double> & v) : BasicVector3D<double>(v) { }
Vector3D(const CLHEP::Hep3Vector & v) : BasicVector3D<double>(v.dx,v.dy,v.dz) { }
operator CLHEP::Hep3Vector () const { }
};
}
typedef HepGeom::Vector3D<G4double> G4Vector3D;
struct G4ErrorFreeTrajState
{
virtual G4int PropagateError( const G4Track* aTrack );
G4int PropagateErrorMSC( const G4Track* aTrack );
};
G4int G4ErrorFreeTrajState::PropagateError( const G4Track* aTrack ) {
G4double stepLengthCm = aTrack->GetStep()->GetStepLength()/10.;
G4Point3D vposPost = aTrack->GetPosition()/10.;
G4Vector3D vpPost = aTrack->GetMomentum()/GeV;
G4Point3D vposPre = aTrack->GetStep()->GetPreStepPoint()->GetPosition()/10.;
G4Vector3D vpPre = aTrack->GetStep()->GetPreStepPoint()->GetMomentum()/GeV;
G4double pPre = vpPre.mag();
G4double pPost = vpPost.mag();
G4double pInvPre = 1./pPre;
G4double pInvPost = 1./pPost;
G4double deltaPInv = pInvPost - pInvPre;
G4Vector3D vpPreNorm = vpPre * pInvPre;
G4Vector3D vpPostNorm = vpPost * pInvPost;
(*G4cout_p) << "G4EP: vpPreNorm " << vpPreNorm << " vpPostNorm " << vpPostNorm << std::endl;
G4double sinpPre = std::sin( vpPreNorm.theta() );
G4double sinpPostInv = 1./std::sin( vpPreNorm.theta() );
G4ErrorMatrix transf(5, 5, 0 );
G4double charge = aTrack->GetDynamicParticle()->GetCharge();
G4double h1[3], h2[3];
G4Field* field
= G4TransportationManager::GetTransportationManager()->GetFieldManager()->GetDetectorField()
;
if( charge != 0. && field )
{
G4ThreeVector HPre = G4ThreeVector( h1[0], h1[1], h1[2] ) / tesla *10.;
G4ThreeVector HPost= G4ThreeVector( h2[0], h2[1], h2[2] ) / tesla *10.;
{
G4double pInvAver = 1./(pInvPre + pInvPost );
G4double CFACT8 = 2.997925E-4;
G4ThreeVector vHAverNorm( (HPre*pInvPre + HPost*pInvPost ) * pInvAver * charge * CFACT8 );
G4double HAver = vHAverNorm.mag();
G4double pAver = (pPre+pPost)*0.5;
G4double QAver = -HAver/pAver;
G4double thetaAver = QAver * stepLengthCm;
G4double sinThetaAver = std::sin(thetaAver);
G4double cosThetaAver = std::cos(thetaAver);
G4double gamma = vHAverNorm * vpPostNorm;
G4ThreeVector AN2 = vHAverNorm.cross( vpPostNorm );
G4double AU = 1./vpPreNorm.perp();
G4ThreeVector vUPre( -AU*vpPreNorm.y(), AU*vpPreNorm.x(), 0. );
G4ThreeVector vVPre( -vpPreNorm.z()*vUPre.y(), vpPreNorm.z()*vUPre.x(), vpPreNorm.x()*vUPre.y() - vpPreNorm.y()*vUPre.x() );
AU = 1./vpPostNorm.perp();
G4ThreeVector vUPost( -AU*vpPostNorm.y(), AU*vpPostNorm.x(), 0. );
G4ThreeVector vVPost( -vpPostNorm.z()*vUPost.y(), vpPostNorm.z()*vUPost.x(), vpPostNorm.x()*vUPost.y() - vpPostNorm.y()*vUPost.x() );
G4Point3D deltaPos( vposPre - vposPost );
G4double QP = QAver * pAver;
G4double ANV = -( vHAverNorm.x()*vUPost.x() + vHAverNorm.y()*vUPost.y() );
G4double ANU = ( vHAverNorm.x()*vVPost.x() + vHAverNorm.y()*vVPost.y() + vHAverNorm.z()*vVPost.z() );
G4double OMcosThetaAver = 1. - cosThetaAver;
G4double TMSINT = thetaAver - sinThetaAver;
G4ThreeVector vHUPre( -vHAverNorm.z() * vUPre.y(), vHAverNorm.z() * vUPre.x(), vHAverNorm.x() * vUPre.y() - vHAverNorm.y() * vUPre.x() );
G4ThreeVector vHVPre( vHAverNorm.y() * vVPre.z() - vHAverNorm.z() * vVPre.y(), vHAverNorm.z() * vVPre.x() - vHAverNorm.x() * vVPre.z(), vHAverNorm.x() * vVPre.y() - vHAverNorm.y() * vVPre.x() );
transf[0][1] = -deltaPInv/thetaAver* ( TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) + sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) + OMcosThetaAver*(vHVPre.x()*vpPostNorm.x()+vHVPre.y()*vpPostNorm.y()+vHVPre.z()*vpPostNorm.z()) );
transf[0][2] = -sinpPre*deltaPInv/thetaAver* ( TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) + sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() ) + OMcosThetaAver*(vHUPre.x()*vpPostNorm.x()+vHUPre.y()*vpPostNorm.y()+vHUPre.z()*vpPostNorm.z()) );
transf[0][3] = -deltaPInv/stepLengthCm*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() );
transf[1][1] = cosThetaAver*(vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z()) + sinThetaAver*(vHVPre.x()*vVPost.x()+vHVPre.y()*vVPost.y()+vHVPre.z()*vVPost.z()) + OMcosThetaAver*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z())* (vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z()) + ANV*( -sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) + OMcosThetaAver*(vVPre.x()*AN2.x()+vVPre.y()*AN2.y()+vVPre.z()*AN2.z()) - TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) );
transf[1][2] = cosThetaAver*(vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y() ) + sinThetaAver*(vHUPre.x()*vVPost.x()+vHUPre.y()*vVPost.y()+vHUPre.z()*vVPost.z()) + OMcosThetaAver*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() )* (vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z()) + ANV*( -sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() ) + OMcosThetaAver*(vUPre.x()*AN2.x()+vUPre.y()*AN2.y() ) - TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) );
transf[2][0] = -QP*ANU*(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())*sinpPostInv *(1.+deltaPInv*pAver);
transf[2][3] = -QAver*ANU*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() )*sinpPostInv;
transf[3][4] = (vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y() );
transf[4][0] = pAver*(vVPost.x()*deltaPos.x()+vVPost.y()*deltaPos.y()+vVPost.z()*deltaPos.z()) *(1.+deltaPInv*pAver);
transf[4][1] = ( sinThetaAver*(vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z()) + OMcosThetaAver*(vHVPre.x()*vVPost.x()+vHVPre.y()*vVPost.y()+vHVPre.z()*vVPost.z()) + TMSINT*(vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z())* (vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) )/QAver;
transf[4][2] = ( sinThetaAver*(vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y() ) + OMcosThetaAver*(vHUPre.x()*vVPost.x()+vHUPre.y()*vVPost.y()+vHUPre.z()*vVPost.z()) + TMSINT*(vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z())* (vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) )*sinpPre/QAver;
}
}
PropagateErrorMSC( aTrack );
}