| // Copyright 2018 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements type parameter inference given |
| // a list of concrete arguments and a parameter list. |
| |
| package types |
| |
| import ( |
| "fmt" |
| "go/token" |
| "strings" |
| ) |
| |
| // infer attempts to infer the complete set of type arguments for generic function instantiation/call |
| // based on the given type parameters tparams, type arguments targs, function parameters params, and |
| // function arguments args, if any. There must be at least one type parameter, no more type arguments |
| // than type parameters, and params and args must match in number (incl. zero). |
| // If successful, infer returns the complete list of type arguments, one for each type parameter. |
| // Otherwise the result is nil and appropriate errors will be reported. |
| // |
| // Inference proceeds as follows: |
| // |
| // Starting with given type arguments |
| // 1) apply FTI (function type inference) with typed arguments, |
| // 2) apply CTI (constraint type inference), |
| // 3) apply FTI with untyped function arguments, |
| // 4) apply CTI. |
| // |
| // The process stops as soon as all type arguments are known or an error occurs. |
| func (check *Checker) infer(posn positioner, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand) (result []Type) { |
| if debug { |
| defer func() { |
| assert(result == nil || len(result) == len(tparams)) |
| for _, targ := range result { |
| assert(targ != nil) |
| } |
| //check.dump("### inferred targs = %s", result) |
| }() |
| } |
| |
| if traceInference { |
| check.dump("-- inferA %s%s ➞ %s", tparams, params, targs) |
| defer func() { |
| check.dump("=> inferA %s ➞ %s", tparams, result) |
| }() |
| } |
| |
| // There must be at least one type parameter, and no more type arguments than type parameters. |
| n := len(tparams) |
| assert(n > 0 && len(targs) <= n) |
| |
| // Function parameters and arguments must match in number. |
| assert(params.Len() == len(args)) |
| |
| // If we already have all type arguments, we're done. |
| if len(targs) == n { |
| return targs |
| } |
| // len(targs) < n |
| |
| const enableTparamRenaming = true |
| if enableTparamRenaming { |
| // For the purpose of type inference we must differentiate type parameters |
| // occurring in explicit type or value function arguments from the type |
| // parameters we are solving for via unification, because they may be the |
| // same in self-recursive calls. For example: |
| // |
| // func f[P *Q, Q any](p P, q Q) { |
| // f(p) |
| // } |
| // |
| // In this example, the fact that the P used in the instantation f[P] has |
| // the same pointer identity as the P we are trying to solve for via |
| // unification is coincidental: there is nothing special about recursive |
| // calls that should cause them to conflate the identity of type arguments |
| // with type parameters. To put it another way: any such self-recursive |
| // call is equivalent to a mutually recursive call, which does not run into |
| // any problems of type parameter identity. For example, the following code |
| // is equivalent to the code above. |
| // |
| // func f[P interface{*Q}, Q any](p P, q Q) { |
| // f2(p) |
| // } |
| // |
| // func f2[P interface{*Q}, Q any](p P, q Q) { |
| // f(p) |
| // } |
| // |
| // We can turn the first example into the second example by renaming type |
| // parameters in the original signature to give them a new identity. As an |
| // optimization, we do this only for self-recursive calls. |
| |
| // We can detect if we are in a self-recursive call by comparing the |
| // identity of the first type parameter in the current function with the |
| // first type parameter in tparams. This works because type parameters are |
| // unique to their type parameter list. |
| selfRecursive := check.sig != nil && check.sig.tparams.Len() > 0 && tparams[0] == check.sig.tparams.At(0) |
