blob: 9ecd59c77d761cb6ec0962e40d36a3f2a0e25c09 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package testing provides support for automated testing of Go packages.
// It is intended to be used in concert with the "go test" command, which automates
// execution of any function of the form
// func TestXxx(*testing.T)
// where Xxx does not start with a lowercase letter. The function name
// serves to identify the test routine.
//
// Within these functions, use the Error, Fail or related methods to signal failure.
//
// To write a new test suite, create a file whose name ends _test.go that
// contains the TestXxx functions as described here. Put the file in the same
// package as the one being tested. The file will be excluded from regular
// package builds but will be included when the "go test" command is run.
// For more detail, run "go help test" and "go help testflag".
//
// A simple test function looks like this:
//
// func TestAbs(t *testing.T) {
// got := Abs(-1)
// if got != 1 {
// t.Errorf("Abs(-1) = %d; want 1", got)
// }
// }
//
// Benchmarks
//
// Functions of the form
// func BenchmarkXxx(*testing.B)
// are considered benchmarks, and are executed by the "go test" command when
// its -bench flag is provided. Benchmarks are run sequentially.
//
// For a description of the testing flags, see
// https://golang.org/cmd/go/#hdr-Testing_flags.
//
// A sample benchmark function looks like this:
// func BenchmarkRandInt(b *testing.B) {
// for i := 0; i < b.N; i++ {
// rand.Int()
// }
// }
//
// The benchmark function must run the target code b.N times.
// During benchmark execution, b.N is adjusted until the benchmark function lasts
// long enough to be timed reliably. The output
// BenchmarkRandInt-8 68453040 17.8 ns/op
// means that the loop ran 68453040 times at a speed of 17.8 ns per loop.
//
// If a benchmark needs some expensive setup before running, the timer
// may be reset:
//
// func BenchmarkBigLen(b *testing.B) {
// big := NewBig()
// b.ResetTimer()
// for i := 0; i < b.N; i++ {
// big.Len()
// }
// }
//
// If a benchmark needs to test performance in a parallel setting, it may use
// the RunParallel helper function; such benchmarks are intended to be used with
// the go test -cpu flag:
//
// func BenchmarkTemplateParallel(b *testing.B) {
// templ := template.Must(template.New("test").Parse("Hello, {{.}}!"))
// b.RunParallel(func(pb *testing.PB) {
// var buf bytes.Buffer
// for pb.Next() {
// buf.Reset()
// templ.Execute(&buf, "World")
// }
// })
// }
//
// A detailed specification of the benchmark results format is given
// in https://golang.org/design/14313-benchmark-format.
//
// There are standard tools for working with benchmark results at
// https://golang.org/x/perf/cmd.
// In particular, https://golang.org/x/perf/cmd/benchstat performs
// statistically robust A/B comparisons.
//
// Examples
//
// The package also runs and verifies example code. Example functions may
// include a concluding line comment that begins with "Output:" and is compared with
// the standard output of the function when the tests are run. (The comparison
// ignores leading and trailing space.) These are examples of an example:
//
// func ExampleHello() {
// fmt.Println("hello")
// // Output: hello
// }
//
// func ExampleSalutations() {
// fmt.Println("hello, and")
// fmt.Println("goodbye")
// // Output:
// // hello, and
// // goodbye
// }
//
// The comment prefix "Unordered output:" is like "Output:", but matches any
// line order:
//
// func ExamplePerm() {
// for _, value := range Perm(5) {
// fmt.Println(value)
// }
// // Unordered output: 4
// // 2
// // 1
// // 3
// // 0
// }
//
// Example functions without output comments are compiled but not executed.
//
// The naming convention to declare examples for the package, a function F, a type T and
// method M on type T are:
//
// func Example() { ... }
// func ExampleF() { ... }
// func ExampleT() { ... }
// func ExampleT_M() { ... }
//
// Multiple example functions for a package/type/function/method may be provided by
// appending a distinct suffix to the name. The suffix must start with a
// lower-case letter.
//
// func Example_suffix() { ... }
// func ExampleF_suffix() { ... }
// func ExampleT_suffix() { ... }
// func ExampleT_M_suffix() { ... }
//
// The entire test file is presented as the example when it contains a single
// example function, at least one other function, type, variable, or constant
// declaration, and no test or benchmark functions.
//
// Fuzzing
//
// 'go test' and the testing package support fuzzing, a testing technique where
// a function is called with randomly generated inputs to find bugs not
// anticipated by unit tests.
//
// Functions of the form
// func FuzzXxx(*testing.F)
// are considered fuzz tests.
//
// For example:
//
// func FuzzHex(f *testing.F) {
// for _, seed := range [][]byte{{}, {0}, {9}, {0xa}, {0xf}, {1, 2, 3, 4}} {
// f.Add(seed)
// }
// f.Fuzz(func(t *testing.T, in []byte) {
// enc := hex.EncodeToString(in)
// out, err := hex.DecodeString(enc)
// if err != nil {
// t.Fatalf("%v: decode: %v", in, err)
// }
// if !bytes.Equal(in, out) {
// t.Fatalf("%v: not equal after round trip: %v", in, out)
// }
// })
// }
//
// A fuzz test maintains a seed corpus, or a set of inputs which are run by
// default, and can seed input generation. Seed inputs may be registered by
// calling (*F).Add or by storing files in the directory testdata/fuzz/<Name>
// (where <Name> is the name of the fuzz test) within the package containing
// the fuzz test. Seed inputs are optional, but the fuzzing engine may find
// bugs more efficiently when provided with a set of small seed inputs with good
// code coverage. These seed inputs can also serve as regression tests for bugs
// identified through fuzzing.
//
// The function passed to (*F).Fuzz within the fuzz test is considered the fuzz
// target. A fuzz target must accept a *T parameter, followed by one or more
// parameters for random inputs. The types of arguments passed to (*F).Add must
// be identical to the types of these parameters. The fuzz target may signal
// that it's found a problem the same way tests do: by calling T.Fail (or any
// method that calls it like T.Error or T.Fatal) or by panicking.
//
// When fuzzing is enabled (by setting the -fuzz flag to a regular expression
// that matches a specific fuzz test), the fuzz target is called with arguments
// generated by repeatedly making random changes to the seed inputs. On
// supported platforms, 'go test' compiles the test executable with fuzzing
// coverage instrumentation. The fuzzing engine uses that instrumentation to
// find and cache inputs that expand coverage, increasing the likelihood of
// finding bugs. If the fuzz target fails for a given input, the fuzzing engine
// writes the inputs that caused the failure to a file in the directory
// testdata/fuzz/<Name> within the package directory. This file later serves as
// a seed input. If the file can't be written at that location (for example,
// because the directory is read-only), the fuzzing engine writes the file to
// the fuzz cache directory within the build cache instead.
//
// When fuzzing is disabled, the fuzz target is called with the seed inputs
// registered with F.Add and seed inputs from testdata/fuzz/<Name>. In this
// mode, the fuzz test acts much like a regular test, with subtests started
// with F.Fuzz instead of T.Run.
//
// See https://go.dev/doc/fuzz for documentation about fuzzing.
//
// Skipping
//
// Tests or benchmarks may be skipped at run time with a call to
// the Skip method of *T or *B:
//
// func TestTimeConsuming(t *testing.T) {
// if testing.Short() {
// t.Skip("skipping test in short mode.")
// }
// ...
// }
//
// The Skip method of *T can be used in a fuzz target if the input is invalid,
// but should not be considered a failing input. For example:
//
// func FuzzJSONMarshalling(f *testing.F) {
// f.Fuzz(func(t *testing.T, b []byte) {
// var v interface{}
// if err := json.Unmarshal(b, &v); err != nil {
// t.Skip()
// }
// if _, err := json.Marshal(v); err != nil {
// t.Error("Marshal: %v", err)
// }
// })
// }
//
// Subtests and Sub-benchmarks
//
// The Run methods of T and B allow defining subtests and sub-benchmarks,
// without having to define separate functions for each. This enables uses
// like table-driven benchmarks and creating hierarchical tests.
