| //===-- tsan_platform_linux.cpp -------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer (TSan), a race detector. |
| // |
| // Linux- and BSD-specific code. |
| //===----------------------------------------------------------------------===// |
| |
| #include "sanitizer_common/sanitizer_platform.h" |
| #if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD |
| |
| #include "sanitizer_common/sanitizer_common.h" |
| #include "sanitizer_common/sanitizer_libc.h" |
| #include "sanitizer_common/sanitizer_linux.h" |
| #include "sanitizer_common/sanitizer_platform_limits_netbsd.h" |
| #include "sanitizer_common/sanitizer_platform_limits_posix.h" |
| #include "sanitizer_common/sanitizer_posix.h" |
| #include "sanitizer_common/sanitizer_procmaps.h" |
| #include "sanitizer_common/sanitizer_stackdepot.h" |
| #include "sanitizer_common/sanitizer_stoptheworld.h" |
| #include "tsan_flags.h" |
| #include "tsan_platform.h" |
| #include "tsan_rtl.h" |
| |
| #include <fcntl.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <stdarg.h> |
| #include <sys/mman.h> |
| #if SANITIZER_LINUX |
| #include <sys/personality.h> |
| #include <setjmp.h> |
| #endif |
| #include <sys/syscall.h> |
| #include <sys/socket.h> |
| #include <sys/time.h> |
| #include <sys/types.h> |
| #include <sys/resource.h> |
| #include <sys/stat.h> |
| #include <unistd.h> |
| #include <sched.h> |
| #include <dlfcn.h> |
| #if SANITIZER_LINUX |
| #define __need_res_state |
| #include <resolv.h> |
| #endif |
| |
| #ifdef sa_handler |
| # undef sa_handler |
| #endif |
| |
| #ifdef sa_sigaction |
| # undef sa_sigaction |
| #endif |
| |
| #if SANITIZER_FREEBSD |
| extern "C" void *__libc_stack_end; |
| void *__libc_stack_end = 0; |
| #endif |
| |
| #if SANITIZER_LINUX && defined(__aarch64__) && !SANITIZER_GO |
| # define INIT_LONGJMP_XOR_KEY 1 |
| #else |
| # define INIT_LONGJMP_XOR_KEY 0 |
| #endif |
| |
| #if INIT_LONGJMP_XOR_KEY |
| #include "interception/interception.h" |
| // Must be declared outside of other namespaces. |
| DECLARE_REAL(int, _setjmp, void *env) |
| #endif |
| |
| namespace __tsan { |
| |
| #if INIT_LONGJMP_XOR_KEY |
| static void InitializeLongjmpXorKey(); |
| static uptr longjmp_xor_key; |
| #endif |
| |
| // Runtime detected VMA size. |
| uptr vmaSize; |
| |
| enum { |
| MemTotal, |
| MemShadow, |
| MemMeta, |
| MemFile, |
| MemMmap, |
| MemHeap, |
| MemOther, |
| MemCount, |
| }; |
| |
| void FillProfileCallback(uptr p, uptr rss, bool file, uptr *mem) { |
| mem[MemTotal] += rss; |
| if (p >= ShadowBeg() && p < ShadowEnd()) |
| mem[MemShadow] += rss; |
| else if (p >= MetaShadowBeg() && p < MetaShadowEnd()) |
| mem[MemMeta] += rss; |
| else if ((p >= LoAppMemBeg() && p < LoAppMemEnd()) || |
| (p >= MidAppMemBeg() && p < MidAppMemEnd()) || |
| (p >= HiAppMemBeg() && p < HiAppMemEnd())) |
| mem[file ? MemFile : MemMmap] += rss; |
| else if (p >= HeapMemBeg() && p < HeapMemEnd()) |
| mem[MemHeap] += rss; |
| else |
| mem[MemOther] += rss; |
| } |
| |
| void WriteMemoryProfile(char *buf, uptr buf_size, u64 uptime_ns) { |
| uptr mem[MemCount]; |
| internal_memset(mem, 0, sizeof(mem)); |
| GetMemoryProfile(FillProfileCallback, mem); |
| auto meta = ctx->metamap.GetMemoryStats(); |
| StackDepotStats stacks = StackDepotGetStats(); |
| uptr nthread, nlive; |
| ctx->thread_registry.GetNumberOfThreads(&nthread, &nlive); |
| uptr trace_mem; |
| { |
| Lock l(&ctx->slot_mtx); |
| trace_mem = ctx->trace_part_total_allocated * sizeof(TracePart); |
| } |
| uptr internal_stats[AllocatorStatCount]; |