| |
| if selfRecursive { |
| // In self-recursive inference, rename the type parameters with new type |
| // parameters that are the same but for their pointer identity. |
| tparams2 := make([]*TypeParam, len(tparams)) |
| for i, tparam := range tparams { |
| tname := NewTypeName(tparam.Obj().Pos(), tparam.Obj().Pkg(), tparam.Obj().Name(), nil) |
| tparams2[i] = NewTypeParam(tname, nil) |
| tparams2[i].index = tparam.index // == i |
| } |
| |
| renameMap := makeRenameMap(tparams, tparams2) |
| for i, tparam := range tparams { |
| tparams2[i].bound = check.subst(posn.Pos(), tparam.bound, renameMap, nil) |
| } |
| |
| tparams = tparams2 |
| params = check.subst(posn.Pos(), params, renameMap, nil).(*Tuple) |
| } |
| } |
| |
| // If we have more than 2 arguments, we may have arguments with named and unnamed types. |
| // If that is the case, permutate params and args such that the arguments with named |
| // types are first in the list. This doesn't affect type inference if all types are taken |
| // as is. But when we have inexact unification enabled (as is the case for function type |
| // inference), when a named type is unified with an unnamed type, unification proceeds |
| // with the underlying type of the named type because otherwise unification would fail |
| // right away. This leads to an asymmetry in type inference: in cases where arguments of |
| // named and unnamed types are passed to parameters with identical type, different types |
| // (named vs underlying) may be inferred depending on the order of the arguments. |
| // By ensuring that named types are seen first, order dependence is avoided and unification |
| // succeeds where it can. |
| // |
| // This code is disabled for now pending decision whether we want to address cases like |
| // these and make the spec on type inference more complicated (see issue #43056). |
| const enableArgSorting = false |
| if m := len(args); m >= 2 && enableArgSorting { |
| // Determine indices of arguments with named and unnamed types. |
| var named, unnamed []int |
| for i, arg := range args { |
| if hasName(arg.typ) { |
| named = append(named, i) |
| } else { |
| unnamed = append(unnamed, i) |
| } |
| } |
| |
| // If we have named and unnamed types, move the arguments with |
| // named types first. Update the parameter list accordingly. |
| // Make copies so as not to clobber the incoming slices. |
| if len(named) != 0 && len(unnamed) != 0 { |
| params2 := make([]*Var, m) |
| args2 := make([]*operand, m) |
| i := 0 |
| for _, j := range named { |
| params2[i] = params.At(j) |
| args2[i] = args[j] |
| i++ |
| } |
| for _, j := range unnamed { |
| params2[i] = params.At(j) |
| args2[i] = args[j] |
| i++ |
| } |
| params = NewTuple(params2...) |
| args = args2 |
| } |
| } |
| |
| // --- 1 --- |
| // Continue with the type arguments we have. Avoid matching generic |
| // parameters that already have type arguments against function arguments: |
| // It may fail because matching uses type identity while parameter passing |
| // uses assignment rules. Instantiate the parameter list with the type |
| // arguments we have, and continue with that parameter list. |
| |
| // First, make sure we have a "full" list of type arguments, some of which |
| // may be nil (unknown). Make a copy so as to not clobber the incoming slice. |
| if len(targs) < n { |
| targs2 := make([]Type, n) |
| copy(targs2, targs) |
| targs = targs2 |
| } |
| // len(targs) == n |
| |
| // Substitute type arguments for their respective type parameters in params, |
| // if any. Note that nil targs entries are ignored by check.subst. |
| // TODO(gri) Can we avoid this (we're setting known type arguments below, |
| // but that doesn't impact the isParameterized check for now). |
| if params.Len() > 0 { |
| smap := makeSubstMap(tparams, targs) |
| params = check.subst(token.NoPos, params, smap, nil).(*Tuple) |
| } |