// It also provides a way to share common setup and tear-down code:
//
// func TestFoo(t *testing.T) {
// // <setup code>
// t.Run("A=1", func(t *testing.T) { ... })
// t.Run("A=2", func(t *testing.T) { ... })
// t.Run("B=1", func(t *testing.T) { ... })
// // <tear-down code>
// }
//
// Each subtest and sub-benchmark has a unique name: the combination of the name
// of the top-level test and the sequence of names passed to Run, separated by
// slashes, with an optional trailing sequence number for disambiguation.
//
// The argument to the -run, -bench, and -fuzz command-line flags is an unanchored regular
// expression that matches the test's name. For tests with multiple slash-separated
// elements, such as subtests, the argument is itself slash-separated, with
// expressions matching each name element in turn. Because it is unanchored, an
// empty expression matches any string.
// For example, using "matching" to mean "whose name contains":
//
// go test -run '' # Run all tests.
// go test -run Foo # Run top-level tests matching "Foo", such as "TestFooBar".
// go test -run Foo/A= # For top-level tests matching "Foo", run subtests matching "A=".
// go test -run /A=1 # For all top-level tests, run subtests matching "A=1".
// go test -fuzz FuzzFoo # Fuzz the target matching "FuzzFoo"
//
// The -run argument can also be used to run a specific value in the seed
// corpus, for debugging. For example:
// go test -run=FuzzFoo/9ddb952d9814
//
// The -fuzz and -run flags can both be set, in order to fuzz a target but
// skip the execution of all other tests.
//
// Subtests can also be used to control parallelism. A parent test will only
// complete once all of its subtests complete. In this example, all tests are
// run in parallel with each other, and only with each other, regardless of
// other top-level tests that may be defined:
//
// func TestGroupedParallel(t *testing.T) {
// for _, tc := range tests {
// tc := tc // capture range variable
// t.Run(tc.Name, func(t *testing.T) {
// t.Parallel()
// ...
// })
// }
// }
//
// The race detector kills the program if it exceeds 8128 concurrent goroutines,
// so use care when running parallel tests with the -race flag set.
//
// Run does not return until parallel subtests have completed, providing a way
// to clean up after a group of parallel tests:
//
// func TestTeardownParallel(t *testing.T) {
// // This Run will not return until the parallel tests finish.
// t.Run("group", func(t *testing.T) {
// t.Run("Test1", parallelTest1)
// t.Run("Test2", parallelTest2)
// t.Run("Test3", parallelTest3)
// })
// // <tear-down code>
// }
//
// Main
//
// It is sometimes necessary for a test or benchmark program to do extra setup or teardown
// before or after it executes. It is also sometimes necessary to control
// which code runs on the main thread. To support these and other cases,
// if a test file contains a function:
//
// func TestMain(m *testing.M)
//
// then the generated test will call TestMain(m) instead of running the tests or benchmarks
// directly. TestMain runs in the main goroutine and can do whatever setup
// and teardown is necessary around a call to m.Run. m.Run will return an exit
// code that may be passed to os.Exit. If TestMain returns, the test wrapper
// will pass the result of m.Run to os.Exit itself.
//
// When TestMain is called, flag.Parse has not been run. If TestMain depends on
// command-line flags, including those of the testing package, it should call
// flag.Parse explicitly. Command line flags are always parsed by the time test
// or benchmark functions run.
//
// A simple implementation of TestMain is:
//
// func TestMain(m *testing.M) {
// // call flag.Parse() here if TestMain uses flags
// os.Exit(m.Run())
// }
//
// TestMain is a low-level primitive and should not be necessary for casual
// testing needs, where ordinary test functions suffice.
package testing
import (
"bytes"
"errors"
"flag"
"fmt"
"internal/race"
"io"
"math/rand"
"os"
"reflect"
"runtime"
"runtime/debug"
"runtime/trace"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"unicode"
"unicode/utf8"
)
var initRan bool
// Init registers testing flags. These flags are automatically registered by
// the "go test" command before running test functions, so Init is only needed
// when calling functions such as Benchmark without using "go test".
//
// Init has no effect if it was already called.
func Init() {
if initRan {
return
}
initRan = true
// The short flag requests that tests run more quickly, but its functionality
// is provided by test writers themselves. The testing package is just its
// home. The all.bash installation script sets it to make installation more
// efficient, but by default the flag is off so a plain "go test" will do a
// full test of the package.
short = flag.Bool("test.short", false, "run smaller test suite to save time")
// The failfast flag requests that test execution stop after the first test failure.
failFast = flag.Bool("test.failfast", false, "do not start new tests after the first test failure")
// The directory in which to create profile files and the like. When run from
// "go test", the binary always runs in the source directory for the package;
// this flag lets "go test" tell the binary to write the files in the directory where
// the "go test" command is run.
outputDir = flag.String("test.outputdir", "", "write profiles to `dir`")
// Report as tests are run; default is silent for success.
chatty = flag.Bool("test.v", false, "verbose: print additional output")
count = flag.Uint("test.count", 1, "run tests and benchmarks `n` times")
coverProfile = flag.String("test.coverprofile", "", "write a coverage profile to `file`")
matchList = flag.String("test.list", "", "list tests, examples, and benchmarks matching `regexp` then exit")
match = flag.String("test.run", "", "run only tests and examples matching `regexp`")
memProfile = flag.String("test.memprofile", "", "write an allocation profile to `file`")
memProfileRate = flag.Int("test.memprofilerate", 0, "set memory allocation profiling `rate` (see runtime.MemProfileRate)")
cpuProfile = flag.String("test.cpuprofile", "", "write a cpu profile to `file`")
blockProfile = flag.String("test.blockprofile", "", "write a goroutine blocking profile to `file`")
blockProfileRate = flag.Int("test.blockprofilerate", 1, "set blocking profile `rate` (see runtime.SetBlockProfileRate)")
mutexProfile = flag.String("test.mutexprofile", "", "write a mutex contention profile to the named file after execution")
mutexProfileFraction = flag.Int("test.mutexprofilefraction", 1, "if >= 0, calls runtime.SetMutexProfileFraction()")
panicOnExit0 = flag.Bool("test.paniconexit0", false, "panic on call to os.Exit(0)")
traceFile = flag.String("test.trace", "", "write an execution trace to `file`")
timeout = flag.Duration("test.timeout", 0, "panic test binary after duration `d` (default 0, timeout disabled)")
cpuListStr = flag.String("test.cpu", "", "comma-separated `list` of cpu counts to run each test with")
parallel = flag.Int("test.parallel", runtime.GOMAXPROCS(0), "run at most `n` tests in parallel")
testlog = flag.String("test.testlogfile", "", "write test action log to `file` (for use only by cmd/go)")
shuffle = flag.String("test.shuffle", "off", "randomize the execution order of tests and benchmarks")
initBenchmarkFlags()
initFuzzFlags()
}
var (
// Flags, registered during Init.
short *bool
failFast *bool
outputDir *string
chatty *bool
count *uint
coverProfile *string
matchList *string
match *string
memProfile *string
memProfileRate *int
cpuProfile *string
blockProfile *string
blockProfileRate *int
mutexProfile *string
mutexProfileFraction *int
panicOnExit0 *bool
traceFile *string
timeout *time.Duration
cpuListStr *string
parallel *int
shuffle *string
testlog *string
haveExamples bool // are there examples?
cpuList []int
testlogFile *os.File
numFailed uint32 // number of test failures
)
type chattyPrinter struct {
w io.Writer
lastNameMu sync.Mutex // guards lastName
lastName string // last printed test name in chatty mode
}
func newChattyPrinter(w io.Writer) *chattyPrinter {
return &chattyPrinter{w: w}
}
// Updatef prints a message about the status of the named test to w.
//
// The formatted message must include the test name itself.
func (p *chattyPrinter) Updatef(testName, format string, args ...any) {
p.lastNameMu.Lock()
defer p.lastNameMu.Unlock()
// Since the message already implies an association with a specific new test,
// we don't need to check what the old test name was or log an extra CONT line
// for it. (We're updating it anyway, and the current message already includes
// the test name.)
p.lastName = testName
fmt.Fprintf(p.w, format, args...)
}
// Printf prints a message, generated by the named test, that does not
// necessarily mention that tests's name itself.
func (p *chattyPrinter) Printf(testName, format string, args ...any) {
p.lastNameMu.Lock()
defer p.lastNameMu.Unlock()
if p.lastName == "" {
p.lastName = testName
} else if p.lastName != testName {
fmt.Fprintf(p.w, "=== CONT %s\n", testName)
p.lastName = testName
}
fmt.Fprintf(p.w, format, args...)