| internal_allocator()->GetStats(internal_stats); |
| // All these are allocated from the common mmap region. |
| mem[MemMmap] -= meta.mem_block + meta.sync_obj + trace_mem + |
| stacks.allocated + internal_stats[AllocatorStatMapped]; |
| if (s64(mem[MemMmap]) < 0) |
| mem[MemMmap] = 0; |
| internal_snprintf( |
| buf, buf_size, |
| "==%zu== %llus [%zu]: RSS %zd MB: shadow:%zd meta:%zd file:%zd" |
| " mmap:%zd heap:%zd other:%zd intalloc:%zd memblocks:%zd syncobj:%zu" |
| " trace:%zu stacks=%zd threads=%zu/%zu\n", |
| internal_getpid(), uptime_ns / (1000 * 1000 * 1000), ctx->global_epoch, |
| mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20, |
| mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemHeap] >> 20, |
| mem[MemOther] >> 20, internal_stats[AllocatorStatMapped] >> 20, |
| meta.mem_block >> 20, meta.sync_obj >> 20, trace_mem >> 20, |
| stacks.allocated >> 20, nlive, nthread); |
| } |
| |
| #if !SANITIZER_GO |
| // Mark shadow for .rodata sections with the special Shadow::kRodata marker. |
| // Accesses to .rodata can't race, so this saves time, memory and trace space. |
| static void MapRodata() { |
| // First create temp file. |
| const char *tmpdir = GetEnv("TMPDIR"); |
| if (tmpdir == 0) |
| tmpdir = GetEnv("TEST_TMPDIR"); |
| #ifdef P_tmpdir |
| if (tmpdir == 0) |
| tmpdir = P_tmpdir; |
| #endif |
| if (tmpdir == 0) |
| return; |
| char name[256]; |
| internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d", |
| tmpdir, (int)internal_getpid()); |
| uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600); |
| if (internal_iserror(openrv)) |
| return; |
| internal_unlink(name); // Unlink it now, so that we can reuse the buffer. |
| fd_t fd = openrv; |
| // Fill the file with Shadow::kRodata. |
| const uptr kMarkerSize = 512 * 1024 / sizeof(RawShadow); |
| InternalMmapVector<RawShadow> marker(kMarkerSize); |
| // volatile to prevent insertion of memset |
| for (volatile RawShadow *p = marker.data(); p < marker.data() + kMarkerSize; |
| p++) |
| *p = Shadow::kRodata; |
| internal_write(fd, marker.data(), marker.size() * sizeof(RawShadow)); |
| // Map the file into memory. |
| uptr page = internal_mmap(0, GetPageSizeCached(), PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, fd, 0); |
| if (internal_iserror(page)) { |
| internal_close(fd); |
| return; |
| } |
| // Map the file into shadow of .rodata sections. |
| MemoryMappingLayout proc_maps(/*cache_enabled*/true); |
| // Reusing the buffer 'name'. |
| MemoryMappedSegment segment(name, ARRAY_SIZE(name)); |
| while (proc_maps.Next(&segment)) { |
| if (segment.filename[0] != 0 && segment.filename[0] != '[' && |
| segment.IsReadable() && segment.IsExecutable() && |
| !segment.IsWritable() && IsAppMem(segment.start)) { |
| // Assume it's .rodata |
| char *shadow_start = (char *)MemToShadow(segment.start); |
| char *shadow_end = (char *)MemToShadow(segment.end); |
| for (char *p = shadow_start; p < shadow_end; |
| p += marker.size() * sizeof(RawShadow)) { |
| internal_mmap( |
| p, Min<uptr>(marker.size() * sizeof(RawShadow), shadow_end - p), |
| PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0); |
| } |
| } |
| } |
| internal_close(fd); |
| } |
| |
| void InitializeShadowMemoryPlatform() { |
| MapRodata(); |
| } |
| |
| #endif // #if !SANITIZER_GO |
| |
| void InitializePlatformEarly() { |
| vmaSize = |
| (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1); |
| #if defined(__aarch64__) |
| # if !SANITIZER_GO |
| if (vmaSize != 39 && vmaSize != 42 && vmaSize != 48) { |
| Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); |
| Printf("FATAL: Found %zd - Supported 39, 42 and 48\n", vmaSize); |
| Die(); |
| } |
| #else |
| if (vmaSize != 48) { |
| Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); |
| Printf("FATAL: Found %zd - Supported 48\n", vmaSize); |
| Die(); |
| } |
| #endif |
| #elif defined(__powerpc64__) |
| # if !SANITIZER_GO |
| if (vmaSize != 44 && vmaSize != 46 && vmaSize != 47) { |
| Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); |
| Printf("FATAL: Found %zd - Supported 44, 46, and 47\n", vmaSize); |
| Die(); |
| } |
| # else |
| if (vmaSize != 46 && vmaSize != 47) { |
| Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); |
| Printf("FATAL: Found %zd - Supported 46, and 47\n", vmaSize); |
| Die(); |
| } |
| # endif |
| #elif defined(__mips64) |
| # if !SANITIZER_GO |
| if (vmaSize != 40) { |
| Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); |
| Printf("FATAL: Found %zd - Supported 40\n", vmaSize); |
| Die(); |
| } |
| # else |
| if (vmaSize != 47) { |
| Printf("FATAL: ThreadSanitizer: unsupported VMA range\n"); |
| Printf("FATAL: Found %zd - Supported 47\n", vmaSize); |
| Die(); |
| } |
| # endif |
| #endif |
| } |
| |
| void InitializePlatform() { |
| DisableCoreDumperIfNecessary(); |
| |
| // Go maps shadow memory lazily and works fine with limited address space. |
| // Unlimited stack is not a problem as well, because the executable |
| // is not compiled with -pie. |
| #if !SANITIZER_GO |
| { |
| bool reexec = false; |
| // TSan doesn't play well with unlimited stack size (as stack |
| // overlaps with shadow memory). If we detect unlimited stack size, |
| // we re-exec the program with limited stack size as a best effort. |
| if (StackSizeIsUnlimited()) { |
| const uptr kMaxStackSize = 32 * 1024 * 1024; |
| VReport(1, "Program is run with unlimited stack size, which wouldn't " |
| "work with ThreadSanitizer.\n" |
| "Re-execing with stack size limited to %zd bytes.\n", |
| kMaxStackSize); |
| SetStackSizeLimitInBytes(kMaxStackSize); |
| reexec = true; |
| } |
| |
| if (!AddressSpaceIsUnlimited()) { |
| Report("WARNING: Program is run with limited virtual address space," |
| " which wouldn't work with ThreadSanitizer.\n"); |
| Report("Re-execing with unlimited virtual address space.\n"); |
| SetAddressSpaceUnlimited(); |
| reexec = true; |
| } |
| #if SANITIZER_LINUX && defined(__aarch64__) |
| // After patch "arm64: mm: support ARCH_MMAP_RND_BITS." is introduced in |
| // linux kernel, the random gap between stack and mapped area is increased |
| // from 128M to 36G on 39-bit aarch64. As it is almost impossible to cover |
| // this big range, we should disable randomized virtual space on aarch64. |
| int old_personality = personality(0xffffffff); |
| if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) { |
| VReport(1, "WARNING: Program is run with randomized virtual address " |
| "space, which wouldn't work with ThreadSanitizer.\n" |
| "Re-execing with fixed virtual address space.\n"); |
| CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1); |
| reexec = true; |
| } |
| // Initialize the xor key used in {sig}{set,long}jump. |
| InitializeLongjmpXorKey(); |
| #endif |
| if (reexec) |
| ReExec(); |
| } |
| |
| CheckAndProtect(); |
| InitTlsSize(); |
| #endif // !SANITIZER_GO |
| } |
| |
| #if !SANITIZER_GO |
| // Extract file descriptors passed to glibc internal __res_iclose function. |
| // This is required to properly "close" the fds, because we do not see internal |