| |
| // Unify parameter and argument types for generic parameters with typed arguments |
| // and collect the indices of generic parameters with untyped arguments. |
| // Terminology: generic parameter = function parameter with a type-parameterized type |
| u := newUnifier(false) |
| u.x.init(tparams) |
| |
| // Set the type arguments which we know already. |
| for i, targ := range targs { |
| if targ != nil { |
| u.x.set(i, targ) |
| } |
| } |
| |
| errorf := func(kind string, tpar, targ Type, arg *operand) { |
| // provide a better error message if we can |
| targs, index := u.x.types() |
| if index == 0 { |
| // The first type parameter couldn't be inferred. |
| // If none of them could be inferred, don't try |
| // to provide the inferred type in the error msg. |
| allFailed := true |
| for _, targ := range targs { |
| if targ != nil { |
| allFailed = false |
| break |
| } |
| } |
| if allFailed { |
| check.errorf(arg, _CannotInferTypeArgs, "%s %s of %s does not match %s (cannot infer %s)", kind, targ, arg.expr, tpar, typeParamsString(tparams)) |
| return |
| } |
| } |
| smap := makeSubstMap(tparams, targs) |
| // TODO(rFindley): pass a positioner here, rather than arg.Pos(). |
| inferred := check.subst(arg.Pos(), tpar, smap, nil) |
| // _CannotInferTypeArgs indicates a failure of inference, though the actual |
| // error may be better attributed to a user-provided type argument (hence |
| // _InvalidTypeArg). We can't differentiate these cases, so fall back on |
| // the more general _CannotInferTypeArgs. |
| if inferred != tpar { |
| check.errorf(arg, _CannotInferTypeArgs, "%s %s of %s does not match inferred type %s for %s", kind, targ, arg.expr, inferred, tpar) |
| } else { |
| check.errorf(arg, _CannotInferTypeArgs, "%s %s of %s does not match %s", kind, targ, arg.expr, tpar) |
| } |
| } |
| |
| // indices of the generic parameters with untyped arguments - save for later |
| var indices []int |
| for i, arg := range args { |
| par := params.At(i) |
| // If we permit bidirectional unification, this conditional code needs to be |
| // executed even if par.typ is not parameterized since the argument may be a |
| // generic function (for which we want to infer its type arguments). |
| if isParameterized(tparams, par.typ) { |
| if arg.mode == invalid { |
| // An error was reported earlier. Ignore this targ |
| // and continue, we may still be able to infer all |
| // targs resulting in fewer follow-on errors. |
| continue |
| } |
| if targ := arg.typ; isTyped(targ) { |
| // If we permit bidirectional unification, and targ is |
| // a generic function, we need to initialize u.y with |
| // the respective type parameters of targ. |
| if !u.unify(par.typ, targ) { |
| errorf("type", par.typ, targ, arg) |
| return nil |
| } |
| } else if _, ok := par.typ.(*TypeParam); ok { |
| // Since default types are all basic (i.e., non-composite) types, an |
| // untyped argument will never match a composite parameter type; the |
| // only parameter type it can possibly match against is a *TypeParam. |
| // Thus, for untyped arguments we only need to look at parameter types |
| // that are single type parameters. |
| indices = append(indices, i) |
| } |
| } |
| } |
| |
| // If we've got all type arguments, we're done. |
| var index int |
| targs, index = u.x.types() |
| if index < 0 { |
| return targs |
| } |
| |
| // --- 2 --- |
| // See how far we get with constraint type inference. |
| // Note that even if we don't have any type arguments, constraint type inference |
| // may produce results for constraints that explicitly specify a type. |
| targs, index = check.inferB(posn, tparams, targs) |
| if targs == nil || index < 0 { |
| return targs |
| } |
| |
| // --- 3 --- |
| // Use any untyped arguments to infer additional type arguments. |
| // Some generic parameters with untyped arguments may have been given |
| // a type by now, we can ignore them. |