}
// The maximum number of stack frames to go through when skipping helper functions for
// the purpose of decorating log messages.
const maxStackLen = 50
// common holds the elements common between T and B and
// captures common methods such as Errorf.
type common struct {
mu sync.RWMutex // guards this group of fields
output []byte // Output generated by test or benchmark.
w io.Writer // For flushToParent.
ran bool // Test or benchmark (or one of its subtests) was executed.
failed bool // Test or benchmark has failed.
skipped bool // Test or benchmark has been skipped.
done bool // Test is finished and all subtests have completed.
helperPCs map[uintptr]struct{} // functions to be skipped when writing file/line info
helperNames map[string]struct{} // helperPCs converted to function names
cleanups []func() // optional functions to be called at the end of the test
cleanupName string // Name of the cleanup function.
cleanupPc []uintptr // The stack trace at the point where Cleanup was called.
finished bool // Test function has completed.
inFuzzFn bool // Whether the fuzz target, if this is one, is running.
chatty *chattyPrinter // A copy of chattyPrinter, if the chatty flag is set.
bench bool // Whether the current test is a benchmark.
hasSub int32 // Written atomically.
raceErrors int // Number of races detected during test.
runner string // Function name of tRunner running the test.
parent *common
level int // Nesting depth of test or benchmark.
creator []uintptr // If level > 0, the stack trace at the point where the parent called t.Run.
name string // Name of test or benchmark.
start time.Time // Time test or benchmark started
duration time.Duration
barrier chan bool // To signal parallel subtests they may start. Nil when T.Parallel is not present (B) or not usable (when fuzzing).
signal chan bool // To signal a test is done.
sub []*T // Queue of subtests to be run in parallel.
tempDirMu sync.Mutex
tempDir string
tempDirErr error
tempDirSeq int32
}
// Short reports whether the -test.short flag is set.
func Short() bool {
if short == nil {
panic("testing: Short called before Init")
}
// Catch code that calls this from TestMain without first calling flag.Parse.
if !flag.Parsed() {
panic("testing: Short called before Parse")
}
return *short
}
// CoverMode reports what the test coverage mode is set to. The
// values are "set", "count", or "atomic". The return value will be
// empty if test coverage is not enabled.
func CoverMode() string {
return cover.Mode
}
// Verbose reports whether the -test.v flag is set.
func Verbose() bool {
// Same as in Short.
if chatty == nil {
panic("testing: Verbose called before Init")
}
if !flag.Parsed() {
panic("testing: Verbose called before Parse")
}
return *chatty
}
func (c *common) checkFuzzFn(name string) {
if c.inFuzzFn {
panic(fmt.Sprintf("testing: f.%s was called inside the fuzz target, use t.%s instead", name, name))
}
}
// frameSkip searches, starting after skip frames, for the first caller frame
// in a function not marked as a helper and returns that frame.
// The search stops if it finds a tRunner function that
// was the entry point into the test and the test is not a subtest.
// This function must be called with c.mu held.
func (c *common) frameSkip(skip int) runtime.Frame {
// If the search continues into the parent test, we'll have to hold
// its mu temporarily. If we then return, we need to unlock it.
shouldUnlock := false
defer func() {
if shouldUnlock {
c.mu.Unlock()
}
}()
var pc [maxStackLen]uintptr
// Skip two extra frames to account for this function
// and runtime.Callers itself.
n := runtime.Callers(skip+2, pc[:])
if n == 0 {
panic("testing: zero callers found")
}
frames := runtime.CallersFrames(pc[:n])
var firstFrame, prevFrame, frame runtime.Frame
for more := true; more; prevFrame = frame {
frame, more = frames.Next()
if frame.Function == "runtime.gopanic" {
continue
}
if frame.Function == c.cleanupName {
frames = runtime.CallersFrames(c.cleanupPc)
continue
}
if firstFrame.PC == 0 {
firstFrame = frame
}
if frame.Function == c.runner {
// We've gone up all the way to the tRunner calling
// the test function (so the user must have
// called tb.Helper from inside that test function).
// If this is a top-level test, only skip up to the test function itself.
// If we're in a subtest, continue searching in the parent test,
// starting from the point of the call to Run which created this subtest.
if c.level > 1 {
frames = runtime.CallersFrames(c.creator)
parent := c.parent
// We're no longer looking at the current c after this point,
// so we should unlock its mu, unless it's the original receiver,
// in which case our caller doesn't expect us to do that.
if shouldUnlock {
c.mu.Unlock()
}
c = parent
// Remember to unlock c.mu when we no longer need it, either
// because we went up another nesting level, or because we
// returned.
shouldUnlock = true
c.mu.Lock()
continue
}
return prevFrame
}
// If more helper PCs have been added since we last did the conversion
if c.helperNames == nil {
c.helperNames = make(map[string]struct{})
for pc := range c.helperPCs {
c.helperNames[pcToName(pc)] = struct{}{}
}
}
if _, ok := c.helperNames[frame.Function]; !ok {
// Found a frame that wasn't inside a helper function.
return frame
}
}
return firstFrame
}
// decorate prefixes the string with the file and line of the call site
// and inserts the final newline if needed and indentation spaces for formatting.
// This function must be called with c.mu held.
func (c *common) decorate(s string, skip int) string {
frame := c.frameSkip(skip)
file := frame.File
line := frame.Line
if file != "" {
// Truncate file name at last file name separator.
if index := strings.LastIndex(file, "/"); index >= 0 {
file = file[index+1:]
} else if index = strings.LastIndex(file, "\\"); index >= 0 {
file = file[index+1:]
}
} else {
file = "???"
}
if line == 0 {
line = 1
}
buf := new(strings.Builder)
// Every line is indented at least 4 spaces.
buf.WriteString(" ")
fmt.Fprintf(buf, "%s:%d: ", file, line)
lines := strings.Split(s, "\n")
if l := len(lines); l > 1 && lines[l-1] == "" {
lines = lines[:l-1]
}
for i, line := range lines {
if i > 0 {
// Second and subsequent lines are indented an additional 4 spaces.
buf.WriteString("\n ")
}
buf.WriteString(line)
}
buf.WriteByte('\n')
return buf.String()
}
// flushToParent writes c.output to the parent after first writing the header
// with the given format and arguments.
func (c *common) flushToParent(testName, format string, args ...any) {
p := c.parent
p.mu.Lock()
defer p.mu.Unlock()
c.mu.Lock()
defer c.mu.Unlock()
if len(c.output) > 0 {
format += "%s"
args = append(args[:len(args):len(args)], c.output)
c.output = c.output[:0] // but why?
}
if c.chatty != nil && p.w == c.chatty.w {
// We're flushing to the actual output, so track that this output is
// associated with a specific test (and, specifically, that the next output
// is *not* associated with that test).
//
// Moreover, if c.output is non-empty it is important that this write be
// atomic with respect to the output of other tests, so that we don't end up
// with confusing '=== CONT' lines in the middle of our '--- PASS' block.
// Neither humans nor cmd/test2json can parse those easily.
// (See https://golang.org/issue/40771.)
c.chatty.Updatef(testName, format, args...)
} else {
// We're flushing to the output buffer of the parent test, which will
// itself follow a test-name header when it is finally flushed to stdout.
fmt.Fprintf(p.w, format, args...)
}
}
type indenter struct {
c *common
}
func (w indenter) Write(b []byte) (n int, err error) {
n = len(b)
for len(b) > 0 {
end := bytes.IndexByte(b, '\n')
if end == -1 {
end = len(b)
} else {
end++
}
// An indent of 4 spaces will neatly align the dashes with the status
// indicator of the parent.
const indent = " "
w.c.output = append(w.c.output, indent...)
w.c.output = append(w.c.output, b[:end]...)
b = b[end:]
}
return
}
// fmtDuration returns a string representing d in the form "87.00s".
func fmtDuration(d time.Duration) string {
return fmt.Sprintf("%.2fs", d.Seconds())
}
// TB is the interface common to T, B, and F.
type TB interface {
Cleanup(func())
Error(args ...any)
Errorf(format string, args ...any)
Fail()
FailNow()
Failed() bool
Fatal(args ...any)
Fatalf(format string, args ...any)
Helper()
Log(args ...any)
Logf(format string, args ...any)
Name() string
Setenv(key, value string)
Skip(args ...any)
SkipNow()
Skipf(format string, args ...any)
Skipped() bool
TempDir() string
// A private method to prevent users implementing the
// interface and so future additions to it will not
// violate Go 1 compatibility.
private()
}
var _ TB = (*T)(nil)
var _ TB = (*B)(nil)
// T is a type passed to Test functions to manage test state and support formatted test logs.
