blob: 5f81d9efbdaa39e9a94318bb0d5664da98344084 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- F R E E Z E --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Contracts; use Contracts;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch7; use Exp_Ch7;
with Exp_Disp; use Exp_Disp;
with Exp_Pakd; use Exp_Pakd;
with Exp_Util; use Exp_Util;
with Exp_Tss; use Exp_Tss;
with Ghost; use Ghost;
with Layout; use Layout;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Cat; use Sem_Cat;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch7; use Sem_Ch7;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Disp; use Sem_Disp;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Urealp; use Urealp;
with Warnsw; use Warnsw;
package body Freeze is
-----------------------
-- Local Subprograms --
-----------------------
procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
-- Typ is a type that is being frozen. If no size clause is given,
-- but a default Esize has been computed, then this default Esize is
-- adjusted up if necessary to be consistent with a given alignment,
-- but never to a value greater than System_Max_Integer_Size. This is
-- used for all discrete types and for fixed-point types.
procedure Build_And_Analyze_Renamed_Body
(Decl : Node_Id;
New_S : Entity_Id;
After : in out Node_Id);
-- Build body for a renaming declaration, insert in tree and analyze
procedure Check_Address_Clause (E : Entity_Id);
-- Apply legality checks to address clauses for object declarations,
-- at the point the object is frozen. Also ensure any initialization is
-- performed only after the object has been frozen.
procedure Check_Component_Storage_Order
(Encl_Type : Entity_Id;
Comp : Entity_Id;
ADC : Node_Id;
Comp_ADC_Present : out Boolean);
-- For an Encl_Type that has a Scalar_Storage_Order attribute definition
-- clause, verify that the component type has an explicit and compatible
-- attribute/aspect. For arrays, Comp is Empty; for records, it is the
-- entity of the component under consideration. For an Encl_Type that
-- does not have a Scalar_Storage_Order attribute definition clause,
-- verify that the component also does not have such a clause.
-- ADC is the attribute definition clause if present (or Empty). On return,
-- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
-- attribute definition clause.
procedure Check_Debug_Info_Needed (T : Entity_Id);
-- As each entity is frozen, this routine is called to deal with the
-- setting of Debug_Info_Needed for the entity. This flag is set if
-- the entity comes from source, or if we are in Debug_Generated_Code
-- mode or if the -gnatdV debug flag is set. However, it never sets
-- the flag if Debug_Info_Off is set. This procedure also ensures that
-- subsidiary entities have the flag set as required.
procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
-- When an expression function is frozen by a use of it, the expression
-- itself is frozen. Check that the expression does not include references
-- to deferred constants without completion. We report this at the freeze
-- point of the function, to provide a better error message.
--
-- In most cases the expression itself is frozen by the time the function
-- itself is frozen, because the formals will be frozen by then. However,
-- Attribute references to outer types are freeze points for those types;
-- this routine generates the required freeze nodes for them.
procedure Check_Strict_Alignment (E : Entity_Id);
-- E is a base type. If E is tagged or has a component that is aliased
-- or tagged or contains something this is aliased or tagged, set
-- Strict_Alignment.
procedure Check_Unsigned_Type (E : Entity_Id);
pragma Inline (Check_Unsigned_Type);
-- If E is a fixed-point or discrete type, then all the necessary work
-- to freeze it is completed except for possible setting of the flag
-- Is_Unsigned_Type, which is done by this procedure. The call has no
-- effect if the entity E is not a discrete or fixed-point type.
procedure Freeze_And_Append
(Ent : Entity_Id;
N : Node_Id;
Result : in out List_Id);
-- Freezes Ent using Freeze_Entity, and appends the resulting list of
-- nodes to Result, modifying Result from No_List if necessary. N has
-- the same usage as in Freeze_Entity.
procedure Freeze_Enumeration_Type (Typ : Entity_Id);
-- Freeze enumeration type. The Esize field is set as processing
-- proceeds (i.e. set by default when the type is declared and then
-- adjusted by rep clauses). What this procedure does is to make sure
-- that if a foreign convention is specified, and no specific size
-- is given, then the size must be at least Integer'Size.
procedure Freeze_Static_Object (E : Entity_Id);
-- If an object is frozen which has Is_Statically_Allocated set, then
-- all referenced types must also be marked with this flag. This routine
-- is in charge of meeting this requirement for the object entity E.
procedure Freeze_Subprogram (E : Entity_Id);
-- Perform freezing actions for a subprogram (create extra formals,
-- and set proper default mechanism values). Note that this routine
-- is not called for internal subprograms, for which neither of these
-- actions is needed (or desirable, we do not want for example to have
-- these extra formals present in initialization procedures, where they
-- would serve no purpose). In this call E is either a subprogram or
-- a subprogram type (i.e. an access to a subprogram).
function Is_Fully_Defined (T : Entity_Id) return Boolean;
-- True if T is not private and has no private components, or has a full
-- view. Used to determine whether the designated type of an access type
-- should be frozen when the access type is frozen. This is done when an
-- allocator is frozen, or an expression that may involve attributes of
-- the designated type. Otherwise freezing the access type does not freeze
-- the designated type.
function Should_Freeze_Type (Typ : Entity_Id; E : Entity_Id) return Boolean;
-- If Typ is in the current scope or in an instantiation, then return True.
-- ???Expression functions (represented by E) shouldn't freeze types in
-- general, but our current expansion and freezing model requires an early
-- freezing when the dispatch table is needed or when building an aggregate
-- with a subtype of Typ, so return True also in this case.
-- Note that expression function completions do freeze and are
-- handled in Sem_Ch6.Analyze_Expression_Function.
------------------------
-- Should_Freeze_Type --
------------------------
function Should_Freeze_Type
(Typ : Entity_Id; E : Entity_Id) return Boolean
is
function Is_Dispatching_Call_Or_Aggregate
(N : Node_Id) return Traverse_Result;
-- Return Abandon if N is a dispatching call to a subprogram
-- declared in the same scope as Typ or an aggregate whose type
-- is Typ.
--------------------------------------
-- Is_Dispatching_Call_Or_Aggregate --
--------------------------------------
function Is_Dispatching_Call_Or_Aggregate
(N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Function_Call
and then Present (Controlling_Argument (N))
and then Scope (Entity (Original_Node (Name (N))))
= Scope (Typ)
then
return Abandon;
elsif Nkind (N) = N_Aggregate
and then Base_Type (Etype (N)) = Base_Type (Typ)
then
return Abandon;
else
return OK;
end if;
end Is_Dispatching_Call_Or_Aggregate;
-------------------------
-- Need_Dispatch_Table --
-------------------------
function Need_Dispatch_Table is new
Traverse_Func (Is_Dispatching_Call_Or_Aggregate);
-- Return Abandon if the input expression requires access to
-- Typ's dispatch table.
Decl : constant Node_Id :=
(if No (E) then E else Original_Node (Unit_Declaration_Node (E)));
-- Start of processing for Should_Freeze_Type
begin
return Within_Scope (Typ, Current_Scope)
or else In_Instance
or else (Present (Decl)
and then Nkind (Decl) = N_Expression_Function
and then Need_Dispatch_Table (Expression (Decl)) = Abandon);
end Should_Freeze_Type;
procedure Process_Default_Expressions
(E : Entity_Id;
After : in out Node_Id);
-- This procedure is called for each subprogram to complete processing of
-- default expressions at the point where all types are known to be frozen.
-- The expressions must be analyzed in full, to make sure that all error
-- processing is done (they have only been preanalyzed). If the expression
-- is not an entity or literal, its analysis may generate code which must
-- not be executed. In that case we build a function body to hold that
-- code. This wrapper function serves no other purpose (it used to be
-- called to evaluate the default, but now the default is inlined at each
-- point of call).
procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
-- Typ is a record or array type that is being frozen. This routine sets
-- the default component alignment from the scope stack values if the
-- alignment is otherwise not specified.
procedure Set_SSO_From_Default (T : Entity_Id);
-- T is a record or array type that is being frozen. If it is a base type,
-- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
-- will be set appropriately. Note that an explicit occurrence of aspect
-- Scalar_Storage_Order or an explicit setting of this aspect with an
-- attribute definition clause occurs, then these two flags are reset in
-- any case, so call will have no effect.
procedure Undelay_Type (T : Entity_Id);
-- T is a type of a component that we know to be an Itype. We don't want
-- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
-- Full_View or Corresponding_Record_Type.
procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id);
-- Expr is the expression for an address clause for the entity denoted by
-- Nam whose type is Typ. If Typ has a default initialization, and there is
-- no explicit initialization in the source declaration, check whether the
-- address clause might cause overlaying of an entity, and emit a warning
-- on the side effect that the initialization will cause.
-------------------------------
-- Adjust_Esize_For_Alignment --
-------------------------------
procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
Align : Uint;
begin
if Known_Esize (Typ) and then Known_Alignment (Typ) then
Align := Alignment_In_Bits (Typ);
if Align > Esize (Typ) and then Align <= System_Max_Integer_Size then
Set_Esize (Typ, Align);
end if;
end if;
end Adjust_Esize_For_Alignment;
------------------------------------
-- Build_And_Analyze_Renamed_Body --
------------------------------------
procedure Build_And_Analyze_Renamed_Body
(Decl : Node_Id;
New_S : Entity_Id;
After : in out Node_Id)
is
Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
Ent : constant Entity_Id := Defining_Entity (Decl);
Body_Node : Node_Id;
Renamed_Subp : Entity_Id;
begin
-- If the renamed subprogram is intrinsic, there is no need for a
-- wrapper body: we set the alias that will be called and expanded which
-- completes the declaration. This transformation is only legal if the
-- renamed entity has already been elaborated.
-- Note that it is legal for a renaming_as_body to rename an intrinsic
-- subprogram, as long as the renaming occurs before the new entity
-- is frozen (RM 8.5.4 (5)).
if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
and then Is_Entity_Name (Name (Body_Decl))
then
Renamed_Subp := Entity (Name (Body_Decl));
else
Renamed_Subp := Empty;
end if;
if Present (Renamed_Subp)
and then Is_Intrinsic_Subprogram (Renamed_Subp)
and then
(not In_Same_Source_Unit (Renamed_Subp, Ent)
or else Sloc (Renamed_Subp) < Sloc (Ent))
-- We can make the renaming entity intrinsic if the renamed function
-- has an interface name, or if it is one of the shift/rotate
-- operations known to the compiler.
and then
(Present (Interface_Name (Renamed_Subp))
or else Chars (Renamed_Subp) in Name_Rotate_Left
| Name_Rotate_Right
| Name_Shift_Left
| Name_Shift_Right
| Name_Shift_Right_Arithmetic)
then
Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
if Present (Alias (Renamed_Subp)) then
Set_Alias (Ent, Alias (Renamed_Subp));
else
Set_Alias (Ent, Renamed_Subp);
end if;
Set_Is_Intrinsic_Subprogram (Ent);
Set_Has_Completion (Ent);
else
Body_Node := Build_Renamed_Body (Decl, New_S);
Insert_After (After, Body_Node);
Mark_Rewrite_Insertion (Body_Node);
Analyze (Body_Node);
After := Body_Node;
end if;
end Build_And_Analyze_Renamed_Body;
------------------------
-- Build_Renamed_Body --
------------------------
function Build_Renamed_Body
(Decl : Node_Id;
New_S : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (New_S);
-- We use for the source location of the renamed body, the location of
-- the spec entity. It might seem more natural to use the location of
-- the renaming declaration itself, but that would be wrong, since then
-- the body we create would look as though it was created far too late,
-- and this could cause problems with elaboration order analysis,
-- particularly in connection with instantiations.
N : constant Node_Id := Unit_Declaration_Node (New_S);
Nam : constant Node_Id := Name (N);
Old_S : Entity_Id;
Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
Actuals : List_Id := No_List;
Call_Node : Node_Id;
Call_Name : Node_Id;
Body_Node : Node_Id;
Formal : Entity_Id;
O_Formal : Entity_Id;
Param_Spec : Node_Id;
Pref : Node_Id := Empty;
-- If the renamed entity is a primitive operation given in prefix form,
-- the prefix is the target object and it has to be added as the first
-- actual in the generated call.
begin
-- Determine the entity being renamed, which is the target of the call
-- statement. If the name is an explicit dereference, this is a renaming
-- of a subprogram type rather than a subprogram. The name itself is
-- fully analyzed.
if Nkind (Nam) = N_Selected_Component then
Old_S := Entity (Selector_Name (Nam));
elsif Nkind (Nam) = N_Explicit_Dereference then
Old_S := Etype (Nam);
elsif Nkind (Nam) = N_Indexed_Component then
if Is_Entity_Name (Prefix (Nam)) then
Old_S := Entity (Prefix (Nam));
else
Old_S := Entity (Selector_Name (Prefix (Nam)));
end if;
elsif Nkind (Nam) = N_Character_Literal then
Old_S := Etype (New_S);
else
Old_S := Entity (Nam);
end if;
if Is_Entity_Name (Nam) then
-- If the renamed entity is a predefined operator, retain full name
-- to ensure its visibility.
if Ekind (Old_S) = E_Operator
and then Nkind (Nam) = N_Expanded_Name
then
Call_Name := New_Copy (Name (N));
else
Call_Name := New_Occurrence_Of (Old_S, Loc);
end if;
else
if Nkind (Nam) = N_Selected_Component
and then Present (First_Formal (Old_S))
and then
(Is_Controlling_Formal (First_Formal (Old_S))
or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
then
-- Retrieve the target object, to be added as a first actual
-- in the call.
Call_Name := New_Occurrence_Of (Old_S, Loc);
Pref := Prefix (Nam);
else
Call_Name := New_Copy (Name (N));
end if;
-- Original name may have been overloaded, but is fully resolved now
Set_Is_Overloaded (Call_Name, False);
end if;
-- For simple renamings, subsequent calls can be expanded directly as
-- calls to the renamed entity. The body must be generated in any case
-- for calls that may appear elsewhere. This is not done in the case
-- where the subprogram is an instantiation because the actual proper
-- body has not been built yet. This is also not done in GNATprove mode
-- as we need to check other conditions for creating a body to inline
-- in that case, which are controlled in Analyze_Subprogram_Body_Helper.
if Ekind (Old_S) in E_Function | E_Procedure
and then Nkind (Decl) = N_Subprogram_Declaration
and then not Is_Generic_Instance (Old_S)
and then not GNATprove_Mode
then
Set_Body_To_Inline (Decl, Old_S);
end if;
-- Check whether the return type is a limited view. If the subprogram
-- is already frozen the generated body may have a non-limited view
-- of the type, that must be used, because it is the one in the spec
-- of the renaming declaration.
if Ekind (Old_S) = E_Function
and then Is_Entity_Name (Result_Definition (Spec))
then
declare
Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
begin
if Has_Non_Limited_View (Ret_Type) then
Set_Result_Definition
(Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
end if;
end;
end if;
-- The body generated for this renaming is an internal artifact, and
-- does not constitute a freeze point for the called entity.
Set_Must_Not_Freeze (Call_Name);
Formal := First_Formal (Defining_Entity (Decl));
if Present (Pref) then
declare
Pref_Type : constant Entity_Id := Etype (Pref);
Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
begin
-- The controlling formal may be an access parameter, or the
-- actual may be an access value, so adjust accordingly.
if Is_Access_Type (Pref_Type)
and then not Is_Access_Type (Form_Type)
then
Actuals := New_List
(Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
elsif Is_Access_Type (Form_Type)
and then not Is_Access_Type (Pref)
then
Actuals :=
New_List (
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Access,
Prefix => Relocate_Node (Pref)));
else
Actuals := New_List (Pref);
end if;
end;
elsif Present (Formal) then
Actuals := New_List;
else
Actuals := No_List;
end if;
while Present (Formal) loop
Append (New_Occurrence_Of (Formal, Loc), Actuals);
Next_Formal (Formal);
end loop;
-- If the renamed entity is an entry, inherit its profile. For other
-- renamings as bodies, both profiles must be subtype conformant, so it
-- is not necessary to replace the profile given in the declaration.
-- However, default values that are aggregates are rewritten when
-- partially analyzed, so we recover the original aggregate to insure
-- that subsequent conformity checking works. Similarly, if the default
-- expression was constant-folded, recover the original expression.
Formal := First_Formal (Defining_Entity (Decl));
if Present (Formal) then
O_Formal := First_Formal (Old_S);
Param_Spec := First (Parameter_Specifications (Spec));
while Present (Formal) loop
if Is_Entry (Old_S) then
if Nkind (Parameter_Type (Param_Spec)) /=
N_Access_Definition
then
Set_Etype (Formal, Etype (O_Formal));
Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
end if;
elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
or else Nkind (Original_Node (Default_Value (O_Formal))) /=
Nkind (Default_Value (O_Formal))
then
Set_Expression (Param_Spec,
New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
end if;
Next_Formal (Formal);
Next_Formal (O_Formal);
Next (Param_Spec);
end loop;
end if;
-- If the renamed entity is a function, the generated body contains a
-- return statement. Otherwise, build a procedure call. If the entity is
-- an entry, subsequent analysis of the call will transform it into the
-- proper entry or protected operation call. If the renamed entity is
-- a character literal, return it directly.
if Ekind (Old_S) = E_Function
or else Ekind (Old_S) = E_Operator
or else (Ekind (Old_S) = E_Subprogram_Type
and then Etype (Old_S) /= Standard_Void_Type)
then
Call_Node :=
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Function_Call (Loc,
Name => Call_Name,
Parameter_Associations => Actuals));
elsif Ekind (Old_S) = E_Enumeration_Literal then
Call_Node :=
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Old_S, Loc));
elsif Nkind (Nam) = N_Character_Literal then
Call_Node :=
Make_Simple_Return_Statement (Loc, Expression => Call_Name);
else
Call_Node :=
Make_Procedure_Call_Statement (Loc,
Name => Call_Name,
Parameter_Associations => Actuals);
end if;
-- Create entities for subprogram body and formals
Set_Defining_Unit_Name (Spec,
Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
Param_Spec := First (Parameter_Specifications (Spec));
while Present (Param_Spec) loop
Set_Defining_Identifier (Param_Spec,
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier (Param_Spec))));
Next (Param_Spec);
end loop;
-- In GNATprove, prefer to generate an expression function whenever
-- possible, to benefit from the more precise analysis in that case
-- (as if an implicit postcondition had been generated).
if GNATprove_Mode
and then Nkind (Call_Node) = N_Simple_Return_Statement
then
Body_Node :=
Make_Expression_Function (Loc,
Specification => Spec,
Expression => Expression (Call_Node));
else
Body_Node :=
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Call_Node)));
end if;
if Nkind (Decl) /= N_Subprogram_Declaration then
Rewrite (N,
Make_Subprogram_Declaration (Loc,
Specification => Specification (N)));
end if;
-- Link the body to the entity whose declaration it completes. If
-- the body is analyzed when the renamed entity is frozen, it may
-- be necessary to restore the proper scope (see package Exp_Ch13).
if Nkind (N) = N_Subprogram_Renaming_Declaration
and then Present (Corresponding_Spec (N))
then
Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
else
Set_Corresponding_Spec (Body_Node, New_S);
end if;
return Body_Node;
end Build_Renamed_Body;
--------------------------
-- Check_Address_Clause --
--------------------------
procedure Check_Address_Clause (E : Entity_Id) is
Addr : constant Node_Id := Address_Clause (E);
Typ : constant Entity_Id := Etype (E);
Decl : Node_Id;
Expr : Node_Id;
Init : Node_Id;
Lhs : Node_Id;
Tag_Assign : Node_Id;
begin
if Present (Addr) then
-- For a deferred constant, the initialization value is on full view
if Ekind (E) = E_Constant and then Present (Full_View (E)) then
Decl := Declaration_Node (Full_View (E));
else
Decl := Declaration_Node (E);
end if;
Expr := Expression (Addr);
if Needs_Constant_Address (Decl, Typ) then
Check_Constant_Address_Clause (Expr, E);
-- Has_Delayed_Freeze was set on E when the address clause was
-- analyzed, and must remain set because we want the address
-- clause to be elaborated only after any entity it references
-- has been elaborated.
end if;
-- If Rep_Clauses are to be ignored, remove address clause from
-- list attached to entity, because it may be illegal for gigi,
-- for example by breaking order of elaboration.
if Ignore_Rep_Clauses then
declare
Rep : Node_Id;
begin
Rep := First_Rep_Item (E);
if Rep = Addr then
Set_First_Rep_Item (E, Next_Rep_Item (Addr));
else
while Present (Rep)
and then Next_Rep_Item (Rep) /= Addr
loop
Next_Rep_Item (Rep);
end loop;
end if;
if Present (Rep) then
Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
end if;
end;
-- And now remove the address clause
Kill_Rep_Clause (Addr);
elsif not Error_Posted (Expr)
and then not Needs_Finalization (Typ)
then
Warn_Overlay (Expr, Typ, Name (Addr));
end if;
Init := Expression (Decl);
-- If a variable, or a non-imported constant, overlays a constant
-- object and has an initialization value, then the initialization
-- may end up writing into read-only memory. Detect the cases of
-- statically identical values and remove the initialization. In
-- the other cases, give a warning. We will give other warnings
-- later for the variable if it is assigned.
if (Ekind (E) = E_Variable
or else (Ekind (E) = E_Constant
and then not Is_Imported (E)))
and then Overlays_Constant (E)
and then Present (Init)
then
declare
O_Ent : Entity_Id;
Off : Boolean;
begin
Find_Overlaid_Entity (Addr, O_Ent, Off);
if Ekind (O_Ent) = E_Constant
and then Etype (O_Ent) = Typ
and then Present (Constant_Value (O_Ent))
and then Compile_Time_Compare
(Init,
Constant_Value (O_Ent),
Assume_Valid => True) = EQ
then
Set_No_Initialization (Decl);
return;
elsif Comes_From_Source (Init)
and then Address_Clause_Overlay_Warnings
then
Error_Msg_Sloc := Sloc (Addr);
Error_Msg_NE
("??constant& may be modified via address clause#",
Decl, O_Ent);
end if;
end;
end if;
-- Remove side effects from initial expression, except in the case of
-- limited build-in-place calls and aggregates, which have their own
-- expansion elsewhere. This exception is necessary to avoid copying
-- limited objects.
if Present (Init)
and then not Is_Limited_View (Typ)
then
-- Capture initialization value at point of declaration, and make
-- explicit assignment legal, because object may be a constant.
Remove_Side_Effects (Init);
Lhs := New_Occurrence_Of (E, Sloc (Decl));
Set_Assignment_OK (Lhs);
-- Move initialization to freeze actions, once the object has
-- been frozen and the address clause alignment check has been
-- performed.
Append_Freeze_Action (E,
Make_Assignment_Statement (Sloc (Decl),
Name => Lhs,
Expression => Expression (Decl)));
Set_No_Initialization (Decl);
-- If the object is tagged, check whether the tag must be
-- reassigned explicitly.
Tag_Assign := Make_Tag_Assignment (Decl);
if Present (Tag_Assign) then
Append_Freeze_Action (E, Tag_Assign);
end if;
end if;
end if;
end Check_Address_Clause;
-----------------------------
-- Check_Compile_Time_Size --
-----------------------------
procedure Check_Compile_Time_Size (T : Entity_Id) is
procedure Set_Small_Size (T : Entity_Id; S : Uint);
-- Sets the compile time known size in the RM_Size field of T, checking
-- for a size clause that was given which attempts to give a small size.
function Size_Known (T : Entity_Id) return Boolean;
-- Recursive function that does all the work
function Static_Discriminated_Components (T : Entity_Id) return Boolean;
-- If T is a constrained subtype, its size is not known if any of its
-- discriminant constraints is not static and it is not a null record.
-- The test is conservative and doesn't check that the components are
-- in fact constrained by non-static discriminant values. Could be made
-- more precise ???
--------------------
-- Set_Small_Size --
--------------------
procedure Set_Small_Size (T : Entity_Id; S : Uint) is
begin
if S > System_Max_Integer_Size then
return;
-- Check for bad size clause given
elsif Has_Size_Clause (T) then
if RM_Size (T) < S then
Error_Msg_Uint_1 := S;
Error_Msg_NE (Size_Too_Small_Message, Size_Clause (T), T);
end if;
-- Set size if not set already
elsif not Known_RM_Size (T) then
Set_RM_Size (T, S);
end if;
end Set_Small_Size;
----------------
-- Size_Known --
----------------
function Size_Known (T : Entity_Id) return Boolean is
Comp : Entity_Id;
Ctyp : Entity_Id;
begin
if Size_Known_At_Compile_Time (T) then
return True;
-- Always True for elementary types, even generic formal elementary
-- types. We used to return False in the latter case, but the size
-- is known at compile time, even in the template, we just do not
-- know the exact size but that's not the point of this routine.
elsif Is_Elementary_Type (T) or else Is_Task_Type (T) then
return True;
-- Array types
elsif Is_Array_Type (T) then
-- String literals always have known size, and we can set it
if Ekind (T) = E_String_Literal_Subtype then
Set_Small_Size
(T, Component_Size (T) * String_Literal_Length (T));
return True;
-- Unconstrained types never have known at compile time size
elsif not Is_Constrained (T) then
return False;
-- Don't do any recursion on type with error posted, since we may
-- have a malformed type that leads us into a loop.
elsif Error_Posted (T) then
return False;
-- Otherwise if component size unknown, then array size unknown
elsif not Size_Known (Component_Type (T)) then
return False;
end if;
-- Check for all indexes static, and also compute possible size
-- (in case it is not greater than System_Max_Integer_Size and
-- thus may be packable).
declare
Index : Entity_Id;
Low : Node_Id;
High : Node_Id;
Size : Uint := Component_Size (T);
Dim : Uint;
begin
Index := First_Index (T);
while Present (Index) loop
if Nkind (Index) = N_Range then
Get_Index_Bounds (Index, Low, High);
elsif Error_Posted (Scalar_Range (Etype (Index))) then
return False;
else
Low := Type_Low_Bound (Etype (Index));
High := Type_High_Bound (Etype (Index));
end if;
if not Compile_Time_Known_Value (Low)
or else not Compile_Time_Known_Value (High)
or else Etype (Index) = Any_Type
then
return False;
else
Dim := Expr_Value (High) - Expr_Value (Low) + 1;
if Dim >= 0 then
Size := Size * Dim;
else
Size := Uint_0;
end if;
end if;
Next_Index (Index);
end loop;
Set_Small_Size (T, Size);
return True;
end;
-- For non-generic private types, go to underlying type if present
elsif Is_Private_Type (T)
and then not Is_Generic_Type (T)
and then Present (Underlying_Type (T))
then
-- Don't do any recursion on type with error posted, since we may
-- have a malformed type that leads us into a loop.
if Error_Posted (T) then
return False;
else
return Size_Known (Underlying_Type (T));
end if;
-- Record types
elsif Is_Record_Type (T) then
-- A class-wide type is never considered to have a known size
if Is_Class_Wide_Type (T) then
return False;
-- A subtype of a variant record must not have non-static
-- discriminated components.
elsif T /= Base_Type (T)
and then not Static_Discriminated_Components (T)
then
return False;
-- Don't do any recursion on type with error posted, since we may
-- have a malformed type that leads us into a loop.
elsif Error_Posted (T) then
return False;
end if;
-- Now look at the components of the record
declare
-- The following two variables are used to keep track of the
-- size of packed records if we can tell the size of the packed
-- record in the front end. Packed_Size_Known is True if so far
-- we can figure out the size. It is initialized to True for a
-- packed record, unless the record has either discriminants or
-- independent components, or is a strict-alignment type, since
-- it cannot be fully packed in this case.
-- The reason we eliminate the discriminated case is that
-- we don't know the way the back end lays out discriminated
-- packed records. If Packed_Size_Known is True, then
-- Packed_Size is the size in bits so far.
Packed_Size_Known : Boolean :=
Is_Packed (T)
and then not Has_Discriminants (T)
and then not Has_Independent_Components (T)
and then not Strict_Alignment (T);
Packed_Size : Uint := Uint_0;
-- Size in bits so far
begin
-- Test for variant part present
if Has_Discriminants (T)
and then Present (Parent (T))
and then Nkind (Parent (T)) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Parent (T))) =
N_Record_Definition
and then not Null_Present (Type_Definition (Parent (T)))
and then
Present (Variant_Part
(Component_List (Type_Definition (Parent (T)))))
then
-- If variant part is present, and type is unconstrained,
-- then we must have defaulted discriminants, or a size
-- clause must be present for the type, or else the size
-- is definitely not known at compile time.
if not Is_Constrained (T)
and then
No (Discriminant_Default_Value (First_Discriminant (T)))
and then not Known_RM_Size (T)
then
return False;
end if;
end if;
-- Loop through components
Comp := First_Component_Or_Discriminant (T);
while Present (Comp) loop
Ctyp := Etype (Comp);
-- We do not know the packed size if there is a component
-- clause present (we possibly could, but this would only
-- help in the case of a record with partial rep clauses.
-- That's because in the case of full rep clauses, the
-- size gets figured out anyway by a different circuit).
if Present (Component_Clause (Comp)) then
Packed_Size_Known := False;
end if;
-- We do not know the packed size for an independent
-- component or if it is of a strict-alignment type,
-- since packing does not touch these (RM 13.2(7)).
if Is_Independent (Comp)
or else Is_Independent (Ctyp)
or else Strict_Alignment (Ctyp)
then
Packed_Size_Known := False;
end if;
-- We need to identify a component that is an array where
-- the index type is an enumeration type with non-standard
-- representation, and some bound of the type depends on a
-- discriminant.
-- This is because gigi computes the size by doing a
-- substitution of the appropriate discriminant value in
-- the size expression for the base type, and gigi is not
-- clever enough to evaluate the resulting expression (which
-- involves a call to rep_to_pos) at compile time.
-- It would be nice if gigi would either recognize that
-- this expression can be computed at compile time, or
-- alternatively figured out the size from the subtype
-- directly, where all the information is at hand ???
if Is_Array_Type (Etype (Comp))
and then Present (Packed_Array_Impl_Type (Etype (Comp)))
then
declare
Ocomp : constant Entity_Id :=
Original_Record_Component (Comp);
OCtyp : constant Entity_Id := Etype (Ocomp);
Ind : Node_Id;
Indtyp : Entity_Id;
Lo, Hi : Node_Id;
begin
Ind := First_Index (OCtyp);
while Present (Ind) loop
Indtyp := Etype (Ind);
if Is_Enumeration_Type (Indtyp)
and then Has_Non_Standard_Rep (Indtyp)
then
Lo := Type_Low_Bound (Indtyp);
Hi := Type_High_Bound (Indtyp);
if Is_Entity_Name (Lo)
and then Ekind (Entity (Lo)) = E_Discriminant
then
return False;
elsif Is_Entity_Name (Hi)
and then Ekind (Entity (Hi)) = E_Discriminant
then
return False;
end if;
end if;
Next_Index (Ind);
end loop;
end;
end if;
-- Clearly size of record is not known if the size of one of
-- the components is not known.
if not Size_Known (Ctyp) then
return False;
end if;
-- Accumulate packed size if possible
if Packed_Size_Known then
-- We can deal with elementary types, small packed arrays
-- if the representation is a modular type and also small
-- record types as checked by Set_Small_Size.
if Is_Elementary_Type (Ctyp)
or else (Is_Array_Type (Ctyp)
and then Present
(Packed_Array_Impl_Type (Ctyp))
and then Is_Modular_Integer_Type
(Packed_Array_Impl_Type (Ctyp)))
or else Is_Record_Type (Ctyp)
then
-- If RM_Size is known and static, then we can keep
-- accumulating the packed size.
if Known_Static_RM_Size (Ctyp) then
Packed_Size := Packed_Size + RM_Size (Ctyp);
-- If we have a field whose RM_Size is not known then
-- we can't figure out the packed size here.
else
Packed_Size_Known := False;
end if;
-- For other types we can't figure out the packed size
else
Packed_Size_Known := False;
end if;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
if Packed_Size_Known then
Set_Small_Size (T, Packed_Size);
end if;
return True;
end;
-- All other cases, size not known at compile time
else
return False;
end if;
end Size_Known;
-------------------------------------
-- Static_Discriminated_Components --
-------------------------------------
function Static_Discriminated_Components
(T : Entity_Id) return Boolean
is
Constraint : Elmt_Id;
begin
if Has_Discriminants (T)
and then Present (Discriminant_Constraint (T))
and then Present (First_Component (T))
then
Constraint := First_Elmt (Discriminant_Constraint (T));
while Present (Constraint) loop
if not Compile_Time_Known_Value (Node (Constraint)) then
return False;
end if;
Next_Elmt (Constraint);
end loop;
end if;
return True;
end Static_Discriminated_Components;
-- Start of processing for Check_Compile_Time_Size
begin
Set_Size_Known_At_Compile_Time (T, Size_Known (T));
end Check_Compile_Time_Size;
-----------------------------------
-- Check_Component_Storage_Order --
-----------------------------------
procedure Check_Component_Storage_Order
(Encl_Type : Entity_Id;
Comp : Entity_Id;
ADC : Node_Id;
Comp_ADC_Present : out Boolean)
is
Comp_Base : Entity_Id;
Comp_ADC : Node_Id;
Encl_Base : Entity_Id;
Err_Node : Node_Id;
Component_Aliased : Boolean;
Comp_Byte_Aligned : Boolean := False;
-- Set for the record case, True if Comp is aligned on byte boundaries
-- (in which case it is allowed to have different storage order).
Comp_SSO_Differs : Boolean;
-- Set True when the component is a nested composite, and it does not
-- have the same scalar storage order as Encl_Type.
begin
-- Record case
if Present (Comp) then
Err_Node := Comp;
Comp_Base := Etype (Comp);
if Is_Tag (Comp) then
Comp_Byte_Aligned := True;
Component_Aliased := False;
else
-- If a component clause is present, check if the component starts
-- and ends on byte boundaries. Otherwise conservatively assume it
-- does so only in the case where the record is not packed.
if Present (Component_Clause (Comp)) then
Comp_Byte_Aligned :=
Known_Normalized_First_Bit (Comp)
and then
Known_Esize (Comp)
and then
Normalized_First_Bit (Comp) mod System_Storage_Unit = 0
and then
Esize (Comp) mod System_Storage_Unit = 0;
else
Comp_Byte_Aligned := not Is_Packed (Encl_Type);
end if;
Component_Aliased := Is_Aliased (Comp);
end if;
-- Array case
else
Err_Node := Encl_Type;
Comp_Base := Component_Type (Encl_Type);
Component_Aliased := Has_Aliased_Components (Encl_Type);
end if;
-- Note: the Reverse_Storage_Order flag is set on the base type, but
-- the attribute definition clause is attached to the first subtype.
-- Also, if the base type is incomplete or private, go to full view
-- if known
Encl_Base := Base_Type (Encl_Type);
if Present (Underlying_Type (Encl_Base)) then
Encl_Base := Underlying_Type (Encl_Base);
end if;
Comp_Base := Base_Type (Comp_Base);
if Present (Underlying_Type (Comp_Base)) then
Comp_Base := Underlying_Type (Comp_Base);
end if;
Comp_ADC :=
Get_Attribute_Definition_Clause
(First_Subtype (Comp_Base), Attribute_Scalar_Storage_Order);
Comp_ADC_Present := Present (Comp_ADC);
-- Case of record or array component: check storage order compatibility.