| for _, i := range indices { |
| tpar := params.At(i).typ.(*TypeParam) // is type parameter by construction of indices |
| // Only consider untyped arguments for which the corresponding type |
| // parameter doesn't have an inferred type yet. |
| if targs[tpar.index] == nil { |
| arg := args[i] |
| targ := Default(arg.typ) |
| // The default type for an untyped nil is untyped nil. We must not |
| // infer an untyped nil type as type parameter type. Ignore untyped |
| // nil by making sure all default argument types are typed. |
| if isTyped(targ) && !u.unify(tpar, targ) { |
| errorf("default type", tpar, targ, arg) |
| return nil |
| } |
| } |
| } |
| |
| // If we've got all type arguments, we're done. |
| targs, index = u.x.types() |
| if index < 0 { |
| return targs |
| } |
| |
| // --- 4 --- |
| // Again, follow up with constraint type inference. |
| targs, index = check.inferB(posn, tparams, targs) |
| if targs == nil || index < 0 { |
| return targs |
| } |
| |
| // At least one type argument couldn't be inferred. |
| assert(index >= 0 && targs[index] == nil) |
| tpar := tparams[index] |
| check.errorf(posn, _CannotInferTypeArgs, "cannot infer %s (%v)", tpar.obj.name, tpar.obj.pos) |
| return nil |
| } |
| |
| // typeParamsString produces a string containing all the type parameter names |
| // in list suitable for human consumption. |
| func typeParamsString(list []*TypeParam) string { |
| // common cases |
| n := len(list) |
| switch n { |
| case 0: |
| return "" |
| case 1: |
| return list[0].obj.name |
| case 2: |
| return list[0].obj.name + " and " + list[1].obj.name |
| } |
| |
| // general case (n > 2) |
| var b strings.Builder |
| for i, tname := range list[:n-1] { |
| if i > 0 { |
| b.WriteString(", ") |
| } |
| b.WriteString(tname.obj.name) |
| } |
| b.WriteString(", and ") |
| b.WriteString(list[n-1].obj.name) |
| return b.String() |
| } |
| |
| // IsParameterized reports whether typ contains any of the type parameters of tparams. |
| func isParameterized(tparams []*TypeParam, typ Type) bool { |
| w := tpWalker{ |
| seen: make(map[Type]bool), |
| tparams: tparams, |
| } |
| return w.isParameterized(typ) |
| } |
| |
| type tpWalker struct { |
| seen map[Type]bool |
| tparams []*TypeParam |
| } |
| |
| func (w *tpWalker) isParameterized(typ Type) (res bool) { |
| // detect cycles |
| if x, ok := w.seen[typ]; ok { |
| return x |
| } |
| w.seen[typ] = false |
| defer func() { |
| w.seen[typ] = res |
| }() |
| |
| switch t := typ.(type) { |
| case nil, *Basic: // TODO(gri) should nil be handled here? |
| break |
| |
| case *Array: |
| return w.isParameterized(t.elem) |
| |
| case *Slice: |
| return w.isParameterized(t.elem) |
| |
| case *Struct: |
| for _, fld := range t.fields { |
| if w.isParameterized(fld.typ) { |
| return true |
| } |
| } |
| |
| case *Pointer: |
| return w.isParameterized(t.base) |
| |
| case *Tuple: |
| n := t.Len() |
| for i := 0; i < n; i++ { |
| if w.isParameterized(t.At(i).typ) { |
| return true |
| } |
| } |
| |
| case *Signature: |
| // t.tparams may not be nil if we are looking at a signature |
| // of a generic function type (or an interface method) that is |
| // part of the type we're testing. We don't care about these type |
| // parameters. |
| // Similarly, the receiver of a method may declare (rather then |
| // use) type parameters, we don't care about those either. |
| // Thus, we only need to look at the input and result parameters. |
| return w.isParameterized(t.params) || w.isParameterized(t.results) |
| |
| case *Interface: |
| tset := t.typeSet() |
| for _, m := range tset.methods { |
| if w.isParameterized(m.typ) { |
| return true |
| } |
| } |
| return tset.is(func(t *term) bool { |
| return t != nil && w.isParameterized(t.typ) |
| }) |
| |
| case *Map: |
| return w.isParameterized(t.key) || w.isParameterized(t.elem) |
| |
| case *Chan: |
| return w.isParameterized(t.elem) |
| |
| case *Named: |
| return w.isParameterizedTypeList(t.targs.list()) |
| |
| case *TypeParam: |
| // t must be one of w.tparams |
| return tparamIndex(w.tparams, t) >= 0 |
| |
| default: |
| unreachable() |
| } |
| |
| return false |
| } |
| |
| func (w *tpWalker) isParameterizedTypeList(list []Type) bool { |
| for _, t := range list { |
| if w.isParameterized(t) { |
| return true |
| } |
| } |
| return false |
| } |
| |
| // inferB returns the list of actual type arguments inferred from the type parameters' |
| // bounds and an initial set of type arguments. If type inference is impossible because |
| // unification fails, an error is reported if report is set to true, the resulting types |
| // list is nil, and index is 0. |
| // Otherwise, types is the list of inferred type arguments, and index is the index of the |
| // first type argument in that list that couldn't be inferred (and thus is nil). If all |
| // type arguments were inferred successfully, index is < 0. The number of type arguments |
| // provided may be less than the number of type parameters, but there must be at least one. |
| func (check *Checker) inferB(posn positioner, tparams []*TypeParam, targs []Type) (types []Type, index int) { |
| assert(len(tparams) >= len(targs) && len(targs) > 0) |
| |
| if traceInference { |
| check.dump("-- inferB %s ➞ %s", tparams, targs) |
| defer func() { |
| check.dump("=> inferB %s ➞ %s", tparams, types) |
| }() |
| } |
| |
| // Setup bidirectional unification between constraints |
| // and the corresponding type arguments (which may be nil!). |
| u := newUnifier(false) |
| u.x.init(tparams) |
| u.y = u.x // type parameters between LHS and RHS of unification are identical |
| |
| // Set the type arguments which we know already. |
| for i, targ := range targs { |
| if targ != nil { |
| u.x.set(i, targ) |
| } |
| } |
| |
| // Repeatedly apply constraint type inference as long as |
| // there are still unknown type arguments and progress is |
| // being made. |
| // |
| // This is an O(n^2) algorithm where n is the number of |
| // type parameters: if there is progress (and iteration |
| // continues), at least one type argument is inferred |
| // per iteration and we have a doubly nested loop. |
| // In practice this is not a problem because the number |
| // of type parameters tends to be very small (< 5 or so). |
| // (It should be possible for unification to efficiently |
| // signal newly inferred type arguments; then the loops |
| // here could handle the respective type parameters only, |
| // but that will come at a cost of extra complexity which |
| // may not be worth it.) |
| for n := u.x.unknowns(); n > 0; { |
| nn := n |
| |
| for i, tpar := range tparams { |
| // If there is a core term (i.e., a core type with tilde information) |
| // unify the type parameter with the core type. |
| if core, single := coreTerm(tpar); core != nil { |
| // A type parameter can be unified with its core type in two cases. |
| tx := u.x.at(i) |
| switch { |
| case tx != nil: |
| // The corresponding type argument tx is known. |
| // In this case, if the core type has a tilde, the type argument's underlying |
| // type must match the core type, otherwise the type argument and the core type |
| // must match. |
| // If tx is an external type parameter, don't consider its underlying type |
| // (which is an interface). Core type unification will attempt to unify against |
| // core.typ. |
| // Note also that even with inexact unification we cannot leave away the under |
| // call here because it's possible that both tx and core.typ are named types, |
| // with under(tx) being a (named) basic type matching core.typ. Such cases do |
| // not match with inexact unification. |
| if core.tilde && !isTypeParam(tx) { |
| tx = under(tx) |
| } |
| if !u.unify(tx, core.typ) { |
| // TODO(gri) improve error message by providing the type arguments |
| // which we know already |
| // Don't use term.String() as it always qualifies types, even if they |
| // are in the current package. |
| tilde := "" |
| if core.tilde { |
| tilde = "~" |
| } |
| check.errorf(posn, _InvalidTypeArg, "%s does not match %s%s", tpar, tilde, core.typ) |
| return nil, 0 |
| } |
| |
| case single && !core.tilde: |
| // The corresponding type argument tx is unknown and there's a single |
| // specific type and no tilde. |
| // In this case the type argument must be that single type; set it. |
| u.x.set(i, core.typ) |
| |
| default: |
| // Unification is not possible and no progress was made. |
| continue |
| } |
| |
| // The number of known type arguments may have changed. |
| nn = u.x.unknowns() |
| if nn == 0 { |
| break // all type arguments are known |
| } |
| } |
| } |
| |
| assert(nn <= n) |
| if nn == n { |
| break // no progress |
| } |
| n = nn |
| } |
| |
| // u.x.types() now contains the incoming type arguments plus any additional type |
| // arguments which were inferred from core terms. The newly inferred non-nil |
| // entries may still contain references to other type parameters. |
| // For instance, for [A any, B interface{ []C }, C interface{ *A }], if A == int |
| // was given, unification produced the type list [int, []C, *A]. We eliminate the |
| // remaining type parameters by substituting the type parameters in this type list |
| // until nothing changes anymore. |
| types, _ = u.x.types() |
| if debug { |
| for i, targ := range targs { |
| assert(targ == nil || types[i] == targ) |
| } |
| } |
| |
| // The data structure of each (provided or inferred) type represents a graph, where |
| // each node corresponds to a type and each (directed) vertice points to a component |
| // type. The substitution process described above repeatedly replaces type parameter |
| // nodes in these graphs with the graphs of the types the type parameters stand for, |
| // which creates a new (possibly bigger) graph for each type. |
| // The substitution process will not stop if the replacement graph for a type parameter |
| // also contains that type parameter. |
| // For instance, for [A interface{ *A }], without any type argument provided for A, |
| // unification produces the type list [*A]. Substituting A in *A with the value for |
| // A will lead to infinite expansion by producing [**A], [****A], [********A], etc., |
| // because the graph A -> *A has a cycle through A. |
| // Generally, cycles may occur across multiple type parameters and inferred types |
| // (for instance, consider [P interface{ *Q }, Q interface{ func(P) }]). |
| // We eliminate cycles by walking the graphs for all type parameters. If a cycle |
| // through a type parameter is detected, cycleFinder nils out the respectice type |
| // which kills the cycle; this also means that the respective type could not be |
| // inferred. |
| // |
| // TODO(gri) If useful, we could report the respective cycle as an error. We don't |
| // do this now because type inference will fail anyway, and furthermore, |
| // constraints with cycles of this kind cannot currently be satisfied by |
| // any user-suplied type. But should that change, reporting an error |
| // would be wrong. |
| w := cycleFinder{tparams, types, make(map[Type]bool)} |
| for _, t := range tparams { |
| w.typ(t) // t != nil |
| } |
| |
| // dirty tracks the indices of all types that may still contain type parameters. |
| // We know that nil type entries and entries corresponding to provided (non-nil) |
| // type arguments are clean, so exclude them from the start. |
| var dirty []int |
| for i, typ := range types { |
| if typ != nil && (i >= len(targs) || targs[i] == nil) { |
| dirty = append(dirty, i) |
| } |
| } |
| |
| for len(dirty) > 0 { |
| // TODO(gri) Instead of creating a new substMap for each iteration, |
| // provide an update operation for substMaps and only change when |