//
// A test ends when its Test function returns or calls any of the methods
// FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods, as well as
// the Parallel method, must be called only from the goroutine running the
// Test function.
//
// The other reporting methods, such as the variations of Log and Error,
// may be called simultaneously from multiple goroutines.
type T struct {
common
isParallel bool
isEnvSet bool
context *testContext // For running tests and subtests.
}
func (c *common) private() {}
// Name returns the name of the running (sub-) test or benchmark.
//
// The name will include the name of the test along with the names of
// any nested sub-tests. If two sibling sub-tests have the same name,
// Name will append a suffix to guarantee the returned name is unique.
func (c *common) Name() string {
return c.name
}
func (c *common) setRan() {
if c.parent != nil {
c.parent.setRan()
}
c.mu.Lock()
defer c.mu.Unlock()
c.ran = true
}
// Fail marks the function as having failed but continues execution.
func (c *common) Fail() {
if c.parent != nil {
c.parent.Fail()
}
c.mu.Lock()
defer c.mu.Unlock()
// c.done needs to be locked to synchronize checks to c.done in parent tests.
if c.done {
panic("Fail in goroutine after " + c.name + " has completed")
}
c.failed = true
}
// Failed reports whether the function has failed.
func (c *common) Failed() bool {
c.mu.RLock()
failed := c.failed
c.mu.RUnlock()
return failed || c.raceErrors+race.Errors() > 0
}
// FailNow marks the function as having failed and stops its execution
// by calling runtime.Goexit (which then runs all deferred calls in the
// current goroutine).
// Execution will continue at the next test or benchmark.
// FailNow must be called from the goroutine running the
// test or benchmark function, not from other goroutines
// created during the test. Calling FailNow does not stop
// those other goroutines.
func (c *common) FailNow() {
c.checkFuzzFn("FailNow")
c.Fail()
// Calling runtime.Goexit will exit the goroutine, which
// will run the deferred functions in this goroutine,
// which will eventually run the deferred lines in tRunner,
// which will signal to the test loop that this test is done.
//
// A previous version of this code said:
//
// c.duration = ...
// c.signal <- c.self
// runtime.Goexit()
//
// This previous version duplicated code (those lines are in
// tRunner no matter what), but worse the goroutine teardown
// implicit in runtime.Goexit was not guaranteed to complete
// before the test exited. If a test deferred an important cleanup
// function (like removing temporary files), there was no guarantee
// it would run on a test failure. Because we send on c.signal during
// a top-of-stack deferred function now, we know that the send
// only happens after any other stacked defers have completed.
c.mu.Lock()
c.finished = true
c.mu.Unlock()
runtime.Goexit()
}
// log generates the output. It's always at the same stack depth.
func (c *common) log(s string) {
c.logDepth(s, 3) // logDepth + log + public function
}
// logDepth generates the output at an arbitrary stack depth.
func (c *common) logDepth(s string, depth int) {
c.mu.Lock()
defer c.mu.Unlock()
if c.done {
// This test has already finished. Try and log this message
// with our parent. If we don't have a parent, panic.
for parent := c.parent; parent != nil; parent = parent.parent {
parent.mu.Lock()
defer parent.mu.Unlock()
if !parent.done {
parent.output = append(parent.output, parent.decorate(s, depth+1)...)
return
}
}
panic("Log in goroutine after " + c.name + " has completed: " + s)
} else {
if c.chatty != nil {
if c.bench {
// Benchmarks don't print === CONT, so we should skip the test
// printer and just print straight to stdout.
fmt.Print(c.decorate(s, depth+1))
} else {
c.chatty.Printf(c.name, "%s", c.decorate(s, depth+1))
}
return
}
c.output = append(c.output, c.decorate(s, depth+1)...)
}
}
// This is needed for gccgo to get the tests to pass, because
// runtime.Callers doesn't correctly handle skips that land in the
// middle of a sequence of inlined functions.
// This shouldn't make any difference for normal use.
//go:noinline
// Log formats its arguments using default formatting, analogous to Println,
// and records the text in the error log. For tests, the text will be printed only if
// the test fails or the -test.v flag is set. For benchmarks, the text is always
// printed to avoid having performance depend on the value of the -test.v flag.
func (c *common) Log(args ...any) {
c.checkFuzzFn("Log")
c.log(fmt.Sprintln(args...))
}
// Logf formats its arguments according to the format, analogous to Printf, and
// records the text in the error log. A final newline is added if not provided. For
// tests, the text will be printed only if the test fails or the -test.v flag is
// set. For benchmarks, the text is always printed to avoid having performance
// depend on the value of the -test.v flag.
func (c *common) Logf(format string, args ...any) {
c.checkFuzzFn("Logf")
c.log(fmt.Sprintf(format, args...))
}
// This is needed for gccgo to get the tests to pass, because
// runtime.Callers doesn't correctly handle skips that land in the
// middle of a sequence of inlined functions.
// This shouldn't make any difference for normal use.
//go:noinline
// Error is equivalent to Log followed by Fail.
func (c *common) Error(args ...any) {
c.checkFuzzFn("Error")
c.log(fmt.Sprintln(args...))
c.Fail()
}
// This is needed for gccgo to get the tests to pass, because
// runtime.Callers doesn't correctly handle skips that land in the
// middle of a sequence of inlined functions.
// This shouldn't make any difference for normal use.
//go:noinline
// Errorf is equivalent to Logf followed by Fail.
func (c *common) Errorf(format string, args ...any) {
c.checkFuzzFn("Errorf")
c.log(fmt.Sprintf(format, args...))
c.Fail()
}
// This is needed for gccgo to get the tests to pass, because
// runtime.Callers doesn't correctly handle skips that land in the
// middle of a sequence of inlined functions.
// This shouldn't make any difference for normal use.
//go:noinline
// Fatal is equivalent to Log followed by FailNow.
func (c *common) Fatal(args ...any) {
c.checkFuzzFn("Fatal")
c.log(fmt.Sprintln(args...))
c.FailNow()
}
// This is needed for gccgo to get the tests to pass, because
// runtime.Callers doesn't correctly handle skips that land in the
// middle of a sequence of inlined functions.
// This shouldn't make any difference for normal use.
//go:noinline
// Fatalf is equivalent to Logf followed by FailNow.
func (c *common) Fatalf(format string, args ...any) {
c.checkFuzzFn("Fatalf")
c.log(fmt.Sprintf(format, args...))
c.FailNow()
}
// This is needed for gccgo to get the tests to pass, because
// runtime.Callers doesn't correctly handle skips that land in the
// middle of a sequence of inlined functions.
// This shouldn't make any difference for normal use.
//go:noinline
// Skip is equivalent to Log followed by SkipNow.
func (c *common) Skip(args ...any) {
c.checkFuzzFn("Skip")
c.log(fmt.Sprintln(args...))
c.SkipNow()
}
// Skipf is equivalent to Logf followed by SkipNow.
func (c *common) Skipf(format string, args ...any) {
c.checkFuzzFn("Skipf")
c.log(fmt.Sprintf(format, args...))
c.SkipNow()
}
// SkipNow marks the test as having been skipped and stops its execution
// by calling runtime.Goexit.
// If a test fails (see Error, Errorf, Fail) and is then skipped,
// it is still considered to have failed.
// Execution will continue at the next test or benchmark. See also FailNow.
// SkipNow must be called from the goroutine running the test, not from
// other goroutines created during the test. Calling SkipNow does not stop
// those other goroutines.
func (c *common) SkipNow() {
c.checkFuzzFn("SkipNow")
c.mu.Lock()
c.skipped = true
c.finished = true
c.mu.Unlock()
runtime.Goexit()
}
// Skipped reports whether the test was skipped.
func (c *common) Skipped() bool {
c.mu.RLock()
defer c.mu.RUnlock()
return c.skipped
}
// Helper marks the calling function as a test helper function.