-- But, if the record has Complex_Representation, then it is treated as
-- a scalar in the back end so the storage order is irrelevant.
if (Is_Record_Type (Comp_Base)
and then not Has_Complex_Representation (Comp_Base))
or else Is_Array_Type (Comp_Base)
then
Comp_SSO_Differs :=
Reverse_Storage_Order (Encl_Base) /=
Reverse_Storage_Order (Comp_Base);
-- Parent and extension must have same storage order
if Present (Comp) and then Chars (Comp) = Name_uParent then
if Comp_SSO_Differs then
Error_Msg_N
("record extension must have same scalar storage order as "
& "parent", Err_Node);
end if;
-- If component and composite SSO differs, check that component
-- falls on byte boundaries and isn't bit packed.
elsif Comp_SSO_Differs then
-- Component SSO differs from enclosing composite:
-- Reject if composite is a bit-packed array, as it is rewritten
-- into an array of scalars.
if Is_Bit_Packed_Array (Encl_Base) then
Error_Msg_N
("type of packed array must have same scalar storage order "
& "as component", Err_Node);
-- Reject if not byte aligned
elsif Is_Record_Type (Encl_Base)
and then not Comp_Byte_Aligned
then
if Present (Component_Clause (Comp)) then
Error_Msg_N
("type of non-byte-aligned component must have same scalar"
& " storage order as enclosing record", Err_Node);
else
Error_Msg_N
("type of packed component must have same scalar"
& " storage order as enclosing record", Err_Node);
end if;
-- Warn if specified only for the outer composite
elsif Present (ADC) and then No (Comp_ADC) then
Error_Msg_NE
("scalar storage order specified for & does not apply to "
& "component?", Err_Node, Encl_Base);
end if;
end if;
-- Enclosing type has explicit SSO: non-composite component must not
-- be aliased.
elsif Present (ADC) and then Component_Aliased then
Error_Msg_N
("aliased component not permitted for type with explicit "
& "Scalar_Storage_Order", Err_Node);
end if;
end Check_Component_Storage_Order;
-----------------------------
-- Check_Debug_Info_Needed --
-----------------------------
procedure Check_Debug_Info_Needed (T : Entity_Id) is
begin
if Debug_Info_Off (T) then
return;
elsif Comes_From_Source (T)
or else Debug_Generated_Code
or else Debug_Flag_VV
or else Needs_Debug_Info (T)
then
Set_Debug_Info_Needed (T);
end if;
end Check_Debug_Info_Needed;
-------------------------------
-- Check_Expression_Function --
-------------------------------
procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
function Find_Constant (Nod : Node_Id) return Traverse_Result;
-- Function to search for deferred constant
-------------------
-- Find_Constant --
-------------------
function Find_Constant (Nod : Node_Id) return Traverse_Result is
begin
-- When a constant is initialized with the result of a dispatching
-- call, the constant declaration is rewritten as a renaming of the
-- displaced function result. This scenario is not a premature use of
-- a constant even though the Has_Completion flag is not set.
if Is_Entity_Name (Nod)
and then Present (Entity (Nod))
and then Ekind (Entity (Nod)) = E_Constant
and then Scope (Entity (Nod)) = Current_Scope
and then Nkind (Declaration_Node (Entity (Nod))) =
N_Object_Declaration
and then not Is_Imported (Entity (Nod))
and then not Has_Completion (Entity (Nod))
and then not Is_Frozen (Entity (Nod))
then
Error_Msg_NE
("premature use of& in call or instance", N, Entity (Nod));
elsif Nkind (Nod) = N_Attribute_Reference then
Analyze (Prefix (Nod));
if Is_Entity_Name (Prefix (Nod))
and then Is_Type (Entity (Prefix (Nod)))
then
Freeze_Before (N, Entity (Prefix (Nod)));
end if;
end if;
return OK;
end Find_Constant;
procedure Check_Deferred is new Traverse_Proc (Find_Constant);
-- Local variables
Decl : Node_Id;
-- Start of processing for Check_Expression_Function
begin
Decl := Original_Node (Unit_Declaration_Node (Nam));
-- The subprogram body created for the expression function is not
-- itself a freeze point.
if Scope (Nam) = Current_Scope
and then Nkind (Decl) = N_Expression_Function
and then Nkind (N) /= N_Subprogram_Body
then
Check_Deferred (Expression (Decl));
end if;
end Check_Expression_Function;
--------------------------------
-- Check_Inherited_Conditions --
--------------------------------
procedure Check_Inherited_Conditions
(R : Entity_Id;
Late_Overriding : Boolean := False)
is
Prim_Ops : constant Elist_Id := Primitive_Operations (R);
Decls : List_Id;
Op_Node : Elmt_Id;
Par_Prim : Entity_Id;
Prim : Entity_Id;
Wrapper_Needed : Boolean;
function Build_DTW_Body
(Loc : Source_Ptr;
DTW_Spec : Node_Id;
DTW_Decls : List_Id;
Par_Prim : Entity_Id;
Wrapped_Subp : Entity_Id) return Node_Id;
-- Build the body of the dispatch table wrapper containing the given
-- spec and declarations; the call to the wrapped subprogram includes
-- the proper type conversion.
function Build_DTW_Spec (Par_Prim : Entity_Id) return Node_Id;
-- Build the spec of the dispatch table wrapper
procedure Build_Inherited_Condition_Pragmas
(Subp : Entity_Id;
Wrapper_Needed : out Boolean);
-- Build corresponding pragmas for an operation whose ancestor has
-- class-wide pre/postconditions. If the operation is inherited then
-- Wrapper_Needed is returned True to force the creation of a wrapper
-- for the inherited operation. If the ancestor is being overridden,
-- the pragmas are constructed only to verify their legality, in case
-- they contain calls to other primitives that may have been overridden.
function Needs_Wrapper
(Class_Cond : Node_Id;
Subp : Entity_Id;
Par_Subp : Entity_Id) return Boolean;
-- Checks whether the dispatch-table wrapper (DTW) for Subp must be
-- built to evaluate the given class-wide condition.
--------------------
-- Build_DTW_Body --
--------------------
function Build_DTW_Body
(Loc : Source_Ptr;
DTW_Spec : Node_Id;
DTW_Decls : List_Id;
Par_Prim : Entity_Id;
Wrapped_Subp : Entity_Id) return Node_Id
is
Par_Typ : constant Entity_Id := Find_Dispatching_Type (Par_Prim);
Actuals : constant List_Id := Empty_List;
Call : Node_Id;
Formal : Entity_Id := First_Formal (Par_Prim);
New_F_Spec : Entity_Id := First (Parameter_Specifications (DTW_Spec));
New_Formal : Entity_Id;
begin
-- Build parameter association for call to wrapped subprogram
while Present (Formal) loop
New_Formal := Defining_Identifier (New_F_Spec);
-- If the controlling argument is inherited, add conversion to
-- parent type for the call.
if Etype (Formal) = Par_Typ
and then Is_Controlling_Formal (Formal)
then
Append_To (Actuals,
Make_Type_Conversion (Loc,
New_Occurrence_Of (Par_Typ, Loc),
New_Occurrence_Of (New_Formal, Loc)));
else
Append_To (Actuals, New_Occurrence_Of (New_Formal, Loc));
end if;
Next_Formal (Formal);
Next (New_F_Spec);
end loop;
if Ekind (Wrapped_Subp) = E_Procedure then
Call :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Wrapped_Subp, Loc),
Parameter_Associations => Actuals);
else
Call :=
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Wrapped_Subp, Loc),
Parameter_Associations => Actuals));
end if;
return
Make_Subprogram_Body (Loc,
Specification => Copy_Subprogram_Spec (DTW_Spec),
Declarations => DTW_Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Call),
End_Label => Make_Identifier (Loc,
Chars (Defining_Entity (DTW_Spec)))));
end Build_DTW_Body;
--------------------
-- Build_DTW_Spec --
--------------------
function Build_DTW_Spec (Par_Prim : Entity_Id) return Node_Id is
DTW_Id : Entity_Id;
DTW_Spec : Node_Id;
begin
DTW_Spec := Build_Overriding_Spec (Par_Prim, R);
DTW_Id := Defining_Entity (DTW_Spec);
-- Add minimal decoration of fields
Mutate_Ekind (DTW_Id, Ekind (Par_Prim));
Set_LSP_Subprogram (DTW_Id, Par_Prim);
Set_Is_Dispatch_Table_Wrapper (DTW_Id);
Set_Is_Wrapper (DTW_Id);
-- The DTW wrapper is never a null procedure
if Nkind (DTW_Spec) = N_Procedure_Specification then
Set_Null_Present (DTW_Spec, False);
end if;
return DTW_Spec;
end Build_DTW_Spec;
---------------------------------------
-- Build_Inherited_Condition_Pragmas --
---------------------------------------
procedure Build_Inherited_Condition_Pragmas
(Subp : Entity_Id;
Wrapper_Needed : out Boolean)
is
Class_Pre : constant Node_Id :=
Class_Preconditions (Ultimate_Alias (Subp));
Class_Post : Node_Id := Class_Postconditions (Par_Prim);
A_Post : Node_Id;
New_Prag : Node_Id;
begin
Wrapper_Needed := False;
if No (Class_Pre) and then No (Class_Post) then
return;
end if;
-- For class-wide preconditions we just evaluate whether the wrapper
-- is needed; there is no need to build the pragma since the check
-- is performed on the caller side.
if Present (Class_Pre)
and then Needs_Wrapper (Class_Pre, Subp, Par_Prim)
then
Wrapper_Needed := True;
end if;
-- For class-wide postconditions we evaluate whether the wrapper is
-- needed and we build the class-wide postcondition pragma to install
-- it in the wrapper.
if Present (Class_Post)
and then Needs_Wrapper (Class_Post, Subp, Par_Prim)
then
Wrapper_Needed := True;
-- Update the class-wide postcondition
Class_Post := New_Copy_Tree (Class_Post);
Build_Class_Wide_Expression
(Pragma_Or_Expr => Class_Post,
Subp => Subp,
Par_Subp => Par_Prim,
Adjust_Sloc => False);
-- Install the updated class-wide postcondition in a copy of the
-- pragma postcondition defined for the nearest ancestor.
A_Post := Get_Class_Wide_Pragma (Par_Prim,
Pragma_Postcondition);
if No (A_Post) then
declare
Subps : constant Subprogram_List :=
Inherited_Subprograms (Subp);
begin
for Index in Subps'Range loop
A_Post := Get_Class_Wide_Pragma (Subps (Index),
Pragma_Postcondition);
exit when Present (A_Post);
end loop;
end;
end if;
New_Prag := New_Copy_Tree (A_Post);
Rewrite
(Expression (First (Pragma_Argument_Associations (New_Prag))),
Class_Post);
Append (New_Prag, Decls);
end if;
end Build_Inherited_Condition_Pragmas;
-------------------
-- Needs_Wrapper --
-------------------
function Needs_Wrapper
(Class_Cond : Node_Id;
Subp : Entity_Id;
Par_Subp : Entity_Id) return Boolean
is
Result : Boolean := False;
function Check_Entity (N : Node_Id) return Traverse_Result;
-- Check calls to overridden primitives
--------------------
-- Replace_Entity --
--------------------
function Check_Entity (N : Node_Id) return Traverse_Result is
New_E : Entity_Id;
begin
if Nkind (N) = N_Identifier
and then Present (Entity (N))
and then
(Is_Formal (Entity (N)) or else Is_Subprogram (Entity (N)))
and then
(Nkind (Parent (N)) /= N_Attribute_Reference
or else Attribute_Name (Parent (N)) /= Name_Class)
then
-- The check does not apply to dispatching calls within the
-- condition, but only to calls whose static tag is that of
-- the parent type.
if Is_Subprogram (Entity (N))
and then Nkind (Parent (N)) = N_Function_Call
and then Present (Controlling_Argument (Parent (N)))
then
return OK;
end if;
-- Determine whether entity has a renaming
New_E := Get_Mapped_Entity (Entity (N));
-- If the entity is an overridden primitive and we are not
-- in GNATprove mode, we must build a wrapper for the current
-- inherited operation. If the reference is the prefix of an
-- attribute such as 'Result (or others ???) there is no need
-- for a wrapper: the condition is just rewritten in terms of
-- the inherited subprogram.
if Present (New_E)
and then Comes_From_Source (New_E)
and then Is_Subprogram (New_E)
and then Nkind (Parent (N)) /= N_Attribute_Reference
and then not GNATprove_Mode
then
Result := True;
return Abandon;
end if;
end if;
return OK;
end Check_Entity;
procedure Check_Condition_Entities is
new Traverse_Proc (Check_Entity);
-- Start of processing for Needs_Wrapper
begin
Update_Primitives_Mapping (Par_Subp, Subp);
Map_Formals (Par_Subp, Subp);
Check_Condition_Entities (Class_Cond);
return Result;
end Needs_Wrapper;
-- Start of processing for Check_Inherited_Conditions
begin
if Late_Overriding then
Op_Node := First_Elmt (Prim_Ops);
while Present (Op_Node) loop
Prim := Node (Op_Node);
-- Map the overridden primitive to the overriding one
if Present (Overridden_Operation (Prim))
and then Comes_From_Source (Prim)
then
Par_Prim := Overridden_Operation (Prim);
Update_Primitives_Mapping (Par_Prim, Prim);
-- Force discarding previous mappings of its formals
Map_Formals (Par_Prim, Prim, Force_Update => True);
end if;
Next_Elmt (Op_Node);
end loop;
end if;
-- Perform validity checks on the inherited conditions of overriding
-- operations, for conformance with LSP, and apply SPARK-specific
-- restrictions on inherited conditions.
Op_Node := First_Elmt (Prim_Ops);
while Present (Op_Node) loop
Prim := Node (Op_Node);
if Present (Overridden_Operation (Prim))
and then Comes_From_Source (Prim)
then
Par_Prim := Overridden_Operation (Prim);
-- When the primitive is an LSP wrapper we climb to the parent
-- primitive that has the inherited contract.
if Is_Wrapper (Par_Prim)
and then Present (LSP_Subprogram (Par_Prim))
then
Par_Prim := LSP_Subprogram (Par_Prim);
end if;
-- Analyze the contract items of the overridden operation, before
-- they are rewritten as pragmas.
Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
-- In GNATprove mode this is where we can collect the inherited
-- conditions, because we do not create the Check pragmas that
-- normally convey the modified class-wide conditions on
-- overriding operations.
if GNATprove_Mode then
Collect_Inherited_Class_Wide_Conditions (Prim);
end if;
end if;
Next_Elmt (Op_Node);
end loop;
-- Now examine the inherited operations to check whether they require
-- a wrapper to handle inherited conditions that call other primitives,
-- so that LSP can be verified/enforced.
Op_Node := First_Elmt (Prim_Ops);
while Present (Op_Node) loop
Decls := Empty_List;
Prim := Node (Op_Node);
Wrapper_Needed := False;
-- Skip internal entities built for mapping interface primitives
if not Comes_From_Source (Prim)
and then Present (Alias (Prim))
and then No (Interface_Alias (Prim))
then
Par_Prim := Ultimate_Alias (Prim);
-- When the primitive is an LSP wrapper we climb to the parent
-- primitive that has the inherited contract.
if Is_Wrapper (Par_Prim)
and then Present (LSP_Subprogram (Par_Prim))
then
Par_Prim := LSP_Subprogram (Par_Prim);
end if;
-- Analyze the contract items of the parent operation, and
-- determine whether a wrapper is needed. This is determined
-- when the condition is rewritten in sem_prag, using the
-- mapping between overridden and overriding operations built
-- in the loop above.
Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
Build_Inherited_Condition_Pragmas (Prim, Wrapper_Needed);
end if;
if Wrapper_Needed
and then not Is_Abstract_Subprogram (Par_Prim)
and then Expander_Active
then
-- Build the dispatch-table wrapper (DTW). The support for
-- AI12-0195 relies on two kind of wrappers: one for indirect
-- calls (also used for AI12-0220), and one for putting in the
-- dispatch table:
--
-- 1) "indirect-call wrapper" (ICW) is needed anytime there are
-- class-wide preconditions. Prim'Access will point directly
-- at the ICW if any, or at the "pristine" body if Prim has
-- no class-wide preconditions.
--
-- 2) "dispatch-table wrapper" (DTW) is needed anytime the class
-- wide preconditions *or* the class-wide postconditions are
-- affected by overriding.
--
-- The DTW holds a single statement that is a single call where
-- the controlling actuals are conversions to the corresponding
-- type in the parent primitive. If the primitive is a function
-- the statement is a return statement with a call.
declare
Alias_Id : constant Entity_Id := Ultimate_Alias (Prim);
Loc : constant Source_Ptr := Sloc (R);
DTW_Body : Node_Id;
DTW_Decl : Node_Id;
DTW_Id : Entity_Id;
DTW_Spec : Node_Id;
begin
-- The wrapper must be analyzed in the scope of its wrapped
-- primitive (to ensure its correct decoration).
Push_Scope (Scope (Prim));
DTW_Spec := Build_DTW_Spec (Par_Prim);
DTW_Id := Defining_Entity (DTW_Spec);
DTW_Decl := Make_Subprogram_Declaration (Loc,
Specification => DTW_Spec);
-- For inherited class-wide preconditions the DTW wrapper
-- reuses the ICW of the parent (which checks the parent
-- interpretation of the class-wide preconditions); the
-- interpretation of the class-wide preconditions for the
-- inherited subprogram is checked at the caller side.
-- When the subprogram inherits class-wide postconditions
-- the DTW also checks the interpretation of the class-wide
-- postconditions for the inherited subprogram, and the body
-- of the parent checks its interpretation of the parent for
-- the class-wide postconditions.
-- procedure Prim (F1 : T1; ...) is
-- [ pragma Check (Postcondition, Expr); ]
-- begin
-- Par_Prim_ICW (Par_Type (F1), ...);
-- end;
if Present (Indirect_Call_Wrapper (Par_Prim)) then
DTW_Body :=
Build_DTW_Body (Loc,
DTW_Spec => DTW_Spec,
DTW_Decls => Decls,
Par_Prim => Par_Prim,
Wrapped_Subp => Indirect_Call_Wrapper (Par_Prim));
-- For subprograms that only inherit class-wide postconditions
-- the DTW wrapper calls the parent primitive (which on its
-- body checks the interpretation of the class-wide post-
-- conditions for the parent subprogram), and the DTW checks
-- the interpretation of the class-wide postconditions for the
-- inherited subprogram.
-- procedure Prim (F1 : T1; ...) is
-- pragma Check (Postcondition, Expr);
-- begin
-- Par_Prim (Par_Type (F1), ...);
-- end;
else
DTW_Body :=
Build_DTW_Body (Loc,
DTW_Spec => DTW_Spec,
DTW_Decls => Decls,
Par_Prim => Par_Prim,
Wrapped_Subp => Par_Prim);
end if;
-- Insert the declaration of the wrapper before the freezing
-- node of the record type declaration to ensure that it will
-- override the internal primitive built by Derive_Subprogram.
Ensure_Freeze_Node (R);
if Late_Overriding then
Insert_Before_And_Analyze (Freeze_Node (R), DTW_Decl);
else
Append_Freeze_Action (R, DTW_Decl);
end if;
Analyze (DTW_Decl);
-- Insert the body of the wrapper in the freeze actions of
-- its record type declaration to ensure that it is placed
-- in the scope of its declaration but not too early to cause
-- premature freezing of other entities.
Append_Freeze_Action (R, DTW_Body);
Analyze (DTW_Body);
-- Ensure correct decoration
pragma Assert (Is_Dispatching_Operation (DTW_Id));
pragma Assert (Present (Overridden_Operation (DTW_Id)));
pragma Assert (Overridden_Operation (DTW_Id) = Alias_Id);
-- Inherit dispatch table slot
Set_DTC_Entity_Value (R, DTW_Id);
Set_DT_Position (DTW_Id, DT_Position (Alias_Id));
-- Register the wrapper in the dispatch table
if Late_Overriding
and then not Building_Static_DT (R)
then
Insert_List_After_And_Analyze (Freeze_Node (R),
Register_Primitive (Loc, DTW_Id));
end if;
-- Build the helper and ICW for the DTW
if Present (Indirect_Call_Wrapper (Par_Prim)) then
declare
CW_Subp : Entity_Id;
Decl_N : Node_Id;
Body_N : Node_Id;
begin
Merge_Class_Conditions (DTW_Id);
Make_Class_Precondition_Subps (DTW_Id,
Late_Overriding => Late_Overriding);
CW_Subp := Static_Call_Helper (DTW_Id);
Decl_N := Unit_Declaration_Node (CW_Subp);
Analyze (Decl_N);
-- If the DTW was built for a late-overriding primitive
-- its body must be analyzed now (since the tagged type
-- is already frozen).
if Late_Overriding then
Body_N :=
Unit_Declaration_Node
(Corresponding_Body (Decl_N));
Analyze (Body_N);
end if;
end;
end if;
Pop_Scope;
end;
end if;
Next_Elmt (Op_Node);
end loop;
end Check_Inherited_Conditions;
----------------------------
-- Check_Strict_Alignment --
----------------------------
procedure Check_Strict_Alignment (E : Entity_Id) is
Comp : Entity_Id;
begin
-- Bit-packed array types do not require strict alignment, even if they
-- are by-reference types, because they are accessed in a special way.
if Is_By_Reference_Type (E) and then not Is_Bit_Packed_Array (E) then
Set_Strict_Alignment (E);
elsif Is_Array_Type (E) then
Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
-- ??? AI12-001: Any component of a packed type that contains an
-- aliased part must be aligned according to the alignment of its
-- subtype (RM 13.2(7)). This means that the following test:
-- if Has_Aliased_Components (E) then
-- Set_Strict_Alignment (E);
-- end if;
-- should be implemented here. Unfortunately it would break Florist,
-- which has the bad habit of overaligning all the types it declares
-- on 32-bit platforms. Other legacy codebases could also be affected
-- because this check has historically been missing in GNAT.
elsif Is_Record_Type (E) then
Comp := First_Component (E);
while Present (Comp) loop
if not Is_Type (Comp)
and then (Is_Aliased (Comp)
or else Strict_Alignment (Etype (Comp)))
then
Set_Strict_Alignment (E);
return;
end if;
Next_Component (Comp);
end loop;
end if;
end Check_Strict_Alignment;
-------------------------
-- Check_Unsigned_Type --
-------------------------
procedure Check_Unsigned_Type (E : Entity_Id) is
Ancestor : Entity_Id;
Lo_Bound : Node_Id;
Btyp : Entity_Id;
begin
if not Is_Discrete_Or_Fixed_Point_Type (E) then
return;
end if;
-- Do not attempt to analyze case where range was in error
if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
return;
end if;
-- The situation that is nontrivial is something like:
-- subtype x1 is integer range -10 .. +10;
-- subtype x2 is x1 range 0 .. V1;
-- subtype x3 is x2 range V2 .. V3;
-- subtype x4 is x3 range V4 .. V5;
-- where Vn are variables. Here the base type is signed, but we still
-- know that x4 is unsigned because of the lower bound of x2.
-- The only way to deal with this is to look up the ancestor chain
Ancestor := E;
loop
if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
return;
end if;
Lo_Bound := Type_Low_Bound (Ancestor);
if Compile_Time_Known_Value (Lo_Bound) then
if Expr_Rep_Value (Lo_Bound) >= 0 then
Set_Is_Unsigned_Type (E, True);
end if;
return;
else
Ancestor := Ancestor_Subtype (Ancestor);
-- If no ancestor had a static lower bound, go to base type
if No (Ancestor) then
-- Note: the reason we still check for a compile time known
-- value for the base type is that at least in the case of
-- generic formals, we can have bounds that fail this test,
-- and there may be other cases in error situations.
Btyp := Base_Type (E);
if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
return;
end if;
Lo_Bound := Type_Low_Bound (Base_Type (E));
if Compile_Time_Known_Value (Lo_Bound)
and then Expr_Rep_Value (Lo_Bound) >= 0
then
Set_Is_Unsigned_Type (E, True);
end if;
return;
end if;
end if;
end loop;
end Check_Unsigned_Type;
------------------------------
-- Is_Full_Access_Aggregate --
------------------------------
function Is_Full_Access_Aggregate (N : Node_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (N);
New_N : Node_Id;
Par : Node_Id;
Temp : Entity_Id;
Typ : Entity_Id;
begin
Par := Parent (N);
-- Array may be qualified, so find outer context
if Nkind (Par) = N_Qualified_Expression then
Par := Parent (Par);
end if;
if not Comes_From_Source (Par) then
return False;
end if;
case Nkind (Par) is
when N_Assignment_Statement =>
Typ := Etype (Name (Par));
if not Is_Full_Access (Typ)
and then not Is_Full_Access_Object (Name (Par))
then
return False;
end if;
when N_Object_Declaration =>
Typ := Etype (Defining_Identifier (Par));
if not Is_Full_Access (Typ)
and then not Is_Full_Access (Defining_Identifier (Par))
then
return False;
end if;
when others =>
return False;
end case;
Temp := Make_Temporary (Loc, 'T', N);
New_N :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (N));
Insert_Before (Par, New_N);
Analyze (New_N);
Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
return True;
end Is_Full_Access_Aggregate;
-----------------------------------------------
-- Explode_Initialization_Compound_Statement --
-----------------------------------------------
procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
Init_Stmts : constant Node_Id := Initialization_Statements (E);
begin
if Present (Init_Stmts)
and then Nkind (Init_Stmts) = N_Compound_Statement
then
Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
-- Note that we rewrite Init_Stmts into a NULL statement, rather than
-- just removing it, because Freeze_All may rely on this particular
-- Node_Id still being present in the enclosing list to know where to
-- stop freezing.
Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
Set_Initialization_Statements (E, Empty);
end if;
end Explode_Initialization_Compound_Statement;
----------------
-- Freeze_All --
----------------
-- Note: the easy coding for this procedure would be to just build a
-- single list of freeze nodes and then insert them and analyze them
-- all at once. This won't work, because the analysis of earlier freeze
-- nodes may recursively freeze types which would otherwise appear later
-- on in the freeze list. So we must analyze and expand the freeze nodes
-- as they are generated.
procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
-- This is the internal recursive routine that does freezing of entities
-- (but NOT the analysis of default expressions, which should not be
-- recursive, we don't want to analyze those till we are sure that ALL
-- the types are frozen).
--------------------
-- Freeze_All_Ent --
--------------------
procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
E : Entity_Id;
Flist : List_Id;
Lastn : Node_Id;
procedure Process_Flist;
-- If freeze nodes are present, insert and analyze, and reset cursor
-- for next insertion.
-------------------
-- Process_Flist --
-------------------
procedure Process_Flist is
begin
if Is_Non_Empty_List (Flist) then
Lastn := Next (After);
Insert_List_After_And_Analyze (After, Flist);
if Present (Lastn) then
After := Prev (Lastn);
else
After := Last (List_Containing (After));
end if;
end if;
end Process_Flist;
-- Start of processing for Freeze_All_Ent
begin
E := From;
while Present (E) loop
-- If the entity is an inner package which is not a package
-- renaming, then its entities must be frozen at this point. Note
-- that such entities do NOT get frozen at the end of the nested
-- package itself (only library packages freeze).
-- Same is true for task declarations, where anonymous records
-- created for entry parameters must be frozen.
if Ekind (E) = E_Package
and then No (Renamed_Object (E))
and then not Is_Child_Unit (E)
and then not Is_Frozen (E)
then
Push_Scope (E);
Install_Visible_Declarations (E);
Install_Private_Declarations (E);
Freeze_All (First_Entity (E), After);
End_Package_Scope (E);
if Is_Generic_Instance (E)
and then Has_Delayed_Freeze (E)
then
Set_Has_Delayed_Freeze (E, False);
Expand_N_Package_Declaration (Unit_Declaration_Node (E));
end if;
elsif Ekind (E) in Task_Kind
and then Nkind (Parent (E)) in
N_Single_Task_Declaration | N_Task_Type_Declaration
then
Push_Scope (E);
Freeze_All (First_Entity (E), After);
End_Scope;
-- For a derived tagged type, we must ensure that all the
-- primitive operations of the parent have been frozen, so that
-- their addresses will be in the parent's dispatch table at the
-- point it is inherited.
elsif Ekind (E) = E_Record_Type
and then Is_Tagged_Type (E)
and then Is_Tagged_Type (Etype (E))
and then Is_Derived_Type (E)
then
declare
Prim_List : constant Elist_Id :=
Primitive_Operations (Etype (E));
Prim : Elmt_Id;
Subp : Entity_Id;
begin
Prim := First_Elmt (Prim_List);
while Present (Prim) loop
Subp := Node (Prim);
if Comes_From_Source (Subp)
and then not Is_Frozen (Subp)
then
Flist := Freeze_Entity (Subp, After);
Process_Flist;
end if;
Next_Elmt (Prim);
end loop;
end;
end if;
if not Is_Frozen (E) then
Flist := Freeze_Entity (E, After);
Process_Flist;
-- If already frozen, and there are delayed aspects, this is where
-- we do the visibility check for these aspects (see Sem_Ch13 spec
-- for a description of how we handle aspect visibility).
elsif Has_Delayed_Aspects (E) then
declare
Ritem : Node_Id;
begin
Ritem := First_Rep_Item (E);
while Present (Ritem) loop
if Nkind (Ritem) = N_Aspect_Specification
and then Entity (Ritem) = E
and then Is_Delayed_Aspect (Ritem)
then
Check_Aspect_At_End_Of_Declarations (Ritem);
end if;
Next_Rep_Item (Ritem);
end loop;
end;
end if;
-- If an incomplete type is still not frozen, this may be a
-- premature freezing because of a body declaration that follows.
-- Indicate where the freezing took place. Freezing will happen
-- if the body comes from source, but not if it is internally
-- generated, for example as the body of a type invariant.
-- If the freezing is caused by the end of the current declarative
-- part, it is a Taft Amendment type, and there is no error.
if not Is_Frozen (E)
and then Ekind (E) = E_Incomplete_Type
then
declare
Bod : constant Node_Id := Next (After);
begin
-- The presence of a body freezes all entities previously
-- declared in the current list of declarations, but this
-- does not apply if the body does not come from source.
-- A type invariant is transformed into a subprogram body
-- which is placed at the end of the private part of the
-- current package, but this body does not freeze incomplete
-- types that may be declared in this private part.
if Comes_From_Source (Bod)
and then Nkind (Bod) in N_Entry_Body
| N_Package_Body
| N_Protected_Body
| N_Subprogram_Body
| N_Task_Body
| N_Body_Stub
and then
In_Same_List (After, Parent (E))
then
Error_Msg_Sloc := Sloc (Next (After));
Error_Msg_NE
("type& is frozen# before its full declaration",
Parent (E), E);
end if;
end;
end if;
Next_Entity (E);
end loop;
end Freeze_All_Ent;
-- Local variables
Decl : Node_Id;
E : Entity_Id;
Item : Entity_Id;
-- Start of processing for Freeze_All
begin
Freeze_All_Ent (From, After);
-- Now that all types are frozen, we can deal with default expressions
-- that require us to build a default expression functions. This is the
-- point at which such functions are constructed (after all types that
-- might be used in such expressions have been frozen).
-- For subprograms that are renaming_as_body, we create the wrapper
-- bodies as needed.
-- We also add finalization chains to access types whose designated
-- types are controlled. This is normally done when freezing the type,
-- but this misses recursive type definitions where the later members
-- of the recursion introduce controlled components.
-- Loop through entities
E := From;
while Present (E) loop
if Is_Subprogram (E) then
if not Default_Expressions_Processed (E) then
Process_Default_Expressions (E, After);
end if;
if not Has_Completion (E) then
Decl := Unit_Declaration_Node (E);
if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
if Error_Posted (Decl) then
Set_Has_Completion (E);
else
Build_And_Analyze_Renamed_Body (Decl, E, After);
end if;
elsif Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
and then
Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) =
N_Subprogram_Renaming_Declaration
then
Build_And_Analyze_Renamed_Body
(Decl, Corresponding_Body (Decl), After);
end if;
end if;
-- Freeze the default expressions of entries, entry families, and
-- protected subprograms.
elsif Is_Concurrent_Type (E) then
Item := First_Entity (E);
while Present (Item) loop
if Is_Subprogram_Or_Entry (Item)
and then not Default_Expressions_Processed (Item)
then
Process_Default_Expressions (Item, After);
end if;
Next_Entity (Item);
end loop;
end if;
-- Historical note: We used to create a finalization master for an
-- access type whose designated type is not controlled, but contains
-- private controlled compoments. This form of postprocessing is no
-- longer needed because the finalization master is now created when
-- the access type is frozen (see Exp_Ch3.Freeze_Type).
Next_Entity (E);
end loop;
end Freeze_All;
-----------------------
-- Freeze_And_Append --
-----------------------
procedure Freeze_And_Append
(Ent : Entity_Id;
N : Node_Id;
Result : in out List_Id)
is
L : constant List_Id := Freeze_Entity (Ent, N);
begin
if Is_Non_Empty_List (L) then
if Result = No_List then
Result := L;
else
Append_List (L, Result);
end if;
end if;
end Freeze_And_Append;
-------------------
-- Freeze_Before --
-------------------
procedure Freeze_Before
(N : Node_Id;
T : Entity_Id;
Do_Freeze_Profile : Boolean := True)
is
-- Freeze T, then insert the generated Freeze nodes before the node N.
-- Flag Freeze_Profile is used when T is an overloadable entity, and
-- indicates whether its profile should be frozen at the same time.
Freeze_Nodes : constant List_Id :=
Freeze_Entity (T, N, Do_Freeze_Profile);
Pack : constant Entity_Id := Scope (T);
begin
if Ekind (T) = E_Function then
Check_Expression_Function (N, T);
end if;
if Is_Non_Empty_List (Freeze_Nodes) then
-- If the entity is a type declared in an inner package, it may be
-- frozen by an outer declaration before the package itself is
-- frozen. Install the package scope to analyze the freeze nodes,
-- which may include generated subprograms such as predicate
-- functions, etc.
if Is_Type (T) and then From_Nested_Package (T) then
Push_Scope (Pack);
Install_Visible_Declarations (Pack);
Install_Private_Declarations (Pack);
Insert_Actions (N, Freeze_Nodes);
End_Package_Scope (Pack);
else
Insert_Actions (N, Freeze_Nodes);
end if;
end if;
end Freeze_Before;
-------------------
-- Freeze_Entity --
-------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
function Freeze_Entity
(E : Entity_Id;
N : Node_Id;
Do_Freeze_Profile : Boolean := True) return List_Id
is
Loc : constant Source_Ptr := Sloc (N);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
Atype : Entity_Id;
Comp : Entity_Id;
F_Node : Node_Id;
Formal : Entity_Id;
Indx : Node_Id;
Result : List_Id := No_List;
-- List of freezing actions, left at No_List if none
Test_E : Entity_Id := E;
-- This could use a comment ???
procedure Add_To_Result (Fnod : Node_Id);
-- Add freeze action Fnod to list Result
function After_Last_Declaration return Boolean;
-- If Loc is a freeze_entity that appears after the last declaration
-- in the scope, inhibit error messages on late completion.
procedure Check_Current_Instance (Comp_Decl : Node_Id);
-- Check that an Access or Unchecked_Access attribute with a prefix
-- which is the current instance type can only be applied when the type
-- is limited.
procedure Check_No_Parts_Violations
(Typ : Entity_Id; Aspect_No_Parts : Aspect_Id) with
Pre => Aspect_No_Parts in
Aspect_No_Controlled_Parts | Aspect_No_Task_Parts;
-- Check that Typ does not violate the semantics of the specified
-- Aspect_No_Parts (No_Controlled_Parts or No_Task_Parts) when it is
-- specified on Typ or one of its ancestors.
procedure Check_Suspicious_Convention (Rec_Type : Entity_Id);
-- Give a warning for pragma Convention with language C or C++ applied
-- to a discriminated record type. This is suppressed for the unchecked
-- union case, since the whole point in this case is interface C. We
-- also do not generate this within instantiations, since we will have
-- generated a message on the template.
procedure Check_Suspicious_Modulus (Utype : Entity_Id);
-- Give warning for modulus of 8, 16, 32, 64 or 128 given as an explicit
-- integer literal without an explicit corresponding size clause. The
-- caller has checked that Utype is a modular integer type.
procedure Freeze_Array_Type (Arr : Entity_Id);
-- Freeze array type, including freezing index and component types
procedure Freeze_Object_Declaration (E : Entity_Id);
-- Perform checks and generate freeze node if needed for a constant or
-- variable declared by an object declaration.
function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
-- Create Freeze_Generic_Entity nodes for types declared in a generic
-- package. Recurse on inner generic packages.
function Freeze_Profile (E : Entity_Id) return Boolean;
-- Freeze formals and return type of subprogram. If some type in the
-- profile is incomplete and we are in an instance, freezing of the
-- entity will take place elsewhere, and the function returns False.
procedure Freeze_Record_Type (Rec : Entity_Id);
-- Freeze record type, including freezing component types, and freezing
-- primitive operations if this is a tagged type.
function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
-- Determine whether an arbitrary entity is subject to Boolean aspect
-- Import and its value is specified as True.
procedure Inherit_Freeze_Node
(Fnod : Node_Id;
Typ : Entity_Id);
-- Set type Typ's freeze node to refer to Fnode. This routine ensures
-- that any attributes attached to Typ's original node are preserved.
procedure Wrap_Imported_Subprogram (E : Entity_Id);
-- If E is an entity for an imported subprogram with pre/post-conditions
-- then this procedure will create a wrapper to ensure that proper run-
-- time checking of the pre/postconditions. See body for details.
-------------------
-- Add_To_Result --
-------------------
procedure Add_To_Result (Fnod : Node_Id) is
begin
Append_New_To (Result, Fnod);
end Add_To_Result;
----------------------------
-- After_Last_Declaration --
----------------------------
function After_Last_Declaration return Boolean is
Spec : constant Node_Id := Parent (Current_Scope);
begin
if Nkind (Spec) = N_Package_Specification then
if Present (Private_Declarations (Spec)) then
return Loc >= Sloc (Last (Private_Declarations (Spec)));
elsif Present (Visible_Declarations (Spec)) then
return Loc >= Sloc (Last (Visible_Declarations (Spec)));
else
return False;
end if;
else
return False;
end if;
end After_Last_Declaration;
----------------------------
-- Check_Current_Instance --
----------------------------
procedure Check_Current_Instance (Comp_Decl : Node_Id) is
function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
-- Determine whether Typ is compatible with the rules for aliased
-- views of types as defined in RM 3.10 in the various dialects.
function Process (N : Node_Id) return Traverse_Result;
-- Process routine to apply check to given node
-----------------------------
-- Is_Aliased_View_Of_Type --
-----------------------------
function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
Typ_Decl : constant Node_Id := Parent (Typ);
begin
-- Common case
if Nkind (Typ_Decl) = N_Full_Type_Declaration
and then Limited_Present (Type_Definition (Typ_Decl))
then
return True;
-- The following paragraphs describe what a legal aliased view of
-- a type is in the various dialects of Ada.
-- Ada 95
-- The current instance of a limited type, and a formal parameter
-- or generic formal object of a tagged type.
-- Ada 95 limited type
-- * Type with reserved word "limited"
-- * A protected or task type
-- * A composite type with limited component
elsif Ada_Version <= Ada_95 then
return Is_Limited_Type (Typ);
-- Ada 2005
-- The current instance of a limited tagged type, a protected
-- type, a task type, or a type that has the reserved word
-- "limited" in its full definition ... a formal parameter or
-- generic formal object of a tagged type.
-- Ada 2005 limited type
-- * Type with reserved word "limited", "synchronized", "task"
-- or "protected"
-- * A composite type with limited component
-- * A derived type whose parent is a non-interface limited type
elsif Ada_Version = Ada_2005 then
return
(Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
or else
(Is_Derived_Type (Typ)
and then not Is_Interface (Etype (Typ))
and then Is_Limited_Type (Etype (Typ)));
-- Ada 2012 and beyond
-- The current instance of an immutably limited type ... a formal
-- parameter or generic formal object of a tagged type.
-- Ada 2012 limited type
-- * Type with reserved word "limited", "synchronized", "task"
-- or "protected"
-- * A composite type with limited component
-- * A derived type whose parent is a non-interface limited type
-- * An incomplete view
-- Ada 2012 immutably limited type
-- * Explicitly limited record type
-- * Record extension with "limited" present
-- * Non-formal limited private type that is either tagged
-- or has at least one access discriminant with a default
-- expression
-- * Task type, protected type or synchronized interface
-- * Type derived from immutably limited type
else
return
Is_Immutably_Limited_Type (Typ)
or else Is_Incomplete_Type (Typ);
end if;
end Is_Aliased_View_Of_Type;
-------------
-- Process --
-------------
function Process (N : Node_Id) return Traverse_Result is
begin
case Nkind (N) is
when N_Attribute_Reference =>
if Attribute_Name (N) in Name_Access | Name_Unchecked_Access
and then Is_Entity_Name (Prefix (N))
and then Is_Type (Entity (Prefix (N)))
and then Entity (Prefix (N)) = E
then
if Ada_Version < Ada_2012 then
Error_Msg_N
("current instance must be a limited type",
Prefix (N));
else
Error_Msg_N
("current instance must be an immutably limited "
& "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
end if;
return Abandon;
else
return OK;
end if;
when others =>
return OK;
end case;
end Process;
procedure Traverse is new Traverse_Proc (Process);
-- Local variables
Rec_Type : constant Entity_Id :=
Scope (Defining_Identifier (Comp_Decl));
-- Start of processing for Check_Current_Instance
begin
if not Is_Aliased_View_Of_Type (Rec_Type) then
Traverse (Comp_Decl);
end if;
end Check_Current_Instance;
-------------------------------
-- Check_No_Parts_Violations --
-------------------------------
procedure Check_No_Parts_Violations
(Typ : Entity_Id; Aspect_No_Parts : Aspect_Id)
is
function Find_Aspect_No_Parts
(Typ : Entity_Id) return Node_Id;
-- Search for Aspect_No_Parts on a given type. When
-- the aspect is not explicity specified Empty is returned.
function Get_Aspect_No_Parts_Value
(Typ : Entity_Id) return Entity_Id;
-- Obtain the value for the Aspect_No_Parts on a given
-- type. When the aspect is not explicitly specified Empty is
-- returned.
function Has_Aspect_No_Parts
(Typ : Entity_Id) return Boolean;
-- Predicate function which identifies whether No_Parts
-- is explicitly specified on a given type.
-------------------------------------
-- Find_Aspect_No_Parts --
-------------------------------------
function Find_Aspect_No_Parts
(Typ : Entity_Id) return Node_Id
is
Partial_View : constant Entity_Id :=
Incomplete_Or_Partial_View (Typ);
Aspect_Spec : Entity_Id :=
Find_Aspect (Typ, Aspect_No_Parts);
Curr_Aspect_Spec : Entity_Id;
begin
-- Examine Typ's associated node, when present, since aspect
-- specifications do not get transferred when nodes get rewritten.
-- For example, this can happen in the expansion of array types
if No (Aspect_Spec)
and then Present (Associated_Node_For_Itype (Typ))
and then Nkind (Associated_Node_For_Itype (Typ))
= N_Full_Type_Declaration
then
Aspect_Spec :=
Find_Aspect
(Id => Defining_Identifier
(Associated_Node_For_Itype (Typ)),
A => Aspect_No_Parts);
end if;
-- Examine aspects specifications on private type declarations
-- Should Find_Aspect be improved to handle this case ???
if No (Aspect_Spec)
and then Present (Partial_View)
and then Present
(Aspect_Specifications
(Declaration_Node
(Partial_View)))
then
Curr_Aspect_Spec :=
First
(Aspect_Specifications
(Declaration_Node
(Partial_View)));
-- Search through aspects present on the private type
while Present (Curr_Aspect_Spec) loop
if Get_Aspect_Id (Curr_Aspect_Spec)
= Aspect_No_Parts
then
Aspect_Spec := Curr_Aspect_Spec;
exit;
end if;
Next (Curr_Aspect_Spec);
end loop;
end if;
-- When errors are posted on the aspect return Empty
if Error_Posted (Aspect_Spec) then
return Empty;
end if;
return Aspect_Spec;
end Find_Aspect_No_Parts;
------------------------------------------
-- Get_Aspect_No_Parts_Value --
------------------------------------------
function Get_Aspect_No_Parts_Value
(Typ : Entity_Id) return Entity_Id
is
Aspect_Spec : constant Entity_Id :=
Find_Aspect_No_Parts (Typ);
begin
-- Return the value of the aspect when present
if Present (Aspect_Spec) then
-- No expression is the same as True
if No (Expression (Aspect_Spec)) then
return Standard_True;
end if;
-- Assume its expression has already been constant folded into
-- a Boolean value and return its value.
return Entity (Expression (Aspect_Spec));
end if;
-- Otherwise, the aspect is not specified - so return Empty
return Empty;
end Get_Aspect_No_Parts_Value;
------------------------------------
-- Has_Aspect_No_Parts --
------------------------------------
function Has_Aspect_No_Parts
(Typ : Entity_Id) return Boolean
is (Present (Find_Aspect_No_Parts (Typ)));
-- Generic instances
-------------------------------------------
-- Get_Generic_Formal_Types_In_Hierarchy --
-------------------------------------------
function Get_Generic_Formal_Types_In_Hierarchy
is new Collect_Types_In_Hierarchy (Predicate => Is_Generic_Formal);
-- Return a list of all types within a given type's hierarchy which
-- are generic formals.
----------------------------------------
-- Get_Types_With_Aspect_In_Hierarchy --
----------------------------------------
function Get_Types_With_Aspect_In_Hierarchy
is new Collect_Types_In_Hierarchy
(Predicate => Has_Aspect_No_Parts);
-- Returns a list of all types within a given type's hierarchy which
-- have the Aspect_No_Parts specified.
-- Local declarations
Aspect_Value : Entity_Id;
Curr_Value : Entity_Id;
Curr_Typ_Elmt : Elmt_Id;
Curr_Body_Elmt : Elmt_Id;
Curr_Formal_Elmt : Elmt_Id;
Gen_Bodies : Elist_Id;
Gen_Formals : Elist_Id;
Scop : Entity_Id;
Types_With_Aspect : Elist_Id;
-- Start of processing for Check_No_Parts_Violations
begin
-- Nothing to check if the type is elementary or artificial
if Is_Elementary_Type (Typ) or else not Comes_From_Source (Typ) then
return;
end if;
Types_With_Aspect := Get_Types_With_Aspect_In_Hierarchy (Typ);
-- Nothing to check if there are no types with No_Parts specified
if Is_Empty_Elmt_List (Types_With_Aspect) then
return;
end if;
-- Set name for all errors below
Error_Msg_Name_1 := Aspect_Names (Aspect_No_Parts);
-- Obtain the aspect value for No_Parts for comparison
Aspect_Value :=
Get_Aspect_No_Parts_Value
(Node (First_Elmt (Types_With_Aspect)));
-- When the value is True and there are controlled/task parts or the
-- type itself is controlled/task, trigger the appropriate error.
if Aspect_Value = Standard_True then
if Aspect_No_Parts = Aspect_No_Controlled_Parts then
if Is_Controlled (Typ) or else Has_Controlled_Component (Typ)
then
Error_Msg_N
("aspect % applied to controlled type &", Typ);
end if;
elsif Aspect_No_Parts = Aspect_No_Task_Parts then
if Has_Task (Typ) then
Error_Msg_N
("aspect % applied to task type &", Typ);
end if;
else
raise Program_Error;
end if;
end if;
-- Move through Types_With_Aspect - checking that the value specified
-- for their corresponding Aspect_No_Parts do not override each
-- other.
Curr_Typ_Elmt := First_Elmt (Types_With_Aspect);
while Present (Curr_Typ_Elmt) loop
Curr_Value :=
Get_Aspect_No_Parts_Value (Node (Curr_Typ_Elmt));
-- Compare the aspect value against the current type
if Curr_Value /= Aspect_Value then
Error_Msg_NE
("cannot override aspect % of "
& "ancestor type &", Typ, Node (Curr_Typ_Elmt));
return;
end if;
Next_Elmt (Curr_Typ_Elmt);
end loop;
-- Issue an error if the aspect applies to a type declared inside a
-- generic body and if said type derives from or has a component
-- of ageneric formal type - since those are considered to have
-- controlled/task parts and have Aspect_No_Parts specified as
-- False by default (RM H.4.1(4/5) is about the language-defined
-- No_Controlled_Parts aspect, and we are using the same rules for
-- No_Task_Parts).
-- We do not check tagged types since deriving from a formal type
-- within an enclosing generic unit is already illegal
-- (RM 3.9.1 (4/2)).
if Aspect_Value = Standard_True
and then In_Generic_Body (Typ)
and then not Is_Tagged_Type (Typ)
then
Gen_Bodies := New_Elmt_List;
Gen_Formals :=
Get_Generic_Formal_Types_In_Hierarchy
(Typ => Typ,
Examine_Components => True);
-- Climb scopes collecting generic bodies
Scop := Scope (Typ);
while Present (Scop) and then Scop /= Standard_Standard loop
-- Generic package body
if Ekind (Scop) = E_Generic_Package
and then In_Package_Body (Scop)
then
Append_Elmt (Scop, Gen_Bodies);
-- Generic subprogram body
elsif Is_Generic_Subprogram (Scop) then
Append_Elmt (Scop, Gen_Bodies);
end if;
Scop := Scope (Scop);
end loop;
-- Warn about the improper use of Aspect_No_Parts on a type
-- declaration deriving from or that has a component of a generic
-- formal type within the formal type's corresponding generic
-- body by moving through all formal types in Typ's hierarchy and
-- checking if they are formals in any of the enclosing generic
-- bodies.
-- However, a special exception gets made for formal types which
-- derive from a type which has Aspect_No_Parts True.
-- For example:
-- generic
-- type Form is private;
-- package G is
-- type Type_A is new Form with No_Controlled_Parts; -- OK
-- end;
--
-- package body G is
-- type Type_B is new Form with No_Controlled_Parts; -- ERROR
-- end;
-- generic
-- type Form is private;
-- package G is
-- type Type_A is record C : Form; end record
-- with No_Controlled_Parts; -- OK
-- end;
--
-- package body G is
-- type Type_B is record C : Form; end record
-- with No_Controlled_Parts; -- ERROR
-- end;
-- type Root is tagged null record with No_Controlled_Parts;
--
-- generic
-- type Form is new Root with private;
-- package G is
-- type Type_A is record C : Form; end record
-- with No_Controlled_Parts; -- OK
-- end;
--
-- package body G is
-- type Type_B is record C : Form; end record
-- with No_Controlled_Parts; -- OK
-- end;
Curr_Formal_Elmt := First_Elmt (Gen_Formals);
while Present (Curr_Formal_Elmt) loop
Curr_Body_Elmt := First_Elmt (Gen_Bodies);
while Present (Curr_Body_Elmt) loop
-- Obtain types in the formal type's hierarchy which have
-- the aspect specified.
Types_With_Aspect :=
Get_Types_With_Aspect_In_Hierarchy
(Node (Curr_Formal_Elmt));
-- We found a type declaration in a generic body where both
-- Aspect_No_Parts is true and one of its ancestors is a
-- generic formal type.
if Scope (Node (Curr_Formal_Elmt)) =
Node (Curr_Body_Elmt)
-- Check that no ancestors of the formal type have
-- Aspect_No_Parts True before issuing the error.
and then (Is_Empty_Elmt_List (Types_With_Aspect)
or else
Get_Aspect_No_Parts_Value
(Node (First_Elmt (Types_With_Aspect)))
= Standard_False)
then
Error_Msg_Node_1 := Typ;
Error_Msg_Node_2 := Node (Curr_Formal_Elmt);
Error_Msg
("aspect % cannot be applied to "
& "type & which has an ancestor or component of "
& "formal type & within the formal type's "
& "corresponding generic body", Sloc (Typ));
end if;
Next_Elmt (Curr_Body_Elmt);
end loop;
Next_Elmt (Curr_Formal_Elmt);
end loop;
end if;
end Check_No_Parts_Violations;
---------------------------------
-- Check_Suspicious_Convention --
---------------------------------
procedure Check_Suspicious_Convention (Rec_Type : Entity_Id) is
begin
if Has_Discriminants (Rec_Type)
and then Is_Base_Type (Rec_Type)
and then not Is_Unchecked_Union (Rec_Type)
and then (Convention (Rec_Type) = Convention_C
or else
Convention (Rec_Type) = Convention_CPP)
and then Comes_From_Source (Rec_Type)
and then not In_Instance
and then not Has_Warnings_Off (Rec_Type)
then
declare
Cprag : constant Node_Id :=
Get_Rep_Pragma (Rec_Type, Name_Convention);
A2 : Node_Id;
begin
if Present (Cprag) then
A2 := Next (First (Pragma_Argument_Associations (Cprag)));
if Convention (Rec_Type) = Convention_C then
Error_Msg_N
("?x?discriminated record has no direct equivalent in "
& "C", A2);
else
Error_Msg_N
("?x?discriminated record has no direct equivalent in "
& "C++", A2);
end if;
Error_Msg_NE
("\?x?use of convention for type& is dubious",
A2, Rec_Type);
end if;
end;
end if;
end Check_Suspicious_Convention;
------------------------------
-- Check_Suspicious_Modulus --
------------------------------
procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
begin
if not Warn_On_Suspicious_Modulus_Value then
return;
end if;
if Nkind (Decl) = N_Full_Type_Declaration then
declare
Tdef : constant Node_Id := Type_Definition (Decl);
begin
if Nkind (Tdef) = N_Modular_Type_Definition then
declare
Modulus : constant Node_Id :=
Original_Node (Expression (Tdef));
begin
if Nkind (Modulus) = N_Integer_Literal then
declare
Modv : constant Uint := Intval (Modulus);
Sizv : constant Uint := RM_Size (Utype);
begin
-- First case, modulus and size are the same. This
-- happens if you have something like mod 32, with
-- an explicit size of 32, this is for sure a case
-- where the warning is given, since it is seems
-- very unlikely that someone would want e.g. a
-- five bit type stored in 32 bits. It is much
-- more likely they wanted a 32-bit type.
if Modv = Sizv then
null;
-- Second case, the modulus is 32 or 64 and no
-- size clause is present. This is a less clear
-- case for giving the warning, but in the case
-- of 32/64 (5-bit or 6-bit types) these seem rare
-- enough that it is a likely error (and in any
-- case using 2**5 or 2**6 in these cases seems
-- clearer. We don't include 8 or 16 here, simply
-- because in practice 3-bit and 4-bit types are
-- more common and too many false positives if
-- we warn in these cases.
elsif not Has_Size_Clause (Utype)
and then (Modv = Uint_32 or else Modv = Uint_64)
then
null;
-- No warning needed
else
return;
end if;
-- If we fall through, give warning
Error_Msg_Uint_1 := Modv;
Error_Msg_N
("?M?2 '*'*^' may have been intended here",
Modulus);
end;
end if;
end;
end if;
end;
end if;
end Check_Suspicious_Modulus;
-----------------------
-- Freeze_Array_Type --
-----------------------
procedure Freeze_Array_Type (Arr : Entity_Id) is
FS : constant Entity_Id := First_Subtype (Arr);
Ctyp : constant Entity_Id := Component_Type (Arr);
Clause : Entity_Id;
Non_Standard_Enum : Boolean := False;
-- Set true if any of the index types is an enumeration type with a
-- non-standard representation.
begin
Freeze_And_Append (Ctyp, N, Result);
Indx := First_Index (Arr);
while Present (Indx) loop
Freeze_And_Append (Etype (Indx), N, Result);
if Is_Enumeration_Type (Etype (Indx))
and then Has_Non_Standard_Rep (Etype (Indx))
then
Non_Standard_Enum := True;
end if;
Next_Index (Indx);
end loop;
-- Processing that is done only for base types
if Ekind (Arr) = E_Array_Type then
-- Deal with default setting of reverse storage order
Set_SSO_From_Default (Arr);
-- Propagate flags for component type
if Is_Controlled (Ctyp)
or else Has_Controlled_Component (Ctyp)
then
Set_Has_Controlled_Component (Arr);
end if;
if Has_Unchecked_Union (Ctyp) then
Set_Has_Unchecked_Union (Arr);
end if;
-- The array type requires its own invariant procedure in order to
-- verify the component invariant over all elements. In GNATprove
-- mode, the component invariants are checked by other means. They
-- should not be added to the array type invariant procedure, so
-- that the procedure can be used to check the array type
-- invariants if any.
if Has_Invariants (Ctyp)
and then not GNATprove_Mode
then
Set_Has_Own_Invariants (Arr);
end if;
-- Warn for pragma Pack overriding foreign convention
if Has_Foreign_Convention (Ctyp)
and then Has_Pragma_Pack (Arr)
then
declare
CN : constant Name_Id :=
Get_Convention_Name (Convention (Ctyp));
PP : constant Node_Id :=
Get_Pragma (First_Subtype (Arr), Pragma_Pack);
begin
if Present (PP) then
Error_Msg_Name_1 := CN;
Error_Msg_Sloc := Sloc (Arr);
Error_Msg_N
("pragma Pack affects convention % components #??", PP);
Error_Msg_Name_1 := CN;
Error_Msg_N
("\array components may not have % compatible "
& "representation??", PP);
end if;
end;
end if;
-- Check for Aliased or Atomic_Components or Full Access with
-- unsuitable packing or explicit component size clause given.
if (Has_Aliased_Components (Arr)
or else Has_Atomic_Components (Arr)
or else Is_Full_Access (Ctyp))
and then
(Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
then
Alias_Atomic_Check : declare
procedure Complain_CS (T : String);
-- Outputs error messages for incorrect CS clause or pragma
-- Pack for aliased or full access components (T is either
-- "aliased" or "atomic" or "volatile full access");
-----------------
-- Complain_CS --
-----------------
procedure Complain_CS (T : String) is
begin
if Has_Component_Size_Clause (Arr) then
Clause :=
Get_Attribute_Definition_Clause
(FS, Attribute_Component_Size);
Error_Msg_N
("incorrect component size for "
& T & " components", Clause);
Error_Msg_Uint_1 := Esize (Ctyp);
Error_Msg_N
("\only allowed value is^", Clause);
else
Error_Msg_N
("?cannot pack " & T & " components (RM 13.2(7))",
Get_Rep_Pragma (FS, Name_Pack));
Set_Is_Packed (Arr, False);
end if;
end Complain_CS;
-- Start of processing for Alias_Atomic_Check
begin
-- If object size of component type isn't known, we cannot
-- be sure so we defer to the back end.
if not Known_Static_Esize (Ctyp) then
null;
-- Case where component size has no effect. First check for
-- object size of component type multiple of the storage
-- unit size.
elsif Esize (Ctyp) mod System_Storage_Unit = 0
-- OK in both packing case and component size case if RM
-- size is known and static and same as the object size.
and then
((Known_Static_RM_Size (Ctyp)
and then Esize (Ctyp) = RM_Size (Ctyp))
-- Or if we have an explicit component size clause and
-- the component size and object size are equal.
or else
(Has_Component_Size_Clause (Arr)
and then Component_Size (Arr) = Esize (Ctyp)))
then
null;
elsif Has_Aliased_Components (Arr) then
Complain_CS ("aliased");
elsif Has_Atomic_Components (Arr)
or else Is_Atomic (Ctyp)
then
Complain_CS ("atomic");
elsif Is_Volatile_Full_Access (Ctyp) then
Complain_CS ("volatile full access");
end if;
end Alias_Atomic_Check;
end if;
-- Check for Independent_Components/Independent with unsuitable
-- packing or explicit component size clause given.
if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
and then
(Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
then
begin
-- If object size of component type isn't known, we cannot
-- be sure so we defer to the back end.
if not Known_Static_Esize (Ctyp) then
null;
-- Case where component size has no effect. First check for
-- object size of component type multiple of the storage
-- unit size.
elsif Esize (Ctyp) mod System_Storage_Unit = 0
-- OK in both packing case and component size case if RM
-- size is known and multiple of the storage unit size.
and then
((Known_Static_RM_Size (Ctyp)
and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
-- Or if we have an explicit component size clause and
-- the component size is larger than the object size.
or else
(Has_Component_Size_Clause (Arr)
and then Component_Size (Arr) >= Esize (Ctyp)))
then
null;
else
if Has_Component_Size_Clause (Arr) then
Clause :=
Get_Attribute_Definition_Clause
(FS, Attribute_Component_Size);
Error_Msg_N
("incorrect component size for "
& "independent components", Clause);
Error_Msg_Uint_1 := Esize (Ctyp);
Error_Msg_N
("\minimum allowed is^", Clause);
else
Error_Msg_N
("?cannot pack independent components (RM 13.2(7))",
Get_Rep_Pragma (FS, Name_Pack));
Set_Is_Packed (Arr, False);
end if;
end if;
end;
end if;
-- If packing was requested or if the component size was
-- set explicitly, then see if bit packing is required. This
-- processing is only done for base types, since all of the
-- representation aspects involved are type-related.
-- This is not just an optimization, if we start processing the
-- subtypes, they interfere with the settings on the base type
-- (this is because Is_Packed has a slightly different meaning
-- before and after freezing).
declare
Csiz : Uint;
Esiz : Uint;
begin
if Is_Packed (Arr)
and then Known_Static_RM_Size (Ctyp)
and then not Has_Component_Size_Clause (Arr)
then
Csiz := UI_Max (RM_Size (Ctyp), 1);
elsif Known_Component_Size (Arr) then
Csiz := Component_Size (Arr);
elsif not Known_Static_Esize (Ctyp) then
Csiz := Uint_0;
else
Esiz := Esize (Ctyp);
-- We can set the component size if it is less than 16,
-- rounding it up to the next storage unit size.
if Esiz <= 8 then
Csiz := Uint_8;
elsif Esiz <= 16 then
Csiz := Uint_16;
else
Csiz := Uint_0;
end if;
-- Set component size up to match alignment if it would
-- otherwise be less than the alignment. This deals with
-- cases of types whose alignment exceeds their size (the
-- padded type cases).
if Csiz /= 0 and then Known_Alignment (Ctyp) then
declare
A : constant Uint := Alignment_In_Bits (Ctyp);
begin
if Csiz < A then
Csiz := A;
end if;
end;
end if;
end if;
-- Case of component size that may result in bit packing
if 1 <= Csiz and then Csiz <= System_Max_Integer_Size then
declare
Ent : constant Entity_Id :=
First_Subtype (Arr);
Pack_Pragma : constant Node_Id :=
Get_Rep_Pragma (Ent, Name_Pack);
Comp_Size_C : constant Node_Id :=
Get_Attribute_Definition_Clause
(Ent, Attribute_Component_Size);
begin
-- Warn if we have pack and component size so that the
-- pack is ignored.
-- Note: here we must check for the presence of a
-- component size before checking for a Pack pragma to
-- deal with the case where the array type is a derived
-- type whose parent is currently private.
if Present (Comp_Size_C)
and then Has_Pragma_Pack (Ent)
and then Warn_On_Redundant_Constructs
then
Error_Msg_Sloc := Sloc (Comp_Size_C);
Error_Msg_NE
("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
Error_Msg_N
("\?r?explicit component size given#!", Pack_Pragma);
Set_Is_Packed (Base_Type (Ent), False);
Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
end if;
-- Set component size if not already set by a component
-- size clause.
if not Present (Comp_Size_C) then
Set_Component_Size (Arr, Csiz);
end if;
-- Check for base type of 8, 16, 32 bits, where an
-- unsigned subtype has a length one less than the
-- base type (e.g. Natural subtype of Integer).
-- In such cases, if a component size was not set
-- explicitly, then generate a warning.
if Has_Pragma_Pack (Arr)
and then not Present (Comp_Size_C)
and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
and then Esize (Base_Type (Ctyp)) = Csiz + 1
then
Error_Msg_Uint_1 := Csiz;
if Present (Pack_Pragma) then
Error_Msg_N
("??pragma Pack causes component size to be ^!",
Pack_Pragma);
Error_Msg_N
("\??use Component_Size to set desired value!",
Pack_Pragma);
end if;
end if;
-- Bit packing is never needed for 8, 16, 32, 64 or 128
if Addressable (Csiz) then
-- If the Esize of the component is known and equal to
-- the component size then even packing is not needed.
if Known_Static_Esize (Ctyp)
and then Esize (Ctyp) = Csiz
then
-- Here the array was requested to be packed, but
-- the packing request had no effect whatsoever,
-- so flag Is_Packed is reset.
-- Note: semantically this means that we lose track
-- of the fact that a derived type inherited pragma
-- Pack that was non-effective, but that is fine.
-- We regard a Pack pragma as a request to set a
-- representation characteristic, and this request
-- may be ignored.
Set_Is_Packed (Base_Type (Arr), False);
Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
else
Set_Is_Packed (Base_Type (Arr), True);
Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
end if;
Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
-- Bit packing is not needed for multiples of the storage
-- unit if the type is composite because the back end can
-- byte pack composite types efficiently. That's not true
-- for discrete types because every read would generate a
-- lot of instructions, so we keep using the manipulation
-- routines of the runtime for them.
elsif Csiz mod System_Storage_Unit = 0
and then Is_Composite_Type (Ctyp)
then
Set_Is_Packed (Base_Type (Arr), True);
Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
-- In all other cases, bit packing is needed
else
Set_Is_Packed (Base_Type (Arr), True);
Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
end if;
end;
end if;
end;
-- Warn for case of atomic type
Clause := Get_Rep_Pragma (FS, Name_Atomic);
if Present (Clause)
and then not Addressable (Component_Size (FS))
then
Error_Msg_NE
("non-atomic components of type& may not be "
& "accessible by separate tasks??", Clause, Arr);
if Has_Component_Size_Clause (Arr) then
Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
(FS, Attribute_Component_Size));
Error_Msg_N ("\because of component size clause#??", Clause);
elsif Has_Pragma_Pack (Arr) then
Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
Error_Msg_N ("\because of pragma Pack#??", Clause);
end if;
end if;
-- Check for scalar storage order
declare
Dummy : Boolean;
begin
Check_Component_Storage_Order
(Encl_Type => Arr,
Comp => Empty,
ADC => Get_Attribute_Definition_Clause
(First_Subtype (Arr),
Attribute_Scalar_Storage_Order),
Comp_ADC_Present => Dummy);
end;
-- Processing that is done only for subtypes
else
-- Acquire alignment from base type. Known_Alignment of the base
-- type is False for Wide_String, for example.
if not Known_Alignment (Arr)
and then Known_Alignment (Base_Type (Arr))
then
Set_Alignment (Arr, Alignment (Base_Type (Arr)));
Adjust_Esize_Alignment (Arr);
end if;
end if;
-- Specific checks for bit-packed arrays
if Is_Bit_Packed_Array (Arr) then
-- Check number of elements for bit-packed arrays that come from
-- source and have compile time known ranges. The bit-packed
-- arrays circuitry does not support arrays with more than
-- Integer'Last + 1 elements, and when this restriction is
-- violated, causes incorrect data access.
-- For the case where this is not compile time known, a run-time
-- check should be generated???
if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
declare
Elmts : Uint;
Index : Node_Id;
Ilen : Node_Id;
Ityp : Entity_Id;
begin
Elmts := Uint_1;
Index := First_Index (Arr);
while Present (Index) loop
Ityp := Etype (Index);
-- Never generate an error if any index is of a generic
-- type. We will check this in instances.
if Is_Generic_Type (Ityp) then
Elmts := Uint_0;
exit;
end if;
Ilen :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Range_Length);
Analyze_And_Resolve (Ilen);
-- No attempt is made to check number of elements if not
-- compile time known.
if Nkind (Ilen) /= N_Integer_Literal then
Elmts := Uint_0;
exit;
end if;
Elmts := Elmts * Intval (Ilen);
Next_Index (Index);
end loop;
if Elmts > Intval (High_Bound
(Scalar_Range (Standard_Integer))) + 1
then
Error_Msg_N
("bit packed array type may not have "
& "more than Integer''Last+1 elements", Arr);
end if;
end;
end if;
-- Check size
if Known_RM_Size (Arr) then
declare
SizC : constant Node_Id := Size_Clause (Arr);
Discard : Boolean;
begin
-- It is not clear if it is possible to have no size clause
-- at this stage, but it is not worth worrying about. Post
-- error on the entity name in the size clause if present,
-- else on the type entity itself.
if Present (SizC) then
Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
else
Check_Size (Arr, Arr, RM_Size (Arr), Discard);
end if;
end;
end if;
end if;
-- If any of the index types was an enumeration type with a non-
-- standard rep clause, then we indicate that the array type is
-- always packed (even if it is not bit-packed).
if Non_Standard_Enum then
Set_Has_Non_Standard_Rep (Base_Type (Arr));
Set_Is_Packed (Base_Type (Arr));
end if;
Set_Component_Alignment_If_Not_Set (Arr);
-- If the array is packed and bit-packed or packed to eliminate holes
-- in the non-contiguous enumeration index types, we must create the
-- packed array type to be used to actually implement the type. This
-- is only needed for real array types (not for string literal types,
-- since they are present only for the front end).
if Is_Packed (Arr)
and then (Is_Bit_Packed_Array (Arr) or else Non_Standard_Enum)
and then Ekind (Arr) /= E_String_Literal_Subtype
then
Create_Packed_Array_Impl_Type (Arr);
Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
-- Make sure that we have the necessary routines to implement the
-- packing, and complain now if not. Note that we only test this
-- for constrained array types.
if Is_Constrained (Arr)
and then Is_Bit_Packed_Array (Arr)
and then Present (Packed_Array_Impl_Type (Arr))
and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
then
declare
CS : constant Uint := Component_Size (Arr);
RE : constant RE_Id := Get_Id (UI_To_Int (CS));
begin
if RE /= RE_Null
and then not RTE_Available (RE)
then
Error_Msg_CRT
("packing of " & UI_Image (CS) & "-bit components",
First_Subtype (Etype (Arr)));
-- Cancel the packing
Set_Is_Packed (Base_Type (Arr), False);
Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
Set_Packed_Array_Impl_Type (Arr, Empty);
goto Skip_Packed;
end if;
end;
end if;
-- Size information of packed array type is copied to the array
-- type, since this is really the representation. But do not
-- override explicit existing size values. If the ancestor subtype
-- is constrained the Packed_Array_Impl_Type will be inherited
-- from it, but the size may have been provided already, and
-- must not be overridden either.
if not Has_Size_Clause (Arr)
and then
(No (Ancestor_Subtype (Arr))
or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
then
Copy_Esize (To => Arr, From => Packed_Array_Impl_Type (Arr));
Copy_RM_Size (To => Arr, From => Packed_Array_Impl_Type (Arr));
end if;
if not Has_Alignment_Clause (Arr) then
Copy_Alignment
(To => Arr, From => Packed_Array_Impl_Type (Arr));
end if;
end if;
<<Skip_Packed>>
-- A Ghost type cannot have a component of protected or task type
-- (SPARK RM 6.9(19)).
if Is_Ghost_Entity (Arr) and then Is_Concurrent_Type (Ctyp) then
Error_Msg_N
("ghost array type & cannot have concurrent component type",
Arr);
end if;
end Freeze_Array_Type;
-------------------------------
-- Freeze_Object_Declaration --
-------------------------------
procedure Freeze_Object_Declaration (E : Entity_Id) is
procedure Check_Large_Modular_Array (Typ : Entity_Id);
-- Check that the size of array type Typ can be computed without
-- overflow, and generates a Storage_Error otherwise. This is only
-- relevant for array types whose index has System_Max_Integer_Size
-- bits, where wrap-around arithmetic might yield a meaningless value
-- for the length of the array, or its corresponding attribute.
procedure Check_Pragma_Thread_Local_Storage (Var_Id : Entity_Id);
-- Ensure that the initialization state of variable Var_Id subject
-- to pragma Thread_Local_Storage agrees with the semantics of the
-- pragma.
function Has_Default_Initialization
(Obj_Id : Entity_Id) return Boolean;
-- Determine whether object Obj_Id default initialized
-------------------------------
-- Check_Large_Modular_Array --
-------------------------------
procedure Check_Large_Modular_Array (Typ : Entity_Id) is
Obj_Loc : constant Source_Ptr := Sloc (E);
Idx_Typ : Entity_Id;
begin
-- Nothing to do when expansion is disabled because this routine
-- generates a runtime check.
if not Expander_Active then
return;
-- Nothing to do for String literal subtypes because their index
-- cannot be a modular type.
elsif Ekind (Typ) = E_String_Literal_Subtype then
return;
-- Nothing to do for an imported object because the object will
-- be created on the exporting side.
elsif Is_Imported (E) then
return;
-- Nothing to do for unconstrained array types. This case arises
-- when the object declaration is illegal.
elsif not Is_Constrained (Typ) then
return;
end if;
Idx_Typ := Etype (First_Index (Typ));
-- To prevent arithmetic overflow with large values, we raise
-- Storage_Error under the following guard:
--
-- (Arr'Last / 2 - Arr'First / 2) > (2 ** 30)
--
-- This takes care of the boundary case, but it is preferable to
-- use a smaller limit, because even on 64-bit architectures an
-- array of more than 2 ** 30 bytes is likely to raise
-- Storage_Error.
if Is_Modular_Integer_Type (Idx_Typ)
and then RM_Size (Idx_Typ) = RM_Size (Standard_Long_Long_Integer)
then
Insert_Action (Declaration_Node (E),
Make_Raise_Storage_Error (Obj_Loc,
Condition =>
Make_Op_Ge (Obj_Loc,
Left_Opnd =>
Make_Op_Subtract (Obj_Loc,
Left_Opnd =>
Make_Op_Divide (Obj_Loc,
Left_Opnd =>
Make_Attribute_Reference (Obj_Loc,
Prefix =>
New_Occurrence_Of (Typ, Obj_Loc),
Attribute_Name => Name_Last),
Right_Opnd =>
Make_Integer_Literal (Obj_Loc, Uint_2)),
Right_Opnd =>
Make_Op_Divide (Obj_Loc,
Left_Opnd =>
Make_Attribute_Reference (Obj_Loc,
Prefix =>
New_Occurrence_Of (Typ, Obj_Loc),
Attribute_Name => Name_First),
Right_Opnd =>
Make_Integer_Literal (Obj_Loc, Uint_2))),
Right_Opnd =>
Make_Integer_Literal (Obj_Loc, (Uint_2 ** 30))),
Reason => SE_Object_Too_Large));
end if;
end Check_Large_Modular_Array;
---------------------------------------
-- Check_Pragma_Thread_Local_Storage --
---------------------------------------
procedure Check_Pragma_Thread_Local_Storage (Var_Id : Entity_Id) is
function Has_Incompatible_Initialization
(Var_Decl : Node_Id) return Boolean;
-- Determine whether variable Var_Id with declaration Var_Decl is
-- initialized with a value that violates the semantics of pragma
-- Thread_Local_Storage.
