blob: c266385b49f146e077fabc263b5e60c9c9f709b7 [file] [log] [blame]
! { dg-do compile }
! { dg-options "-cpp -fcoarray=lib" }
! PR 87397 - this used to generate an ICE.
! Coarray Distributed Transpose Test
!
! Copyright (c) 2012-2014, Sourcery, Inc.
! All rights reserved.
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions are met:
! * Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! * Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! * Neither the name of the Sourcery, Inc., nor the
! names of its contributors may be used to endorse or promote products
! derived from this software without specific prior written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
! ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
! WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
! DISCLAIMED. IN NO EVENT SHALL SOURCERY, INC., BE LIABLE FOR ANY
! DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
! (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
! LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
! ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
!
! Robodoc header:
!****m* dist_transpose/run_size
! NAME
! run_size
! SYNOPSIS
! Encapsulate problem state, wall-clock timer interface, integer broadcasts, and a data copy.
!******
!================== test transposes with integer x,y,z values ===============================
module run_size
use iso_fortran_env
implicit none
integer(int64), codimension[*] :: nx, ny, nz
integer(int64), codimension[*] :: my, mx, first_y, last_y, first_x, last_x
integer(int64) :: my_node, num_nodes
real(real64), codimension[*] :: tran_time
contains
!****s* run_size/broadcast_int
! NAME
! broadcast_int
! SYNOPSIS
! Broadcast a scalar coarray integer from image 1 to all other images.
!******
subroutine broadcast_int( variable )
integer(int64), codimension[*] :: variable
integer(int64) :: i
if( my_node == 1 ) then
do i = 2, num_nodes; variable[i] = variable; end do
end if
end subroutine broadcast_int
subroutine copy3( A,B, n1, sA1, sB1, n2, sA2, sB2, n3, sA3, sB3 )
implicit none
complex, intent(in) :: A(0:*)
complex, intent(out) :: B(0:*)
integer(int64), intent(in) :: n1, sA1, sB1
integer(int64), intent(in) :: n2, sA2, sB2
integer(int64), intent(in) :: n3, sA3, sB3
integer(int64) i,j,k
do k=0,n3-1
do j=0,n2-1
do i=0,n1-1
B(i*sB1+j*sB2+k*sB3) = A(i*sA1+j*sA2+k*sA3)
end do
end do
end do
end subroutine copy3
end module run_size
!****e* dist_transpose/coarray_distributed_transpose
! NAME
! coarray_distributed_transpose
! SYNOPSIS
! This program tests the transpose routines used in Fourier-spectral simulations of homogeneous turbulence.
! The data is presented to the physics routines as groups of y-z or x-z planes distributed among the images.
! The (out-of-place) transpose routines do the x <--> y transposes required and consist of transposes within
! data blocks (intra-image) and a transpose of the distribution of these blocks among the images (inter-image).
!
! Two methods are tested here:
! RECEIVE: receive block from other image and transpose it
! SEND: transpose block and send it to other image
!
! This code is the coarray analog of mpi_distributed_transpose.
!******
program coarray_distributed_transpose
!(***********************************************************************************************************
! m a i n p r o g r a m
!***********************************************************************************************************)
use run_size
implicit none
complex, allocatable :: u(:,:,:,:)[:] ! u(nz,4,first_x:last_x,ny)[*] !(*-- ny = my * num_nodes --*)
complex, allocatable :: ur(:,:,:,:)[:] !ur(nz,4,first_y:last_y,nx/2)[*] !(*-- nx/2 = mx * num_nodes --*)
complex, allocatable :: bufr_X_Y(:,:,:,:)
complex, allocatable :: bufr_Y_X(:,:,:,:)
integer(int64) :: x, y, z, msg_size, iter
num_nodes = num_images()
my_node = this_image()
if( my_node == 1 ) then
!write(6,*) "nx,ny,nz : "; read(5,*) nx, ny, nz
nx=32; ny=32; nz=32
call broadcast_int( nx ); call broadcast_int( ny ); call broadcast_int( nz );
end if
sync all !-- other nodes wait for broadcast!