// When printing file and line information, that function will be skipped.
// Helper may be called simultaneously from multiple goroutines.
func (c *common) Helper() {
c.mu.Lock()
defer c.mu.Unlock()
if c.helperPCs == nil {
c.helperPCs = make(map[uintptr]struct{})
}
// repeating code from callerName here to save walking a stack frame
var pc [1]uintptr
n := runtime.Callers(2, pc[:]) // skip runtime.Callers + Helper
if n == 0 {
panic("testing: zero callers found")
}
if _, found := c.helperPCs[pc[0]]; !found {
c.helperPCs[pc[0]] = struct{}{}
c.helperNames = nil // map will be recreated next time it is needed
}
}
// Cleanup registers a function to be called when the test (or subtest) and all its
// subtests complete. Cleanup functions will be called in last added,
// first called order.
func (c *common) Cleanup(f func()) {
c.checkFuzzFn("Cleanup")
var pc [maxStackLen]uintptr
// Skip two extra frames to account for this function and runtime.Callers itself.
n := runtime.Callers(2, pc[:])
cleanupPc := pc[:n]
fn := func() {
defer func() {
c.mu.Lock()
defer c.mu.Unlock()
c.cleanupName = ""
c.cleanupPc = nil
}()
name := callerName(0)
c.mu.Lock()
c.cleanupName = name
c.cleanupPc = cleanupPc
c.mu.Unlock()
f()
}
c.mu.Lock()
defer c.mu.Unlock()
c.cleanups = append(c.cleanups, fn)
}
// TempDir returns a temporary directory for the test to use.
// The directory is automatically removed by Cleanup when the test and
// all its subtests complete.
// Each subsequent call to t.TempDir returns a unique directory;
// if the directory creation fails, TempDir terminates the test by calling Fatal.
func (c *common) TempDir() string {
c.checkFuzzFn("TempDir")
// Use a single parent directory for all the temporary directories
// created by a test, each numbered sequentially.
c.tempDirMu.Lock()
var nonExistent bool
if c.tempDir == "" { // Usually the case with js/wasm
nonExistent = true
} else {
_, err := os.Stat(c.tempDir)
nonExistent = os.IsNotExist(err)
if err != nil && !nonExistent {
c.Fatalf("TempDir: %v", err)
}
}
if nonExistent {
c.Helper()
// Drop unusual characters (such as path separators or
// characters interacting with globs) from the directory name to
// avoid surprising os.MkdirTemp behavior.
mapper := func(r rune) rune {
if r < utf8.RuneSelf {
const allowed = "!#$%&()+,-.=@^_{}~ "
if '0' <= r && r <= '9' ||
'a' <= r && r <= 'z' ||
'A' <= r && r <= 'Z' {
return r
}
if strings.ContainsRune(allowed, r) {
return r
}
} else if unicode.IsLetter(r) || unicode.IsNumber(r) {
return r
}
return -1
}
pattern := strings.Map(mapper, c.Name())
c.tempDir, c.tempDirErr = os.MkdirTemp("", pattern)
if c.tempDirErr == nil {
c.Cleanup(func() {
if err := removeAll(c.tempDir); err != nil {
c.Errorf("TempDir RemoveAll cleanup: %v", err)
}
})
}
}
c.tempDirMu.Unlock()
if c.tempDirErr != nil {
c.Fatalf("TempDir: %v", c.tempDirErr)
}
seq := atomic.AddInt32(&c.tempDirSeq, 1)
dir := fmt.Sprintf("%s%c%03d", c.tempDir, os.PathSeparator, seq)
if err := os.Mkdir(dir, 0777); err != nil {
c.Fatalf("TempDir: %v", err)
}
return dir
}
// removeAll is like os.RemoveAll, but retries Windows "Access is denied."
// errors up to an arbitrary timeout.
//
// Those errors have been known to occur spuriously on at least the
// windows-amd64-2012 builder (https://go.dev/issue/50051), and can only occur
// legitimately if the test leaves behind a temp file that either is still open
// or the test otherwise lacks permission to delete. In the case of legitimate
// failures, a failing test may take a bit longer to fail, but once the test is
// fixed the extra latency will go away.
func removeAll(path string) error {
const arbitraryTimeout = 2 * time.Second
var (
start time.Time
nextSleep = 1 * time.Millisecond
)
for {
err := os.RemoveAll(path)
if !isWindowsAccessDenied(err) {
return err
}
if start.IsZero() {
start = time.Now()
} else if d := time.Since(start) + nextSleep; d >= arbitraryTimeout {
return err
}
time.Sleep(nextSleep)
nextSleep += time.Duration(rand.Int63n(int64(nextSleep)))
}
}
// Setenv calls os.Setenv(key, value) and uses Cleanup to
// restore the environment variable to its original value
// after the test.
//
// This cannot be used in parallel tests.
func (c *common) Setenv(key, value string) {
c.checkFuzzFn("Setenv")
prevValue, ok := os.LookupEnv(key)
if err := os.Setenv(key, value); err != nil {
c.Fatalf("cannot set environment variable: %v", err)
}
if ok {
c.Cleanup(func() {
os.Setenv(key, prevValue)
})
} else {
c.Cleanup(func() {
os.Unsetenv(key)
})
}
}
// panicHanding is an argument to runCleanup.
type panicHandling int
const (
normalPanic panicHandling = iota
recoverAndReturnPanic
)
// runCleanup is called at the end of the test.
// If catchPanic is true, this will catch panics, and return the recovered
// value if any.
func (c *common) runCleanup(ph panicHandling) (panicVal any) {
if ph == recoverAndReturnPanic {
defer func() {
panicVal = recover()
}()
}
// Make sure that if a cleanup function panics,
// we still run the remaining cleanup functions.
defer func() {
c.mu.Lock()
recur := len(c.cleanups) > 0
c.mu.Unlock()
if recur {
c.runCleanup(normalPanic)
}
}()
for {
var cleanup func()
c.mu.Lock()
if len(c.cleanups) > 0 {
last := len(c.cleanups) - 1
cleanup = c.cleanups[last]
c.cleanups = c.cleanups[:last]
}
c.mu.Unlock()
if cleanup == nil {
return nil
}
cleanup()
}
}
// callerName gives the function name (qualified with a package path)
// for the caller after skip frames (where 0 means the current function).
func callerName(skip int) string {
var pc [1]uintptr
n := runtime.Callers(skip+2, pc[:]) // skip + runtime.Callers + callerName
if n == 0 {
panic("testing: zero callers found")
}
return pcToName(pc[0])
}
func pcToName(pc uintptr) string {
pcs := []uintptr{pc}
frames := runtime.CallersFrames(pcs)
frame, _ := frames.Next()
return frame.Function
}
// Parallel signals that this test is to be run in parallel with (and only with)
// other parallel tests. When a test is run multiple times due to use of
// -test.count or -test.cpu, multiple instances of a single test never run in
// parallel with each other.
func (t *T) Parallel() {
if t.isParallel {
panic("testing: t.Parallel called multiple times")
}
if t.isEnvSet {
panic("testing: t.Parallel called after t.Setenv; cannot set environment variables in parallel tests")
}
t.isParallel = true
if t.parent.barrier == nil {
// T.Parallel has no effect when fuzzing.
// Multiple processes may run in parallel, but only one input can run at a
// time per process so we can attribute crashes to specific inputs.
return
}
// We don't want to include the time we spend waiting for serial tests
// in the test duration. Record the elapsed time thus far and reset the
// timer afterwards.
t.duration += time.Since(t.start)
// Add to the list of tests to be released by the parent.
t.parent.sub = append(t.parent.sub, t)
t.raceErrors += race.Errors()
if t.chatty != nil {
// Unfortunately, even though PAUSE indicates that the named test is *no
// longer* running, cmd/test2json interprets it as changing the active test
// for the purpose of log parsing. We could fix cmd/test2json, but that
// won't fix existing deployments of third-party tools that already shell
// out to older builds of cmd/test2json — so merely fixing cmd/test2json
// isn't enough for now.
t.chatty.Updatef(t.name, "=== PAUSE %s\n", t.name)
}
t.signal <- true // Release calling test.
