blob: 3225808c463ddca258bf2ebf7202830dd26a90a7 [file] [log] [blame]
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
// (See accompanying file LICENSE-Apache or copy at
// http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
// Runtime compiler options:
// -DRYU_DEBUG Generate verbose debugging output to stdout.
//
// -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
// depending on your compiler.
//
// -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every
// required power of 5, only store every 26th entry, and compute
// intermediate values with a multiplication. This reduces the lookup table
// size by about 10x (only one case, and only double) at the cost of some
// performance. Currently requires MSVC intrinsics.
#ifdef RYU_DEBUG
#endif
// Include either the small or the full lookup tables depending on the mode.
#if defined(RYU_OPTIMIZE_SIZE)
#else
#endif
#define DOUBLE_MANTISSA_BITS 52
#define DOUBLE_EXPONENT_BITS 11
#define DOUBLE_BIAS 1023
static inline uint32_t decimalLength17(const uint64_t v) {
// This is slightly faster than a loop.
// The average output length is 16.38 digits, so we check high-to-low.
// Function precondition: v is not an 18, 19, or 20-digit number.
// (17 digits are sufficient for round-tripping.)
assert(v < 100000000000000000L);
if (v >= 10000000000000000L) { return 17; }
if (v >= 1000000000000000L) { return 16; }
if (v >= 100000000000000L) { return 15; }
if (v >= 10000000000000L) { return 14; }
if (v >= 1000000000000L) { return 13; }
if (v >= 100000000000L) { return 12; }
if (v >= 10000000000L) { return 11; }
if (v >= 1000000000L) { return 10; }
if (v >= 100000000L) { return 9; }
if (v >= 10000000L) { return 8; }
if (v >= 1000000L) { return 7; }
if (v >= 100000L) { return 6; }
if (v >= 10000L) { return 5; }
if (v >= 1000L) { return 4; }
if (v >= 100L) { return 3; }
if (v >= 10L) { return 2; }
return 1;
}
// A floating decimal representing m * 10^e.
typedef struct floating_decimal_64 {
uint64_t mantissa;
// Decimal exponent's range is -324 to 308
// inclusive, and can fit in a short if needed.
int32_t exponent;
bool sign;
} floating_decimal_64;
static inline floating_decimal_64 d2d(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign) {
int32_t e2;
uint64_t m2;
if (ieeeExponent == 0) {
// We subtract 2 so that the bounds computation has 2 additional bits.
e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
m2 = ieeeMantissa;
} else {
e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
}
const bool even = (m2 & 1) == 0;
const bool acceptBounds = even;
#ifdef RYU_DEBUG
printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
#endif
// Step 2: Determine the interval of valid decimal representations.
const uint64_t mv = 4 * m2;
// Implicit bool -> int conversion. True is 1, false is 0.
const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
// We would compute mp and mm like this:
// uint64_t mp = 4 * m2 + 2;
// uint64_t mm = mv - 1 - mmShift;
// Step 3: Convert to a decimal power base using 128-bit arithmetic.
uint64_t vr, vp, vm;
int32_t e10;
bool vmIsTrailingZeros = false;
bool vrIsTrailingZeros = false;
if (e2 >= 0) {
// I tried special-casing q == 0, but there was no effect on performance.
// This expression is slightly faster than max(0, log10Pow2(e2) - 1).
const uint32_t q = log10Pow2(e2) - (e2 > 3);
e10 = (int32_t) q;
const int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1;
const int32_t i = -e2 + (int32_t) q + k;
#if defined(RYU_OPTIMIZE_SIZE)
uint64_t pow5[2];
double_computeInvPow5(q, pow5);
vr = mulShiftAll64(m2, pow5, i, &vp, &vm, mmShift);
#else
vr = mulShiftAll64(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift);
#endif
#ifdef RYU_DEBUG
printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
#endif
if (q <= 21) {
// This should use q <= 22, but I think 21 is also safe. Smaller values
// may still be safe, but it's more difficult to reason about them.