if ( mod(ny,num_nodes) == 0) then; my = ny / num_nodes
else; write(6,*) "node ", my_node, " ny not multiple of num_nodes"; error stop
end if
if ( mod(nx/2,num_nodes) == 0) then; mx = nx/2 / num_nodes
else; write(6,*) "node ", my_node, "nx/2 not multiple of num_nodes"; error stop
end if
first_y = (my_node-1)*my + 1; last_y = (my_node-1)*my + my
first_x = (my_node-1)*mx + 1; last_x = (my_node-1)*mx + mx
allocate ( u(nz , 4 , first_x:last_x , ny) [*] ) !(*-- y-z planes --*)
allocate ( ur(nz , 4 , first_y:last_y , nx/2)[*] ) !(*-- x-z planes --*)
allocate ( bufr_X_Y(nz,4,mx,my) )
allocate ( bufr_Y_X(nz,4,my,mx) )
msg_size = nz*4*mx*my !-- message size (complex data items)
!--------- initialize data u (mx y-z planes per image) ----------
do x = first_x, last_x
do y = 1, ny
do z = 1, nz
u(z,1,x,y) = x
u(z,2,x,y) = y
u(z,3,x,y) = z
end do
end do
end do
tran_time = 0
do iter = 1, 2 !--- 2 transform pairs per second-order time step
!--------- transpose data u -> ur (mx y-z planes to my x-z planes per image) --------
ur = 0
call transpose_X_Y
!--------- test data ur (my x-z planes per image) ----------
do x = 1, nx/2
do y = first_y, last_y
do z = 1, nz
if ( real(ur(z,1,y,x)) /= x .or. real(ur(z,2,y,x)) /= y .or. real(ur(z,3,y,x)) /= z )then
write(6,fmt="(A,i3,3(6X,A,f7.3,i4))") "transpose_X_Y failed: image ", my_node &
, " X ",real(ur(z,1,y,x)),x, " Y ",real(ur(z,2,y,x)),y, " Z ", real(ur(z,3,y,x)),z
stop
end if
end do
end do
end do
!--------- transpose data ur -> u (my x-z planes to mx y-z planes per image) --------
u = 0
call transpose_Y_X
!--------- test data u (mx y-z planes per image) ----------
do x = first_x, last_x
do y = 1, ny
do z = 1, nz
if ( real(u(z,1,x,y)) /= x .or. real(u(z,2,x,y)) /= y .or. real(u(z,3,x,y)) /= z )then
write(6,fmt="(A,i3,3(6X,A,f7.3,i4))") "transpose_Y_X failed: image ", my_node &
, " X ",real(u(z,1,x,y)),x, " Y ",real(u(z,2,x,y)),y, " Z ", real(u(z,3,x,y)),z
stop
end if
end do
end do
end do
end do
sync all
if( my_node == 1 ) write(6,fmt="(A,f8.3)") "test passed: tran_time ", tran_time
deallocate ( bufr_X_Y ); deallocate ( bufr_Y_X )
!========================= end of main executable =============================
contains
!------------- out-of-place transpose data_s --> data_r ----------------------------
subroutine transpose_X_Y
use run_size
implicit none
integer(int64) :: i,stage
real(real64) :: tmp
sync all !-- wait for other nodes to finish compute
call cpu_time(tmp)
tran_time = tran_time - tmp
call copy3 ( u(1,1,first_x,1+(my_node-1)*my) & !-- intra-node transpose
, ur(1,1,first_y,1+(my_node-1)*mx) & !-- no inter-node transpose needed
, nz*3, 1_8, 1_8 & !-- note: only 3 of 4 words needed
, mx, nz*4, nz*4*my &
, my, nz*4*mx, nz*4 )
#define RECEIVE
#ifdef RECEIVE
do stage = 1, num_nodes-1
i = 1 + mod( my_node-1+stage, num_nodes )
bufr_X_Y(:,:,:,:) = u(:,:,:,1+(my_node-1)*my:my_node*my)[i] !-- inter-node transpose to buffer
call copy3 ( bufr_X_Y, ur(1,1,first_y,1+(i-1)*mx) & !-- intra-node transpose from buffer
, nz*3, 1_8, 1_8 & !-- note: only 3 of 4 words needed
, mx, nz*4, nz*4*my &
, my, nz*4*mx, nz*4 )
end do
#else
do stage = 1, num_nodes-1
i = 1 + mod( my_node-1+stage, num_nodes )
call copy3 ( u(1,1,first_x,1+(i-1)*my), bufr_Y_X & !-- intra-node transpose to buffer
, nz*3, 1_8, 1_8 &
, mx, nz*4, nz*4*my &
, my, nz*4*mx, nz*4 )
ur(:,:,:,1+(my_node-1)*mx:my_node*mx)[i] = bufr_Y_X(:,:,:,:) !-- inter-node transpose from buffer
end do
#endif
sync all !-- wait for other nodes to finish transpose
call cpu_time(tmp)
tran_time = tran_time + tmp
end subroutine transpose_X_Y
!------------- out-of-place transpose data_r --> data_s ----------------------------
subroutine transpose_Y_X
use run_size
implicit none
integer(int64) :: i, stage
real(real64) :: tmp
sync all !-- wait for other nodes to finish compute
call cpu_time(tmp)
tran_time = tran_time - tmp
call copy3 ( ur(1,1,first_y,1+(my_node-1)*mx) & !-- intra-node transpose
, u(1,1,first_x,1+(my_node-1)*my) & !-- no inter-node transpose needed
, nz*4, 1_8, 1_8 & !-- note: all 4 words needed
, my, nz*4, nz*4*mx &
, mx, nz*4*my, nz*4 )
#define RECEIVE
#ifdef RECEIVE
do stage = 1, num_nodes-1
i = 1 + mod( my_node-1+stage, num_nodes )
bufr_Y_X(:,:,:,:) = ur(:,:,:,1+(my_node-1)*mx:my_node*mx)[i] !-- inter-node transpose to buffer
call copy3 ( bufr_Y_X, u(1,1,first_x,1+(i-1)*my) & !-- intra-node transpose from buffer
, nz*4, 1_8, 1_8 &
, my, nz*4, nz*4*mx &
, mx, nz*4*my, nz*4 )
end do
#else
do stage = 1, num_nodes-1
i = 1 + mod( my_node-1+stage, num_nodes )
call copy3 ( ur(1,1,first_y,1+(i-1)*mx), bufr_X_Y & !-- intra-node transpose from buffer
, nz*4, 1_8, 1_8 &
, my, nz*4, nz*4*mx &
, mx, nz*4*my, nz*4 )
u(:,:,:,1+(my_node-1)*my:my_node*my)[i] = bufr_X_Y(:,:,:,:) !-- inter-node transpose from buffer
end do
#endif
sync all !-- wait for other nodes to finish transpose
call cpu_time(tmp)
tran_time = tran_time + tmp
end subroutine transpose_Y_X
end program coarray_distributed_transpose