<-t.parent.barrier // Wait for the parent test to complete.
t.context.waitParallel()
if t.chatty != nil {
t.chatty.Updatef(t.name, "=== CONT %s\n", t.name)
}
t.start = time.Now()
t.raceErrors += -race.Errors()
}
// Setenv calls os.Setenv(key, value) and uses Cleanup to
// restore the environment variable to its original value
// after the test.
//
// This cannot be used in parallel tests.
func (t *T) Setenv(key, value string) {
if t.isParallel {
panic("testing: t.Setenv called after t.Parallel; cannot set environment variables in parallel tests")
}
t.isEnvSet = true
t.common.Setenv(key, value)
}
// InternalTest is an internal type but exported because it is cross-package;
// it is part of the implementation of the "go test" command.
type InternalTest struct {
Name string
F func(*T)
}
var errNilPanicOrGoexit = errors.New("test executed panic(nil) or runtime.Goexit")
func tRunner(t *T, fn func(t *T)) {
t.runner = callerName(0)
// When this goroutine is done, either because fn(t)
// returned normally or because a test failure triggered
// a call to runtime.Goexit, record the duration and send
// a signal saying that the test is done.
defer func() {
if t.Failed() {
atomic.AddUint32(&numFailed, 1)
}
if t.raceErrors+race.Errors() > 0 {
t.Errorf("race detected during execution of test")
}
// Check if the test panicked or Goexited inappropriately.
//
// If this happens in a normal test, print output but continue panicking.
// tRunner is called in its own goroutine, so this terminates the process.
//
// If this happens while fuzzing, recover from the panic and treat it like a
// normal failure. It's important that the process keeps running in order to
// find short inputs that cause panics.
err := recover()
signal := true
t.mu.RLock()
finished := t.finished
t.mu.RUnlock()
if !finished && err == nil {
err = errNilPanicOrGoexit
for p := t.parent; p != nil; p = p.parent {
p.mu.RLock()
finished = p.finished
p.mu.RUnlock()
if finished {
t.Errorf("%v: subtest may have called FailNow on a parent test", err)
err = nil
signal = false
break
}
}
}
if err != nil && t.context.isFuzzing {
prefix := "panic: "
if err == errNilPanicOrGoexit {
prefix = ""
}
t.Errorf("%s%s\n%s\n", prefix, err, string(debug.Stack()))
t.mu.Lock()
t.finished = true
t.mu.Unlock()
err = nil
}
// Use a deferred call to ensure that we report that the test is
// complete even if a cleanup function calls t.FailNow. See issue 41355.
didPanic := false
defer func() {
if didPanic {
return
}
if err != nil {
panic(err)
}
// Only report that the test is complete if it doesn't panic,
// as otherwise the test binary can exit before the panic is
// reported to the user. See issue 41479.
t.signal <- signal
}()
doPanic := func(err any) {
t.Fail()
if r := t.runCleanup(recoverAndReturnPanic); r != nil {
t.Logf("cleanup panicked with %v", r)
}
// Flush the output log up to the root before dying.
for root := &t.common; root.parent != nil; root = root.parent {
root.mu.Lock()
root.duration += time.Since(root.start)
d := root.duration
root.mu.Unlock()
root.flushToParent(root.name, "--- FAIL: %s (%s)\n", root.name, fmtDuration(d))
if r := root.parent.runCleanup(recoverAndReturnPanic); r != nil {
fmt.Fprintf(root.parent.w, "cleanup panicked with %v", r)
}
}
didPanic = true
panic(err)
}
if err != nil {
doPanic(err)
}
t.duration += time.Since(t.start)
if len(t.sub) > 0 {
// Run parallel subtests.
// Decrease the running count for this test.
t.context.release()
// Release the parallel subtests.
close(t.barrier)
// Wait for subtests to complete.
for _, sub := range t.sub {
<-sub.signal
}
cleanupStart := time.Now()
err := t.runCleanup(recoverAndReturnPanic)
t.duration += time.Since(cleanupStart)
if err != nil {
doPanic(err)
}
if !t.isParallel {
// Reacquire the count for sequential tests. See comment in Run.
t.context.waitParallel()
}
} else if t.isParallel {
// Only release the count for this test if it was run as a parallel
// test. See comment in Run method.
t.context.release()
}
t.report() // Report after all subtests have finished.
// Do not lock t.done to allow race detector to detect race in case
// the user does not appropriately synchronize a goroutine.
t.done = true
if t.parent != nil && atomic.LoadInt32(&t.hasSub) == 0 {
t.setRan()
}
}()
defer func() {
if len(t.sub) == 0 {
t.runCleanup(normalPanic)
}
}()
t.start = time.Now()
t.raceErrors = -race.Errors()
fn(t)
// code beyond here will not be executed when FailNow is invoked
t.mu.Lock()
t.finished = true
t.mu.Unlock()
}
// Run runs f as a subtest of t called name. It runs f in a separate goroutine
// and blocks until f returns or calls t.Parallel to become a parallel test.
// Run reports whether f succeeded (or at least did not fail before calling t.Parallel).
//
// Run may be called simultaneously from multiple goroutines, but all such calls
// must return before the outer test function for t returns.
func (t *T) Run(name string, f func(t *T)) bool {
atomic.StoreInt32(&t.hasSub, 1)
testName, ok, _ := t.context.match.fullName(&t.common, name)
if !ok || shouldFailFast() {
return true
}
// Record the stack trace at the point of this call so that if the subtest
// function - which runs in a separate stack - is marked as a helper, we can
// continue walking the stack into the parent test.
var pc [maxStackLen]uintptr
n := runtime.Callers(2, pc[:])
t = &T{
common: common{
barrier: make(chan bool),
signal: make(chan bool, 1),
name: testName,
parent: &t.common,
level: t.level + 1,
creator: pc[:n],
chatty: t.chatty,
},
context: t.context,
}
t.w = indenter{&t.common}
if t.chatty != nil {
t.chatty.Updatef(t.name, "=== RUN %s\n", t.name)
}
// Instead of reducing the running count of this test before calling the
// tRunner and increasing it afterwards, we rely on tRunner keeping the
// count correct. This ensures that a sequence of sequential tests runs
// without being preempted, even when their parent is a parallel test. This
// may especially reduce surprises if *parallel == 1.
go tRunner(t, f)
if !<-t.signal {
// At this point, it is likely that FailNow was called on one of the
// parent tests by one of the subtests. Continue aborting up the chain.
runtime.Goexit()
}
return !t.failed
}
// Deadline reports the time at which the test binary will have
// exceeded the timeout specified by the -timeout flag.
//
// The ok result is false if the -timeout flag indicates “no timeout” (0).
func (t *T) Deadline() (deadline time.Time, ok bool) {
deadline = t.context.deadline
return deadline, !deadline.IsZero()
}
// testContext holds all fields that are common to all tests. This includes
// synchronization primitives to run at most *parallel tests.
type testContext struct {
match *matcher
deadline time.Time
// isFuzzing is true in the context used when generating random inputs
// for fuzz targets. isFuzzing is false when running normal tests and
// when running fuzz tests as unit tests (without -fuzz or when -fuzz
// does not match).
isFuzzing bool
mu sync.Mutex
// Channel used to signal tests that are ready to be run in parallel.
startParallel chan bool
// running is the number of tests currently running in parallel.
// This does not include tests that are waiting for subtests to complete.
running int
// numWaiting is the number tests waiting to be run in parallel.
numWaiting int
// maxParallel is a copy of the parallel flag.
maxParallel int
}
func newTestContext(maxParallel int, m *matcher) *testContext {
return &testContext{
match: m,
startParallel: make(chan bool),
maxParallel: maxParallel,
running: 1, // Set the count to 1 for the main (sequential) test.
}
}
func (c *testContext) waitParallel() {
c.mu.Lock()
if c.running < c.maxParallel {
c.running++
c.mu.Unlock()
return
}
c.numWaiting++
c.mu.Unlock()
<-c.startParallel
}
func (c *testContext) release() {
c.mu.Lock()
if c.numWaiting == 0 {
c.running--
c.mu.Unlock()
return
}
c.numWaiting--
c.mu.Unlock()
c.startParallel <- true // Pick a waiting test to be run.
}
// No one should be using func Main anymore.