| // closes within glibc. The code is a pure hack. |
| int ExtractResolvFDs(void *state, int *fds, int nfd) { |
| #if SANITIZER_LINUX && !SANITIZER_ANDROID |
| int cnt = 0; |
| struct __res_state *statp = (struct __res_state*)state; |
| for (int i = 0; i < MAXNS && cnt < nfd; i++) { |
| if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1) |
| fds[cnt++] = statp->_u._ext.nssocks[i]; |
| } |
| return cnt; |
| #else |
| return 0; |
| #endif |
| } |
| |
| // Extract file descriptors passed via UNIX domain sockets. |
| // This is required to properly handle "open" of these fds. |
| // see 'man recvmsg' and 'man 3 cmsg'. |
| int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) { |
| int res = 0; |
| msghdr *msg = (msghdr*)msgp; |
| struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg); |
| for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { |
| if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) |
| continue; |
| int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]); |
| for (int i = 0; i < n; i++) { |
| fds[res++] = ((int*)CMSG_DATA(cmsg))[i]; |
| if (res == nfd) |
| return res; |
| } |
| } |
| return res; |
| } |
| |
| // Reverse operation of libc stack pointer mangling |
| static uptr UnmangleLongJmpSp(uptr mangled_sp) { |
| #if defined(__x86_64__) |
| # if SANITIZER_LINUX |
| // Reverse of: |
| // xor %fs:0x30, %rsi |
| // rol $0x11, %rsi |
| uptr sp; |
| asm("ror $0x11, %0 \n" |
| "xor %%fs:0x30, %0 \n" |
| : "=r" (sp) |
| : "0" (mangled_sp)); |
| return sp; |
| # else |
| return mangled_sp; |
| # endif |
| #elif defined(__aarch64__) |
| # if SANITIZER_LINUX |
| return mangled_sp ^ longjmp_xor_key; |
| # else |
| return mangled_sp; |
| # endif |
| #elif defined(__powerpc64__) |
| // Reverse of: |
| // ld r4, -28696(r13) |
| // xor r4, r3, r4 |
| uptr xor_key; |
| asm("ld %0, -28696(%%r13)" : "=r" (xor_key)); |
| return mangled_sp ^ xor_key; |
| #elif defined(__mips__) |
| return mangled_sp; |
| #elif defined(__s390x__) |
| // tcbhead_t.stack_guard |
| uptr xor_key = ((uptr *)__builtin_thread_pointer())[5]; |
| return mangled_sp ^ xor_key; |
| #else |
| #error "Unknown platform" |
| #endif |
| } |
| |
| #if SANITIZER_NETBSD |
| # ifdef __x86_64__ |
| # define LONG_JMP_SP_ENV_SLOT 6 |
| # else |
| # error unsupported |
| # endif |
| #elif defined(__powerpc__) |
| # define LONG_JMP_SP_ENV_SLOT 0 |
| #elif SANITIZER_FREEBSD |
| # ifdef __aarch64__ |
| # define LONG_JMP_SP_ENV_SLOT 1 |
| # else |
| # define LONG_JMP_SP_ENV_SLOT 2 |
| # endif |
| #elif SANITIZER_LINUX |
| # ifdef __aarch64__ |
| # define LONG_JMP_SP_ENV_SLOT 13 |
| # elif defined(__mips64) |
| # define LONG_JMP_SP_ENV_SLOT 1 |
| # elif defined(__s390x__) |
| # define LONG_JMP_SP_ENV_SLOT 9 |
| # else |
| # define LONG_JMP_SP_ENV_SLOT 6 |
| # endif |
| #endif |
| |
| uptr ExtractLongJmpSp(uptr *env) { |
| uptr mangled_sp = env[LONG_JMP_SP_ENV_SLOT]; |
| return UnmangleLongJmpSp(mangled_sp); |
| } |
| |
| #if INIT_LONGJMP_XOR_KEY |
| // GLIBC mangles the function pointers in jmp_buf (used in {set,long}*jmp |
| // functions) by XORing them with a random key. For AArch64 it is a global |
| // variable rather than a TCB one (as for x86_64/powerpc). We obtain the key by |
| // issuing a setjmp and XORing the SP pointer values to derive the key. |
| static void InitializeLongjmpXorKey() { |
| // 1. Call REAL(setjmp), which stores the mangled SP in env. |
| jmp_buf env; |
| REAL(_setjmp)(env); |
| |
| // 2. Retrieve vanilla/mangled SP. |
| uptr sp; |
| asm("mov %0, sp" : "=r" (sp)); |