// Only one of mp, mv, and mm can be a multiple of 5, if any.
const uint32_t mvMod5 = ((uint32_t) mv) - 5 * ((uint32_t) div5(mv));
if (mvMod5 == 0) {
vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
} else if (acceptBounds) {
// Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
// <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
// <=> true && pow5Factor(mm) >= q, since e2 >= q.
vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
} else {
// Same as min(e2 + 1, pow5Factor(mp)) >= q.
vp -= multipleOfPowerOf5(mv + 2, q);
}
}
} else {
// This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
const uint32_t q = log10Pow5(-e2) - (-e2 > 1);
e10 = (int32_t) q + e2;
const int32_t i = -e2 - (int32_t) q;
const int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
const int32_t j = (int32_t) q - k;
#if defined(RYU_OPTIMIZE_SIZE)
uint64_t pow5[2];
double_computePow5(i, pow5);
vr = mulShiftAll64(m2, pow5, j, &vp, &vm, mmShift);
#else
vr = mulShiftAll64(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift);
#endif
#ifdef RYU_DEBUG
printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
printf("%u %d %d %d\n", q, i, k, j);
printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
#endif
if (q <= 1) {
// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
// mv = 4 * m2, so it always has at least two trailing 0 bits.
vrIsTrailingZeros = true;
if (acceptBounds) {
// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
vmIsTrailingZeros = mmShift == 1;
} else {
// mp = mv + 2, so it always has at least one trailing 0 bit.
--vp;
}
} else if (q < 63) { // TODO(ulfjack): Use a tighter bound here.
// We want to know if the full product has at least q trailing zeros.
// We need to compute min(p2(mv), p5(mv) - e2) >= q
// <=> p2(mv) >= q && p5(mv) - e2 >= q
// <=> p2(mv) >= q (because -e2 >= q)
vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
#ifdef RYU_DEBUG
printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
}
}
#ifdef RYU_DEBUG
printf("e10=%d\n", e10);
printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
// Step 4: Find the shortest decimal representation in the interval of valid representations.
int32_t removed = 0;
uint8_t lastRemovedDigit = 0;
uint64_t output;
// On average, we remove ~2 digits.
if (vmIsTrailingZeros || vrIsTrailingZeros) {
// General case, which happens rarely (~0.7%).
for (;;) {
const uint64_t vpDiv10 = div10(vp);
const uint64_t vmDiv10 = div10(vm);
if (vpDiv10 <= vmDiv10) {
break;
}
const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
const uint64_t vrDiv10 = div10(vr);
const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
vmIsTrailingZeros &= vmMod10 == 0;
vrIsTrailingZeros &= lastRemovedDigit == 0;
lastRemovedDigit = (uint8_t) vrMod10;
vr = vrDiv10;
vp = vpDiv10;
vm = vmDiv10;
++removed;
}
#ifdef RYU_DEBUG
printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
#endif
if (vmIsTrailingZeros) {
for (;;) {
const uint64_t vmDiv10 = div10(vm);
const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
if (vmMod10 != 0) {
break;
}
const uint64_t vpDiv10 = div10(vp);
const uint64_t vrDiv10 = div10(vr);
const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
vrIsTrailingZeros &= lastRemovedDigit == 0;
lastRemovedDigit = (uint8_t) vrMod10;
vr = vrDiv10;
vp = vpDiv10;
vm = vmDiv10;
++removed;
}
}
#ifdef RYU_DEBUG
printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) {
// Round even if the exact number is .....50..0.
lastRemovedDigit = 4;
}
// We need to take vr + 1 if vr is outside bounds or we need to round up.
output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
} else {
// Specialized for the common case (~99.3%). Percentages below are relative to this.
bool roundUp = false;
const uint64_t vpDiv100 = div100(vp);
const uint64_t vmDiv100 = div100(vm);
if (vpDiv100 > vmDiv100) { // Optimization: remove two digits at a time (~86.2%).
const uint64_t vrDiv100 = div100(vr);
const uint32_t vrMod100 = ((uint32_t) vr) - 100 * ((uint32_t) vrDiv100);
roundUp = vrMod100 >= 50;
vr = vrDiv100;
vp = vpDiv100;
vm = vmDiv100;
removed += 2;
}
// Loop iterations below (approximately), without optimization above:
// 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
// Loop iterations below (approximately), with optimization above:
// 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
for (;;) {
const uint64_t vpDiv10 = div10(vp);
const uint64_t vmDiv10 = div10(vm);
if (vpDiv10 <= vmDiv10) {
break;
}
const uint64_t vrDiv10 = div10(vr);
const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
roundUp = vrMod10 >= 5;
vr = vrDiv10;
vp = vpDiv10;
vm = vmDiv10;
++removed;
}
#ifdef RYU_DEBUG
printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false");
printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
// We need to take vr + 1 if vr is outside bounds or we need to round up.
output = vr + (vr == vm || roundUp);
}
const int32_t exp = e10 + removed;
#ifdef RYU_DEBUG
printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
printf("O=%" PRIu64 "\n", output);
printf("EXP=%d\n", exp);
#endif
floating_decimal_64 fd;
fd.exponent = exp;
fd.mantissa = output;
fd.sign = ieeeSign;
return fd;
}
static inline int to_chars(const floating_decimal_64 v, char* const result) {
// Step 5: Print the decimal representation.
int index = 0;
if (v.sign) {
result[index++] = '-';
}
uint64_t output = v.mantissa;
const uint32_t olength = decimalLength17(output);
#ifdef RYU_DEBUG
printf("DIGITS=%" PRIu64 "\n", v.mantissa);
printf("OLEN=%u\n", olength);
printf("EXP=%u\n", v.exponent + olength);
#endif
// Print the decimal digits.
// The following code is equivalent to:
// for (uint32_t i = 0; i < olength - 1; ++i) {
// const uint32_t c = output % 10; output /= 10;
// result[index + olength - i] = (char) ('0' + c);
// }
// result[index] = '0' + output % 10;
uint32_t i = 0;
// We prefer 32-bit operations, even on 64-bit platforms.
// We have at most 17 digits, and uint32_t can store 9 digits.
// If output doesn't fit into uint32_t, we cut off 8 digits,
// so the rest will fit into uint32_t.
if ((output >> 32) != 0) {
// Expensive 64-bit division.
const uint64_t q = div1e8(output);
uint32_t output2 = ((uint32_t) output) - 100000000 * ((uint32_t) q);
output = q;
const uint32_t c = output2 % 10000;
output2 /= 10000;
const uint32_t d = output2 % 10000;
const uint32_t c0 = (c % 100) << 1;
const uint32_t c1 = (c / 100) << 1;
const uint32_t d0 = (d % 100) << 1;
const uint32_t d1 = (d / 100) << 1;
memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2);
memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2);
i += 8;
}
uint32_t output2 = (uint32_t) output;
while (output2 >= 10000) {
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
const uint32_t c = output2 - 10000 * (output2 / 10000);
#else
const uint32_t c = output2 % 10000;
#endif
output2 /= 10000;
const uint32_t c0 = (c % 100) << 1;
const uint32_t c1 = (c / 100) << 1;
memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
i += 4;
}
if (output2 >= 100) {
const uint32_t c = (output2 % 100) << 1;
output2 /= 100;
memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
i += 2;
}
if (output2 >= 10) {
const uint32_t c = output2 << 1;
// We can't use memcpy here: the decimal dot goes between these two digits.
result[index + olength - i] = DIGIT_TABLE[c + 1];
result[index] = DIGIT_TABLE[c];
} else {
result[index] = (char) ('0' + output2);
}
// Print decimal point if needed.
if (olength > 1) {
result[index + 1] = '.';
index += olength + 1;
} else {
++index;
}
// Print the exponent.
result[index++] = 'e';
int32_t exp = v.exponent + (int32_t) olength - 1;
if (exp < 0) {
result[index++] = '-';
exp = -exp;
} else
result[index++] = '+';
if (exp >= 100) {
const int32_t c = exp % 10;
memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2);
result[index + 2] = (char) ('0' + c);
index += 3;
} else {
memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
index += 2;
}
return index;
}
static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign,
floating_decimal_64* const v) {
const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
if (e2 > 0) {
// f = m2 * 2^e2 >= 2^53 is an integer.
// Ignore this case for now.
return false;
}
if (e2 < -52) {
// f < 1.
return false;
}
// Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
// Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
const uint64_t mask = (1ull << -e2) - 1;
const uint64_t fraction = m2 & mask;
if (fraction != 0) {
return false;
}
// f is an integer in the range [1, 2^53).
// Note: mantissa might contain trailing (decimal) 0's.
// Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
v->mantissa = m2 >> -e2;
v->exponent = 0;
v->sign = ieeeSign;
return true;
}
floating_decimal_64 floating_to_fd64(double f) {
// Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
const uint64_t bits = double_to_bits(f);
#ifdef RYU_DEBUG
printf("IN=");
for (int32_t bit = 63; bit >= 0; --bit) {
printf("%d", (int) ((bits >> bit) & 1));
}
printf("\n");
#endif
// Decode bits into sign, mantissa, and exponent.
const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
// Case distinction; exit early for the easy cases.
if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
__builtin_abort();
}
floating_decimal_64 v;
const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, ieeeSign, &v);
if (isSmallInt) {
// For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
// For scientific notation we need to move these zeros into the exponent.
// (This is not needed for fixed-point notation, so it might be beneficial to trim
// trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
for (;;) {
const uint64_t q = div10(v.mantissa);
const uint32_t r = ((uint32_t) v.mantissa) - 10 * ((uint32_t) q);
if (r != 0) {
break;
}
v.mantissa = q;
++v.exponent;
}
} else {
v = d2d(ieeeMantissa, ieeeExponent, ieeeSign);
}
return v;
}