// See the doc comment on func Main and use MainStart instead.
var errMain = errors.New("testing: unexpected use of func Main")
type matchStringOnly func(pat, str string) (bool, error)
func (f matchStringOnly) MatchString(pat, str string) (bool, error) { return f(pat, str) }
func (f matchStringOnly) StartCPUProfile(w io.Writer) error { return errMain }
func (f matchStringOnly) StopCPUProfile() {}
func (f matchStringOnly) WriteProfileTo(string, io.Writer, int) error { return errMain }
func (f matchStringOnly) ImportPath() string { return "" }
func (f matchStringOnly) StartTestLog(io.Writer) {}
func (f matchStringOnly) StopTestLog() error { return errMain }
func (f matchStringOnly) SetPanicOnExit0(bool) {}
func (f matchStringOnly) CoordinateFuzzing(time.Duration, int64, time.Duration, int64, int, []corpusEntry, []reflect.Type, string, string) error {
return errMain
}
func (f matchStringOnly) RunFuzzWorker(func(corpusEntry) error) error { return errMain }
func (f matchStringOnly) ReadCorpus(string, []reflect.Type) ([]corpusEntry, error) {
return nil, errMain
}
func (f matchStringOnly) CheckCorpus([]any, []reflect.Type) error { return nil }
func (f matchStringOnly) ResetCoverage() {}
func (f matchStringOnly) SnapshotCoverage() {}
// Main is an internal function, part of the implementation of the "go test" command.
// It was exported because it is cross-package and predates "internal" packages.
// It is no longer used by "go test" but preserved, as much as possible, for other
// systems that simulate "go test" using Main, but Main sometimes cannot be updated as
// new functionality is added to the testing package.
// Systems simulating "go test" should be updated to use MainStart.
func Main(matchString func(pat, str string) (bool, error), tests []InternalTest, benchmarks []InternalBenchmark, examples []InternalExample) {
os.Exit(MainStart(matchStringOnly(matchString), tests, benchmarks, nil, examples).Run())
}
// M is a type passed to a TestMain function to run the actual tests.
type M struct {
deps testDeps
tests []InternalTest
benchmarks []InternalBenchmark
fuzzTargets []InternalFuzzTarget
examples []InternalExample
timer *time.Timer
afterOnce sync.Once
numRun int
// value to pass to os.Exit, the outer test func main
// harness calls os.Exit with this code. See #34129.
exitCode int
}
// testDeps is an internal interface of functionality that is
// passed into this package by a test's generated main package.
// The canonical implementation of this interface is
// testing/internal/testdeps's TestDeps.
type testDeps interface {
ImportPath() string
MatchString(pat, str string) (bool, error)
SetPanicOnExit0(bool)
StartCPUProfile(io.Writer) error
StopCPUProfile()
StartTestLog(io.Writer)
StopTestLog() error
WriteProfileTo(string, io.Writer, int) error
CoordinateFuzzing(time.Duration, int64, time.Duration, int64, int, []corpusEntry, []reflect.Type, string, string) error
RunFuzzWorker(func(corpusEntry) error) error
ReadCorpus(string, []reflect.Type) ([]corpusEntry, error)
CheckCorpus([]any, []reflect.Type) error
ResetCoverage()
SnapshotCoverage()
}
// MainStart is meant for use by tests generated by 'go test'.
// It is not meant to be called directly and is not subject to the Go 1 compatibility document.
// It may change signature from release to release.
func MainStart(deps testDeps, tests []InternalTest, benchmarks []InternalBenchmark, fuzzTargets []InternalFuzzTarget, examples []InternalExample) *M {
Init()
return &M{
deps: deps,
tests: tests,
benchmarks: benchmarks,
fuzzTargets: fuzzTargets,
examples: examples,
}
}
// Run runs the tests. It returns an exit code to pass to os.Exit.
func (m *M) Run() (code int) {
defer func() {
code = m.exitCode
}()
// Count the number of calls to m.Run.
// We only ever expected 1, but we didn't enforce that,
// and now there are tests in the wild that call m.Run multiple times.
// Sigh. golang.org/issue/23129.
m.numRun++
// TestMain may have already called flag.Parse.
if !flag.Parsed() {
flag.Parse()
}
if *parallel < 1 {
fmt.Fprintln(os.Stderr, "testing: -parallel can only be given a positive integer")
flag.Usage()
m.exitCode = 2
return
}
if *matchFuzz != "" && *fuzzCacheDir == "" {
fmt.Fprintln(os.Stderr, "testing: -test.fuzzcachedir must be set if -test.fuzz is set")
flag.Usage()
m.exitCode = 2
return
}
if len(*matchList) != 0 {
listTests(m.deps.MatchString, m.tests, m.benchmarks, m.fuzzTargets, m.examples)
m.exitCode = 0
return
}
if *shuffle != "off" {
var n int64
var err error
if *shuffle == "on" {
n = time.Now().UnixNano()
} else {
n, err = strconv.ParseInt(*shuffle, 10, 64)
if err != nil {
fmt.Fprintln(os.Stderr, `testing: -shuffle should be "off", "on", or a valid integer:`, err)
m.exitCode = 2
return
}
}
fmt.Println("-test.shuffle", n)
rng := rand.New(rand.NewSource(n))
rng.Shuffle(len(m.tests), func(i, j int) { m.tests[i], m.tests[j] = m.tests[j], m.tests[i] })
rng.Shuffle(len(m.benchmarks), func(i, j int) { m.benchmarks[i], m.benchmarks[j] = m.benchmarks[j], m.benchmarks[i] })
}
parseCpuList()
m.before()
defer m.after()
// Run tests, examples, and benchmarks unless this is a fuzz worker process.
// Workers start after this is done by their parent process, and they should
// not repeat this work.
if !*isFuzzWorker {
deadline := m.startAlarm()
haveExamples = len(m.examples) > 0
testRan, testOk := runTests(m.deps.MatchString, m.tests, deadline)
fuzzTargetsRan, fuzzTargetsOk := runFuzzTests(m.deps, m.fuzzTargets, deadline)
exampleRan, exampleOk := runExamples(m.deps.MatchString, m.examples)
m.stopAlarm()
if !testRan && !exampleRan && !fuzzTargetsRan && *matchBenchmarks == "" && *matchFuzz == "" {
fmt.Fprintln(os.Stderr, "testing: warning: no tests to run")
}
if !testOk || !exampleOk || !fuzzTargetsOk || !runBenchmarks(m.deps.ImportPath(), m.deps.MatchString, m.benchmarks) || race.Errors() > 0 {
fmt.Println("FAIL")
m.exitCode = 1
return
}
}
fuzzingOk := runFuzzing(m.deps, m.fuzzTargets)
if !fuzzingOk {
fmt.Println("FAIL")
if *isFuzzWorker {
m.exitCode = fuzzWorkerExitCode
} else {
m.exitCode = 1
}
return
}
m.exitCode = 0
if !*isFuzzWorker {
fmt.Println("PASS")
}
return
}
func (t *T) report() {
if t.parent == nil {
return
}
dstr := fmtDuration(t.duration)
format := "--- %s: %s (%s)\n"
if t.Failed() {
t.flushToParent(t.name, format, "FAIL", t.name, dstr)
} else if t.chatty != nil {
if t.Skipped() {
t.flushToParent(t.name, format, "SKIP", t.name, dstr)
} else {
t.flushToParent(t.name, format, "PASS", t.name, dstr)
}
}
}
func listTests(matchString func(pat, str string) (bool, error), tests []InternalTest, benchmarks []InternalBenchmark, fuzzTargets []InternalFuzzTarget, examples []InternalExample) {
if _, err := matchString(*matchList, "non-empty"); err != nil {
fmt.Fprintf(os.Stderr, "testing: invalid regexp in -test.list (%q): %s\n", *matchList, err)
os.Exit(1)
}
for _, test := range tests {
if ok, _ := matchString(*matchList, test.Name); ok {
fmt.Println(test.Name)
}
}
for _, bench := range benchmarks {
if ok, _ := matchString(*matchList, bench.Name); ok {
fmt.Println(bench.Name)
}
}
for _, fuzzTarget := range fuzzTargets {
if ok, _ := matchString(*matchList, fuzzTarget.Name); ok {
fmt.Println(fuzzTarget.Name)
}
}
for _, example := range examples {
if ok, _ := matchString(*matchList, example.Name); ok {
fmt.Println(example.Name)
}
}
}
// RunTests is an internal function but exported because it is cross-package;
// it is part of the implementation of the "go test" command.
func RunTests(matchString func(pat, str string) (bool, error), tests []InternalTest) (ok bool) {
var deadline time.Time
if *timeout > 0 {
deadline = time.Now().Add(*timeout)
}
ran, ok := runTests(matchString, tests, deadline)
if !ran && !haveExamples {
fmt.Fprintln(os.Stderr, "testing: warning: no tests to run")
}
return ok
}
func runTests(matchString func(pat, str string) (bool, error), tests []InternalTest, deadline time.Time) (ran, ok bool) {
ok = true
for _, procs := range cpuList {
runtime.GOMAXPROCS(procs)
for i := uint(0); i < *count; i++ {
if shouldFailFast() {
break
}
if i > 0 && !ran {
// There were no tests to run on the first
// iteration. This won't change, so no reason
// to keep trying.
break
}
ctx := newTestContext(*parallel, newMatcher(matchString, *match, "-test.run"))
ctx.deadline = deadline
t := &T{
common: common{
signal: make(chan bool, 1),
barrier: make(chan bool),
w: os.Stdout,
},
context: ctx,
}
if Verbose() {
t.chatty = newChattyPrinter(t.w)
}
tRunner(t, func(t *T) {
for _, test := range tests {
t.Run(test.Name, test.F)
}
})
select {
case <-t.signal:
default:
panic("internal error: tRunner exited without sending on t.signal")
}
ok = ok && !t.Failed()
ran = ran || t.ran
}
}
return ran, ok
}
// before runs before all testing.
func (m *M) before() {
if *memProfileRate > 0 {
runtime.MemProfileRate = *memProfileRate
}
if *cpuProfile != "" {
f, err := os.Create(toOutputDir(*cpuProfile))
if err != nil {
fmt.Fprintf(os.Stderr, "testing: %s\n", err)
return
}
if err := m.deps.StartCPUProfile(f); err != nil {
fmt.Fprintf(os.Stderr, "testing: can't start cpu profile: %s\n", err)
f.Close()
return
}
// Could save f so after can call f.Close; not worth the effort.
}
if *traceFile != "" {
f, err := os.Create(toOutputDir(*traceFile))
if err != nil {
fmt.Fprintf(os.Stderr, "testing: %s\n", err)
return
}
if err := trace.Start(f); err != nil {
fmt.Fprintf(os.Stderr, "testing: can't start tracing: %s\n", err)
f.Close()
return
}
// Could save f so after can call f.Close; not worth the effort.
}
if *blockProfile != "" && *blockProfileRate >= 0 {
runtime.SetBlockProfileRate(*blockProfileRate)
}
if *mutexProfile != "" && *mutexProfileFraction >= 0 {
runtime.SetMutexProfileFraction(*mutexProfileFraction)
}
if *coverProfile != "" && cover.Mode == "" {
fmt.Fprintf(os.Stderr, "testing: cannot use -test.coverprofile because test binary was not built with coverage enabled\n")
os.Exit(2)
}
if *testlog != "" {
// Note: Not using toOutputDir.
// This file is for use by cmd/go, not users.
var f *os.File
var err error
if m.numRun == 1 {
f, err = os.Create(*testlog)
} else {
f, err = os.OpenFile(*testlog, os.O_WRONLY, 0)
if err == nil {
f.Seek(0, io.SeekEnd)
}
}
if err != nil {
fmt.Fprintf(os.Stderr, "testing: %s\n", err)
os.Exit(2)
}
m.deps.StartTestLog(f)
testlogFile = f
}
if *panicOnExit0 {
m.deps.SetPanicOnExit0(true)
}
}
// after runs after all testing.
func (m *M) after() {
m.afterOnce.Do(func() {
m.writeProfiles()
})
// Restore PanicOnExit0 after every run, because we set it to true before
// every run. Otherwise, if m.Run is called multiple times the behavior of
// os.Exit(0) will not be restored after the second run.
if *panicOnExit0 {
m.deps.SetPanicOnExit0(false)
}
}
func (m *M) writeProfiles() {
if *testlog != "" {
if err := m.deps.StopTestLog(); err != nil {
fmt.Fprintf(os.Stderr, "testing: can't write %s: %s\n", *testlog, err)
os.Exit(2)
}
if err := testlogFile.Close(); err != nil {
fmt.Fprintf(os.Stderr, "testing: can't write %s: %s\n", *testlog, err)
os.Exit(2)
}
}
if *cpuProfile != "" {
m.deps.StopCPUProfile() // flushes profile to disk
}
if *traceFile != "" {
trace.Stop() // flushes trace to disk
}
if *memProfile != "" {
f, err := os.Create(toOutputDir(*memProfile))
if err != nil {
fmt.Fprintf(os.Stderr, "testing: %s\n", err)
os.Exit(2)
}
runtime.GC() // materialize all statistics
if err = m.deps.WriteProfileTo("allocs", f, 0); err != nil {
fmt.Fprintf(os.Stderr, "testing: can't write %s: %s\n", *memProfile, err)
os.Exit(2)
}
f.Close()
}
if *blockProfile != "" && *blockProfileRate >= 0 {
f, err := os.Create(toOutputDir(*blockProfile))
if err != nil {
fmt.Fprintf(os.Stderr, "testing: %s\n", err)
os.Exit(2)
}
if err = m.deps.WriteProfileTo("block", f, 0); err != nil {
fmt.Fprintf(os.Stderr, "testing: can't write %s: %s\n", *blockProfile, err)
os.Exit(2)
}
f.Close()
}
if *mutexProfile != "" && *mutexProfileFraction >= 0 {
f, err := os.Create(toOutputDir(*mutexProfile))
if err != nil {
fmt.Fprintf(os.Stderr, "testing: %s\n", err)
os.Exit(2)
}
if err = m.deps.WriteProfileTo("mutex", f, 0); err != nil {
fmt.Fprintf(os.Stderr, "testing: can't write %s: %s\n", *mutexProfile, err)
os.Exit(2)
}
f.Close()
}
if cover.Mode != "" {
coverReport()
}
}
// toOutputDir returns the file name relocated, if required, to outputDir.
// Simple implementation to avoid pulling in path/filepath.
func toOutputDir(path string) string {
if *outputDir == "" || path == "" {
return path
}
// On Windows, it's clumsy, but we can be almost always correct
// by just looking for a drive letter and a colon.
// Absolute paths always have a drive letter (ignoring UNC).
// Problem: if path == "C:A" and outputdir == "C:\Go" it's unclear
// what to do, but even then path/filepath doesn't help.
// TODO: Worth doing better? Probably not, because we're here only
// under the management of go test.
if runtime.GOOS == "windows" && len(path) >= 2 {
letter, colon := path[0], path[1]
if ('a' <= letter && letter <= 'z' || 'A' <= letter && letter <= 'Z') && colon == ':' {
// If path starts with a drive letter we're stuck with it regardless.
return path
}
}
if os.IsPathSeparator(path[0]) {
return path
}
return fmt.Sprintf("%s%c%s", *outputDir, os.PathSeparator, path)
}
// startAlarm starts an alarm if requested.
func (m *M) startAlarm() time.Time {
if *timeout <= 0 {
return time.Time{}
}
deadline := time.Now().Add(*timeout)
m.timer = time.AfterFunc(*timeout, func() {
m.after()
debug.SetTraceback("all")
panic(fmt.Sprintf("test timed out after %v", *timeout))
})
return deadline
}
// stopAlarm turns off the alarm.
func (m *M) stopAlarm() {
if *timeout > 0 {
m.timer.Stop()
}
}
func parseCpuList() {
for _, val := range strings.Split(*cpuListStr, ",") {
val = strings.TrimSpace(val)
if val == "" {
continue
}
cpu, err := strconv.Atoi(val)
if err != nil || cpu <= 0 {
fmt.Fprintf(os.Stderr, "testing: invalid value %q for -test.cpu\n", val)
os.Exit(1)
}
cpuList = append(cpuList, cpu)
}
if cpuList == nil {
cpuList = append(cpuList, runtime.GOMAXPROCS(-1))
}
}
func shouldFailFast() bool {
return *failFast && atomic.LoadUint32(&numFailed) > 0
}