| // needed. Optimization. |
| smap := makeSubstMap(tparams, types) |
| n := 0 |
| for _, index := range dirty { |
| t0 := types[index] |
| if t1 := check.subst(token.NoPos, t0, smap, nil); t1 != t0 { |
| types[index] = t1 |
| dirty[n] = index |
| n++ |
| } |
| } |
| dirty = dirty[:n] |
| } |
| |
| // Once nothing changes anymore, we may still have type parameters left; |
| // e.g., a constraint with core type *P may match a type parameter Q but |
| // we don't have any type arguments to fill in for *P or Q (issue #45548). |
| // Don't let such inferences escape, instead nil them out. |
| for i, typ := range types { |
| if typ != nil && isParameterized(tparams, typ) { |
| types[i] = nil |
| } |
| } |
| |
| // update index |
| index = -1 |
| for i, typ := range types { |
| if typ == nil { |
| index = i |
| break |
| } |
| } |
| |
| return |
| } |
| |
| // If the type parameter has a single specific type S, coreTerm returns (S, true). |
| // Otherwise, if tpar has a core type T, it returns a term corresponding to that |
| // core type and false. In that case, if any term of tpar has a tilde, the core |
| // term has a tilde. In all other cases coreTerm returns (nil, false). |
| func coreTerm(tpar *TypeParam) (*term, bool) { |
| n := 0 |
| var single *term // valid if n == 1 |
| var tilde bool |
| tpar.is(func(t *term) bool { |
| if t == nil { |
| assert(n == 0) |
| return false // no terms |
| } |
| n++ |
| single = t |
| if t.tilde { |
| tilde = true |
| } |
| return true |
| }) |
| if n == 1 { |
| if debug { |
| assert(debug && under(single.typ) == coreType(tpar)) |
| } |
| return single, true |
| } |
| if typ := coreType(tpar); typ != nil { |
| // A core type is always an underlying type. |
| // If any term of tpar has a tilde, we don't |
| // have a precise core type and we must return |
| // a tilde as well. |
| return &term{tilde, typ}, false |
| } |
| return nil, false |
| } |
| |
| type cycleFinder struct { |
| tparams []*TypeParam |
| types []Type |
| seen map[Type]bool |
| } |
| |
| func (w *cycleFinder) typ(typ Type) { |
| if w.seen[typ] { |
| // We have seen typ before. If it is one of the type parameters |
| // in tparams, iterative substitution will lead to infinite expansion. |
| // Nil out the corresponding type which effectively kills the cycle. |
| if tpar, _ := typ.(*TypeParam); tpar != nil { |
| if i := tparamIndex(w.tparams, tpar); i >= 0 { |
| // cycle through tpar |
| w.types[i] = nil |
| } |
| } |
| // If we don't have one of our type parameters, the cycle is due |
| // to an ordinary recursive type and we can just stop walking it. |
| return |
| } |
| w.seen[typ] = true |
| defer delete(w.seen, typ) |
| |
| switch t := typ.(type) { |
| case *Basic: |
| // nothing to do |
| |
| case *Array: |
| w.typ(t.elem) |
| |
| case *Slice: |
| w.typ(t.elem) |
| |
| case *Struct: |
| w.varList(t.fields) |
| |
| case *Pointer: |
| w.typ(t.base) |
| |
| // case *Tuple: |
| // This case should not occur because tuples only appear |
| // in signatures where they are handled explicitly. |
| |
| case *Signature: |
| if t.params != nil { |
| w.varList(t.params.vars) |
| } |
| if t.results != nil { |
| w.varList(t.results.vars) |
| } |
| |
| case *Union: |
| for _, t := range t.terms { |
| w.typ(t.typ) |
| } |
| |
| case *Interface: |
| for _, m := range t.methods { |
| w.typ(m.typ) |
| } |
| for _, t := range t.embeddeds { |
| w.typ(t) |
| } |
| |
| case *Map: |
| w.typ(t.key) |
| w.typ(t.elem) |
| |
| case *Chan: |
| w.typ(t.elem) |
| |
| case *Named: |
| for _, tpar := range t.TypeArgs().list() { |
| w.typ(tpar) |
| } |
| |
| case *TypeParam: |
| if i := tparamIndex(w.tparams, t); i >= 0 && w.types[i] != nil { |
| w.typ(w.types[i]) |
| } |
| |
| default: |
| panic(fmt.Sprintf("unexpected %T", typ)) |
| } |
| } |
| |
| func (w *cycleFinder) varList(list []*Var) { |
| for _, v := range list { |
| w.typ(v.typ) |
| } |
| } |