| uptr mangled_sp = ((uptr *)&env)[LONG_JMP_SP_ENV_SLOT]; |
| |
| // 3. xor SPs to obtain key. |
| longjmp_xor_key = mangled_sp ^ sp; |
| } |
| #endif |
| |
| extern "C" void __tsan_tls_initialization() {} |
| |
| void ImitateTlsWrite(ThreadState *thr, uptr tls_addr, uptr tls_size) { |
| // Check that the thr object is in tls; |
| const uptr thr_beg = (uptr)thr; |
| const uptr thr_end = (uptr)thr + sizeof(*thr); |
| CHECK_GE(thr_beg, tls_addr); |
| CHECK_LE(thr_beg, tls_addr + tls_size); |
| CHECK_GE(thr_end, tls_addr); |
| CHECK_LE(thr_end, tls_addr + tls_size); |
| // Since the thr object is huge, skip it. |
| const uptr pc = StackTrace::GetNextInstructionPc( |
| reinterpret_cast<uptr>(__tsan_tls_initialization)); |
| MemoryRangeImitateWrite(thr, pc, tls_addr, thr_beg - tls_addr); |
| MemoryRangeImitateWrite(thr, pc, thr_end, tls_addr + tls_size - thr_end); |
| } |
| |
| // Note: this function runs with async signals enabled, |
| // so it must not touch any tsan state. |
| int call_pthread_cancel_with_cleanup(int (*fn)(void *arg), |
| void (*cleanup)(void *arg), void *arg) { |
| // pthread_cleanup_push/pop are hardcore macros mess. |
| // We can't intercept nor call them w/o including pthread.h. |
| int res; |
| pthread_cleanup_push(cleanup, arg); |
| res = fn(arg); |
| pthread_cleanup_pop(0); |
| return res; |
| } |
| #endif // !SANITIZER_GO |
| |
| #if !SANITIZER_GO |
| void ReplaceSystemMalloc() { } |
| #endif |
| |
| #if !SANITIZER_GO |
| #if SANITIZER_ANDROID |
| // On Android, one thread can call intercepted functions after |
| // DestroyThreadState(), so add a fake thread state for "dead" threads. |
| static ThreadState *dead_thread_state = nullptr; |
| |
| ThreadState *cur_thread() { |
| ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr()); |
| if (thr == nullptr) { |
| __sanitizer_sigset_t emptyset; |
| internal_sigfillset(&emptyset); |
| __sanitizer_sigset_t oldset; |
| CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset)); |
| thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr()); |
| if (thr == nullptr) { |
| thr = reinterpret_cast<ThreadState*>(MmapOrDie(sizeof(ThreadState), |
| "ThreadState")); |
| *get_android_tls_ptr() = reinterpret_cast<uptr>(thr); |
| if (dead_thread_state == nullptr) { |
| dead_thread_state = reinterpret_cast<ThreadState*>( |
| MmapOrDie(sizeof(ThreadState), "ThreadState")); |
| dead_thread_state->fast_state.SetIgnoreBit(); |
| dead_thread_state->ignore_interceptors = 1; |
| dead_thread_state->is_dead = true; |
| *const_cast<u32*>(&dead_thread_state->tid) = -1; |
| CHECK_EQ(0, internal_mprotect(dead_thread_state, sizeof(ThreadState), |
| PROT_READ)); |
| } |
| } |
| CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr)); |
| } |
| return thr; |
| } |
| |
| void set_cur_thread(ThreadState *thr) { |
| *get_android_tls_ptr() = reinterpret_cast<uptr>(thr); |
| } |
| |
| void cur_thread_finalize() { |
| __sanitizer_sigset_t emptyset; |
| internal_sigfillset(&emptyset); |
| __sanitizer_sigset_t oldset; |
| CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset)); |
| ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr()); |
| if (thr != dead_thread_state) { |
| *get_android_tls_ptr() = reinterpret_cast<uptr>(dead_thread_state); |
| UnmapOrDie(thr, sizeof(ThreadState)); |
| } |
| CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr)); |
| } |
| #endif // SANITIZER_ANDROID |
| #endif // if !SANITIZER_GO |
| |
| } // namespace __tsan |
| |
| #endif // SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD |