| // Copyright 2021 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements typechecking of index/slice expressions. |
| |
| package types |
| |
| import ( |
| "go/ast" |
| "go/constant" |
| "go/internal/typeparams" |
| ) |
| |
| // If e is a valid function instantiation, indexExpr returns true. |
| // In that case x represents the uninstantiated function value and |
| // it is the caller's responsibility to instantiate the function. |
| func (check *Checker) indexExpr(x *operand, e *typeparams.IndexExpr) (isFuncInst bool) { |
| check.exprOrType(x, e.X, true) |
| // x may be generic |
| |
| switch x.mode { |
| case invalid: |
| check.use(e.Indices...) |
| return false |
| |
| case typexpr: |
| // type instantiation |
| x.mode = invalid |
| // TODO(gri) here we re-evaluate e.X - try to avoid this |
| x.typ = check.varType(e.Orig) |
| if x.typ != Typ[Invalid] { |
| x.mode = typexpr |
| } |
| return false |
| |
| case value: |
| if sig, _ := under(x.typ).(*Signature); sig != nil && sig.TypeParams().Len() > 0 { |
| // function instantiation |
| return true |
| } |
| } |
| |
| // x should not be generic at this point, but be safe and check |
| check.nonGeneric(x) |
| if x.mode == invalid { |
| return false |
| } |
| |
| // ordinary index expression |
| valid := false |
| length := int64(-1) // valid if >= 0 |
| switch typ := under(x.typ).(type) { |
| case *Basic: |
| if isString(typ) { |
| valid = true |
| if x.mode == constant_ { |
| length = int64(len(constant.StringVal(x.val))) |
| } |
| // an indexed string always yields a byte value |
| // (not a constant) even if the string and the |
| // index are constant |
| x.mode = value |
| x.typ = universeByte // use 'byte' name |
| } |
| |
| case *Array: |
| valid = true |
| length = typ.len |
| if x.mode != variable { |
| x.mode = value |
| } |
| x.typ = typ.elem |
| |
| case *Pointer: |
| if typ, _ := under(typ.base).(*Array); typ != nil { |
| valid = true |
| length = typ.len |
| x.mode = variable |
| x.typ = typ.elem |
| } |
| |
| case *Slice: |
| valid = true |
| x.mode = variable |
| x.typ = typ.elem |
| |
| case *Map: |
| index := check.singleIndex(e) |
| if index == nil { |
| x.mode = invalid |
| return false |
| } |
| var key operand |
| check.expr(&key, index) |
| check.assignment(&key, typ.key, "map index") |
| // ok to continue even if indexing failed - map element type is known |
| x.mode = mapindex |
| x.typ = typ.elem |
| x.expr = e.Orig |
| return false |
| |
| case *Interface: |
| if !isTypeParam(x.typ) { |
| break |
| } |
| // TODO(gri) report detailed failure cause for better error messages |
| var key, elem Type // key != nil: we must have all maps |
| mode := variable // non-maps result mode |
| // TODO(gri) factor out closure and use it for non-typeparam cases as well |
| if typ.typeSet().underIs(func(u Type) bool { |
| l := int64(-1) // valid if >= 0 |
| var k, e Type // k is only set for maps |
| switch t := u.(type) { |
| case *Basic: |
| if isString(t) { |
| e = universeByte |
| mode = value |
| } |
| case *Array: |
| l = t.len |
| e = t.elem |
| if x.mode != variable { |
| mode = value |
| } |
| case *Pointer: |
| if t, _ := under(t.base).(*Array); t != nil { |
| l = t.len |
| e = t.elem |
| } |
| case *Slice: |
| e = t.elem |
| case *Map: |
| k = t.key |
| e = t.elem |
| } |
| if e == nil { |
| return false |
| } |
| if elem == nil { |
| // first type |
| length = l |
| key, elem = k, e |
| return true |
| } |
| // all map keys must be identical (incl. all nil) |
| // (that is, we cannot mix maps with other types) |
| if !Identical(key, k) { |
| return false |
| } |
| // all element types must be identical |
| if !Identical(elem, e) { |
| return false |
| } |
| // track the minimal length for arrays, if any |
| if l >= 0 && l < length { |
| length = l |
| } |
| return true |
| }) { |
| // For maps, the index expression must be assignable to the map key type. |
| if key != nil { |
| index := check.singleIndex(e) |
| if index == nil { |
| x.mode = invalid |
| return false |
| } |
| var k operand |
| check.expr(&k, index) |
| check.assignment(&k, key, "map index") |
| // ok to continue even if indexing failed - map element type is known |
| x.mode = mapindex |
| x.typ = elem |
| x.expr = e |
| return false |
| } |
| |
| // no maps |
| valid = true |
| x.mode = mode |
| x.typ = elem |
| } |
| } |
| |
| if !valid { |
| // types2 uses the position of '[' for the error |
| check.invalidOp(x, _NonIndexableOperand, "cannot index %s", x) |
| x.mode = invalid |
| return false |
| } |
| |
| index := check.singleIndex(e) |
| if index == nil { |
| x.mode = invalid |
| return false |
| } |
| |
| // In pathological (invalid) cases (e.g.: type T1 [][[]T1{}[0][0]]T0) |
| // the element type may be accessed before it's set. Make sure we have |
| // a valid type. |
| if x.typ == nil { |
| x.typ = Typ[Invalid] |
| } |
| |
| check.index(index, length) |
| return false |
| } |
| |
| func (check *Checker) sliceExpr(x *operand, e *ast.SliceExpr) { |
| check.expr(x, e.X) |
| if x.mode == invalid { |
| check.use(e.Low, e.High, e.Max) |
| return |
| } |
| |
| valid := false |
| length := int64(-1) // valid if >= 0 |
| switch u := coreString(x.typ).(type) { |
| case nil: |
| check.invalidOp(x, _NonSliceableOperand, "cannot slice %s: %s has no core type", x, x.typ) |
| x.mode = invalid |
| return |
| |
| case *Basic: |
| if isString(u) { |
| if e.Slice3 { |
| at := e.Max |
| if at == nil { |
| at = e // e.Index[2] should be present but be careful |
| } |
| check.invalidOp(at, _InvalidSliceExpr, "3-index slice of string") |
| x.mode = invalid |
| return |
| } |
| valid = true |
| if x.mode == constant_ { |
| length = int64(len(constant.StringVal(x.val))) |
| } |
| // spec: "For untyped string operands the result |
| // is a non-constant value of type string." |
| if isUntyped(x.typ) { |
| x.typ = Typ[String] |
| } |
| } |
| |
| case *Array: |
| valid = true |
| length = u.len |
| if x.mode != variable { |
| check.invalidOp(x, _NonSliceableOperand, "cannot slice %s (value not addressable)", x) |
| x.mode = invalid |
| return |
| } |
| x.typ = &Slice{elem: u.elem} |
| |
| case *Pointer: |
| if u, _ := under(u.base).(*Array); u != nil { |
| valid = true |
| length = u.len |
| x.typ = &Slice{elem: u.elem} |
| } |
| |
| case *Slice: |
| valid = true |
| // x.typ doesn't change |
| } |
| |
| if !valid { |
| check.invalidOp(x, _NonSliceableOperand, "cannot slice %s", x) |
| x.mode = invalid |
| return |
| } |
| |
| x.mode = value |
| |
| // spec: "Only the first index may be omitted; it defaults to 0." |
| if e.Slice3 && (e.High == nil || e.Max == nil) { |
| check.invalidAST(inNode(e, e.Rbrack), "2nd and 3rd index required in 3-index slice") |
| x.mode = invalid |
| return |
| } |
| |
| // check indices |
| var ind [3]int64 |
| for i, expr := range []ast.Expr{e.Low, e.High, e.Max} { |
| x := int64(-1) |
| switch { |
| case expr != nil: |
| // The "capacity" is only known statically for strings, arrays, |
| // and pointers to arrays, and it is the same as the length for |
| // those types. |
| max := int64(-1) |
| if length >= 0 { |
| max = length + 1 |
| } |
| if _, v := check.index(expr, max); v >= 0 { |
| x = v |
| } |
| case i == 0: |
| // default is 0 for the first index |
| x = 0 |
| case length >= 0: |
| // default is length (== capacity) otherwise |
| x = length |
| } |
| ind[i] = x |
| } |
| |
| // constant indices must be in range |
| // (check.index already checks that existing indices >= 0) |
| L: |
| for i, x := range ind[:len(ind)-1] { |
| if x > 0 { |
| for j, y := range ind[i+1:] { |
| if y >= 0 && y < x { |
| // The value y corresponds to the expression e.Index[i+1+j]. |
| // Because y >= 0, it must have been set from the expression |
| // when checking indices and thus e.Index[i+1+j] is not nil. |
| at := []ast.Expr{e.Low, e.High, e.Max}[i+1+j] |
| check.errorf(at, _SwappedSliceIndices, "invalid slice indices: %d < %d", y, x) |
| break L // only report one error, ok to continue |
| } |
| } |
| } |
| } |
| } |
| |
| // singleIndex returns the (single) index from the index expression e. |
| // If the index is missing, or if there are multiple indices, an error |
| // is reported and the result is nil. |
| func (check *Checker) singleIndex(expr *typeparams.IndexExpr) ast.Expr { |
| if len(expr.Indices) == 0 { |
| check.invalidAST(expr.Orig, "index expression %v with 0 indices", expr) |
| return nil |
| } |
| if len(expr.Indices) > 1 { |
| // TODO(rFindley) should this get a distinct error code? |
| check.invalidOp(expr.Indices[1], _InvalidIndex, "more than one index") |
| } |
| return expr.Indices[0] |
| } |
| |
| // index checks an index expression for validity. |
| // If max >= 0, it is the upper bound for index. |
| // If the result typ is != Typ[Invalid], index is valid and typ is its (possibly named) integer type. |
| // If the result val >= 0, index is valid and val is its constant int value. |
| func (check *Checker) index(index ast.Expr, max int64) (typ Type, val int64) { |
| typ = Typ[Invalid] |
| val = -1 |
| |
| var x operand |
| check.expr(&x, index) |
| if !check.isValidIndex(&x, _InvalidIndex, "index", false) { |
| return |
| } |
| |
| if x.mode != constant_ { |
| return x.typ, -1 |
| } |
| |
| if x.val.Kind() == constant.Unknown { |
| return |
| } |
| |
| v, ok := constant.Int64Val(x.val) |
| assert(ok) |
| if max >= 0 && v >= max { |
| check.invalidArg(&x, _InvalidIndex, "index %s is out of bounds", &x) |
| return |
| } |
| |
| // 0 <= v [ && v < max ] |
| return x.typ, v |
| } |
| |
| func (check *Checker) isValidIndex(x *operand, code errorCode, what string, allowNegative bool) bool { |
| if x.mode == invalid { |
| return false |
| } |
| |
| // spec: "a constant index that is untyped is given type int" |
| check.convertUntyped(x, Typ[Int]) |
| if x.mode == invalid { |
| return false |
| } |
| |
| // spec: "the index x must be of integer type or an untyped constant" |
| if !allInteger(x.typ) { |
| check.invalidArg(x, code, "%s %s must be integer", what, x) |
| return false |
| } |
| |
| if x.mode == constant_ { |
| // spec: "a constant index must be non-negative ..." |
| if !allowNegative && constant.Sign(x.val) < 0 { |
| check.invalidArg(x, code, "%s %s must not be negative", what, x) |
| return false |
| } |
| |
| // spec: "... and representable by a value of type int" |
| if !representableConst(x.val, check, Typ[Int], &x.val) { |
| check.invalidArg(x, code, "%s %s overflows int", what, x) |
| return false |
| } |
| } |
| |
| return true |
| } |
| |
| // indexElts checks the elements (elts) of an array or slice composite literal |
| // against the literal's element type (typ), and the element indices against |
| // the literal length if known (length >= 0). It returns the length of the |
| // literal (maximum index value + 1). |
| // |
| func (check *Checker) indexedElts(elts []ast.Expr, typ Type, length int64) int64 { |
| visited := make(map[int64]bool, len(elts)) |
| var index, max int64 |
| for _, e := range elts { |
| // determine and check index |
| validIndex := false |
| eval := e |
| if kv, _ := e.(*ast.KeyValueExpr); kv != nil { |
| if typ, i := check.index(kv.Key, length); typ != Typ[Invalid] { |
| if i >= 0 { |
| index = i |
| validIndex = true |
| } else { |
| check.errorf(e, _InvalidLitIndex, "index %s must be integer constant", kv.Key) |
| } |
| } |
| eval = kv.Value |
| } else if length >= 0 && index >= length { |
| check.errorf(e, _OversizeArrayLit, "index %d is out of bounds (>= %d)", index, length) |
| } else { |
| validIndex = true |
| } |
| |
| // if we have a valid index, check for duplicate entries |
| if validIndex { |
| if visited[index] { |
| check.errorf(e, _DuplicateLitKey, "duplicate index %d in array or slice literal", index) |
| } |
| visited[index] = true |
| } |
| index++ |
| if index > max { |
| max = index |
| } |
| |
| // check element against composite literal element type |
| var x operand |
| check.exprWithHint(&x, eval, typ) |
| check.assignment(&x, typ, "array or slice literal") |
| } |
| return max |
| } |