-------------------------------------
-- Has_Incompatible_Initialization --
-------------------------------------
function Has_Incompatible_Initialization
(Var_Decl : Node_Id) return Boolean
is
Init_Expr : constant Node_Id := Expression (Var_Decl);
begin
-- The variable is default-initialized. This directly violates
-- the semantics of the pragma.
if Has_Default_Initialization (Var_Id) then
return True;
-- The variable has explicit initialization. In this case only
-- a handful of values satisfy the semantics of the pragma.
elsif Has_Init_Expression (Var_Decl)
and then Present (Init_Expr)
then
-- "null" is a legal form of initialization
if Nkind (Init_Expr) = N_Null then
return False;
-- A static expression is a legal form of initialization
elsif Is_Static_Expression (Init_Expr) then
return False;
-- A static aggregate is a legal form of initialization
elsif Nkind (Init_Expr) = N_Aggregate
and then Compile_Time_Known_Aggregate (Init_Expr)
then
return False;
-- All other initialization expressions violate the semantic
-- of the pragma.
else
return True;
end if;
-- The variable lacks any kind of initialization, which agrees
-- with the semantics of the pragma.
else
return False;
end if;
end Has_Incompatible_Initialization;
-- Local declarations
Var_Decl : constant Node_Id := Declaration_Node (Var_Id);
-- Start of processing for Check_Pragma_Thread_Local_Storage
begin
-- A variable whose initialization is suppressed lacks any kind of
-- initialization.
if Suppress_Initialization (Var_Id) then
null;
-- The variable has default initialization, or is explicitly
-- initialized to a value other than null, static expression,
-- or a static aggregate.
elsif Has_Incompatible_Initialization (Var_Decl) then
Error_Msg_NE
("Thread_Local_Storage variable& is improperly initialized",
Var_Decl, Var_Id);
Error_Msg_NE
("\only allowed initialization is explicit NULL, static "
& "expression or static aggregate", Var_Decl, Var_Id);
end if;
end Check_Pragma_Thread_Local_Storage;
--------------------------------
-- Has_Default_Initialization --
--------------------------------
function Has_Default_Initialization
(Obj_Id : Entity_Id) return Boolean
is
Obj_Decl : constant Node_Id := Declaration_Node (Obj_Id);
Obj_Typ : constant Entity_Id := Etype (Obj_Id);
begin
return
Comes_From_Source (Obj_Id)
and then not Is_Imported (Obj_Id)
and then not Has_Init_Expression (Obj_Decl)
and then
((Has_Non_Null_Base_Init_Proc (Obj_Typ)
and then not No_Initialization (Obj_Decl)
and then not Initialization_Suppressed (Obj_Typ))
or else
(Needs_Simple_Initialization (Obj_Typ)
and then not Is_Internal (Obj_Id)));
end Has_Default_Initialization;
-- Local variables
Typ : constant Entity_Id := Etype (E);
Def : Node_Id;
-- Start of processing for Freeze_Object_Declaration
begin
-- Abstract type allowed only for C++ imported variables or constants
-- Note: we inhibit this check for objects that do not come from
-- source because there is at least one case (the expansion of
-- x'Class'Input where x is abstract) where we legitimately
-- generate an abstract object.
if Is_Abstract_Type (Typ)
and then Comes_From_Source (Parent (E))
and then not (Is_Imported (E) and then Is_CPP_Class (Typ))
then
Def := Object_Definition (Parent (E));
Error_Msg_N ("type of object cannot be abstract", Def);
if Is_CPP_Class (Etype (E)) then
Error_Msg_NE ("\} may need a cpp_constructor", Def, Typ);
elsif Present (Expression (Parent (E))) then
Error_Msg_N -- CODEFIX
("\maybe a class-wide type was meant", Def);
end if;
end if;
-- For object created by object declaration, perform required
-- categorization (preelaborate and pure) checks. Defer these
-- checks to freeze time since pragma Import inhibits default
-- initialization and thus pragma Import affects these checks.
Validate_Object_Declaration (Declaration_Node (E));
-- If there is an address clause, check that it is valid and if need
-- be move initialization to the freeze node.
Check_Address_Clause (E);
-- Similar processing is needed for aspects that may affect object
-- layout, like Address, if there is an initialization expression.
-- We don't do this if there is a pragma Linker_Section, because it
-- would prevent the back end from statically initializing the
-- object; we don't want elaboration code in that case.
if Has_Delayed_Aspects (E)
and then Expander_Active
and then Is_Array_Type (Typ)
and then Present (Expression (Declaration_Node (E)))
and then No (Linker_Section_Pragma (E))
then
declare
Decl : constant Node_Id := Declaration_Node (E);
Lhs : constant Node_Id := New_Occurrence_Of (E, Loc);
begin
-- Capture initialization value at point of declaration, and
-- make explicit assignment legal, because object may be a
-- constant.
Remove_Side_Effects (Expression (Decl));
Set_Assignment_OK (Lhs);
-- Move initialization to freeze actions
Append_Freeze_Action (E,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Expression (Decl)));
Set_No_Initialization (Decl);
-- Set_Is_Frozen (E, False);
end;
end if;
-- Reset Is_True_Constant for non-constant aliased object. We
-- consider that the fact that a non-constant object is aliased may
-- indicate that some funny business is going on, e.g. an aliased
-- object is passed by reference to a procedure which captures the
-- address of the object, which is later used to assign a new value,
-- even though the compiler thinks that it is not modified. Such
-- code is highly dubious, but we choose to make it "work" for
-- non-constant aliased objects.
-- Note that we used to do this for all aliased objects, whether or
-- not constant, but this caused anomalies down the line because we
-- ended up with static objects that were not Is_True_Constant. Not
-- resetting Is_True_Constant for (aliased) constant objects ensures
-- that this anomaly never occurs.
-- However, we don't do that for internal entities. We figure that if
-- we deliberately set Is_True_Constant for an internal entity, e.g.
-- a dispatch table entry, then we mean it.
if Ekind (E) /= E_Constant
and then (Is_Aliased (E) or else Is_Aliased (Typ))
and then not Is_Internal_Name (Chars (E))
then
Set_Is_True_Constant (E, False);
end if;
-- If the object needs any kind of default initialization, an error
-- must be issued if No_Default_Initialization applies. The check
-- doesn't apply to imported objects, which are not ever default
-- initialized, and is why the check is deferred until freezing, at
-- which point we know if Import applies. Deferred constants are also
-- exempted from this test because their completion is explicit, or
-- through an import pragma.
if Ekind (E) = E_Constant and then Present (Full_View (E)) then
null;
elsif Has_Default_Initialization (E) then
Check_Restriction
(No_Default_Initialization, Declaration_Node (E));
end if;
-- Ensure that a variable subject to pragma Thread_Local_Storage
--
-- * Lacks default initialization, or
--
-- * The initialization expression is either "null", a static
-- constant, or a compile-time known aggregate.
if Has_Pragma_Thread_Local_Storage (E) then
Check_Pragma_Thread_Local_Storage (E);
end if;
-- For imported objects, set Is_Public unless there is also an
-- address clause, which means that there is no external symbol
-- needed for the Import (Is_Public may still be set for other
-- unrelated reasons). Note that we delayed this processing
-- till freeze time so that we can be sure not to set the flag
-- if there is an address clause. If there is such a clause,
-- then the only purpose of the Import pragma is to suppress
-- implicit initialization.
if Is_Imported (E) and then No (Address_Clause (E)) then
Set_Is_Public (E);
end if;
-- For source objects that are not Imported and are library level, if
-- no linker section pragma was given inherit the appropriate linker
-- section from the corresponding type.
if Comes_From_Source (E)
and then not Is_Imported (E)
and then Is_Library_Level_Entity (E)
and then No (Linker_Section_Pragma (E))
then
Set_Linker_Section_Pragma (E, Linker_Section_Pragma (Typ));
end if;
-- For convention C objects of an enumeration type, warn if the size
-- is not integer size and no explicit size given. Skip warning for
-- Boolean and Character, and assume programmer expects 8-bit sizes
-- for these cases.
if (Convention (E) = Convention_C
or else
Convention (E) = Convention_CPP)
and then Is_Enumeration_Type (Typ)
and then not Is_Character_Type (Typ)
and then not Is_Boolean_Type (Typ)
and then Esize (Typ) < Standard_Integer_Size
and then not Has_Size_Clause (E)
then
Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
Error_Msg_N
("??convention C enumeration object has size less than ^", E);
Error_Msg_N ("\??use explicit size clause to set size", E);
end if;
-- Declaring too big an array in disabled ghost code is OK
if Is_Array_Type (Typ) and then not Is_Ignored_Ghost_Entity (E) then
Check_Large_Modular_Array (Typ);
end if;
end Freeze_Object_Declaration;
-----------------------------
-- Freeze_Generic_Entities --
-----------------------------
function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
E : Entity_Id;
F : Node_Id;
Flist : List_Id;
begin
Flist := New_List;
E := First_Entity (Pack);
while Present (E) loop
if Is_Type (E) and then not Is_Generic_Type (E) then
F := Make_Freeze_Generic_Entity (Sloc (Pack));
Set_Entity (F, E);
Append_To (Flist, F);
elsif Ekind (E) = E_Generic_Package then
Append_List_To (Flist, Freeze_Generic_Entities (E));
end if;
Next_Entity (E);
end loop;
return Flist;
end Freeze_Generic_Entities;
--------------------
-- Freeze_Profile --
--------------------
function Freeze_Profile (E : Entity_Id) return Boolean is
F_Type : Entity_Id;
R_Type : Entity_Id;
Warn_Node : Node_Id;
begin
-- Loop through formals
Formal := First_Formal (E);
while Present (Formal) loop
F_Type := Etype (Formal);
-- AI05-0151: incomplete types can appear in a profile. By the
-- time the entity is frozen, the full view must be available,
-- unless it is a limited view.
if Is_Incomplete_Type (F_Type)
and then Present (Full_View (F_Type))
and then not From_Limited_With (F_Type)
then
F_Type := Full_View (F_Type);
Set_Etype (Formal, F_Type);
end if;
if not From_Limited_With (F_Type)
and then Should_Freeze_Type (F_Type, E)
then
Freeze_And_Append (F_Type, N, Result);
end if;
if Is_Private_Type (F_Type)
and then Is_Private_Type (Base_Type (F_Type))
and then No (Full_View (Base_Type (F_Type)))
and then not Is_Generic_Type (F_Type)
and then not Is_Derived_Type (F_Type)
then
-- If the type of a formal is incomplete, subprogram is being
-- frozen prematurely. Within an instance (but not within a
-- wrapper package) this is an artifact of our need to regard
-- the end of an instantiation as a freeze point. Otherwise it
-- is a definite error.
if In_Instance then
Set_Is_Frozen (E, False);
Result := No_List;
return False;
elsif not After_Last_Declaration
and then not Freezing_Library_Level_Tagged_Type
then
Error_Msg_NE
("type & must be fully defined before this point",
N,
F_Type);
end if;
end if;
-- Check suspicious parameter for C function. These tests apply
-- only to exported/imported subprograms.
if Warn_On_Export_Import
and then Comes_From_Source (E)
and then Convention (E) in Convention_C_Family
and then (Is_Imported (E) or else Is_Exported (E))
and then Convention (E) /= Convention (Formal)
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (F_Type)
and then not Has_Warnings_Off (Formal)
then
-- Qualify mention of formals with subprogram name
Error_Msg_Qual_Level := 1;
-- Check suspicious use of fat C pointer, but do not emit
-- a warning on an access to subprogram when unnesting is
-- active.
if Is_Access_Type (F_Type)
and then Known_Esize (F_Type)
and then Esize (F_Type) > Ttypes.System_Address_Size
and then (not Unnest_Subprogram_Mode
or else not Is_Access_Subprogram_Type (F_Type))
then
Error_Msg_N
("?x?type of & does not correspond to C pointer!", Formal);
-- Check suspicious return of boolean
elsif Root_Type (F_Type) = Standard_Boolean
and then Convention (F_Type) = Convention_Ada
and then not Has_Warnings_Off (F_Type)
and then not Has_Size_Clause (F_Type)
then
Error_Msg_N
("& is an 8-bit Ada Boolean?x?", Formal);
Error_Msg_N
("\use appropriate corresponding type in C "
& "(e.g. char)?x?", Formal);
-- Check suspicious tagged type
elsif (Is_Tagged_Type (F_Type)
or else
(Is_Access_Type (F_Type)
and then Is_Tagged_Type (Designated_Type (F_Type))))
and then Convention (E) = Convention_C
then
Error_Msg_N
("?x?& involves a tagged type which does not "
& "correspond to any C type!", Formal);
-- Check wrong convention subprogram pointer
elsif Ekind (F_Type) = E_Access_Subprogram_Type
and then not Has_Foreign_Convention (F_Type)
then
Error_Msg_N
("?x?subprogram pointer & should "
& "have foreign convention!", Formal);
Error_Msg_Sloc := Sloc (F_Type);
Error_Msg_NE
("\?x?add Convention pragma to declaration of &#",
Formal, F_Type);
end if;
-- Turn off name qualification after message output
Error_Msg_Qual_Level := 0;
end if;
-- Check for unconstrained array in exported foreign convention
-- case.
if Has_Foreign_Convention (E)
and then not Is_Imported (E)
and then Is_Array_Type (F_Type)
and then not Is_Constrained (F_Type)
and then Warn_On_Export_Import
then
Error_Msg_Qual_Level := 1;
-- If this is an inherited operation, place the warning on
-- the derived type declaration, rather than on the original
-- subprogram.
if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
then
Warn_Node := Parent (E);
if Formal = First_Formal (E) then
Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
end if;
else
Warn_Node := Formal;
end if;
Error_Msg_NE ("?x?type of argument& is unconstrained array",
Warn_Node, Formal);
Error_Msg_N ("\?x?foreign caller must pass bounds explicitly",
Warn_Node);
Error_Msg_Qual_Level := 0;
end if;
if not From_Limited_With (F_Type) then
if Is_Access_Type (F_Type) then
F_Type := Designated_Type (F_Type);
end if;
-- If the formal is an anonymous_access_to_subprogram
-- freeze the subprogram type as well, to prevent
-- scope anomalies in gigi, because there is no other
-- clear point at which it could be frozen.
if Is_Itype (Etype (Formal))
and then Ekind (F_Type) = E_Subprogram_Type
then
Freeze_And_Append (F_Type, N, Result);
end if;
end if;
Next_Formal (Formal);
end loop;
-- Case of function: similar checks on return type
if Ekind (E) = E_Function then
-- Freeze return type
R_Type := Etype (E);
-- AI05-0151: the return type may have been incomplete at the
-- point of declaration. Replace it with the full view, unless the
-- current type is a limited view. In that case the full view is
-- in a different unit, and gigi finds the non-limited view after
-- the other unit is elaborated.
if Ekind (R_Type) = E_Incomplete_Type
and then Present (Full_View (R_Type))
and then not From_Limited_With (R_Type)
then
R_Type := Full_View (R_Type);
Set_Etype (E, R_Type);
end if;
if Should_Freeze_Type (R_Type, E) then
Freeze_And_Append (R_Type, N, Result);
end if;
-- Check suspicious return type for C function
if Warn_On_Export_Import
and then Comes_From_Source (E)
and then Convention (E) in Convention_C_Family
and then (Is_Imported (E) or else Is_Exported (E))
then
-- Check suspicious return of fat C pointer
if Is_Access_Type (R_Type)
and then Known_Esize (R_Type)
and then Esize (R_Type) > Ttypes.System_Address_Size
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
then
Error_Msg_N
("?x?return type of& does not correspond to C pointer!",
E);
-- Check suspicious return of boolean
elsif Root_Type (R_Type) = Standard_Boolean
and then Convention (R_Type) = Convention_Ada
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
and then not Has_Size_Clause (R_Type)
then
declare
N : constant Node_Id :=
Result_Definition (Declaration_Node (E));
begin
Error_Msg_NE
("return type of & is an 8-bit Ada Boolean?x?", N, E);
Error_Msg_NE
("\use appropriate corresponding type in C "
& "(e.g. char)?x?", N, E);
end;
-- Check suspicious return tagged type
elsif (Is_Tagged_Type (R_Type)
or else (Is_Access_Type (R_Type)
and then
Is_Tagged_Type
(Designated_Type (R_Type))))
and then Convention (E) = Convention_C
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
then
Error_Msg_N ("?x?return type of & does not "
& "correspond to C type!", E);
-- Check return of wrong convention subprogram pointer
elsif Ekind (R_Type) = E_Access_Subprogram_Type
and then not Has_Foreign_Convention (R_Type)
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
then
Error_Msg_N ("?x?& should return a foreign "
& "convention subprogram pointer", E);
Error_Msg_Sloc := Sloc (R_Type);
Error_Msg_NE
("\?x?add Convention pragma to declaration of& #",
E, R_Type);
end if;
end if;
-- Give warning for suspicious return of a result of an
-- unconstrained array type in a foreign convention function.
if Has_Foreign_Convention (E)
-- We are looking for a return of unconstrained array
and then Is_Array_Type (R_Type)
and then not Is_Constrained (R_Type)
-- Exclude imported routines, the warning does not belong on
-- the import, but rather on the routine definition.
and then not Is_Imported (E)
-- Check that general warning is enabled, and that it is not
-- suppressed for this particular case.
and then Warn_On_Export_Import
and then not Has_Warnings_Off (E)
and then not Has_Warnings_Off (R_Type)
then
Error_Msg_N
("?x?foreign convention function& should not return "
& "unconstrained array!", E);
end if;
end if;
-- Check suspicious use of Import in pure unit (cases where the RM
-- allows calls to be omitted).
if Is_Imported (E)
-- It might be suspicious if the compilation unit has the Pure
-- aspect/pragma.
and then Has_Pragma_Pure (Cunit_Entity (Current_Sem_Unit))
-- The RM allows omission of calls only in the case of
-- library-level subprograms (see RM-10.2.1(18)).
and then Is_Library_Level_Entity (E)
-- Ignore internally generated entity. This happens in some cases
-- of subprograms in specs, where we generate an implied body.
and then Comes_From_Source (Import_Pragma (E))
-- Assume run-time knows what it is doing
and then not GNAT_Mode
-- Assume explicit Pure_Function means import is pure
and then not Has_Pragma_Pure_Function (E)
-- Don't need warning in relaxed semantics mode
and then not Relaxed_RM_Semantics
-- Assume convention Intrinsic is OK, since this is specialized.
-- This deals with the DEC unit current_exception.ads
and then Convention (E) /= Convention_Intrinsic
-- Assume that ASM interface knows what it is doing
and then Convention (E) /= Convention_Assembler
then
Error_Msg_N
("pragma Import in Pure unit??", Import_Pragma (E));
Error_Msg_NE
("\calls to & may be omitted (RM 10.2.1(18/3))??",
Import_Pragma (E), E);
end if;
return True;
end Freeze_Profile;
------------------------
-- Freeze_Record_Type --
------------------------
procedure Freeze_Record_Type (Rec : Entity_Id) is
ADC : Node_Id;
Comp : Entity_Id;
IR : Node_Id;
Prev : Entity_Id;
Junk : Boolean;
pragma Warnings (Off, Junk);
Aliased_Component : Boolean := False;
-- Set True if we find at least one component which is aliased. This
-- is used to prevent Implicit_Packing of the record, since packing
-- cannot modify the size of alignment of an aliased component.
All_Elem_Components : Boolean := True;
-- True if all components are of a type whose underlying type is
-- elementary.
All_Sized_Components : Boolean := True;
-- True if all components have a known RM_Size
All_Storage_Unit_Components : Boolean := True;
-- True if all components have an RM_Size that is a multiple of the
-- storage unit.
Elem_Component_Total_Esize : Uint := Uint_0;
-- Accumulates total Esize values of all elementary components. Used
-- for processing of Implicit_Packing.
Placed_Component : Boolean := False;
-- Set True if we find at least one component with a component
-- clause (used to warn about useless Bit_Order pragmas, and also
-- to detect cases where Implicit_Packing may have an effect).
Sized_Component_Total_RM_Size : Uint := Uint_0;
-- Accumulates total RM_Size values of all sized components. Used
-- for processing of Implicit_Packing.
Sized_Component_Total_Round_RM_Size : Uint := Uint_0;
-- Accumulates total RM_Size values of all sized components, rounded
-- individually to a multiple of the storage unit.
SSO_ADC : Node_Id;
-- Scalar_Storage_Order attribute definition clause for the record
SSO_ADC_Component : Boolean := False;
-- Set True if we find at least one component whose type has a
-- Scalar_Storage_Order attribute definition clause.
Unplaced_Component : Boolean := False;
-- Set True if we find at least one component with no component
-- clause (used to warn about useless Pack pragmas).
procedure Check_Itype (Typ : Entity_Id);
-- If the component subtype is an access to a constrained subtype of
-- an already frozen type, make the subtype frozen as well. It might
-- otherwise be frozen in the wrong scope, and a freeze node on
-- subtype has no effect. Similarly, if the component subtype is a
-- regular (not protected) access to subprogram, set the anonymous
-- subprogram type to frozen as well, to prevent an out-of-scope
-- freeze node at some eventual point of call. Protected operations
-- are handled elsewhere.
procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
-- Make sure that all types mentioned in Discrete_Choices of the
-- variants referenceed by the Variant_Part VP are frozen. This is
-- a recursive routine to deal with nested variants.
-----------------
-- Check_Itype --
-----------------
procedure Check_Itype (Typ : Entity_Id) is
Desig : constant Entity_Id := Designated_Type (Typ);
begin
if not Is_Frozen (Desig)
and then Is_Frozen (Base_Type (Desig))
then
Set_Is_Frozen (Desig);
-- In addition, add an Itype_Reference to ensure that the
-- access subtype is elaborated early enough. This cannot be
-- done if the subtype may depend on discriminants.
if Ekind (Comp) = E_Component
and then Is_Itype (Etype (Comp))
and then not Has_Discriminants (Rec)
then
IR := Make_Itype_Reference (Sloc (Comp));
Set_Itype (IR, Desig);
Add_To_Result (IR);
end if;
elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
and then Convention (Desig) /= Convention_Protected
then
Set_Is_Frozen (Desig);
end if;
end Check_Itype;
------------------------------------
-- Freeze_Choices_In_Variant_Part --
------------------------------------
procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
pragma Assert (Nkind (VP) = N_Variant_Part);
Variant : Node_Id;
Choice : Node_Id;
CL : Node_Id;
begin
-- Loop through variants
Variant := First_Non_Pragma (Variants (VP));
while Present (Variant) loop
-- Loop through choices, checking that all types are frozen
Choice := First_Non_Pragma (Discrete_Choices (Variant));
while Present (Choice) loop
if Nkind (Choice) in N_Has_Etype
and then Present (Etype (Choice))
then
Freeze_And_Append (Etype (Choice), N, Result);
end if;
Next_Non_Pragma (Choice);
end loop;
-- Check for nested variant part to process
CL := Component_List (Variant);
if not Null_Present (CL) then
if Present (Variant_Part (CL)) then
Freeze_Choices_In_Variant_Part (Variant_Part (CL));
end if;
end if;
Next_Non_Pragma (Variant);
end loop;
end Freeze_Choices_In_Variant_Part;
-- Start of processing for Freeze_Record_Type
begin
-- Freeze components and embedded subtypes
Comp := First_Entity (Rec);
Prev := Empty;
while Present (Comp) loop
if Is_Aliased (Comp) then
Aliased_Component := True;
end if;
-- Handle the component and discriminant case
if Ekind (Comp) in E_Component | E_Discriminant then
declare
CC : constant Node_Id := Component_Clause (Comp);
begin
-- Freezing a record type freezes the type of each of its
-- components. However, if the type of the component is
-- part of this record, we do not want or need a separate
-- Freeze_Node. Note that Is_Itype is wrong because that's
-- also set in private type cases. We also can't check for
-- the Scope being exactly Rec because of private types and
-- record extensions.
if Is_Itype (Etype (Comp))
and then Is_Record_Type (Underlying_Type
(Scope (Etype (Comp))))
then
Undelay_Type (Etype (Comp));
end if;
Freeze_And_Append (Etype (Comp), N, Result);
-- Warn for pragma Pack overriding foreign convention
if Has_Foreign_Convention (Etype (Comp))
and then Has_Pragma_Pack (Rec)
-- Don't warn for aliased components, since override
-- cannot happen in that case.
and then not Is_Aliased (Comp)
then
declare
CN : constant Name_Id :=
Get_Convention_Name (Convention (Etype (Comp)));
PP : constant Node_Id :=
Get_Pragma (Rec, Pragma_Pack);
begin
if Present (PP) then
Error_Msg_Name_1 := CN;
Error_Msg_Sloc := Sloc (Comp);
Error_Msg_N
("pragma Pack affects convention % component#??",
PP);
Error_Msg_Name_1 := CN;
Error_Msg_NE
("\component & may not have % compatible "
& "representation??", PP, Comp);
end if;
end;
end if;
-- Check for error of component clause given for variable
-- sized type. We have to delay this test till this point,
-- since the component type has to be frozen for us to know
-- if it is variable length.
if Present (CC) then
Placed_Component := True;
-- We omit this test in a generic context, it will be
-- applied at instantiation time.
if Inside_A_Generic then
null;
-- Also omit this test in CodePeer mode, since we do not
-- have sufficient info on size and rep clauses.
elsif CodePeer_Mode then
null;
-- Do the check
elsif not
Size_Known_At_Compile_Time
(Underlying_Type (Etype (Comp)))
then
Error_Msg_N
("component clause not allowed for variable " &
"length component", CC);
end if;
else
Unplaced_Component := True;
end if;
-- Case of component requires byte alignment
if Must_Be_On_Byte_Boundary (Etype (Comp)) then
-- Set the enclosing record to also require byte align
Set_Must_Be_On_Byte_Boundary (Rec);
-- Check for component clause that is inconsistent with
-- the required byte boundary alignment.
if Present (CC)
and then Normalized_First_Bit (Comp) mod
System_Storage_Unit /= 0
then
Error_Msg_N
("component & must be byte aligned",
Component_Name (Component_Clause (Comp)));
end if;
end if;
end;
end if;
-- Gather data for possible Implicit_Packing later. Note that at
-- this stage we might be dealing with a real component, or with
-- an implicit subtype declaration.
if Known_Static_RM_Size (Etype (Comp)) then
declare
Comp_Type : constant Entity_Id := Etype (Comp);
Comp_Size : constant Uint := RM_Size (Comp_Type);
SSU : constant Int := Ttypes.System_Storage_Unit;
begin
Sized_Component_Total_RM_Size :=
Sized_Component_Total_RM_Size + Comp_Size;
Sized_Component_Total_Round_RM_Size :=
Sized_Component_Total_Round_RM_Size +
(Comp_Size + SSU - 1) / SSU * SSU;
if Present (Underlying_Type (Comp_Type))
and then Is_Elementary_Type (Underlying_Type (Comp_Type))
then
Elem_Component_Total_Esize :=
Elem_Component_Total_Esize + Esize (Comp_Type);
else
All_Elem_Components := False;
if Comp_Size mod SSU /= 0 then
All_Storage_Unit_Components := False;
end if;
end if;
end;
else
All_Sized_Components := False;
end if;
-- If the component is an Itype with Delayed_Freeze and is either
-- a record or array subtype and its base type has not yet been
-- frozen, we must remove this from the entity list of this record
-- and put it on the entity list of the scope of its base type.
-- Note that we know that this is not the type of a component
-- since we cleared Has_Delayed_Freeze for it in the previous
-- loop. Thus this must be the Designated_Type of an access type,
-- which is the type of a component.
if Is_Itype (Comp)
and then Is_Type (Scope (Comp))
and then Is_Composite_Type (Comp)
and then Base_Type (Comp) /= Comp
and then Has_Delayed_Freeze (Comp)
and then not Is_Frozen (Base_Type (Comp))
then
declare
Will_Be_Frozen : Boolean := False;
S : Entity_Id;
begin
-- We have a difficult case to handle here. Suppose Rec is
-- subtype being defined in a subprogram that's created as
-- part of the freezing of Rec'Base. In that case, we know
-- that Comp'Base must have already been frozen by the time
-- we get to elaborate this because Gigi doesn't elaborate
-- any bodies until it has elaborated all of the declarative
-- part. But Is_Frozen will not be set at this point because
-- we are processing code in lexical order.
-- We detect this case by going up the Scope chain of Rec
-- and seeing if we have a subprogram scope before reaching
-- the top of the scope chain or that of Comp'Base. If we
-- do, then mark that Comp'Base will actually be frozen. If
-- so, we merely undelay it.
S := Scope (Rec);
while Present (S) loop
if Is_Subprogram (S) then
Will_Be_Frozen := True;
exit;
elsif S = Scope (Base_Type (Comp)) then
exit;
end if;
S := Scope (S);
end loop;
if Will_Be_Frozen then
Undelay_Type (Comp);
else
if Present (Prev) then
Link_Entities (Prev, Next_Entity (Comp));
else
Set_First_Entity (Rec, Next_Entity (Comp));
end if;
-- Insert in entity list of scope of base type (which
-- must be an enclosing scope, because still unfrozen).
Append_Entity (Comp, Scope (Base_Type (Comp)));
end if;
end;
-- If the component is an access type with an allocator as default
-- value, the designated type will be frozen by the corresponding
-- expression in init_proc. In order to place the freeze node for
-- the designated type before that for the current record type,
-- freeze it now.
-- Same process if the component is an array of access types,
-- initialized with an aggregate. If the designated type is
-- private, it cannot contain allocators, and it is premature
-- to freeze the type, so we check for this as well.
elsif Is_Access_Type (Etype (Comp))
and then Present (Parent (Comp))
and then
Nkind (Parent (Comp))
in N_Component_Declaration | N_Discriminant_Specification
and then Present (Expression (Parent (Comp)))
then
declare
Alloc : constant Node_Id :=
Unqualify (Expression (Parent (Comp)));
begin
if Nkind (Alloc) = N_Allocator then
-- If component is pointer to a class-wide type, freeze
-- the specific type in the expression being allocated.
-- The expression may be a subtype indication, in which
-- case freeze the subtype mark.
if Is_Class_Wide_Type (Designated_Type (Etype (Comp)))
then
if Is_Entity_Name (Expression (Alloc)) then
Freeze_And_Append
(Entity (Expression (Alloc)), N, Result);
elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
then
Freeze_And_Append
(Entity (Subtype_Mark (Expression (Alloc))),
N, Result);
end if;
elsif Is_Itype (Designated_Type (Etype (Comp))) then
Check_Itype (Etype (Comp));
else
Freeze_And_Append
(Designated_Type (Etype (Comp)), N, Result);
end if;
end if;
end;
elsif Is_Access_Type (Etype (Comp))
and then Is_Itype (Designated_Type (Etype (Comp)))
then
Check_Itype (Etype (Comp));
-- Freeze the designated type when initializing a component with
-- an aggregate in case the aggregate contains allocators.
-- type T is ...;
-- type T_Ptr is access all T;
-- type T_Array is array ... of T_Ptr;
-- type Rec is record
-- Comp : T_Array := (others => ...);
-- end record;
elsif Is_Array_Type (Etype (Comp))
and then Is_Access_Type (Component_Type (Etype (Comp)))
then
declare
Comp_Par : constant Node_Id := Parent (Comp);
Desig_Typ : constant Entity_Id :=
Designated_Type
(Component_Type (Etype (Comp)));
begin
-- The only case when this sort of freezing is not done is
-- when the designated type is class-wide and the root type
-- is the record owning the component. This scenario results
-- in a circularity because the class-wide type requires
-- primitives that have not been created yet as the root
-- type is in the process of being frozen.
-- type Rec is tagged;
-- type Rec_Ptr is access all Rec'Class;
-- type Rec_Array is array ... of Rec_Ptr;
-- type Rec is record
-- Comp : Rec_Array := (others => ...);
-- end record;
if Is_Class_Wide_Type (Desig_Typ)
and then Root_Type (Desig_Typ) = Rec
then
null;
elsif Is_Fully_Defined (Desig_Typ)
and then Present (Comp_Par)
and then Nkind (Comp_Par) = N_Component_Declaration
and then Present (Expression (Comp_Par))
and then Nkind (Expression (Comp_Par)) = N_Aggregate
then
Freeze_And_Append (Desig_Typ, N, Result);
end if;
end;
end if;
Prev := Comp;
Next_Entity (Comp);
end loop;
SSO_ADC :=
Get_Attribute_Definition_Clause
(Rec, Attribute_Scalar_Storage_Order);
-- If the record type has Complex_Representation, then it is treated
-- as a scalar in the back end so the storage order is irrelevant.
if Has_Complex_Representation (Rec) then
if Present (SSO_ADC) then
Error_Msg_N
("??storage order has no effect with Complex_Representation",
SSO_ADC);
end if;
else
-- Deal with default setting of reverse storage order
Set_SSO_From_Default (Rec);
-- Check consistent attribute setting on component types
declare
Comp_ADC_Present : Boolean;
begin
Comp := First_Component (Rec);
while Present (Comp) loop
Check_Component_Storage_Order
(Encl_Type => Rec,
Comp => Comp,
ADC => SSO_ADC,
Comp_ADC_Present => Comp_ADC_Present);
SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
Next_Component (Comp);
end loop;
end;
-- Now deal with reverse storage order/bit order issues
if Present (SSO_ADC) then
-- Check compatibility of Scalar_Storage_Order with Bit_Order,
-- if the former is specified.
if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
-- Note: report error on Rec, not on SSO_ADC, as ADC may
-- apply to some ancestor type.
Error_Msg_Sloc := Sloc (SSO_ADC);
Error_Msg_N
("scalar storage order for& specified# inconsistent with "
& "bit order", Rec);
end if;
-- Warn if there is a Scalar_Storage_Order attribute definition
-- clause but no component clause, no component that itself has
-- such an attribute definition, and no pragma Pack.
if not (Placed_Component
or else
SSO_ADC_Component
or else
Is_Packed (Rec))
then
Error_Msg_N
("??scalar storage order specified but no component "
& "clause", SSO_ADC);
end if;
end if;
end if;
-- Deal with Bit_Order aspect
ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
if Present (ADC) and then Base_Type (Rec) = Rec then
if not (Placed_Component
or else Present (SSO_ADC)
or else Is_Packed (Rec))
then
-- Warn if clause has no effect when no component clause is
-- present, but suppress warning if the Bit_Order is required
-- due to the presence of a Scalar_Storage_Order attribute.
Error_Msg_N
("??bit order specification has no effect", ADC);
Error_Msg_N
("\??since no component clauses were specified", ADC);
-- Here is where we do the processing to adjust component clauses
-- for reversed bit order, when not using reverse SSO. If an error
-- has been reported on Rec already (such as SSO incompatible with
-- bit order), don't bother adjusting as this may generate extra
-- noise.
elsif Reverse_Bit_Order (Rec)
and then not Reverse_Storage_Order (Rec)
and then not Error_Posted (Rec)
then
Adjust_Record_For_Reverse_Bit_Order (Rec);
-- Case where we have both an explicit Bit_Order and the same
-- Scalar_Storage_Order: leave record untouched, the back-end
-- will take care of required layout conversions.
else
null;
end if;
end if;
-- Check for useless pragma Pack when all components placed. We only
-- do this check for record types, not subtypes, since a subtype may
-- have all its components placed, and it still makes perfectly good
-- sense to pack other subtypes or the parent type. We do not give
-- this warning if Optimize_Alignment is set to Space, since the
-- pragma Pack does have an effect in this case (it always resets
-- the alignment to one).
if Ekind (Rec) = E_Record_Type
and then Is_Packed (Rec)
and then not Unplaced_Component
and then Optimize_Alignment /= 'S'
then
-- Reset packed status. Probably not necessary, but we do it so
-- that there is no chance of the back end doing something strange
-- with this redundant indication of packing.
Set_Is_Packed (Rec, False);
-- Give warning if redundant constructs warnings on
if Warn_On_Redundant_Constructs then
Error_Msg_N -- CODEFIX
("??pragma Pack has no effect, no unplaced components",
Get_Rep_Pragma (Rec, Name_Pack));
end if;
end if;
-- If this is the record corresponding to a remote type, freeze the
-- remote type here since that is what we are semantically freezing.
-- This prevents the freeze node for that type in an inner scope.
if Ekind (Rec) = E_Record_Type then
if Present (Corresponding_Remote_Type (Rec)) then
Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
end if;
-- Check for controlled components, unchecked unions, and type
-- invariants.
Comp := First_Component (Rec);
while Present (Comp) loop
-- Do not set Has_Controlled_Component on a class-wide
-- equivalent type. See Make_CW_Equivalent_Type.
if not Is_Class_Wide_Equivalent_Type (Rec)
and then
(Has_Controlled_Component (Etype (Comp))
or else
(Chars (Comp) /= Name_uParent
and then Is_Controlled (Etype (Comp)))
or else
(Is_Protected_Type (Etype (Comp))
and then
Present (Corresponding_Record_Type (Etype (Comp)))
and then
Has_Controlled_Component
(Corresponding_Record_Type (Etype (Comp)))))
then
Set_Has_Controlled_Component (Rec);
end if;
if Has_Unchecked_Union (Etype (Comp)) then
Set_Has_Unchecked_Union (Rec);
end if;
-- The record type requires its own invariant procedure in
-- order to verify the invariant of each individual component.
-- Do not consider internal components such as _parent because
-- parent class-wide invariants are always inherited.
-- In GNATprove mode, the component invariants are checked by
-- other means. They should not be added to the record type
-- invariant procedure, so that the procedure can be used to
-- check the recordy type invariants if any.
if Comes_From_Source (Comp)
and then Has_Invariants (Etype (Comp))
and then not GNATprove_Mode
then
Set_Has_Own_Invariants (Rec);
end if;
-- Scan component declaration for likely misuses of current
-- instance, either in a constraint or a default expression.
if Has_Per_Object_Constraint (Comp) then
Check_Current_Instance (Parent (Comp));
end if;
Next_Component (Comp);
end loop;
end if;
-- Enforce the restriction that access attributes with a current
-- instance prefix can only apply to limited types. This comment
-- is floating here, but does not seem to belong here???
-- Set component alignment if not otherwise already set
Set_Component_Alignment_If_Not_Set (Rec);
-- For first subtypes, check if there are any fixed-point fields with
-- component clauses, where we must check the size. This is not done
-- till the freeze point since for fixed-point types, we do not know
-- the size until the type is frozen. Similar processing applies to
-- bit-packed arrays.
if Is_First_Subtype (Rec) then
Comp := First_Component (Rec);
while Present (Comp) loop
if Present (Component_Clause (Comp))
and then (Is_Fixed_Point_Type (Etype (Comp))
or else Is_Bit_Packed_Array (Etype (Comp)))
then
Check_Size
(Component_Name (Component_Clause (Comp)),
Etype (Comp),
Esize (Comp),
Junk);
end if;
Next_Component (Comp);
end loop;
end if;
-- See if Size is too small as is (and implicit packing might help)
if not Is_Packed (Rec)
-- No implicit packing if even one component is explicitly placed
and then not Placed_Component
-- Or even one component is aliased
and then not Aliased_Component
-- Must have size clause and all sized components
and then Has_Size_Clause (Rec)
and then All_Sized_Components
-- Do not try implicit packing on records with discriminants, too
-- complicated, especially in the variant record case.
and then not Has_Discriminants (Rec)
-- We want to implicitly pack if the specified size of the record
-- is less than the sum of the object sizes (no point in packing
-- if this is not the case), if we can compute it, i.e. if we have
-- only elementary components. Otherwise, we have at least one
-- composite component and we want to implicitly pack only if bit
-- packing is required for it, as we are sure in this case that
-- the back end cannot do the expected layout without packing.
and then
((All_Elem_Components
and then RM_Size (Rec) < Elem_Component_Total_Esize)
or else
(not All_Elem_Components
and then not All_Storage_Unit_Components
and then RM_Size (Rec) < Sized_Component_Total_Round_RM_Size))
-- And the total RM size cannot be greater than the specified size
-- since otherwise packing will not get us where we have to be.
and then Sized_Component_Total_RM_Size <= RM_Size (Rec)
-- Never do implicit packing in CodePeer or SPARK modes since
-- we don't do any packing in these modes, since this generates
-- over-complex code that confuses static analysis, and in
-- general, neither CodePeer not GNATprove care about the
-- internal representation of objects.
and then not (CodePeer_Mode or GNATprove_Mode)
then
-- If implicit packing enabled, do it
if Implicit_Packing then
Set_Is_Packed (Rec);
-- Otherwise flag the size clause
else
declare
Sz : constant Node_Id := Size_Clause (Rec);
begin
Error_Msg_NE -- CODEFIX
("size given for& too small", Sz, Rec);
Error_Msg_N -- CODEFIX
("\use explicit pragma Pack "
& "or use pragma Implicit_Packing", Sz);
end;
end if;
end if;
-- The following checks are relevant only when SPARK_Mode is on as
-- they are not standard Ada legality rules.
if SPARK_Mode = On then
-- A discriminated type cannot be effectively volatile
-- (SPARK RM 7.1.3(5)).
if Is_Effectively_Volatile (Rec) then
if Has_Discriminants (Rec) then
Error_Msg_N ("discriminated type & cannot be volatile", Rec);
end if;
-- A non-effectively volatile record type cannot contain
-- effectively volatile components (SPARK RM 7.1.3(6)).
else
Comp := First_Component (Rec);
while Present (Comp) loop
if Comes_From_Source (Comp)
and then Is_Effectively_Volatile (Etype (Comp))
then
Error_Msg_Name_1 := Chars (Rec);
Error_Msg_N
("component & of non-volatile type % cannot be "
& "volatile", Comp);
end if;
Next_Component (Comp);
end loop;
end if;
-- A type which does not yield a synchronized object cannot have
-- a component that yields a synchronized object (SPARK RM 9.5).
if not Yields_Synchronized_Object (Rec) then
Comp := First_Component (Rec);
while Present (Comp) loop
if Comes_From_Source (Comp)
and then Yields_Synchronized_Object (Etype (Comp))
then
Error_Msg_Name_1 := Chars (Rec);
Error_Msg_N
("component & of non-synchronized type % cannot be "
& "synchronized", Comp);
end if;
Next_Component (Comp);
end loop;
end if;
-- A Ghost type cannot have a component of protected or task type
-- (SPARK RM 6.9(19)).
if Is_Ghost_Entity (Rec) then
Comp := First_Component (Rec);
while Present (Comp) loop
if Comes_From_Source (Comp)
and then Is_Concurrent_Type (Etype (Comp))
then
Error_Msg_Name_1 := Chars (Rec);
Error_Msg_N
("component & of ghost type % cannot be concurrent",
Comp);
end if;
Next_Component (Comp);
end loop;
end if;
end if;
-- Make sure that if we have an iterator aspect, then we have
-- either Constant_Indexing or Variable_Indexing.
declare
Iterator_Aspect : Node_Id;
begin
Iterator_Aspect := Find_Aspect (Rec, Aspect_Iterator_Element);
if No (Iterator_Aspect) then
Iterator_Aspect := Find_Aspect (Rec, Aspect_Default_Iterator);
end if;
if Present (Iterator_Aspect) then
if Has_Aspect (Rec, Aspect_Constant_Indexing)
or else
Has_Aspect (Rec, Aspect_Variable_Indexing)
then
null;
else
Error_Msg_N
("Iterator_Element requires indexing aspect",
Iterator_Aspect);
end if;
end if;
end;
-- All done if not a full record definition
if Ekind (Rec) /= E_Record_Type then
return;
end if;
-- Finally we need to check the variant part to make sure that
-- all types within choices are properly frozen as part of the
-- freezing of the record type.
Check_Variant_Part : declare
D : constant Node_Id := Declaration_Node (Rec);
T : Node_Id;
C : Node_Id;
begin
-- Find component list
C := Empty;
if Nkind (D) = N_Full_Type_Declaration then
T := Type_Definition (D);
if Nkind (T) = N_Record_Definition then
C := Component_List (T);
elsif Nkind (T) = N_Derived_Type_Definition
and then Present (Record_Extension_Part (T))
then
C := Component_List (Record_Extension_Part (T));
end if;
end if;
-- Case of variant part present
if Present (C) and then Present (Variant_Part (C)) then
Freeze_Choices_In_Variant_Part (Variant_Part (C));
end if;
-- Note: we used to call Check_Choices here, but it is too early,
-- since predicated subtypes are frozen here, but their freezing
-- actions are in Analyze_Freeze_Entity, which has not been called
-- yet for entities frozen within this procedure, so we moved that
-- call to the Analyze_Freeze_Entity for the record type.
end Check_Variant_Part;
-- Check that all the primitives of an interface type are abstract
-- or null procedures.
if Is_Interface (Rec)
and then not Error_Posted (Parent (Rec))
then
declare
Elmt : Elmt_Id;
Subp : Entity_Id;
begin
Elmt := First_Elmt (Primitive_Operations (Rec));
while Present (Elmt) loop
Subp := Node (Elmt);
if not Is_Abstract_Subprogram (Subp)
-- Avoid reporting the error on inherited primitives
and then Comes_From_Source (Subp)
then
Error_Msg_Name_1 := Chars (Subp);
if Ekind (Subp) = E_Procedure then
if not Null_Present (Parent (Subp)) then
Error_Msg_N
("interface procedure % must be abstract or null",
Parent (Subp));
end if;
else
Error_Msg_N
("interface function % must be abstract",
Parent (Subp));
end if;
end if;
Next_Elmt (Elmt);
end loop;
end;
end if;
-- For a derived tagged type, check whether inherited primitives
-- might require a wrapper to handle class-wide conditions.
if Is_Tagged_Type (Rec) and then Is_Derived_Type (Rec) then
Check_Inherited_Conditions (Rec);
end if;
end Freeze_Record_Type;
-------------------------------
-- Has_Boolean_Aspect_Import --
-------------------------------
function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
Decl : constant Node_Id := Declaration_Node (E);
Asp : Node_Id;
Expr : Node_Id;
begin
if Has_Aspects (Decl) then
Asp := First (Aspect_Specifications (Decl));
while Present (Asp) loop
Expr := Expression (Asp);
-- The value of aspect Import is True when the expression is
-- either missing or it is explicitly set to True.
if Get_Aspect_Id (Asp) = Aspect_Import
and then (No (Expr)
or else (Compile_Time_Known_Value (Expr)
and then Is_True (Expr_Value (Expr))))
then
return True;
end if;
Next (Asp);
end loop;
end if;
return False;
end Has_Boolean_Aspect_Import;
-------------------------
-- Inherit_Freeze_Node --
-------------------------
procedure Inherit_Freeze_Node
(Fnod : Node_Id;
Typ : Entity_Id)
is
Typ_Fnod : constant Node_Id := Freeze_Node (Typ);
begin
Set_Freeze_Node (Typ, Fnod);
Set_Entity (Fnod, Typ);
-- The input type had an existing node. Propagate relevant attributes
-- from the old freeze node to the inherited freeze node.
-- ??? if both freeze nodes have attributes, would they differ?
if Present (Typ_Fnod) then
-- Attribute Access_Types_To_Process
if Present (Access_Types_To_Process (Typ_Fnod))
and then No (Access_Types_To_Process (Fnod))
then
Set_Access_Types_To_Process (Fnod,
Access_Types_To_Process (Typ_Fnod));
end if;
-- Attribute Actions
if Present (Actions (Typ_Fnod)) and then No (Actions (Fnod)) then
Set_Actions (Fnod, Actions (Typ_Fnod));
end if;
-- Attribute First_Subtype_Link
if Present (First_Subtype_Link (Typ_Fnod))
and then No (First_Subtype_Link (Fnod))
then
Set_First_Subtype_Link (Fnod, First_Subtype_Link (Typ_Fnod));
end if;
-- Attribute TSS_Elist
if Present (TSS_Elist (Typ_Fnod))
and then No (TSS_Elist (Fnod))
then
Set_TSS_Elist (Fnod, TSS_Elist (Typ_Fnod));
end if;
end if;
end Inherit_Freeze_Node;
------------------------------
-- Wrap_Imported_Subprogram --
------------------------------
-- The issue here is that our normal approach of checking preconditions
-- and postconditions does not work for imported procedures, since we
-- are not generating code for the body. To get around this we create
-- a wrapper, as shown by the following example:
-- procedure K (A : Integer);
-- pragma Import (C, K);
-- The spec is rewritten by removing the effects of pragma Import, but
-- leaving the convention unchanged, as though the source had said:
-- procedure K (A : Integer);
-- pragma Convention (C, K);
-- and we create a body, added to the entity K freeze actions, which
-- looks like:
-- procedure K (A : Integer) is
-- procedure K (A : Integer);
-- pragma Import (C, K);
-- begin
-- K (A);
-- end K;
-- Now the contract applies in the normal way to the outer procedure,
-- and the inner procedure has no contracts, so there is no problem
-- in just calling it to get the original effect.
-- In the case of a function, we create an appropriate return statement
-- for the subprogram body that calls the inner procedure.
procedure Wrap_Imported_Subprogram (E : Entity_Id) is
function Copy_Import_Pragma return Node_Id;
-- Obtain a copy of the Import_Pragma which belongs to subprogram E
------------------------
-- Copy_Import_Pragma --
------------------------
function Copy_Import_Pragma return Node_Id is
-- The subprogram should have an import pragma, otherwise it does
-- need a wrapper.
Prag : constant Node_Id := Import_Pragma (E);
pragma Assert (Present (Prag));
-- Save all semantic fields of the pragma
Save_Asp : constant Node_Id := Corresponding_Aspect (Prag);
Save_From : constant Boolean := From_Aspect_Specification (Prag);
Save_Prag : constant Node_Id := Next_Pragma (Prag);
Save_Rep : constant Node_Id := Next_Rep_Item (Prag);
Result : Node_Id;
begin
-- Reset all semantic fields. This avoids a potential infinite
-- loop when the pragma comes from an aspect as the duplication
-- will copy the aspect, then copy the corresponding pragma and
-- so on.
Set_Corresponding_Aspect (Prag, Empty);
Set_From_Aspect_Specification (Prag, False);
Set_Next_Pragma (Prag, Empty);
Set_Next_Rep_Item (Prag, Empty);
Result := Copy_Separate_Tree (Prag);
-- Restore the original semantic fields
Set_Corresponding_Aspect (Prag, Save_Asp);
Set_From_Aspect_Specification (Prag, Save_From);
Set_Next_Pragma (Prag, Save_Prag);
Set_Next_Rep_Item (Prag, Save_Rep);
return Result;
end Copy_Import_Pragma;
-- Local variables
Loc : constant Source_Ptr := Sloc (E);
CE : constant Name_Id := Chars (E);
Bod : Node_Id;
Forml : Entity_Id;
Parms : List_Id;
Prag : Node_Id;
Spec : Node_Id;
Stmt : Node_Id;
-- Start of processing for Wrap_Imported_Subprogram
begin
-- Nothing to do if not imported
if not Is_Imported (E) then
return;
-- Test enabling conditions for wrapping
elsif Is_Subprogram (E)
and then Present (Contract (E))
and then Present (Pre_Post_Conditions (Contract (E)))
and then not GNATprove_Mode
then
-- Here we do the wrap
-- Note on calls to Copy_Separate_Tree. The trees we are copying
-- here are fully analyzed, but we definitely want fully syntactic
-- unanalyzed trees in the body we construct, so that the analysis
-- generates the right visibility, and that is exactly what the
-- calls to Copy_Separate_Tree give us.
Prag := Copy_Import_Pragma;
-- Fix up spec so it is no longer imported and has convention Ada
Set_Has_Completion (E, False);
Set_Import_Pragma (E, Empty);
Set_Interface_Name (E, Empty);
Set_Is_Imported (E, False);
Set_Convention (E, Convention_Ada);
-- Grab the subprogram declaration and specification
Spec := Declaration_Node (E);
-- Build parameter list that we need
Parms := New_List;
Forml := First_Formal (E);
while Present (Forml) loop
Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
Next_Formal (Forml);
end loop;
-- Build the call
-- An imported function whose result type is anonymous access
-- creates a new anonymous access type when it is relocated into
-- the declarations of the body generated below. As a result, the
-- accessibility level of these two anonymous access types may not
-- be compatible even though they are essentially the same type.
-- Use an unchecked type conversion to reconcile this case. Note
-- that the conversion is safe because in the named access type
-- case, both the body and imported function utilize the same
-- type.
if Ekind (E) in E_Function | E_Generic_Function then
Stmt :=
Make_Simple_Return_Statement (Loc,
Expression =>
Unchecked_Convert_To (Etype (E),
Make_Function_Call (Loc,
Name => Make_Identifier (Loc, CE),
Parameter_Associations => Parms)));
else
Stmt :=
Make_Procedure_Call_Statement (Loc,
Name => Make_Identifier (Loc, CE),
Parameter_Associations => Parms);
end if;
-- Now build the body
Bod :=
Make_Subprogram_Body (Loc,
Specification =>
Copy_Separate_Tree (Spec),
Declarations => New_List (
Make_Subprogram_Declaration (Loc,
Specification => Copy_Separate_Tree (Spec)),
Prag),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Stmt),
End_Label => Make_Identifier (Loc, CE)));
-- Append the body to freeze result
Add_To_Result (Bod);
return;
-- Case of imported subprogram that does not get wrapped
else
-- Set Is_Public. All imported entities need an external symbol
-- created for them since they are always referenced from another
-- object file. Note this used to be set when we set Is_Imported
-- back in Sem_Prag, but now we delay it to this point, since we
-- don't want to set this flag if we wrap an imported subprogram.
Set_Is_Public (E);
end if;
end Wrap_Imported_Subprogram;
-- Start of processing for Freeze_Entity
begin
-- The entity being frozen may be subject to pragma Ghost. Set the mode
-- now to ensure that any nodes generated during freezing are properly
-- flagged as Ghost.
Set_Ghost_Mode (E);
-- We are going to test for various reasons why this entity need not be
-- frozen here, but in the case of an Itype that's defined within a
-- record, that test actually applies to the record.
if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
Test_E := Scope (E);
elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
and then Is_Record_Type (Underlying_Type (Scope (E)))
then
Test_E := Underlying_Type (Scope (E));
end if;
-- Do not freeze if already frozen since we only need one freeze node
if Is_Frozen (E) then
Result := No_List;
goto Leave;
-- Do not freeze if we are preanalyzing without freezing
elsif Inside_Preanalysis_Without_Freezing > 0 then
Result := No_List;
goto Leave;
elsif Ekind (E) = E_Generic_Package then
Result := Freeze_Generic_Entities (E);
goto Leave;
-- It is improper to freeze an external entity within a generic because
-- its freeze node will appear in a non-valid context. The entity will
-- be frozen in the proper scope after the current generic is analyzed.
-- However, aspects must be analyzed because they may be queried later
-- within the generic itself, and the corresponding pragma or attribute
-- definition has not been analyzed yet. After this, indicate that the
-- entity has no further delayed aspects, to prevent a later aspect
-- analysis out of the scope of the generic.
elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
if Has_Delayed_Aspects (E) then
Analyze_Aspects_At_Freeze_Point (E);
Set_Has_Delayed_Aspects (E, False);
end if;
Result := No_List;
goto Leave;
-- AI05-0213: A formal incomplete type does not freeze the actual. In
-- the instance, the same applies to the subtype renaming the actual.
elsif Is_Private_Type (E)
and then Is_Generic_Actual_Type (E)
and then No (Full_View (Base_Type (E)))
and then Ada_Version >= Ada_2012
then
Result := No_List;
goto Leave;
-- Formal subprograms are never frozen
elsif Is_Formal_Subprogram (E) then
Result := No_List;
goto Leave;
-- Generic types are never frozen as they lack delayed semantic checks
elsif Is_Generic_Type (E) then
Result := No_List;
goto Leave;
-- Do not freeze a global entity within an inner scope created during
-- expansion. A call to subprogram E within some internal procedure
-- (a stream attribute for example) might require freezing E, but the
-- freeze node must appear in the same declarative part as E itself.
-- The two-pass elaboration mechanism in gigi guarantees that E will
-- be frozen before the inner call is elaborated. We exclude constants
-- from this test, because deferred constants may be frozen early, and
-- must be diagnosed (e.g. in the case of a deferred constant being used
-- in a default expression). If the enclosing subprogram comes from
-- source, or is a generic instance, then the freeze point is the one
-- mandated by the language, and we freeze the entity. A subprogram that
-- is a child unit body that acts as a spec does not have a spec that
-- comes from source, but can only come from source.
elsif In_Open_Scopes (Scope (Test_E))
and then Scope (Test_E) /= Current_Scope
and then Ekind (Test_E) /= E_Constant
then
declare
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) loop
if Is_Overloadable (S) then
if Comes_From_Source (S)
or else Is_Generic_Instance (S)
or else Is_Child_Unit (S)
then
exit;
else
Result := No_List;
goto Leave;
end if;
end if;
S := Scope (S);
end loop;
end;
-- Similarly, an inlined instance body may make reference to global
-- entities, but these references cannot be the proper freezing point
-- for them, and in the absence of inlining freezing will take place in
-- their own scope. Normally instance bodies are analyzed after the
-- enclosing compilation, and everything has been frozen at the proper
-- place, but with front-end inlining an instance body is compiled
-- before the end of the enclosing scope, and as a result out-of-order
-- freezing must be prevented.
elsif Front_End_Inlining
and then In_Instance_Body
and then Present (Scope (Test_E))
then
declare
S : Entity_Id;
begin
S := Scope (Test_E);
while Present (S) loop
if Is_Generic_Instance (S) then
exit;
else
S := Scope (S);
end if;
end loop;
if No (S) then
Result := No_List;
goto Leave;
end if;
end;
end if;
-- Add checks to detect proper initialization of scalars that may appear
-- as subprogram parameters.
if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
Apply_Parameter_Validity_Checks (E);
end if;
-- Deal with delayed aspect specifications. The analysis of the aspect
-- is required to be delayed to the freeze point, thus we analyze the
-- pragma or attribute definition clause in the tree at this point. We
-- also analyze the aspect specification node at the freeze point when
-- the aspect doesn't correspond to pragma/attribute definition clause.
-- In addition, a derived type may have inherited aspects that were
-- delayed in the parent, so these must also be captured now.
-- For a record type, we deal with the delayed aspect specifications on
-- components first, which is consistent with the non-delayed case and
-- makes it possible to have a single processing to detect conflicts.
if Is_Record_Type (E) then
declare
Comp : Entity_Id;
Rec_Pushed : Boolean := False;
-- Set True if the record type E has been pushed on the scope
-- stack. Needed for the analysis of delayed aspects specified
-- to the components of Rec.
begin
Comp := First_Entity (E);
while Present (Comp) loop
if Ekind (Comp) = E_Component
and then Has_Delayed_Aspects (Comp)
then
if not Rec_Pushed then
Push_Scope (E);
Rec_Pushed := True;
-- The visibility to the discriminants must be restored
-- in order to properly analyze the aspects.
if Has_Discriminants (E) then
Install_Discriminants (E);
end if;
end if;
Analyze_Aspects_At_Freeze_Point (Comp);
end if;
Next_Entity (Comp);
end loop;
-- Pop the scope if Rec scope has been pushed on the scope stack
-- during the delayed aspect analysis process.
if Rec_Pushed then
if Has_Discriminants (E) then
Uninstall_Discriminants (E);
end if;
Pop_Scope;
end if;
end;
end if;
if Has_Delayed_Aspects (E)
or else May_Inherit_Delayed_Rep_Aspects (E)
then
Analyze_Aspects_At_Freeze_Point (E);
end if;
-- Here to freeze the entity
Set_Is_Frozen (E);
-- Case of entity being frozen is other than a type
if not Is_Type (E) then
-- If entity is exported or imported and does not have an external
-- name, now is the time to provide the appropriate default name.
-- Skip this if the entity is stubbed, since we don't need a name
-- for any stubbed routine. For the case on intrinsics, if no
-- external name is specified, then calls will be handled in
-- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
-- external name is provided, then Expand_Intrinsic_Call leaves
-- calls in place for expansion by GIGI.
if (Is_Imported (E) or else Is_Exported (E))
and then No (Interface_Name (E))
and then Convention (E) /= Convention_Stubbed
and then Convention (E) /= Convention_Intrinsic
then
Set_Encoded_Interface_Name
(E, Get_Default_External_Name (E));
-- If entity is an atomic object appearing in a declaration and
-- the expression is an aggregate, assign it to a temporary to
-- ensure that the actual assignment is done atomically rather
-- than component-wise (the assignment to the temp may be done
-- component-wise, but that is harmless).
elsif Is_Full_Access (E)
and then Nkind (Parent (E)) = N_Object_Declaration
and then Present (Expression (Parent (E)))
and then Nkind (Expression (Parent (E))) = N_Aggregate
and then Is_Full_Access_Aggregate (Expression (Parent (E)))
then
null;
end if;
-- Subprogram case
if Is_Subprogram (E) then
-- Check for needing to wrap imported subprogram
Wrap_Imported_Subprogram (E);
-- Freeze all parameter types and the return type (RM 13.14(14)).
-- However skip this for internal subprograms. This is also where
-- any extra formal parameters are created since we now know
-- whether the subprogram will use a foreign convention.
-- In Ada 2012, freezing a subprogram does not always freeze the
-- corresponding profile (see AI05-019). An attribute reference
-- is not a freezing point of the profile. Flag Do_Freeze_Profile
-- indicates whether the profile should be frozen now.
-- Other constructs that should not freeze ???
-- This processing doesn't apply to internal entities (see below)
if not Is_Internal (E) and then Do_Freeze_Profile then
if not Freeze_Profile (E) then
goto Leave;
end if;
end if;
-- Must freeze its parent first if it is a derived subprogram
if Present (Alias (E)) then
Freeze_And_Append (Alias (E), N, Result);
end if;
-- We don't freeze internal subprograms, because we don't normally
-- want addition of extra formals or mechanism setting to happen
-- for those. However we do pass through predefined dispatching
-- cases, since extra formals may be needed in some cases, such as
-- for the stream 'Input function (build-in-place formals).
if not Is_Internal (E)
or else Is_Predefined_Dispatching_Operation (E)
then
Freeze_Subprogram (E);
end if;
-- If warning on suspicious contracts then check for the case of
-- a postcondition other than False for a No_Return subprogram.
if No_Return (E)
and then Warn_On_Suspicious_Contract
and then Present (Contract (E))
then
declare
Prag : Node_Id := Pre_Post_Conditions (Contract (E));
Exp : Node_Id;
begin
while Present (Prag) loop
if Pragma_Name_Unmapped (Prag) in Name_Post
| Name_Postcondition
| Name_Refined_Post
then
Exp :=
Expression
(First (Pragma_Argument_Associations (Prag)));
if Nkind (Exp) /= N_Identifier
or else Chars (Exp) /= Name_False
then
Error_Msg_NE
("useless postcondition, & is marked "
& "No_Return?T?", Exp, E);
end if;
end if;
Prag := Next_Pragma (Prag);
end loop;
end;
end if;
-- Here for other than a subprogram or type
else
-- If entity has a type declared in the current scope, and it is
-- not a generic unit, then freeze it first.
if Present (Etype (E))
and then Ekind (E) /= E_Generic_Function
and then Within_Scope (Etype (E), Current_Scope)
then
Freeze_And_Append (Etype (E), N, Result);
-- For an object of an anonymous array type, aspects on the
-- object declaration apply to the type itself. This is the
-- case for Atomic_Components, Volatile_Components, and
-- Independent_Components. In these cases analysis of the
-- generated pragma will mark the anonymous types accordingly,
-- and the object itself does not require a freeze node.
if Ekind (E) = E_Variable
and then Is_Itype (Etype (E))
and then Is_Array_Type (Etype (E))
and then Has_Delayed_Aspects (E)
then
Set_Has_Delayed_Aspects (E, False);
Set_Has_Delayed_Freeze (E, False);
Set_Freeze_Node (E, Empty);
end if;
end if;
-- Special processing for objects created by object declaration
if Nkind (Declaration_Node (E)) = N_Object_Declaration then
Freeze_Object_Declaration (E);
end if;
-- Check that a constant which has a pragma Volatile[_Components]
-- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
-- Note: Atomic[_Components] also sets Volatile[_Components]
if Ekind (E) = E_Constant
and then (Has_Volatile_Components (E) or else Is_Volatile (E))
and then not Is_Imported (E)
and then not Has_Boolean_Aspect_Import (E)
then
-- Make sure we actually have a pragma, and have not merely
-- inherited the indication from elsewhere (e.g. an address
-- clause, which is not good enough in RM terms).
if Has_Rep_Pragma (E, Name_Atomic)
or else
Has_Rep_Pragma (E, Name_Atomic_Components)
then
Error_Msg_N
("standalone atomic constant must be " &
"imported (RM C.6(13))", E);
elsif Has_Rep_Pragma (E, Name_Volatile)
or else
Has_Rep_Pragma (E, Name_Volatile_Components)
then
Error_Msg_N
("standalone volatile constant must be " &
"imported (RM C.6(13))", E);
end if;
end if;
-- Static objects require special handling
if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
and then Is_Statically_Allocated (E)
then
Freeze_Static_Object (E);
end if;
-- Remaining step is to layout objects
if Ekind (E) in E_Variable | E_Constant | E_Loop_Parameter
or else Is_Formal (E)
then
Layout_Object (E);
end if;
-- For an object that does not have delayed freezing, and whose
-- initialization actions have been captured in a compound
-- statement, move them back now directly within the enclosing
-- statement sequence.
if Ekind (E) in E_Constant | E_Variable
and then not Has_Delayed_Freeze (E)
then
Explode_Initialization_Compound_Statement (E);
end if;
-- Do not generate a freeze node for a generic unit
if Is_Generic_Unit (E) then
Result := No_List;
goto Leave;
end if;
end if;
-- Case of a type or subtype being frozen
else
-- Verify several SPARK legality rules related to Ghost types now
-- that the type is frozen.
Check_Ghost_Type (E);
-- We used to check here that a full type must have preelaborable
-- initialization if it completes a private type specified with
-- pragma Preelaborable_Initialization, but that missed cases where
-- the types occur within a generic package, since the freezing
-- that occurs within a containing scope generally skips traversal
-- of a generic unit's declarations (those will be frozen within
-- instances). This check was moved to Analyze_Package_Specification.
-- The type may be defined in a generic unit. This can occur when
-- freezing a generic function that returns the type (which is
-- defined in a parent unit). It is clearly meaningless to freeze
-- this type. However, if it is a subtype, its size may be determi-
-- nable and used in subsequent checks, so might as well try to
-- compute it.
-- In Ada 2012, Freeze_Entities is also used in the front end to
-- trigger the analysis of aspect expressions, so in this case we
-- want to continue the freezing process.
-- Is_Generic_Unit (Scope (E)) is dubious here, do we want instead
-- In_Generic_Scope (E)???
if Present (Scope (E))
and then Is_Generic_Unit (Scope (E))
and then
(not Has_Predicates (E)
and then not Has_Delayed_Freeze (E))
then
Check_Compile_Time_Size (E);
Result := No_List;
goto Leave;
end if;
-- Check for error of Type_Invariant'Class applied to an untagged
-- type (check delayed to freeze time when full type is available).
declare
Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
begin
if Present (Prag)
and then Class_Present (Prag)
and then not Is_Tagged_Type (E)
then
Error_Msg_NE
("Type_Invariant''Class cannot be specified for &", Prag, E);
Error_Msg_N
("\can only be specified for a tagged type", Prag);
end if;
end;
-- Deal with special cases of freezing for subtype
if E /= Base_Type (E) then
-- Before we do anything else, a specific test for the case of a
-- size given for an array where the array would need to be packed
-- in order for the size to be honored, but is not. This is the
-- case where implicit packing may apply. The reason we do this so
-- early is that, if we have implicit packing, the layout of the
-- base type is affected, so we must do this before we freeze the
-- base type.
-- We could do this processing only if implicit packing is enabled
-- since in all other cases, the error would be caught by the back
-- end. However, we choose to do the check even if we do not have
-- implicit packing enabled, since this allows us to give a more
-- useful error message (advising use of pragma Implicit_Packing
-- or pragma Pack).
if Is_Array_Type (E) then
declare
Ctyp : constant Entity_Id := Component_Type (E);
Rsiz : constant Uint :=
(if Known_RM_Size (Ctyp) then RM_Size (Ctyp) else Uint_0);
SZ : constant Node_Id := Size_Clause (E);
Btyp : constant Entity_Id := Base_Type (E);
Lo : Node_Id;
Hi : Node_Id;
Indx : Node_Id;
Dim : Uint;
Num_Elmts : Uint := Uint_1;
-- Number of elements in array
begin
-- Check enabling conditions. These are straightforward
-- except for the test for a limited composite type. This
-- eliminates the rare case of a array of limited components
-- where there are issues of whether or not we can go ahead
-- and pack the array (since we can't freely pack and unpack
-- arrays if they are limited).
-- Note that we check the root type explicitly because the
-- whole point is we are doing this test before we have had
-- a chance to freeze the base type (and it is that freeze
-- action that causes stuff to be inherited).
-- The conditions on the size are identical to those used in
-- Freeze_Array_Type to set the Is_Packed flag.
if Has_Size_Clause (E)
and then Known_Static_RM_Size (E)
and then not Is_Packed (E)
and then not Has_Pragma_Pack (E)
and then not Has_Component_Size_Clause (E)
and then Known_Static_RM_Size (Ctyp)
and then Rsiz <= System_Max_Integer_Size
and then not (Addressable (Rsiz)
and then Known_Static_Esize (Ctyp)
and then Esize (Ctyp) = Rsiz)
and then not (Rsiz mod System_Storage_Unit = 0
and then Is_Composite_Type (Ctyp))
and then not Is_Limited_Composite (E)
and then not Is_Packed (Root_Type (E))
and then not Has_Component_Size_Clause (Root_Type (E))
and then not (CodePeer_Mode or GNATprove_Mode)
then
-- Compute number of elements in array
Indx := First_Index (E);
while Present (Indx) loop
Get_Index_Bounds (Indx, Lo, Hi);
if not (Compile_Time_Known_Value (Lo)
and then
Compile_Time_Known_Value (Hi))
then
goto No_Implicit_Packing;
end if;
Dim := Expr_Value (Hi) - Expr_Value (Lo) + 1;
if Dim >= 0 then
Num_Elmts := Num_Elmts * Dim;
else
Num_Elmts := Uint_0;
end if;
Next_Index (Indx);
end loop;
-- What we are looking for here is the situation where
-- the RM_Size given would be exactly right if there was
-- a pragma Pack, resulting in the component size being
-- the RM_Size of the component type.
if RM_Size (E) = Num_Elmts * Rsiz then
-- For implicit packing mode, just set the component
-- size and Freeze_Array_Type will do the rest.
if Implicit_Packing then
Set_Component_Size (Btyp, Rsiz);
-- Otherwise give an error message
else
Error_Msg_NE
("size given for& too small", SZ, E);
Error_Msg_N -- CODEFIX
("\use explicit pragma Pack or use pragma "
& "Implicit_Packing", SZ);
end if;
end if;
end if;
end;
end if;
<<No_Implicit_Packing>>
-- If ancestor subtype present, freeze that first. Note that this
-- will also get the base type frozen. Need RM reference ???
Atype := Ancestor_Subtype (E);
if Present (Atype) then
Freeze_And_Append (Atype, N, Result);
-- No ancestor subtype present
else
-- See if we have a nearest ancestor that has a predicate.
-- That catches the case of derived type with a predicate.
-- Need RM reference here ???
Atype := Nearest_Ancestor (E);
if Present (Atype) and then Has_Predicates (Atype) then
Freeze_And_Append (Atype, N, Result);
end if;
-- Freeze base type before freezing the entity (RM 13.14(15))
if E /= Base_Type (E) then
Freeze_And_Append (Base_Type (E), N, Result);
end if;
end if;
-- A subtype inherits all the type-related representation aspects
-- from its parents (RM 13.1(8)).
Inherit_Aspects_At_Freeze_Point (E);
-- For a derived type, freeze its parent type first (RM 13.14(15))
elsif Is_Derived_Type (E) then
Freeze_And_Append (Etype (E), N, Result);
Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
-- A derived type inherits each type-related representation aspect
-- of its parent type that was directly specified before the
-- declaration of the derived type (RM 13.1(15)).
Inherit_Aspects_At_Freeze_Point (E);
end if;
-- Case of array type
if Is_Array_Type (E) then
Freeze_Array_Type (E);
end if;
-- Check for incompatible size and alignment for array/record type
if Warn_On_Size_Alignment
and then (Is_Array_Type (E) or else Is_Record_Type (E))
and then Has_Size_Clause (E)
and then Has_Alignment_Clause (E)
-- If explicit Object_Size clause given assume that the programmer
-- knows what he is doing, and expects the compiler behavior.
and then not Has_Object_Size_Clause (E)
-- It does not really make sense to warn for the minimum alignment
-- since the programmer could not get rid of the warning.
and then Alignment (E) > 1
-- Check for size not a multiple of alignment
and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
then
declare
SC : constant Node_Id := Size_Clause (E);
AC : constant Node_Id := Alignment_Clause (E);
Loc : Node_Id;
Abits : constant Uint := Alignment (E) * System_Storage_Unit;
begin
if Present (SC) and then Present (AC) then
-- Give a warning
if Sloc (SC) > Sloc (AC) then
Loc := SC;
Error_Msg_NE
("?Z?size is not a multiple of alignment for &",
Loc, E);
Error_Msg_Sloc := Sloc (AC);
Error_Msg_Uint_1 := Alignment (E);
Error_Msg_N ("\?Z?alignment of ^ specified #", Loc);
else
Loc := AC;
Error_Msg_NE
("?Z?size is not a multiple of alignment for &",
Loc, E);
Error_Msg_Sloc := Sloc (SC);
Error_Msg_Uint_1 := RM_Size (E);
Error_Msg_N ("\?Z?size of ^ specified #", Loc);
end if;
Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
Error_Msg_N ("\?Z?Object_Size will be increased to ^", Loc);
end if;
end;
end if;
-- For a class-wide type, the corresponding specific type is
-- frozen as well (RM 13.14(15))
if Is_Class_Wide_Type (E) then
Freeze_And_Append (Root_Type (E), N, Result);
-- If the base type of the class-wide type is still incomplete,
-- the class-wide remains unfrozen as well. This is legal when
-- E is the formal of a primitive operation of some other type
-- which is being frozen.
if not Is_Frozen (Root_Type (E)) then
Set_Is_Frozen (E, False);
goto Leave;
end if;
-- The equivalent type associated with a class-wide subtype needs
-- to be frozen to ensure that its layout is done.
if Ekind (E) = E_Class_Wide_Subtype
and then Present (Equivalent_Type (E))
then
Freeze_And_Append (Equivalent_Type (E), N, Result);
end if;
-- Generate an itype reference for a library-level class-wide type
-- at the freeze point. Otherwise the first explicit reference to
-- the type may appear in an inner scope which will be rejected by
-- the back-end.
if Is_Itype (E)
and then Is_Compilation_Unit (Scope (E))
then
declare
Ref : constant Node_Id := Make_Itype_Reference (Loc);
begin
Set_Itype (Ref, E);
-- From a gigi point of view, a class-wide subtype derives
-- from its record equivalent type. As a result, the itype
-- reference must appear after the freeze node of the
-- equivalent type or gigi will reject the reference.
if Ekind (E) = E_Class_Wide_Subtype
and then Present (Equivalent_Type (E))
then
Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
else
Add_To_Result (Ref);
end if;
end;
end if;
-- For a record type or record subtype, freeze all component types
-- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
-- using Is_Record_Type, because we don't want to attempt the freeze
-- for the case of a private type with record extension (we will do
-- that later when the full type is frozen).
elsif Ekind (E) in E_Record_Type | E_Record_Subtype then
if not In_Generic_Scope (E) then
Freeze_Record_Type (E);
end if;
-- Report a warning if a discriminated record base type has a
-- convention with language C or C++ applied to it. This check is
-- done even within generic scopes (but not in instantiations),
-- which is why we don't do it as part of Freeze_Record_Type.
Check_Suspicious_Convention (E);
-- For a concurrent type, freeze corresponding record type. This does
-- not correspond to any specific rule in the RM, but the record type
-- is essentially part of the concurrent type. Also freeze all local
-- entities. This includes record types created for entry parameter
-- blocks and whatever local entities may appear in the private part.
elsif Is_Concurrent_Type (E) then
if Present (Corresponding_Record_Type (E)) then
Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
end if;
Comp := First_Entity (E);
while Present (Comp) loop
if Is_Type (Comp) then
Freeze_And_Append (Comp, N, Result);
elsif (Ekind (Comp)) /= E_Function then
-- The guard on the presence of the Etype seems to be needed
-- for some CodePeer (-gnatcC) cases, but not clear why???
if Present (Etype (Comp)) then
if Is_Itype (Etype (Comp))
and then Underlying_Type (Scope (Etype (Comp))) = E
then
Undelay_Type (Etype (Comp));
end if;
Freeze_And_Append (Etype (Comp), N, Result);
end if;
end if;
Next_Entity (Comp);
end loop;
-- Private types are required to point to the same freeze node as
-- their corresponding full views. The freeze node itself has to
-- point to the partial view of the entity (because from the partial
-- view, we can retrieve the full view, but not the reverse).
-- However, in order to freeze correctly, we need to freeze the full
-- view. If we are freezing at the end of a scope (or within the
-- scope) of the private type, the partial and full views will have
-- been swapped, the full view appears first in the entity chain and
-- the swapping mechanism ensures that the pointers are properly set
-- (on scope exit).
-- If we encounter the partial view before the full view (e.g. when
-- freezing from another scope), we freeze the full view, and then
-- set the pointers appropriately since we cannot rely on swapping to
-- fix things up (subtypes in an outer scope might not get swapped).
-- If the full view is itself private, the above requirements apply
-- to the underlying full view instead of the full view. But there is
-- no swapping mechanism for the underlying full view so we need to
-- set the pointers appropriately in both cases.
elsif Is_Incomplete_Or_Private_Type (E)
and then not Is_Generic_Type (E)
then
-- The construction of the dispatch table associated with library
-- level tagged types forces freezing of all the primitives of the
-- type, which may cause premature freezing of the partial view.
-- For example:
-- package Pkg is
-- type T is tagged private;
-- type DT is new T with private;
-- procedure Prim (X : in out T; Y : in out DT'Class);
-- private
-- type T is tagged null record;
-- Obj : T;
-- type DT is new T with null record;
-- end;
-- In this case the type will be frozen later by the usual
-- mechanism: an object declaration, an instantiation, or the
-- end of a declarative part.
if Is_Library_Level_Tagged_Type (E)
and then not Present (Full_View (E))
then
Set_Is_Frozen (E, False);
goto Leave;
-- Case of full view present
elsif Present (Full_View (E)) then
-- If full view has already been frozen, then no further
-- processing is required
if Is_Frozen (Full_View (E)) then
Set_Has_Delayed_Freeze (E, False);
Set_Freeze_Node (E, Empty);
-- Otherwise freeze full view and patch the pointers so that
-- the freeze node will elaborate both views in the back end.
-- However, if full view is itself private, freeze underlying
-- full view instead and patch the pointers so that the freeze
-- node will elaborate the three views in the back end.
else
declare
Full : Entity_Id := Full_View (E);
begin
if Is_Private_Type (Full)
and then Present (Underlying_Full_View (Full))
then
Full := Underlying_Full_View (Full);
end if;
Freeze_And_Append (Full, N, Result);
if Full /= Full_View (E)
and then Has_Delayed_Freeze (Full_View (E))
then
F_Node := Freeze_Node (Full);
if Present (F_Node) then
Inherit_Freeze_Node
(Fnod => F_Node, Typ => Full_View (E));
else
Set_Has_Delayed_Freeze (Full_View (E), False);
Set_Freeze_Node (Full_View (E), Empty);
end if;
end if;
if Has_Delayed_Freeze (E) then
F_Node := Freeze_Node (Full_View (E));
if Present (F_Node) then
Inherit_Freeze_Node (Fnod => F_Node, Typ => E);
else
-- {Incomplete,Private}_Subtypes with Full_Views
-- constrained by discriminants.
Set_Has_Delayed_Freeze (E, False);
Set_Freeze_Node (E, Empty);
end if;
end if;
end;
end if;
Check_Debug_Info_Needed (E);
-- AI-117 requires that the convention of a partial view be the
-- same as the convention of the full view. Note that this is a
-- recognized breach of privacy, but it's essential for logical
-- consistency of representation, and the lack of a rule in
-- RM95 was an oversight.
Set_Convention (E, Convention (Full_View (E)));
Set_Size_Known_At_Compile_Time (E,
Size_Known_At_Compile_Time (Full_View (E)));
-- Size information is copied from the full view to the
-- incomplete or private view for consistency.
-- We skip this is the full view is not a type. This is very
-- strange of course, and can only happen as a result of
-- certain illegalities, such as a premature attempt to derive
-- from an incomplete type.
if Is_Type (Full_View (E)) then
Set_Size_Info (E, Full_View (E));
Copy_RM_Size (To => E, From => Full_View (E));
end if;
goto Leave;
-- Case of underlying full view present
elsif Is_Private_Type (E)
and then Present (Underlying_Full_View (E))
then
if not Is_Frozen (Underlying_Full_View (E)) then
Freeze_And_Append (Underlying_Full_View (E), N, Result);
end if;
-- Patch the pointers so that the freeze node will elaborate
-- both views in the back end.
if Has_Delayed_Freeze (E) then
F_Node := Freeze_Node (Underlying_Full_View (E));
if Present (F_Node) then
Inherit_Freeze_Node
(Fnod => F_Node,
Typ => E);
else
Set_Has_Delayed_Freeze (E, False);
Set_Freeze_Node (E, Empty);
end if;
end if;
Check_Debug_Info_Needed (E);
goto Leave;
-- Case of no full view present. If entity is subtype or derived,
-- it is safe to freeze, correctness depends on the frozen status
-- of parent. Otherwise it is either premature usage, or a Taft
-- amendment type, so diagnosis is at the point of use and the
-- type might be frozen later.
elsif E /= Base_Type (E) then
declare
Btyp : constant Entity_Id := Base_Type (E);
begin
-- However, if the base type is itself private and has no
-- (underlying) full view either, wait until the full type
-- declaration is seen and all the full views are created.
if Is_Private_Type (Btyp)
and then No (Full_View (Btyp))
and then No (Underlying_Full_View (Btyp))
and then Has_Delayed_Freeze (Btyp)
and then No (Freeze_Node (Btyp))
then
Set_Is_Frozen (E, False);
Result := No_List;
goto Leave;
end if;
end;
elsif Is_Derived_Type (E) then
null;
else
Set_Is_Frozen (E, False);
Result := No_List;
goto Leave;
end if;
-- For access subprogram, freeze types of all formals, the return
-- type was already frozen, since it is the Etype of the function.
-- Formal types can be tagged Taft amendment types, but otherwise
-- they cannot be incomplete.
elsif Ekind (E) = E_Subprogram_Type then
Formal := First_Formal (E);
while Present (Formal) loop
if Ekind (Etype (Formal)) = E_Incomplete_Type
and then No (Full_View (Etype (Formal)))
then
if Is_Tagged_Type (Etype (Formal)) then
null;
-- AI05-151: Incomplete types are allowed in access to
-- subprogram specifications.
elsif Ada_Version < Ada_2012 then
Error_Msg_NE
("invalid use of incomplete type&", E, Etype (Formal));
end if;
end if;
Freeze_And_Append (Etype (Formal), N, Result);
Next_Formal (Formal);
end loop;
Freeze_Subprogram (E);
-- For access to a protected subprogram, freeze the equivalent type
-- (however this is not set if we are not generating code or if this
-- is an anonymous type used just for resolution).
elsif Is_Access_Protected_Subprogram_Type (E) then
if Present (Equivalent_Type (E)) then
Freeze_And_Append (Equivalent_Type (E), N, Result);
end if;
end if;
-- Generic types are never seen by the back-end, and are also not
-- processed by the expander (since the expander is turned off for
-- generic processing), so we never need freeze nodes for them.
if Is_Generic_Type (E) then
goto Leave;
end if;
-- Some special processing for non-generic types to complete
-- representation details not known till the freeze point.
if Is_Fixed_Point_Type (E) then
Freeze_Fixed_Point_Type (E);
elsif Is_Enumeration_Type (E) then
Freeze_Enumeration_Type (E);
elsif Is_Integer_Type (E) then
Adjust_Esize_For_Alignment (E);
if Is_Modular_Integer_Type (E)
and then Warn_On_Suspicious_Modulus_Value
then
Check_Suspicious_Modulus (E);
end if;
-- The pool applies to named and anonymous access types, but not
-- to subprogram and to internal types generated for 'Access
-- references.
elsif Is_Access_Object_Type (E)
and then Ekind (E) /= E_Access_Attribute_Type
then
-- If a pragma Default_Storage_Pool applies, and this type has no
-- Storage_Pool or Storage_Size clause (which must have occurred
-- before the freezing point), then use the default. This applies
-- only to base types.
-- None of this applies to access to subprograms, for which there
-- are clearly no pools.
if Present (Default_Pool)
and then Is_Base_Type (E)
and then not Has_Storage_Size_Clause (E)
and then No (Associated_Storage_Pool (E))
then
-- Case of pragma Default_Storage_Pool (null)
if Nkind (Default_Pool) = N_Null then
Set_No_Pool_Assigned (E);
-- Case of pragma Default_Storage_Pool (Standard)
elsif Entity (Default_Pool) = Standard_Standard then
Set_Associated_Storage_Pool (E, RTE (RE_Global_Pool_Object));
-- Case of pragma Default_Storage_Pool (storage_pool_NAME)
else
Set_Associated_Storage_Pool (E, Entity (Default_Pool));
end if;
end if;
-- Check restriction for standard storage pool
if No (Associated_Storage_Pool (E)) then
Check_Restriction (No_Standard_Storage_Pools, E);
end if;
-- Deal with error message for pure access type. This is not an
-- error in Ada 2005 if there is no pool (see AI-366).
if Is_Pure_Unit_Access_Type (E)
and then (Ada_Version < Ada_2005
or else not No_Pool_Assigned (E))
and then not Is_Generic_Unit (Scope (E))
then
Error_Msg_N ("named access type not allowed in pure unit", E);
if Ada_Version >= Ada_2005 then
Error_Msg_N
("\would be legal if Storage_Size of 0 given??", E);
elsif No_Pool_Assigned (E) then
Error_Msg_N
("\would be legal in Ada 2005??", E);
else
Error_Msg_N
("\would be legal in Ada 2005 if "
& "Storage_Size of 0 given??", E);
end if;
end if;
end if;
-- Case of composite types
if Is_Composite_Type (E) then
-- AI-117 requires that all new primitives of a tagged type must
-- inherit the convention of the full view of the type. Inherited
-- and overriding operations are defined to inherit the convention
-- of their parent or overridden subprogram (also specified in
-- AI-117), which will have occurred earlier (in Derive_Subprogram
-- and New_Overloaded_Entity). Here we set the convention of
-- primitives that are still convention Ada, which will ensure
-- that any new primitives inherit the type's convention. Class-
-- wide types can have a foreign convention inherited from their
-- specific type, but are excluded from this since they don't have
-- any associated primitives.
if Is_Tagged_Type (E)
and then not Is_Class_Wide_Type (E)
and then Convention (E) /= Convention_Ada
then
declare
Prim_List : constant Elist_Id := Primitive_Operations (E);
Prim : Elmt_Id;
begin
Prim := First_Elmt (Prim_List);
while Present (Prim) loop
if Convention (Node (Prim)) = Convention_Ada then
Set_Convention (Node (Prim), Convention (E));
end if;
Next_Elmt (Prim);
end loop;
end;
end if;
-- If the type is a simple storage pool type, then this is where
-- we attempt to locate and validate its Allocate, Deallocate, and
-- Storage_Size operations (the first is required, and the latter
-- two are optional). We also verify that the full type for a
-- private type is allowed to be a simple storage pool type.
if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
then
-- If the type is marked Has_Private_Declaration, then this is
-- a full type for a private type that was specified with the
-- pragma Simple_Storage_Pool_Type, and here we ensure that the
-- pragma is allowed for the full type (for example, it can't
-- be an array type, or a nonlimited record type).
if Has_Private_Declaration (E) then
if (not Is_Record_Type (E) or else not Is_Limited_View (E))
and then not Is_Private_Type (E)
then
Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
Error_Msg_N
("pragma% can only apply to full type that is an " &
"explicitly limited type", E);
end if;
end if;
Validate_Simple_Pool_Ops : declare
Pool_Type : Entity_Id renames E;
Address_Type : constant Entity_Id := RTE (RE_Address);
Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
procedure Validate_Simple_Pool_Op_Formal
(Pool_Op : Entity_Id;
Pool_Op_Formal : in out Entity_Id;
Expected_Mode : Formal_Kind;
Expected_Type : Entity_Id;
Formal_Name : String;
OK_Formal : in out Boolean);
-- Validate one formal Pool_Op_Formal of the candidate pool
-- operation Pool_Op. The formal must be of Expected_Type
-- and have mode Expected_Mode. OK_Formal will be set to
-- False if the formal doesn't match. If OK_Formal is False
-- on entry, then the formal will effectively be ignored
-- (because validation of the pool op has already failed).
-- Upon return, Pool_Op_Formal will be updated to the next
-- formal, if any.
procedure Validate_Simple_Pool_Operation
(Op_Name : Name_Id);
-- Search for and validate a simple pool operation with the
-- name Op_Name. If the name is Allocate, then there must be
-- exactly one such primitive operation for the simple pool
-- type. If the name is Deallocate or Storage_Size, then
-- there can be at most one such primitive operation. The
-- profile of the located primitive must conform to what
-- is expected for each operation.
------------------------------------
-- Validate_Simple_Pool_Op_Formal --
------------------------------------
procedure Validate_Simple_Pool_Op_Formal
(Pool_Op : Entity_Id;
Pool_Op_Formal : in out Entity_Id;
Expected_Mode : Formal_Kind;
Expected_Type : Entity_Id;
Formal_Name : String;
OK_Formal : in out Boolean)
is
begin
-- If OK_Formal is False on entry, then simply ignore
-- the formal, because an earlier formal has already
-- been flagged.
if not OK_Formal then
return;
-- If no formal is passed in, then issue an error for a
-- missing formal.
elsif not Present (Pool_Op_Formal) then
Error_Msg_NE
("simple storage pool op missing formal " &
Formal_Name & " of type&", Pool_Op, Expected_Type);
OK_Formal := False;
return;
end if;
if Etype (Pool_Op_Formal) /= Expected_Type then
-- If the pool type was expected for this formal, then
-- this will not be considered a candidate operation
-- for the simple pool, so we unset OK_Formal so that
-- the op and any later formals will be ignored.
if Expected_Type = Pool_Type then
OK_Formal := False;
return;
else
Error_Msg_NE
("wrong type for formal " & Formal_Name &
" of simple storage pool op; expected type&",
Pool_Op_Formal, Expected_Type);
end if;
end if;
-- Issue error if formal's mode is not the expected one
if Ekind (Pool_Op_Formal) /= Expected_Mode then
Error_Msg_N
("wrong mode for formal of simple storage pool op",
Pool_Op_Formal);
end if;
-- Advance to the next formal
Next_Formal (Pool_Op_Formal);
end Validate_Simple_Pool_Op_Formal;
------------------------------------
-- Validate_Simple_Pool_Operation --
------------------------------------
procedure Validate_Simple_Pool_Operation
(Op_Name : Name_Id)
is
Op : Entity_Id;
Found_Op : Entity_Id := Empty;
Formal : Entity_Id;
Is_OK : Boolean;
begin
pragma Assert
(Op_Name in Name_Allocate
| Name_Deallocate
| Name_Storage_Size);
Error_Msg_Name_1 := Op_Name;
-- For each homonym declared immediately in the scope
-- of the simple storage pool type, determine whether
-- the homonym is an operation of the pool type, and,
-- if so, check that its profile is as expected for
-- a simple pool operation of that name.
Op := Get_Name_Entity_Id (Op_Name);
while Present (Op) loop
if Ekind (Op) in E_Function | E_Procedure
and then Scope (Op) = Current_Scope
then
Formal := First_Entity (Op);
Is_OK := True;
-- The first parameter must be of the pool type
-- in order for the operation to qualify.
if Op_Name = Name_Storage_Size then
Validate_Simple_Pool_Op_Formal
(Op, Formal, E_In_Parameter, Pool_Type,
"Pool", Is_OK);
else
Validate_Simple_Pool_Op_Formal
(Op, Formal, E_In_Out_Parameter, Pool_Type,
"Pool", Is_OK);
end if;
-- If another operation with this name has already
-- been located for the type, then flag an error,
-- since we only allow the type to have a single
-- such primitive.
if Present (Found_Op) and then Is_OK then
Error_Msg_NE
("only one % operation allowed for " &
"simple storage pool type&", Op, Pool_Type);
end if;
-- In the case of Allocate and Deallocate, a formal
-- of type System.Address is required.
if Op_Name = Name_Allocate then
Validate_Simple_Pool_Op_Formal
(Op, Formal, E_Out_Parameter,
Address_Type, "Storage_Address", Is_OK);
elsif Op_Name = Name_Deallocate then
Validate_Simple_Pool_Op_Formal
(Op, Formal, E_In_Parameter,
Address_Type, "Storage_Address", Is_OK);
end if;
-- In the case of Allocate and Deallocate, formals
-- of type Storage_Count are required as the third
-- and fourth parameters.
if Op_Name /= Name_Storage_Size then
Validate_Simple_Pool_Op_Formal
(Op, Formal, E_In_Parameter,
Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
Validate_Simple_Pool_Op_Formal
(Op, Formal, E_In_Parameter,
Stg_Cnt_Type, "Alignment", Is_OK);
end if;
-- If no mismatched formals have been found (Is_OK)
-- and no excess formals are present, then this
-- operation has been validated, so record it.
if not Present (Formal) and then Is_OK then
Found_Op := Op;
end if;
end if;
Op := Homonym (Op);
end loop;
-- There must be a valid Allocate operation for the type,
-- so issue an error if none was found.
if Op_Name = Name_Allocate
and then not Present (Found_Op)
then
Error_Msg_N ("missing % operation for simple " &
"storage pool type", Pool_Type);
elsif Present (Found_Op) then
-- Simple pool operations can't be abstract
if Is_Abstract_Subprogram (Found_Op) then
Error_Msg_N
("simple storage pool operation must not be " &
"abstract", Found_Op);
end if;
-- The Storage_Size operation must be a function with
-- Storage_Count as its result type.
if Op_Name = Name_Storage_Size then
if Ekind (Found_Op) = E_Procedure then
Error_Msg_N
("% operation must be a function", Found_Op);
elsif Etype (Found_Op) /= Stg_Cnt_Type then
Error_Msg_NE
("wrong result type for%, expected type&",
Found_Op, Stg_Cnt_Type);
end if;
-- Allocate and Deallocate must be procedures
elsif Ekind (Found_Op) = E_Function then
Error_Msg_N
("% operation must be a procedure", Found_Op);
end if;
end if;
end Validate_Simple_Pool_Operation;
-- Start of processing for Validate_Simple_Pool_Ops
begin
Validate_Simple_Pool_Operation (Name_Allocate);
Validate_Simple_Pool_Operation (Name_Deallocate);
Validate_Simple_Pool_Operation (Name_Storage_Size);
end Validate_Simple_Pool_Ops;
end if;
end if;
-- Now that all types from which E may depend are frozen, see if
-- strict alignment is required, a component clause on a record
-- is correct, the size is known at compile time and if it must
-- be unsigned, in that order.
if Base_Type (E) = E then
Check_Strict_Alignment (E);
end if;
if Ekind (E) in E_Record_Type | E_Record_Subtype then
declare
RC : constant Node_Id := Get_Record_Representation_Clause (E);
begin
if Present (RC) then
Check_Record_Representation_Clause (RC);
end if;
end;
end if;
Check_Compile_Time_Size (E);
Check_Unsigned_Type (E);
-- Do not allow a size clause for a type which does not have a size
-- that is known at compile time
if (Has_Size_Clause (E) or else Has_Object_Size_Clause (E))
and then not Size_Known_At_Compile_Time (E)
then
-- Suppress this message if errors posted on E, even if we are
-- in all errors mode, since this is often a junk message
if not Error_Posted (E) then
Error_Msg_N
("size clause not allowed for variable length type",
Size_Clause (E));
end if;
end if;
-- Now we set/verify the representation information, in particular
-- the size and alignment values. This processing is not required for
-- generic types, since generic types do not play any part in code
-- generation, and so the size and alignment values for such types
-- are irrelevant. Ditto for types declared within a generic unit,
-- which may have components that depend on generic parameters, and
-- that will be recreated in an instance.
if Inside_A_Generic then
null;
-- Otherwise we call the layout procedure
else
Layout_Type (E);
end if;
-- If this is an access to subprogram whose designated type is itself
-- a subprogram type, the return type of this anonymous subprogram
-- type must be decorated as well.
if Ekind (E) = E_Anonymous_Access_Subprogram_Type
and then Ekind (Designated_Type (E)) = E_Subprogram_Type
then
Layout_Type (Etype (Designated_Type (E)));
end if;
-- If the type has a Defaut_Value/Default_Component_Value aspect,
-- this is where we analyze the expression (after the type is frozen,
-- since in the case of Default_Value, we are analyzing with the
-- type itself, and we treat Default_Component_Value similarly for
-- the sake of uniformity).
if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
declare
Nam : Name_Id;
Exp : Node_Id;
Typ : Entity_Id;
begin
if Is_Scalar_Type (E) then
Nam := Name_Default_Value;
Typ := E;
Exp := Default_Aspect_Value (Typ);
else
Nam := Name_Default_Component_Value;
Typ := Component_Type (E);
Exp := Default_Aspect_Component_Value (E);
end if;
Analyze_And_Resolve (Exp, Typ);
if Etype (Exp) /= Any_Type then
if not Is_OK_Static_Expression (Exp) then
Error_Msg_Name_1 := Nam;
Flag_Non_Static_Expr
("aspect% requires static expression", Exp);
end if;
end if;
end;
end if;
-- Verify at this point that No_Controlled_Parts and No_Task_Parts,
-- when specified on the current type or one of its ancestors, has
-- not been overridden and that no violation of the aspect has
-- occurred.
-- It is important that we perform the checks here after the type has
-- been processed because if said type depended on a private type it
-- will not have been marked controlled or having tasks.
Check_No_Parts_Violations (E, Aspect_No_Controlled_Parts);
Check_No_Parts_Violations (E, Aspect_No_Task_Parts);
-- End of freeze processing for type entities
end if;
-- Here is where we logically freeze the current entity. If it has a
-- freeze node, then this is the point at which the freeze node is
-- linked into the result list.
if Has_Delayed_Freeze (E) then
-- If a freeze node is already allocated, use it, otherwise allocate
-- a new one. The preallocation happens in the case of anonymous base
-- types, where we preallocate so that we can set First_Subtype_Link.
-- Note that we reset the Sloc to the current freeze location.
if Present (Freeze_Node (E)) then
F_Node := Freeze_Node (E);
Set_Sloc (F_Node, Loc);
else
F_Node := New_Node (N_Freeze_Entity, Loc);
Set_Freeze_Node (E, F_Node);
Set_Access_Types_To_Process (F_Node, No_Elist);
Set_TSS_Elist (F_Node, No_Elist);
Set_Actions (F_Node, No_List);
end if;
Set_Entity (F_Node, E);
Add_To_Result (F_Node);
-- A final pass over record types with discriminants. If the type
-- has an incomplete declaration, there may be constrained access
-- subtypes declared elsewhere, which do not depend on the discrimi-
-- nants of the type, and which are used as component types (i.e.
-- the full view is a recursive type). The designated types of these
-- subtypes can only be elaborated after the type itself, and they
-- need an itype reference.
if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then
declare
Comp : Entity_Id;
IR : Node_Id;
Typ : Entity_Id;
begin
Comp := First_Component (E);
while Present (Comp) loop
Typ := Etype (Comp);
if Is_Access_Type (Typ)
and then Scope (Typ) /= E
and then Base_Type (Designated_Type (Typ)) = E
and then Is_Itype (Designated_Type (Typ))
then
IR := Make_Itype_Reference (Sloc (Comp));
Set_Itype (IR, Designated_Type (Typ));
Append (IR, Result);
end if;
Next_Component (Comp);
end loop;
end;
end if;
end if;
-- When a type is frozen, the first subtype of the type is frozen as
-- well (RM 13.14(15)). This has to be done after freezing the type,
-- since obviously the first subtype depends on its own base type.
if Is_Type (E) then
Freeze_And_Append (First_Subtype (E), N, Result);
-- If we just froze a tagged non-class-wide record, then freeze the
-- corresponding class-wide type. This must be done after the tagged
-- type itself is frozen, because the class-wide type refers to the
-- tagged type which generates the class.
if Is_Tagged_Type (E)
and then not Is_Class_Wide_Type (E)
and then Present (Class_Wide_Type (E))
then
Freeze_And_Append (Class_Wide_Type (E), N, Result);
end if;
end if;
Check_Debug_Info_Needed (E);
-- If subprogram has address clause then reset Is_Public flag, since we
-- do not want the backend to generate external references.
if Is_Subprogram (E)
and then Present (Address_Clause (E))
and then not Is_Library_Level_Entity (E)
then
Set_Is_Public (E, False);
end if;
-- The Ghost mode of the enclosing context is ignored, while the
-- entity being frozen is living. Insert the freezing action prior
-- to the start of the enclosing ignored Ghost region. As a result
-- the freezeing action will be preserved when the ignored Ghost
-- context is eliminated. The insertion must take place even when
-- the context is a spec expression, otherwise "Handling of Default
-- and Per-Object Expressions" will suppress the insertion, and the
-- freeze node will be dropped on the floor.
if Saved_GM = Ignore
and then Ghost_Mode /= Ignore
and then Present (Ignored_Ghost_Region)
then
Insert_Actions
(Assoc_Node => Ignored_Ghost_Region,
Ins_Actions => Result,
Spec_Expr_OK => True);
Result := No_List;
end if;
<<Leave>>
Restore_Ghost_Region (Saved_GM, Saved_IGR);
return Result;
end Freeze_Entity;
-----------------------------
-- Freeze_Enumeration_Type --
-----------------------------
procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
begin
-- By default, if no size clause is present, an enumeration type with
-- Convention C is assumed to interface to a C enum and has integer
-- size, except for a boolean type because it is assumed to interface
-- to _Bool introduced in C99. This applies to types. For subtypes,
-- verify that its base type has no size clause either. Treat other
-- foreign conventions in the same way, and also make sure alignment
-- is set right.
if Has_Foreign_Convention (Typ)
and then not Is_Boolean_Type (Typ)
and then not Has_Size_Clause (Typ)
and then not Has_Size_Clause (Base_Type (Typ))
and then Esize (Typ) < Standard_Integer_Size
-- Don't do this if Short_Enums on target
and then not Target_Short_Enums
then
Set_Esize (Typ, UI_From_Int (Standard_Integer_Size));
Set_Alignment (Typ, Alignment (Standard_Integer));
-- Normal Ada case or size clause present or not Long_C_Enums on target
else
-- If the enumeration type interfaces to C, and it has a size clause
-- that specifies less than int size, it warrants a warning. The
-- user may intend the C type to be an enum or a char, so this is
-- not by itself an error that the Ada compiler can detect, but it
-- it is a worth a heads-up. For Boolean and Character types we
-- assume that the programmer has the proper C type in mind.
if Convention (Typ) = Convention_C
and then Has_Size_Clause (Typ)
and then Esize (Typ) /= Esize (Standard_Integer)
and then not Is_Boolean_Type (Typ)
and then not Is_Character_Type (Typ)
-- Don't do this if Short_Enums on target
and then not Target_Short_Enums
then
Error_Msg_N
("C enum types have the size of a C int??", Size_Clause (Typ));
end if;
Adjust_Esize_For_Alignment (Typ);
end if;
end Freeze_Enumeration_Type;
-----------------------
-- Freeze_Expression --
-----------------------
procedure Freeze_Expression (N : Node_Id) is
function Find_Aggregate_Component_Desig_Type return Entity_Id;
-- If the expression is an array aggregate, the type of the component
-- expressions is also frozen. If the component type is an access type
-- and the expressions include allocators, the designed type is frozen
-- as well.
function In_Expanded_Body (N : Node_Id) return Boolean;
-- Given an N_Handled_Sequence_Of_Statements node, determines whether it
-- is the statement sequence of an expander-generated subprogram: body
-- created for an expression function, for a predicate function, an init
-- proc, a stream subprogram, or a renaming as body. If so, this is not
-- a freezing context and the entity will be frozen at a later point.
function Has_Decl_In_List
(E : Entity_Id;
N : Node_Id;
L : List_Id) return Boolean;
-- Determines whether an entity E referenced in node N is declared in
-- the list L.
-----------------------------------------
-- Find_Aggregate_Component_Desig_Type --
-----------------------------------------
function Find_Aggregate_Component_Desig_Type return Entity_Id is
Assoc : Node_Id;
Exp : Node_Id;
begin
if Present (Expressions (N)) then
Exp := First (Expressions (N));
while Present (Exp) loop
if Nkind (Exp) = N_Allocator then
return Designated_Type (Component_Type (Etype (N)));
end if;
Next (Exp);
end loop;
end if;
if Present (Component_Associations (N)) then
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
if Nkind (Expression (Assoc)) = N_Allocator then
return Designated_Type (Component_Type (Etype (N)));
end if;
Next (Assoc);
end loop;
end if;
return Empty;
end Find_Aggregate_Component_Desig_Type;
----------------------
-- In_Expanded_Body --
----------------------
function In_Expanded_Body (N : Node_Id) return Boolean is
P : constant Node_Id := Parent (N);
Id : Entity_Id;
begin
if Nkind (P) /= N_Subprogram_Body then
return False;
-- AI12-0157: An expression function that is a completion is a freeze
-- point. If the body is the result of expansion, it is not.
elsif Was_Expression_Function (P) then
return not Comes_From_Source (P);
-- This is the body of a generated predicate function
elsif Present (Corresponding_Spec (P))
and then Is_Predicate_Function (Corresponding_Spec (P))
then
return True;
else
Id := Defining_Unit_Name (Specification (P));
-- The following are expander-created bodies, or bodies that
-- are not freeze points.
if Nkind (Id) = N_Defining_Identifier
and then (Is_Init_Proc (Id)
or else Is_TSS (Id, TSS_Stream_Input)
or else Is_TSS (Id, TSS_Stream_Output)
or else Is_TSS (Id, TSS_Stream_Read)
or else Is_TSS (Id, TSS_Stream_Write)
or else Is_TSS (Id, TSS_Put_Image)
or else Nkind (Original_Node (P)) =
N_Subprogram_Renaming_Declaration)
then
return True;
else
return False;
end if;
end if;
end In_Expanded_Body;
----------------------
-- Has_Decl_In_List --
----------------------
function Has_Decl_In_List
(E : Entity_Id;
N : Node_Id;
L : List_Id) return Boolean
is
Decl_Node : Node_Id;
begin
-- If E is an itype, pretend that it is declared in N
if Is_Itype (E) then
Decl_Node := N;
else
Decl_Node := Declaration_Node (E);
end if;
return Is_List_Member (Decl_Node)
and then List_Containing (Decl_Node) = L;
end Has_Decl_In_List;
-- Local variables
In_Spec_Exp : constant Boolean := In_Spec_Expression;
Desig_Typ : Entity_Id;
Nam : Entity_Id;
P : Node_Id;
Parent_P : Node_Id;
Typ : Entity_Id;
Allocator_Typ : Entity_Id := Empty;
Freeze_Outside : Boolean := False;
-- This flag is set true if the entity must be frozen outside the
-- current subprogram. This happens in the case of expander generated
-- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
-- not freeze all entities like other bodies, but which nevertheless
-- may reference entities that have to be frozen before the body and
-- obviously cannot be frozen inside the body.
Freeze_Outside_Subp : Entity_Id := Empty;
-- This entity is set if we are inside a subprogram body and the frozen
-- entity is defined in the enclosing scope of this subprogram. In such
-- case we must skip the subprogram body when climbing the parents chain
-- to locate the correct placement for the freezing node.
-- Start of processing for Freeze_Expression
begin
-- Immediate return if freezing is inhibited. This flag is set by the
-- analyzer to stop freezing on generated expressions that would cause
-- freezing if they were in the source program, but which are not
-- supposed to freeze, since they are created.
if Must_Not_Freeze (N) then
return;
end if;
-- If expression is non-static, then it does not freeze in a default
-- expression, see section "Handling of Default Expressions" in the
-- spec of package Sem for further details. Note that we have to make
-- sure that we actually have a real expression (if we have a subtype
-- indication, we can't test Is_OK_Static_Expression). However, we
-- exclude the case of the prefix of an attribute of a static scalar
-- subtype from this early return, because static subtype attributes
-- should always cause freezing, even in default expressions, but
-- the attribute may not have been marked as static yet (because in
-- Resolve_Attribute, the call to Eval_Attribute follows the call of
-- Freeze_Expression on the prefix).
if In_Spec_Exp
and then Nkind (N) in N_Subexpr
and then not Is_OK_Static_Expression (N)
and then (Nkind (Parent (N)) /= N_Attribute_Reference
or else not (Is_Entity_Name (N)
and then Is_Type (Entity (N))
and then Is_OK_Static_Subtype (Entity (N))))
then
return;
end if;
-- Freeze type of expression if not frozen already
Typ := Empty;
if Nkind (N) in N_Has_Etype and then Present (Etype (N)) then
if not Is_Frozen (Etype (N)) then
Typ := Etype (N);
-- Base type may be an derived numeric type that is frozen at the
-- point of declaration, but first_subtype is still unfrozen.
elsif not Is_Frozen (First_Subtype (Etype (N))) then
Typ := First_Subtype (Etype (N));
end if;
end if;
-- For entity name, freeze entity if not frozen already. A special
-- exception occurs for an identifier that did not come from source.
-- We don't let such identifiers freeze a non-internal entity, i.e.
-- an entity that did come from source, since such an identifier was
-- generated by the expander, and cannot have any semantic effect on
-- the freezing semantics. For example, this stops the parameter of
-- an initialization procedure from freezing the variable.
if Is_Entity_Name (N)
and then Present (Entity (N))
and then not Is_Frozen (Entity (N))
and then (Nkind (N) /= N_Identifier
or else Comes_From_Source (N)
or else not Comes_From_Source (Entity (N)))
then
Nam := Entity (N);
if Present (Nam) and then Ekind (Nam) = E_Function then
Check_Expression_Function (N, Nam);
end if;
else
Nam := Empty;
end if;
-- For an allocator freeze designated type if not frozen already
-- For an aggregate whose component type is an access type, freeze the
-- designated type now, so that its freeze does not appear within the
-- loop that might be created in the expansion of the aggregate. If the
-- designated type is a private type without full view, the expression
-- cannot contain an allocator, so the type is not frozen.
-- For a function, we freeze the entity when the subprogram declaration
-- is frozen, but a function call may appear in an initialization proc.
-- before the declaration is frozen. We need to generate the extra
-- formals, if any, to ensure that the expansion of the call includes
-- the proper actuals. This only applies to Ada subprograms, not to
-- imported ones.
Desig_Typ := Empty;
case Nkind (N) is
when N_Allocator =>
Desig_Typ := Designated_Type (Etype (N));
if Nkind (Expression (N)) = N_Qualified_Expression then
Allocator_Typ := Entity (Subtype_Mark (Expression (N)));
end if;
when N_Aggregate =>
if Is_Array_Type (Etype (N))
and then Is_Access_Type (Component_Type (Etype (N)))
then
-- Check whether aggregate includes allocators
Desig_Typ := Find_Aggregate_Component_Desig_Type;
end if;
when N_Indexed_Component
| N_Selected_Component
| N_Slice
=>
if Is_Access_Type (Etype (Prefix (N))) then
Desig_Typ := Designated_Type (Etype (Prefix (N)));
end if;
when N_Identifier =>
if Present (Nam)
and then Ekind (Nam) = E_Function
and then Nkind (Parent (N)) = N_Function_Call
and then Convention (Nam) = Convention_Ada
then
Create_Extra_Formals (Nam);
end if;
when others =>
null;
end case;
if Desig_Typ /= Empty
and then (Is_Frozen (Desig_Typ)
or else (not Is_Fully_Defined (Desig_Typ)))
then
Desig_Typ := Empty;
end if;
-- All done if nothing needs freezing
if No (Typ)
and then No (Nam)
and then No (Desig_Typ)
and then No (Allocator_Typ)
then
return;
end if;
-- Check if we are inside a subprogram body and the frozen entity is
-- defined in the enclosing scope of this subprogram. In such case we
-- must skip the subprogram when climbing the parents chain to locate
-- the correct placement for the freezing node.
-- This is not needed for default expressions and other spec expressions
-- in generic units since the Move_Freeze_Nodes mechanism (sem_ch12.adb)
-- takes care of placing them at the proper place, after the generic
-- unit.
if Present (Nam)
and then Scope (Nam) /= Current_Scope
and then not (In_Spec_Exp and then Inside_A_Generic)
then
declare
S : Entity_Id := Current_Scope;
begin
while Present (S)
and then In_Same_Source_Unit (Nam, S)
loop
if Scope (S) = Scope (Nam) then
if Is_Subprogram (S) and then Has_Completion (S) then
Freeze_Outside_Subp := S;
end if;
exit;
end if;
S := Scope (S);
end loop;
end;
end if;
-- Examine the enclosing context by climbing the parent chain
-- If we identified that we must freeze the entity outside of a given
-- subprogram then we just climb up to that subprogram checking if some
-- enclosing node is marked as Must_Not_Freeze (since in such case we
-- must not freeze yet this entity).
P := N;
if Present (Freeze_Outside_Subp) then
loop
-- Do not freeze the current expression if another expression in
-- the chain of parents must not be frozen.
if Nkind (P) in N_Subexpr and then Must_Not_Freeze (P) then
return;
end if;
Parent_P := Parent (P);
-- If we don't have a parent, then we are not in a well-formed
-- tree. This is an unusual case, but there are some legitimate
-- situations in which this occurs, notably when the expressions
-- in the range of a type declaration are resolved. We simply
-- ignore the freeze request in this case.
if No (Parent_P) then
return;
end if;
-- If the parent is a subprogram body, the candidate insertion
-- point is just ahead of it.
if Nkind (Parent_P) = N_Subprogram_Body
and then Unique_Defining_Entity (Parent_P) =
Freeze_Outside_Subp
then
P := Parent_P;
exit;
end if;
P := Parent_P;
end loop;
-- Otherwise the traversal serves two purposes - to detect scenarios
-- where freezeing is not needed and to find the proper insertion point
-- for the freeze nodes. Although somewhat similar to Insert_Actions,
-- this traversal is freezing semantics-sensitive. Inserting freeze
-- nodes blindly in the tree may result in types being frozen too early.
else
loop
-- Do not freeze the current expression if another expression in
-- the chain of parents must not be frozen.
if Nkind (P) in N_Subexpr and then Must_Not_Freeze (P) then
return;
end if;
Parent_P := Parent (P);
-- If we don't have a parent, then we are not in a well-formed
-- tree. This is an unusual case, but there are some legitimate
-- situations in which this occurs, notably when the expressions
-- in the range of a type declaration are resolved. We simply
-- ignore the freeze request in this case.
if No (Parent_P) then
return;
end if;
-- See if we have got to an appropriate point in the tree
case Nkind (Parent_P) is
-- A special test for the exception of (RM 13.14(8)) for the
-- case of per-object expressions (RM 3.8(18)) occurring in
-- component definition or a discrete subtype definition. Note
-- that we test for a component declaration which includes both
-- cases we are interested in, and furthermore the tree does
-- not have explicit nodes for either of these two constructs.
when N_Component_Declaration =>
-- The case we want to test for here is an identifier that
-- is a per-object expression, this is either a discriminant
-- that appears in a context other than the component
-- declaration or it is a reference to the type of the
-- enclosing construct.
-- For either of these cases, we skip the freezing
if not In_Spec_Expression
and then Nkind (N) = N_Identifier
and then (Present (Entity (N)))
then
-- We recognize the discriminant case by just looking for
-- a reference to a discriminant. It can only be one for
-- the enclosing construct. Skip freezing in this case.
if Ekind (Entity (N)) = E_Discriminant then
return;
-- For the case of a reference to the enclosing record,
-- (or task or protected type), we look for a type that
-- matches the current scope.
elsif Entity (N) = Current_Scope then
return;
end if;
end if;
-- If we have an enumeration literal that appears as the choice
-- in the aggregate of an enumeration representation clause,
-- then freezing does not occur (RM 13.14(10)).
when N_Enumeration_Representation_Clause =>
-- The case we are looking for is an enumeration literal
if Nkind (N) in N_Identifier | N_Character_Literal
and then Is_Enumeration_Type (Etype (N))
then
-- If enumeration literal appears directly as the choice,
-- do not freeze (this is the normal non-overloaded case)
if Nkind (Parent (N)) = N_Component_Association
and then First (Choices (Parent (N))) = N
then
return;
-- If enumeration literal appears as the name of function
-- which is the choice, then also do not freeze. This
-- happens in the overloaded literal case, where the
-- enumeration literal is temporarily changed to a
-- function call for overloading analysis purposes.
elsif Nkind (Parent (N)) = N_Function_Call
and then Nkind (Parent (Parent (N))) =
N_Component_Association
and then First (Choices (Parent (Parent (N)))) =
Parent (N)
then
return;
end if;
end if;
-- Normally if the parent is a handled sequence of statements,
-- then the current node must be a statement, and that is an
-- appropriate place to insert a freeze node.
when N_Handled_Sequence_Of_Statements =>
-- An exception occurs when the sequence of statements is
-- for an expander generated body that did not do the usual
-- freeze all operation. In this case we usually want to
-- freeze outside this body, not inside it, and we skip
-- past the subprogram body that we are inside.
if In_Expanded_Body (Parent_P) then
declare
Subp_Body : constant Node_Id := Parent (Parent_P);
Spec_Id : Entity_Id;
begin
-- Freeze the entity only when it is declared inside
-- the body of the expander generated procedure. This
-- case is recognized by the subprogram scope of the
-- entity or its type, which is either the spec of an
-- enclosing body, or (in the case of init_procs for
-- which there is no separate spec) the current scope.
if Nkind (Subp_Body) = N_Subprogram_Body then
declare
S : Entity_Id;
begin
Spec_Id := Corresponding_Spec (Subp_Body);
if Present (Typ) then
S := Scope (Typ);
elsif Present (Nam) then
S := Scope (Nam);
else
S := Standard_Standard;
end if;
while S /= Standard_Standard
and then not Is_Subprogram (S)
loop
S := Scope (S);
end loop;
if S = Spec_Id then
exit;
elsif Present (Typ)
and then Scope (Typ) = Current_Scope
and then
Defining_Entity (Subp_Body) = Current_Scope
then
exit;
end if;
end;
end if;
-- If the entity is not frozen by an expression
-- function that is not a completion, continue
-- climbing the tree.
if Nkind (Subp_Body) = N_Subprogram_Body
and then Was_Expression_Function (Subp_Body)
then
null;
-- Freeze outside the body
else
Parent_P := Parent (Parent_P);
Freeze_Outside := True;
end if;
end;
-- Here if normal case where we are in handled statement
-- sequence and want to do the insertion right there.
else
exit;
end if;
-- If parent is a body or a spec or a block, then the current
-- node is a statement or declaration and we can insert the
-- freeze node before it.
when N_Block_Statement
| N_Entry_Body
| N_Package_Body
| N_Package_Specification
| N_Protected_Body
| N_Subprogram_Body
| N_Task_Body
=>
exit;
-- The expander is allowed to define types in any statements
-- list, so any of the following parent nodes also mark a
-- freezing point if the actual node is in a list of
-- statements or declarations.
when N_Abortable_Part
| N_Accept_Alternative
| N_Case_Statement_Alternative
| N_Compilation_Unit_Aux
| N_Conditional_Entry_Call
| N_Delay_Alternative
| N_Elsif_Part
| N_Entry_Call_Alternative
| N_Exception_Handler
| N_Extended_Return_Statement
| N_Freeze_Entity
| N_If_Statement
| N_Selective_Accept
| N_Triggering_Alternative
=>
exit when Is_List_Member (P);
-- The freeze nodes produced by an expression coming from the
-- Actions list of an N_Expression_With_Actions, short-circuit
-- expression or N_Case_Expression_Alternative node must remain
-- within the Actions list if they freeze an entity declared in
-- this list, as inserting the freeze nodes further up the tree
-- may lead to use before declaration issues for the entity.
when N_Case_Expression_Alternative
| N_Expression_With_Actions
| N_Short_Circuit
=>
exit when (Present (Nam)
and then
Has_Decl_In_List (Nam, P, Actions (Parent_P)))
or else (Present (Typ)
and then
Has_Decl_In_List (Typ, P, Actions (Parent_P)));
-- Likewise for an N_If_Expression and its two Actions list
when N_If_Expression =>
declare
L1 : constant List_Id := Then_Actions (Parent_P);
L2 : constant List_Id := Else_Actions (Parent_P);
begin
exit when (Present (Nam)
and then
Has_Decl_In_List (Nam, P, L1))
or else (Present (Typ)
and then
Has_Decl_In_List (Typ, P, L1))
or else (Present (Nam)
and then
Has_Decl_In_List (Nam, P, L2))
or else (Present (Typ)
and then
Has_Decl_In_List (Typ, P, L2));
end;
-- N_Loop_Statement is a special case: a type that appears in
-- the source can never be frozen in a loop (this occurs only
-- because of a loop expanded by the expander), so we keep on
-- going. Otherwise we terminate the search. Same is true of
-- any entity which comes from source (if it has a predefined
-- type, this type does not appear to come from source, but the
-- entity should not be frozen here).
when N_Loop_Statement =>
exit when not Comes_From_Source (Etype (N))
and then (No (Nam) or else not Comes_From_Source (Nam));
-- For all other cases, keep looking at parents
when others =>
null;
end case;
-- We fall through the case if we did not yet find the proper
-- place in the tree for inserting the freeze node, so climb.
P := Parent_P;
end loop;
end if;
-- If the expression appears in a record or an initialization procedure,
-- the freeze nodes are collected and attached to the current scope, to
-- be inserted and analyzed on exit from the scope, to insure that
-- generated entities appear in the correct scope. If the expression is
-- a default for a discriminant specification, the scope is still void.
-- The expression can also appear in the discriminant part of a private
-- or concurrent type.
-- If the expression appears in a constrained subcomponent of an
-- enclosing record declaration, the freeze nodes must be attached to
-- the outer record type so they can eventually be placed in the
-- enclosing declaration list.
-- The other case requiring this special handling is if we are in a
-- default expression, since in that case we are about to freeze a
-- static type, and the freeze scope needs to be the outer scope, not
-- the scope of the subprogram with the default parameter.
-- For default expressions and other spec expressions in generic units,
-- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
-- placing them at the proper place, after the generic unit.
if (In_Spec_Exp and not Inside_A_Generic)
or else Freeze_Outside
or else (Is_Type (Current_Scope)
and then (not Is_Concurrent_Type (Current_Scope)
or else not Has_Completion (Current_Scope)))
or else Ekind (Current_Scope) = E_Void
then
declare
Freeze_Nodes : List_Id := No_List;
Pos : Int := Scope_Stack.Last;
begin
if Present (Desig_Typ) then
Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
end if;
if Present (Typ) then
Freeze_And_Append (Typ, N, Freeze_Nodes);
end if;
if Present (Nam) then
Freeze_And_Append (Nam, N, Freeze_Nodes);
end if;
-- The current scope may be that of a constrained component of
-- an enclosing record declaration, or of a loop of an enclosing
-- quantified expression, which is above the current scope in the
-- scope stack. Indeed in the context of a quantified expression,
-- a scope is created and pushed above the current scope in order
-- to emulate the loop-like behavior of the quantified expression.
-- If the expression is within a top-level pragma, as for a pre-
-- condition on a library-level subprogram, nothing to do.
if not Is_Compilation_Unit (Current_Scope)
and then (Is_Record_Type (Scope (Current_Scope))
or else Nkind (Parent (Current_Scope)) =
N_Quantified_Expression)
then
Pos := Pos - 1;
end if;
if Is_Non_Empty_List (Freeze_Nodes) then
-- When the current scope is transient, insert the freeze nodes
-- prior to the expression that produced them. Transient scopes
-- may create additional declarations when finalizing objects
-- or managing the secondary stack. Inserting the freeze nodes
-- of those constructs prior to the scope would result in a
-- freeze-before-declaration, therefore the freeze node must
-- remain interleaved with their constructs.
if Scope_Is_Transient then
Insert_Actions (N, Freeze_Nodes);
elsif No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
Freeze_Nodes;
else
Append_List (Freeze_Nodes,
Scope_Stack.Table (Pos).Pending_Freeze_Actions);
end if;
end if;
end;
return;
end if;
-- Now we have the right place to do the freezing. First, a special
-- adjustment, if we are in spec-expression analysis mode, these freeze
-- actions must not be thrown away (normally all inserted actions are
-- thrown away in this mode. However, the freeze actions are from static
-- expressions and one of the important reasons we are doing this
-- special analysis is to get these freeze actions. Therefore we turn
-- off the In_Spec_Expression mode to propagate these freeze actions.
-- This also means they get properly analyzed and expanded.
In_Spec_Expression := False;
-- Freeze the subtype mark before a qualified expression on an
-- allocator as per AARM 13.14(4.a). This is needed in particular to
-- generate predicate functions.
if Present (Allocator_Typ) then
Freeze_Before (P, Allocator_Typ);
end if;
-- Freeze the designated type of an allocator (RM 13.14(13))
if Present (Desig_Typ) then
Freeze_Before (P, Desig_Typ);
end if;
-- Freeze type of expression (RM 13.14(10)). Note that we took care of
-- the enumeration representation clause exception in the loop above.
if Present (Typ) then
Freeze_Before (P, Typ);
end if;
-- Freeze name if one is present (RM 13.14(11))
if Present (Nam) then
Freeze_Before (P, Nam);
end if;
-- Restore In_Spec_Expression flag
In_Spec_Expression := In_Spec_Exp;
end Freeze_Expression;
-----------------------
-- Freeze_Expr_Types --
-----------------------
procedure Freeze_Expr_Types
(Def_Id : Entity_Id;
Typ : Entity_Id;
Expr : Node_Id;
N : Node_Id)
is
function Cloned_Expression return Node_Id;
-- Build a duplicate of the expression of the return statement that has
-- no defining entities shared with the original expression.
function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
-- Freeze all types referenced in the subtree rooted at Node
-----------------------
-- Cloned_Expression --
-----------------------
function Cloned_Expression return Node_Id is
function Clone_Id (Node : Node_Id) return Traverse_Result;
-- Tree traversal routine that clones the defining identifier of
-- iterator and loop parameter specification nodes.
--------------
-- Clone_Id --
--------------
function Clone_Id (Node : Node_Id) return Traverse_Result is
begin
if Nkind (Node) in
N_Iterator_Specification | N_Loop_Parameter_Specification
then
Set_Defining_Identifier
(Node, New_Copy (Defining_Identifier (Node)));
end if;
return OK;
end Clone_Id;
procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
-- Local variable
Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
-- Start of processing for Cloned_Expression
begin
-- We must duplicate the expression with semantic information to
-- inherit the decoration of global entities in generic instances.
-- Set the parent of the new node to be the parent of the original
-- to get the proper context, which is needed for complete error
-- reporting and for semantic analysis.
Set_Parent (Dup_Expr, Parent (Expr));
-- Replace the defining identifier of iterators and loop param
-- specifications by a clone to ensure that the cloned expression
-- and the original expression don't have shared identifiers;
-- otherwise, as part of the preanalysis of the expression, these
-- shared identifiers may be left decorated with itypes which
-- will not be available in the tree passed to the backend.
Clone_Def_Ids (Dup_Expr);
return Dup_Expr;
end Cloned_Expression;
----------------------
-- Freeze_Type_Refs --
----------------------
function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
procedure Check_And_Freeze_Type (Typ : Entity_Id);
-- Check that Typ is fully declared and freeze it if so
---------------------------
-- Check_And_Freeze_Type --
---------------------------
procedure Check_And_Freeze_Type (Typ : Entity_Id) is
begin
-- Skip Itypes created by the preanalysis, and itypes whose
-- scope is another type (i.e. component subtypes that depend
-- on a discriminant),
if Is_Itype (Typ)
and then (Scope_Within_Or_Same (Scope (Typ), Def_Id)
or else Is_Type (Scope (Typ)))
then
return;
end if;
-- This provides a better error message than generating primitives
-- whose compilation fails much later. Refine the error message if
-- possible.
Check_Fully_Declared (Typ, Node);
if Error_Posted (Node) then
if Has_Private_Component (Typ)
and then not Is_Private_Type (Typ)
then
Error_Msg_NE ("\type& has private component", Node, Typ);
end if;
else
Freeze_Before (N, Typ);
end if;
end Check_And_Freeze_Type;
-- Start of processing for Freeze_Type_Refs
begin
-- Check that a type referenced by an entity can be frozen
if Is_Entity_Name (Node) and then Present (Entity (Node)) then
-- The entity itself may be a type, as in a membership test
-- or an attribute reference. Freezing its own type would be
-- incomplete if the entity is derived or an extension.
if Is_Type (Entity (Node)) then
Check_And_Freeze_Type (Entity (Node));
else
Check_And_Freeze_Type (Etype (Entity (Node)));
end if;
-- Check that the enclosing record type can be frozen
if Ekind (Entity (Node)) in E_Component | E_Discriminant then
Check_And_Freeze_Type (Scope (Entity (Node)));
end if;
-- Freezing an access type does not freeze the designated type, but
-- freezing conversions between access to interfaces requires that
-- the interface types themselves be frozen, so that dispatch table
-- entities are properly created.
-- Unclear whether a more general rule is needed ???
elsif Nkind (Node) = N_Type_Conversion
and then Is_Access_Type (Etype (Node))
and then Is_Interface (Designated_Type (Etype (Node)))
then
Check_And_Freeze_Type (Designated_Type (Etype (Node)));
end if;
-- An implicit dereference freezes the designated type. In the case
-- of a dispatching call whose controlling argument is an access
-- type, the dereference is not made explicit, so we must check for
-- such a call and freeze the designated type.
if Nkind (Node) in N_Has_Etype
and then Present (Etype (Node))
and then Is_Access_Type (Etype (Node))
then
if Nkind (Parent (Node)) = N_Function_Call
and then Node = Controlling_Argument (Parent (Node))
then
Check_And_Freeze_Type (Designated_Type (Etype (Node)));
-- An explicit dereference freezes the designated type as well,
-- even though that type is not attached to an entity in the
-- expression.
elsif Nkind (Parent (Node)) = N_Explicit_Dereference then
Check_And_Freeze_Type (Designated_Type (Etype (Node)));
end if;
-- An iterator specification freezes the iterator type, even though
-- that type is not attached to an entity in the construct.
elsif Nkind (Node) in N_Has_Etype
and then Nkind (Parent (Node)) = N_Iterator_Specification
and then Node = Name (Parent (Node))
then
declare
Iter : constant Node_Id :=
Find_Value_Of_Aspect (Etype (Node), Aspect_Default_Iterator);
begin
if Present (Iter) then
Check_And_Freeze_Type (Etype (Iter));
end if;
end;
end if;
-- No point in posting several errors on the same expression
if Serious_Errors_Detected > 0 then
return Abandon;
else
return OK;
end if;
end Freeze_Type_Refs;
procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
-- Local variables
Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
Dup_Expr : constant Node_Id := Cloned_Expression;
-- Start of processing for Freeze_Expr_Types
begin
-- Preanalyze a duplicate of the expression to have available the
-- minimum decoration needed to locate referenced unfrozen types
-- without adding any decoration to the function expression.
-- This routine is also applied to expressions in the contract for
-- the subprogram. If that happens when expanding the code for
-- pre/postconditions during expansion of the subprogram body, the
-- subprogram is already installed.
if Def_Id /= Current_Scope then
Push_Scope (Def_Id);
Install_Formals (Def_Id);
Preanalyze_Spec_Expression (Dup_Expr, Typ);
End_Scope;
else
Preanalyze_Spec_Expression (Dup_Expr, Typ);
end if;
-- Restore certain attributes of Def_Id since the preanalysis may
-- have introduced itypes to this scope, thus modifying attributes
-- First_Entity and Last_Entity.
Set_First_Entity (Def_Id, Saved_First_Entity);
Set_Last_Entity (Def_Id, Saved_Last_Entity);
if Present (Last_Entity (Def_Id)) then
Set_Next_Entity (Last_Entity (Def_Id), Empty);
end if;
-- Freeze all types referenced in the expression
Freeze_References (Dup_Expr);
end Freeze_Expr_Types;
-----------------------------
-- Freeze_Fixed_Point_Type --
-----------------------------
-- Certain fixed-point types and subtypes, including implicit base types
-- and declared first subtypes, have not yet set up a range. This is
-- because the range cannot be set until the Small and Size values are
-- known, and these are not known till the type is frozen.
-- To signal this case, Scalar_Range contains an unanalyzed syntactic range
-- whose bounds are unanalyzed real literals. This routine will recognize
-- this case, and transform this range node into a properly typed range
-- with properly analyzed and resolved values.
procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
Rng : constant Node_Id := Scalar_Range (Typ);
Lo : constant Node_Id := Low_Bound (Rng);
Hi : constant Node_Id := High_Bound (Rng);
Btyp : constant Entity_Id := Base_Type (Typ);
Brng : constant Node_Id := Scalar_Range (Btyp);
BLo : constant Node_Id := Low_Bound (Brng);
BHi : constant Node_Id := High_Bound (Brng);
Par : constant Entity_Id := First_Subtype (Typ);
Small : constant Ureal := Small_Value (Typ);
Loval : Ureal;
Hival : Ureal;
Atype : Entity_Id;
Orig_Lo : Ureal;
Orig_Hi : Ureal;
-- Save original bounds (for shaving tests)
Actual_Size : Int;
-- Actual size chosen
function Fsize (Lov, Hiv : Ureal) return Int;
-- Returns size of type with given bounds. Also leaves these
-- bounds set as the current bounds of the Typ.
function Larger (A, B : Ureal) return Boolean;
-- Returns true if A > B with a margin of Typ'Small
function Smaller (A, B : Ureal) return Boolean;
-- Returns true if A < B with a margin of Typ'Small
-----------
-- Fsize --
-----------
function Fsize (Lov, Hiv : Ureal) return Int is
begin
Set_Realval (Lo, Lov);
Set_Realval (Hi, Hiv);
return Minimum_Size (Typ);
end Fsize;
------------
-- Larger --
------------
function Larger (A, B : Ureal) return Boolean is
begin
return A > B and then A - Small > B;
end Larger;
-------------
-- Smaller --
-------------
function Smaller (A, B : Ureal) return Boolean is
begin
return A < B and then A + Small < B;
end Smaller;
-- Start of processing for Freeze_Fixed_Point_Type
begin
-- The type, or its first subtype if we are freezing the anonymous
-- base, may have a delayed Small aspect. It must be analyzed now,
-- so that all characteristics of the type (size, bounds) can be
-- computed and validated in the call to Minimum_Size that follows.
if Has_Delayed_Aspects (First_Subtype (Typ)) then
Analyze_Aspects_At_Freeze_Point (First_Subtype (Typ));
Set_Has_Delayed_Aspects (First_Subtype (Typ), False);
end if;
-- If Esize of a subtype has not previously been set, set it now
if not Known_Esize (Typ) then
Atype := Ancestor_Subtype (Typ);
if Present (Atype) then
Set_Esize (Typ, Esize (Atype));
else
Copy_Esize (To => Typ, From => Btyp);
end if;
end if;
-- The 'small attribute may have been specified with an aspect,
-- in which case it is processed after a subtype declaration, so
-- inherit now the specified value.
if Typ /= Par
and then Present (Find_Aspect (Par, Aspect_Small))
then
Set_Small_Value (Typ, Small_Value (Par));
end if;
-- Immediate return if the range is already analyzed. This means that
-- the range is already set, and does not need to be computed by this
-- routine.
if Analyzed (Rng) then
return;
end if;
-- Immediate return if either of the bounds raises Constraint_Error
if Raises_Constraint_Error (Lo)
or else Raises_Constraint_Error (Hi)
then
return;
end if;
Loval := Realval (Lo);
Hival := Realval (Hi);
Orig_Lo := Loval;
Orig_Hi := Hival;
-- Ordinary fixed-point case
if Is_Ordinary_Fixed_Point_Type (Typ) then
-- For the ordinary fixed-point case, we are allowed to fudge the
-- end-points up or down by small. Generally we prefer to fudge up,
-- i.e. widen the bounds for non-model numbers so that the end points
-- are included. However there are cases in which this cannot be
-- done, and indeed cases in which we may need to narrow the bounds.
-- The following circuit makes the decision.
-- Note: our terminology here is that Incl_EP means that the bounds
-- are widened by Small if necessary to include the end points, and
-- Excl_EP means that the bounds are narrowed by Small to exclude the
-- end-points if this reduces the size.
-- Note that in the Incl case, all we care about is including the
-- end-points. In the Excl case, we want to narrow the bounds as
-- much as permitted by the RM, to give the smallest possible size.
Fudge : declare
Loval_Incl_EP : Ureal;
Hival_Incl_EP : Ureal;
Loval_Excl_EP : Ureal;
Hival_Excl_EP : Ureal;
Size_Incl_EP : Int;
Size_Excl_EP : Int;
Model_Num : Ureal;
First_Subt : Entity_Id;
Actual_Lo : Ureal;
Actual_Hi : Ureal;
begin
-- First step. Base types are required to be symmetrical. Right
-- now, the base type range is a copy of the first subtype range.
-- This will be corrected before we are done, but right away we
-- need to deal with the case where both bounds are non-negative.
-- In this case, we set the low bound to the negative of the high
-- bound, to make sure that the size is computed to include the
-- required sign. Note that we do not need to worry about the
-- case of both bounds negative, because the sign will be dealt
-- with anyway. Furthermore we can't just go making such a bound
-- symmetrical, since in a twos-complement system, there is an
-- extra negative value which could not be accommodated on the
-- positive side.
if Typ = Btyp
and then not UR_Is_Negative (Loval)
and then Hival > Loval
then
Loval := -Hival;
Set_Realval (Lo, Loval);
end if;
-- Compute the fudged bounds. If the bound is a model number, (or
-- greater if given low bound, smaller if high bound) then we do
-- nothing to include it, but we are allowed to backoff to the
-- next adjacent model number when we exclude it. If it is not a
-- model number then we straddle the two values with the model
-- numbers on either side.
Model_Num := UR_Trunc (Loval / Small) * Small;
if UR_Ge (Loval, Model_Num) then
Loval_Incl_EP := Model_Num;
else
Loval_Incl_EP := Model_Num - Small;
end if;
-- The low value excluding the end point is Small greater, but
-- we do not do this exclusion if the low value is positive,
-- since it can't help the size and could actually hurt by
-- crossing the high bound.
if UR_Is_Negative (Loval_Incl_EP) then
Loval_Excl_EP := Loval_Incl_EP + Small;
-- If the value went from negative to zero, then we have the
-- case where Loval_Incl_EP is the model number just below
-- zero, so we want to stick to the negative value for the
-- base type to maintain the condition that the size will
-- include signed values.
if Typ = Btyp
and then UR_Is_Zero (Loval_Excl_EP)
then
Loval_Excl_EP := Loval_Incl_EP;
end if;
else
Loval_Excl_EP := Loval_Incl_EP;
end if;
-- Similar processing for upper bound and high value
Model_Num := UR_Trunc (Hival / Small) * Small;
if UR_Le (Hival, Model_Num) then
Hival_Incl_EP := Model_Num;
else
Hival_Incl_EP := Model_Num + Small;
end if;
if UR_Is_Positive (Hival_Incl_EP) then
Hival_Excl_EP := Hival_Incl_EP - Small;
else
Hival_Excl_EP := Hival_Incl_EP;
end if;
-- One further adjustment is needed. In the case of subtypes, we
-- cannot go outside the range of the base type, or we get
-- peculiarities, and the base type range is already set. This
-- only applies to the Incl values, since clearly the Excl values
-- are already as restricted as they are allowed to be.
if Typ /= Btyp then
Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
end if;
-- Get size including and excluding end points
Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
-- No need to exclude end-points if it does not reduce size
if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
Loval_Excl_EP := Loval_Incl_EP;
end if;
if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
Hival_Excl_EP := Hival_Incl_EP;
end if;
-- Now we set the actual size to be used. We want to use the
-- bounds fudged up to include the end-points but only if this
-- can be done without violating a specifically given size
-- size clause or causing an unacceptable increase in size.
-- Case of size clause given
if Has_Size_Clause (Typ) then
-- Use the inclusive size only if it is consistent with
-- the explicitly specified size.
if Size_Incl_EP <= RM_Size (Typ) then
Actual_Lo := Loval_Incl_EP;
Actual_Hi := Hival_Incl_EP;
Actual_Size := Size_Incl_EP;
-- If the inclusive size is too large, we try excluding
-- the end-points (will be caught later if does not work).
else
Actual_Lo := Loval_Excl_EP;
Actual_Hi := Hival_Excl_EP;
Actual_Size := Size_Excl_EP;
end if;
-- Case of size clause not given
else
-- If we have a base type whose corresponding first subtype
-- has an explicit size that is large enough to include our
-- end-points, then do so. There is no point in working hard
-- to get a base type whose size is smaller than the specified
-- size of the first subtype.
First_Subt := First_Subtype (Typ);
if Has_Size_Clause (First_Subt)
and then Size_Incl_EP <= Esize (First_Subt)
then
Actual_Size := Size_Incl_EP;
Actual_Lo := Loval_Incl_EP;
Actual_Hi := Hival_Incl_EP;
-- If excluding the end-points makes the size smaller and
-- results in a size of 8,16,32,64, then we take the smaller
-- size. For the 64 case, this is compulsory. For the other
-- cases, it seems reasonable. We like to include end points
-- if we can, but not at the expense of moving to the next
-- natural boundary of size.
elsif Size_Incl_EP /= Size_Excl_EP
and then Addressable (Size_Excl_EP)
then
Actual_Size := Size_Excl_EP;
Actual_Lo := Loval_Excl_EP;
Actual_Hi := Hival_Excl_EP;
-- Otherwise we can definitely include the end points
else
Actual_Size := Size_Incl_EP;
Actual_Lo := Loval_Incl_EP;
Actual_Hi := Hival_Incl_EP;
end if;
-- One pathological case: normally we never fudge a low bound
-- down, since it would seem to increase the size (if it has
-- any effect), but for ranges containing single value, or no
-- values, the high bound can be small too large. Consider:
-- type t is delta 2.0**(-14)
-- range 131072.0 .. 0;
-- That lower bound is *just* outside the range of 32 bits, and
-- does need fudging down in this case. Note that the bounds
-- will always have crossed here, since the high bound will be
-- fudged down if necessary, as in the case of:
-- type t is delta 2.0**(-14)
-- range 131072.0 .. 131072.0;
-- So we detect the situation by looking for crossed bounds,
-- and if the bounds are crossed, and the low bound is greater
-- than zero, we will always back it off by small, since this
-- is completely harmless.
if Actual_Lo > Actual_Hi then
if UR_Is_Positive (Actual_Lo) then
Actual_Lo := Loval_Incl_EP - Small;
Actual_Size := Fsize (Actual_Lo, Actual_Hi);
-- And of course, we need to do exactly the same parallel
-- fudge for flat ranges in the negative region.
elsif UR_Is_Negative (Actual_Hi) then
Actual_Hi := Hival_Incl_EP + Small;
Actual_Size := Fsize (Actual_Lo, Actual_Hi);
end if;
end if;
end if;
Set_Realval (Lo, Actual_Lo);
Set_Realval (Hi, Actual_Hi);
end Fudge;
-- Enforce some limitations for ordinary fixed-point types. They come
-- from an exact algorithm used to implement Text_IO.Fixed_IO and the
-- Fore, Image and Value attributes. The requirement on the Small is
-- to lie in the range 2**(-(Siz - 1)) .. 2**(Siz - 1) for a type of
-- Siz bits (Siz=32,64,128) and the requirement on the bounds is to
-- be smaller in magnitude than 10.0**N * 2**(Siz - 1), where N is
-- given by the formula N = floor ((Siz - 1) * log 2 / log 10).
-- If the bounds of a 32-bit type are too large, force 64-bit type
if Actual_Size <= 32
and then Small <= Ureal_2_31
and then (Smaller (Expr_Value_R (Lo), Ureal_M_2_10_18)
or else Larger (Expr_Value_R (Hi), Ureal_2_10_18))
then
Actual_Size := 33;
end if;
-- If the bounds of a 64-bit type are too large, force 128-bit type
if System_Max_Integer_Size = 128
and then Actual_Size <= 64
and then Small <= Ureal_2_63
and then (Smaller (Expr_Value_R (Lo), Ureal_M_9_10_36)
or else Larger (Expr_Value_R (Hi), Ureal_9_10_36))
then
Actual_Size := 65;
end if;
-- Give error messages for first subtypes and not base types, as the
-- bounds of base types are always maximum for their size, see below.
if System_Max_Integer_Size < 128 and then Typ /= Btyp then
-- See the 128-bit case below for the reason why we cannot test
-- against the 2**(-63) .. 2**63 range. This quirk should have
-- been kludged around as in the 128-bit case below, but it was
-- not and we end up with a ludicrous range as a result???
if Small < Ureal_2_M_80 then
Error_Msg_Name_1 := Name_Small;
Error_Msg_N
("`&''%` too small, minimum allowed is 2.0'*'*(-80)", Typ);
elsif Small > Ureal_2_80 then
Error_Msg_Name_1 := Name_Small;
Error_Msg_N
("`&''%` too large, maximum allowed is 2.0'*'*80", Typ);
end if;
if Smaller (Expr_Value_R (Lo), Ureal_M_9_10_36) then
Error_Msg_Name_1 := Name_First;
Error_Msg_N
("`&''%` too small, minimum allowed is -9.0E+36", Typ);
end if;
if Larger (Expr_Value_R (Hi), Ureal_9_10_36) then
Error_Msg_Name_1 := Name_Last;
Error_Msg_N
("`&''%` too large, maximum allowed is 9.0E+36", Typ);
end if;
elsif System_Max_Integer_Size = 128 and then Typ /= Btyp then
-- ACATS c35902d tests a delta equal to 2**(-(Max_Mantissa + 1))
-- but we cannot really support anything smaller than Fine_Delta
-- because of the way we implement I/O for fixed point types???
if Small = Ureal_2_M_128 then
null;
elsif Small < Ureal_2_M_127 then
Error_Msg_Name_1 := Name_Small;
Error_Msg_N
("`&''%` too small, minimum allowed is 2.0'*'*(-127)", Typ);
elsif Small > Ureal_2_127 then
Error_Msg_Name_1 := Name_Small;
Error_Msg_N
("`&''%` too large, maximum allowed is 2.0'*'*127", Typ);
end if;
if Actual_Size > 64
and then (Norm_Num (Small) > Uint_2 ** 127
or else Norm_Den (Small) > Uint_2 ** 127)
and then Small /= Ureal_2_M_128
then
Error_Msg_Name_1 := Name_Small;
Error_Msg_N
("`&''%` not the ratio of two 128-bit integers", Typ);
end if;
if Smaller (Expr_Value_R (Lo), Ureal_M_10_76) then
Error_Msg_Name_1 := Name_First;
Error_Msg_N
("`&''%` too small, minimum allowed is -1.0E+76", Typ);
end if;
if Larger (Expr_Value_R (Hi), Ureal_10_76) then
Error_Msg_Name_1 := Name_Last;
Error_Msg_N
("`&''%` too large, maximum allowed is 1.0E+76", Typ);
end if;
end if;
-- For the decimal case, none of this fudging is required, since there
-- are no end-point problems in the decimal case (the end-points are
-- always included).
else
Actual_Size := Fsize (Loval, Hival);
end if;
-- At this stage, the actual size has been calculated and the proper
-- required bounds are stored in the low and high bounds.
if Actual_Size > System_Max_Integer_Size then
Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
Error_Msg_Uint_2 := UI_From_Int (System_Max_Integer_Size);
Error_Msg_N
("size required (^) for type& too large, maximum allowed is ^",
Typ);
Actual_Size := System_Max_Integer_Size;
end if;
-- Check size against explicit given size
if Has_Size_Clause (Typ) then
if Actual_Size > RM_Size (Typ) then
Error_Msg_Uint_1 := RM_Size (Typ);
Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
Error_Msg_NE
("size given (^) for type& too small, minimum allowed is ^",
Size_Clause (Typ), Typ);
else
Actual_Size := UI_To_Int (Esize (Typ));
end if;
-- Increase size to next natural boundary if no size clause given
else
if Actual_Size <= 8 then
Actual_Size := 8;
elsif Actual_Size <= 16 then
Actual_Size := 16;
elsif Actual_Size <= 32 then
Actual_Size := 32;
elsif Actual_Size <= 64 then
Actual_Size := 64;
else
Actual_Size := 128;
end if;
Set_Esize (Typ, UI_From_Int (Actual_Size));
Adjust_Esize_For_Alignment (Typ);
end if;
-- If we have a base type, then expand the bounds so that they extend to
-- the full width of the allocated size in bits, to avoid junk range
-- checks on intermediate computations.
if Typ = Btyp then
Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
end if;
-- Final step is to reanalyze the bounds using the proper type
-- and set the Corresponding_Integer_Value fields of the literals.
Set_Etype (Lo, Empty);
Set_Analyzed (Lo, False);
Analyze (Lo);
-- Resolve with universal fixed if the base type, and with the base
-- type if we are freezing a subtype. Note we can't resolve the base
-- type with itself, that would be a reference before definition.
-- The resolution of the bounds of a subtype, if they are given by real
-- literals, includes the setting of the Corresponding_Integer_Value,
-- as for other literals of a fixed-point type.
if Typ = Btyp then
Resolve (Lo, Universal_Fixed);
Set_Corresponding_Integer_Value
(Lo, UR_To_Uint (Realval (Lo) / Small));
else
Resolve (Lo, Btyp);
end if;
-- Similar processing for high bound
Set_Etype (Hi, Empty);
Set_Analyzed (Hi, False);
Analyze (Hi);
if Typ = Btyp then
Resolve (Hi, Universal_Fixed);
Set_Corresponding_Integer_Value
(Hi, UR_To_Uint (Realval (Hi) / Small));
else
Resolve (Hi, Btyp);
end if;
-- Set type of range to correspond to bounds
Set_Etype (Rng, Etype (Lo));
-- Set Esize to calculated size if not set already
if not Known_Esize (Typ) then
Set_Esize (Typ, UI_From_Int (Actual_Size));
end if;
-- Set RM_Size if not already set. If already set, check value
declare
Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
begin
if Known_RM_Size (Typ)
and then RM_Size (Typ) /= Uint_0
then
if RM_Size (Typ) < Minsiz then
Error_Msg_Uint_1 := RM_Size (Typ);
Error_Msg_Uint_2 := Minsiz;
Error_Msg_NE
("size given (^) for type& too small, minimum allowed is ^",
Size_Clause (Typ), Typ);
end if;
else
Set_RM_Size (Typ, Minsiz);
end if;
end;
-- Check for shaving
if Comes_From_Source (Typ) then
-- In SPARK mode the given bounds must be strictly representable
if SPARK_Mode = On then
if Orig_Lo < Expr_Value_R (Lo) then
Error_Msg_NE
("declared low bound of type & is outside type range",
Lo, Typ);
end if;
if Orig_Hi > Expr_Value_R (Hi) then
Error_Msg_NE
("declared high bound of type & is outside type range",
Hi, Typ);
end if;
else
if Orig_Lo < Expr_Value_R (Lo) then
Error_Msg_N
("declared low bound of type & is outside type range??", Typ);
Error_Msg_N
("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
end if;
if Orig_Hi > Expr_Value_R (Hi) then
Error_Msg_N
("declared high bound of type & is outside type range??",
Typ);
Error_Msg_N
("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
end if;
end if;
end if;
end Freeze_Fixed_Point_Type;
------------------
-- Freeze_Itype --
------------------
procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
L : List_Id;
begin
Set_Has_Delayed_Freeze (T);
L := Freeze_Entity (T, N);
if Is_Non_Empty_List (L) then
Insert_Actions (N, L);
end if;
end Freeze_Itype;
--------------------------
-- Freeze_Static_Object --
--------------------------
procedure Freeze_Static_Object (E : Entity_Id) is
Cannot_Be_Static : exception;
-- Exception raised if the type of a static object cannot be made
-- static. This happens if the type depends on non-global objects.
procedure Ensure_Expression_Is_SA (N : Node_Id);
-- Called to ensure that an expression used as part of a type definition
-- is statically allocatable, which means that the expression type is
-- statically allocatable, and the expression is either static, or a
-- reference to a library level constant.
procedure Ensure_Type_Is_SA (Typ : Entity_Id);
-- Called to mark a type as static, checking that it is possible
-- to set the type as static. If it is not possible, then the
-- exception Cannot_Be_Static is raised.
-----------------------------
-- Ensure_Expression_Is_SA --
-----------------------------
procedure Ensure_Expression_Is_SA (N : Node_Id) is
Ent : Entity_Id;
begin
Ensure_Type_Is_SA (Etype (N));
if Is_OK_Static_Expression (N) then
return;
elsif Nkind (N) = N_Identifier then
Ent := Entity (N);
if Present (Ent)
and then Ekind (Ent) = E_Constant
and then Is_Library_Level_Entity (Ent)
then
return;
end if;
end if;
raise Cannot_Be_Static;
end Ensure_Expression_Is_SA;
-----------------------
-- Ensure_Type_Is_SA --
-----------------------
procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
N : Node_Id;
C : Entity_Id;
begin
-- If type is library level, we are all set
if Is_Library_Level_Entity (Typ) then
return;
end if;
-- We are also OK if the type already marked as statically allocated,
-- which means we processed it before.
if Is_Statically_Allocated (Typ) then
return;
end if;
-- Mark type as statically allocated
Set_Is_Statically_Allocated (Typ);
-- Check that it is safe to statically allocate this type
if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
Ensure_Expression_Is_SA (Type_High_Bound (Typ));
elsif Is_Array_Type (Typ) then
N := First_Index (Typ);
while Present (N) loop
Ensure_Type_Is_SA (Etype (N));
Next_Index (N);
end loop;
Ensure_Type_Is_SA (Component_Type (Typ));
elsif Is_Access_Type (Typ) then
if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
declare
F : Entity_Id;
T : constant Entity_Id := Etype (Designated_Type (Typ));
begin
if T /= Standard_Void_Type then
Ensure_Type_Is_SA (T);
end if;
F := First_Formal (Designated_Type (Typ));
while Present (F) loop
Ensure_Type_Is_SA (Etype (F));
Next_Formal (F);
end loop;
end;
else
Ensure_Type_Is_SA (Designated_Type (Typ));
end if;
elsif Is_Record_Type (Typ) then
C := First_Entity (Typ);
while Present (C) loop
if Ekind (C) = E_Discriminant
or else Ekind (C) = E_Component
then
Ensure_Type_Is_SA (Etype (C));
elsif Is_Type (C) then
Ensure_Type_Is_SA (C);
end if;
Next_Entity (C);
end loop;
elsif Ekind (Typ) = E_Subprogram_Type then
Ensure_Type_Is_SA (Etype (Typ));
C := First_Formal (Typ);
while Present (C) loop
Ensure_Type_Is_SA (Etype (C));
Next_Formal (C);
end loop;
else
raise Cannot_Be_Static;
end if;
end Ensure_Type_Is_SA;
-- Start of processing for Freeze_Static_Object
begin
Ensure_Type_Is_SA (Etype (E));
exception
when Cannot_Be_Static =>
-- If the object that cannot be static is imported or exported, then
-- issue an error message saying that this object cannot be imported
-- or exported. If it has an address clause it is an overlay in the
-- current partition and the static requirement is not relevant.
-- Do not issue any error message when ignoring rep clauses.
if Ignore_Rep_Clauses then
null;
elsif Is_Imported (E) then
if No (Address_Clause (E)) then
Error_Msg_N
("& cannot be imported (local type is not constant)", E);
end if;
-- Otherwise must be exported, something is wrong if compiler
-- is marking something as statically allocated which cannot be).
else pragma Assert (Is_Exported (E));
Error_Msg_N
("& cannot be exported (local type is not constant)", E);
end if;
end Freeze_Static_Object;
-----------------------
-- Freeze_Subprogram --
-----------------------
procedure Freeze_Subprogram (E : Entity_Id) is
function Check_Extra_Formals (E : Entity_Id) return Boolean;
-- Return True if the decoration of the attributes associated with extra
-- formals are properly set.
procedure Set_Profile_Convention (Subp_Id : Entity_Id);
-- Set the conventions of all anonymous access-to-subprogram formals and
-- result subtype of subprogram Subp_Id to the convention of Subp_Id.
-------------------------
-- Check_Extra_Formals --
-------------------------
function Check_Extra_Formals (E : Entity_Id) return Boolean is
Last_Formal : Entity_Id := Empty;
Formal : Entity_Id;
Has_Extra_Formals : Boolean := False;
begin
-- No check required if expansion is disabled because extra
-- formals are only generated when we are generating code.
-- See Create_Extra_Formals.
if not Expander_Active then
return True;
end if;
-- Check attribute Extra_Formal: If available, it must be set only
-- on the last formal of E.
Formal := First_Formal (E);
while Present (Formal) loop
if Present (Extra_Formal (Formal)) then
if Has_Extra_Formals then
return False;
end if;
Has_Extra_Formals := True;
end if;
Last_Formal := Formal;
Next_Formal (Formal);
end loop;
-- Check attribute Extra_Accessibility_Of_Result
if Ekind (E) in E_Function | E_Subprogram_Type
and then Needs_Result_Accessibility_Level (E)
and then No (Extra_Accessibility_Of_Result (E))
then
return False;
end if;
-- Check attribute Extra_Formals: If E has extra formals, then this
-- attribute must point to the first extra formal of E.
if Has_Extra_Formals then
return Present (Extra_Formals (E))
and then Present (Extra_Formal (Last_Formal))
and then Extra_Formal (Last_Formal) = Extra_Formals (E);
-- When E has no formals, the first extra formal is available through
-- the Extra_Formals attribute.
elsif Present (Extra_Formals (E)) then
return No (First_Formal (E));
else
return True;
end if;
end Check_Extra_Formals;
----------------------------
-- Set_Profile_Convention --
----------------------------
procedure Set_Profile_Convention (Subp_Id : Entity_Id) is
Conv : constant Convention_Id := Convention (Subp_Id);
procedure Set_Type_Convention (Typ : Entity_Id);
-- Set the convention of anonymous access-to-subprogram type Typ and
-- its designated type to Conv.
-------------------------
-- Set_Type_Convention --
-------------------------
procedure Set_Type_Convention (Typ : Entity_Id) is
begin
-- Set the convention on both the anonymous access-to-subprogram
-- type and the subprogram type it points to because both types
-- participate in conformance-related checks.
if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
Set_Convention (Typ, Conv);
Set_Convention (Designated_Type (Typ), Conv);
end if;
end Set_Type_Convention;
-- Local variables
Formal : Entity_Id;
-- Start of processing for Set_Profile_Convention
begin
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
Set_Type_Convention (Etype (Formal));
Next_Formal (Formal);
end loop;
if Ekind (Subp_Id) = E_Function then
Set_Type_Convention (Etype (Subp_Id));
end if;
end Set_Profile_Convention;
-- Local variables
F : Entity_Id;
Retype : Entity_Id;
-- Start of processing for Freeze_Subprogram
begin
-- Subprogram may not have an address clause unless it is imported
if Present (Address_Clause (E)) then
if not Is_Imported (E) then
Error_Msg_N
("address clause can only be given for imported subprogram",
Name (Address_Clause (E)));
end if;
end if;
-- Reset the Pure indication on an imported subprogram unless an
-- explicit Pure_Function pragma was present or the subprogram is an
-- intrinsic. We do this because otherwise it is an insidious error
-- to call a non-pure function from pure unit and have calls
-- mysteriously optimized away. What happens here is that the Import
-- can bypass the normal check to ensure that pure units call only pure
-- subprograms.
-- The reason for the intrinsic exception is that in general, intrinsic
-- functions (such as shifts) are pure anyway. The only exceptions are
-- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
-- in any case, so no problem arises.
if Is_Imported (E)
and then Is_Pure (E)
and then not Has_Pragma_Pure_Function (E)
and then not Is_Intrinsic_Subprogram (E)
then
Set_Is_Pure (E, False);
end if;
-- For C++ constructors check that their external name has been given
-- (either in pragma CPP_Constructor or in a pragma import).
if Is_Constructor (E)
and then Convention (E) = Convention_CPP
and then
(No (Interface_Name (E))
or else String_Equal
(L => Strval (Interface_Name (E)),
R => Strval (Get_Default_External_Name (E))))
then
Error_Msg_N
("'C++ constructor must have external name or link name", E);
end if;
-- We also reset the Pure indication on a subprogram with an Address
-- parameter, because the parameter may be used as a pointer and the
-- referenced data may change even if the address value does not.
-- Note that if the programmer gave an explicit Pure_Function pragma,
-- then we believe the programmer, and leave the subprogram Pure. We
-- also suppress this check on run-time files.
if Is_Pure (E)
and then Is_Subprogram (E)
and then not Has_Pragma_Pure_Function (E)
and then not Is_Internal_Unit (Current_Sem_Unit)
then
Check_Function_With_Address_Parameter (E);
end if;
-- Ensure that all anonymous access-to-subprogram types inherit the
-- convention of their related subprogram (RM 6.3.1(13.1/5)). This is
-- not done for a defaulted convention Ada because those types also
-- default to Ada. Convention Protected must not be propagated when
-- the subprogram is an entry because this would be illegal. The only
-- way to force convention Protected on these kinds of types is to
-- include keyword "protected" in the access definition. Conventions
-- Entry and Intrinsic are also not propagated (specified by AI12-0207).
if Convention (E) /= Convention_Ada
and then Convention (E) /= Convention_Protected
and then Convention (E) /= Convention_Entry
and then Convention (E) /= Convention_Intrinsic
then
Set_Profile_Convention (E);
end if;
-- For non-foreign convention subprograms, this is where we create
-- the extra formals (for accessibility level and constrained bit
-- information). We delay this till the freeze point precisely so
-- that we know the convention.
if not Has_Foreign_Convention (E) then
if No (Extra_Formals (E)) then
-- Extra formals are shared by derived subprograms; therefore, if
-- the ultimate alias of E has been frozen before E then the extra
-- formals have been added, but the attribute Extra_Formals is
-- still unset (and must be set now).
if Present (Alias (E))
and then Is_Frozen (Ultimate_Alias (E))
and then Present (Extra_Formals (Ultimate_Alias (E)))
and then Last_Formal (Ultimate_Alias (E)) = Last_Formal (E)
then
Set_Extra_Formals (E, Extra_Formals (Ultimate_Alias (E)));
if Ekind (E) = E_Function then
Set_Extra_Accessibility_Of_Result (E,
Extra_Accessibility_Of_Result (Ultimate_Alias (E)));
end if;
else
Create_Extra_Formals (E);
end if;
end if;
pragma Assert (Check_Extra_Formals (E));
Set_Mechanisms (E);
-- If this is convention Ada and a Valued_Procedure, that's odd
if Ekind (E) = E_Procedure
and then Is_Valued_Procedure (E)
and then Convention (E) = Convention_Ada
and then Warn_On_Export_Import
then
Error_Msg_N
("??Valued_Procedure has no effect for convention Ada", E);
Set_Is_Valued_Procedure (E, False);
end if;
-- Case of foreign convention
else
Set_Mechanisms (E);
-- For foreign conventions, warn about return of unconstrained array
if Ekind (E) = E_Function then
Retype := Underlying_Type (Etype (E));
-- If no return type, probably some other error, e.g. a
-- missing full declaration, so ignore.
if No (Retype) then
null;
-- If the return type is generic, we have emitted a warning
-- earlier on, and there is nothing else to check here. Specific
-- instantiations may lead to erroneous behavior.
elsif Is_Generic_Type (Etype (E)) then
null;
-- Display warning if returning unconstrained array
elsif Is_Array_Type (Retype)
and then not Is_Constrained (Retype)
-- Check appropriate warning is enabled (should we check for
-- Warnings (Off) on specific entities here, probably so???)
and then Warn_On_Export_Import
then
Error_Msg_N
("?x?foreign convention function& should not return " &
"unconstrained array", E);
return;
end if;
end if;
-- If any of the formals for an exported foreign convention
-- subprogram have defaults, then emit an appropriate warning since
-- this is odd (default cannot be used from non-Ada code)
if Is_Exported (E) then
F := First_Formal (E);
while Present (F) loop
if Warn_On_Export_Import
and then Present (Default_Value (F))
then
Error_Msg_N
("?x?parameter cannot be defaulted in non-Ada call",
Default_Value (F));
end if;
Next_Formal (F);
end loop;
end if;
end if;
-- Pragma Inline_Always is disallowed for dispatching subprograms
-- because the address of such subprograms is saved in the dispatch
-- table to support dispatching calls, and dispatching calls cannot
-- be inlined. This is consistent with the restriction against using
-- 'Access or 'Address on an Inline_Always subprogram.
if Is_Dispatching_Operation (E)
and then Has_Pragma_Inline_Always (E)
then
Error_Msg_N
("pragma Inline_Always not allowed for dispatching subprograms", E);
end if;
-- Because of the implicit representation of inherited predefined
-- operators in the front-end, the overriding status of the operation
-- may be affected when a full view of a type is analyzed, and this is
-- not captured by the analysis of the corresponding type declaration.
-- Therefore the correctness of a not-overriding indicator must be
-- rechecked when the subprogram is frozen.
if Nkind (E) = N_Defining_Operator_Symbol
and then not Error_Posted (Parent (E))
then
Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
end if;
Retype := Get_Fullest_View (Etype (E));
if Transform_Function_Array
and then Nkind (Parent (E)) = N_Function_Specification
and then Is_Array_Type (Retype)
and then Is_Constrained (Retype)
and then not Is_Unchecked_Conversion_Instance (E)
and then not Rewritten_For_C (E)
then
Build_Procedure_Form (Unit_Declaration_Node (E));
end if;
end Freeze_Subprogram;
----------------------
-- Is_Fully_Defined --
----------------------
function Is_Fully_Defined (T : Entity_Id) return Boolean is
begin
if Ekind (T) = E_Class_Wide_Type then
return Is_Fully_Defined (Etype (T));
elsif Is_Array_Type (T) then
return Is_Fully_Defined (Component_Type (T));
elsif Is_Record_Type (T)
and not Is_Private_Type (T)
then
-- Verify that the record type has no components with private types
-- without completion.
declare
Comp : Entity_Id;
begin
Comp := First_Component (T);
while Present (Comp) loop
if not Is_Fully_Defined (Etype (Comp)) then
return False;
end if;
Next_Component (Comp);
end loop;
return True;
end;
-- For the designated type of an access to subprogram, all types in
-- the profile must be fully defined.
elsif Ekind (T) = E_Subprogram_Type then
declare
F : Entity_Id;
begin
F := First_Formal (T);
while Present (F) loop
if not Is_Fully_Defined (Etype (F)) then
return False;
end if;
Next_Formal (F);
end loop;
return Is_Fully_Defined (Etype (T));
end;
else
return not Is_Private_Type (T)
or else Present (Full_View (Base_Type (T)));
end if;
end Is_Fully_Defined;
---------------------------------
-- Process_Default_Expressions --
---------------------------------
procedure Process_Default_Expressions
(E : Entity_Id;
After : in out Node_Id)
is
Loc : constant Source_Ptr := Sloc (E);
Dbody : Node_Id;
Formal : Node_Id;
Dcopy : Node_Id;
Dnam : Entity_Id;
begin
Set_Default_Expressions_Processed (E);
-- A subprogram instance and its associated anonymous subprogram share
-- their signature. The default expression functions are defined in the
-- wrapper packages for the anonymous subprogram, and should not be
-- generated again for the instance.
if Is_Generic_Instance (E)
and then Present (Alias (E))
and then Default_Expressions_Processed (Alias (E))
then
return;
end if;
Formal := First_Formal (E);
while Present (Formal) loop
if Present (Default_Value (Formal)) then
-- We work with a copy of the default expression because we
-- do not want to disturb the original, since this would mess
-- up the conformance checking.
Dcopy := New_Copy_Tree (Default_Value (Formal));
-- The analysis of the expression may generate insert actions,
-- which of course must not be executed. We wrap those actions
-- in a procedure that is not called, and later on eliminated.
-- The following cases have no side effects, and are analyzed
-- directly.
if Nkind (Dcopy) = N_Identifier
or else Nkind (Dcopy) in N_Expanded_Name
| N_Integer_Literal
| N_Character_Literal
| N_String_Literal
| N_Real_Literal
or else (Nkind (Dcopy) = N_Attribute_Reference
and then Attribute_Name (Dcopy) = Name_Null_Parameter)
or else Known_Null (Dcopy)
then
-- If there is no default function, we must still do a full
-- analyze call on the default value, to ensure that all error
-- checks are performed, e.g. those associated with static
-- evaluation. Note: this branch will always be taken if the
-- analyzer is turned off (but we still need the error checks).
-- Note: the setting of parent here is to meet the requirement
-- that we can only analyze the expression while attached to
-- the tree. Really the requirement is that the parent chain
-- be set, we don't actually need to be in the tree.
Set_Parent (Dcopy, Declaration_Node (Formal));
Analyze (Dcopy);
-- Default expressions are resolved with their own type if the
-- context is generic, to avoid anomalies with private types.
if Ekind (Scope (E)) = E_Generic_Package then
Resolve (Dcopy);
else
Resolve (Dcopy, Etype (Formal));
end if;
-- If that resolved expression will raise constraint error,
-- then flag the default value as raising constraint error.
-- This allows a proper error message on the calls.
if Raises_Constraint_Error (Dcopy) then
Set_Raises_Constraint_Error (Default_Value (Formal));
end if;
-- If the default is a parameterless call, we use the name of
-- the called function directly, and there is no body to build.
elsif Nkind (Dcopy) = N_Function_Call
and then No (Parameter_Associations (Dcopy))
then
null;
-- Else construct and analyze the body of a wrapper procedure
-- that contains an object declaration to hold the expression.
-- Given that this is done only to complete the analysis, it is
-- simpler to build a procedure than a function which might
-- involve secondary stack expansion.
else
Dnam := Make_Temporary (Loc, 'D');
Dbody :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Dnam),
Declarations => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'T'),
Object_Definition =>
New_Occurrence_Of (Etype (Formal), Loc),
Expression => New_Copy_Tree (Dcopy))),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Empty_List));
Set_Scope (Dnam, Scope (E));
Set_Assignment_OK (First (Declarations (Dbody)));
Set_Is_Eliminated (Dnam);
Insert_After (After, Dbody);
Analyze (Dbody);
After := Dbody;
end if;
end if;
Next_Formal (Formal);
end loop;
end Process_Default_Expressions;
----------------------------------------
-- Set_Component_Alignment_If_Not_Set --
----------------------------------------
procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
begin
-- Ignore if not base type, subtypes don't need anything
if Typ /= Base_Type (Typ) then
return;
end if;
-- Do not override existing representation
if Is_Packed (Typ) then
return;
elsif Has_Specified_Layout (Typ) then
return;
elsif Component_Alignment (Typ) /= Calign_Default then
return;
else
Set_Component_Alignment
(Typ, Scope_Stack.Table
(Scope_Stack.Last).Component_Alignment_Default);
end if;
end Set_Component_Alignment_If_Not_Set;
--------------------------
-- Set_SSO_From_Default --
--------------------------
procedure Set_SSO_From_Default (T : Entity_Id) is
Reversed : Boolean;
begin
-- Set default SSO for an array or record base type, except in case of
-- a type extension (which always inherits the SSO of its parent type).
if Is_Base_Type (T)
and then (Is_Array_Type (T)
or else (Is_Record_Type (T)
and then not (Is_Tagged_Type (T)
and then Is_Derived_Type (T))))
then
Reversed :=
(Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
or else
(not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
-- For a record type, if bit order is specified explicitly,
-- then do not set SSO from default if not consistent. Note that
-- we do not want to look at a Bit_Order attribute definition
-- for a parent: if we were to inherit Bit_Order, then both
-- SSO_Set_*_By_Default flags would have been cleared already
-- (by Inherit_Aspects_At_Freeze_Point).
and then not
(Is_Record_Type (T)
and then
Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
and then Reverse_Bit_Order (T) /= Reversed)
then
-- If flags cause reverse storage order, then set the result. Note
-- that we would have ignored the pragma setting the non default
-- storage order in any case, hence the assertion at this point.
pragma Assert
(not Reversed or else Support_Nondefault_SSO_On_Target);
Set_Reverse_Storage_Order (T, Reversed);
-- For a record type, also set reversed bit order. Note: if a bit
-- order has been specified explicitly, then this is a no-op.
if Is_Record_Type (T) then
Set_Reverse_Bit_Order (T, Reversed);
end if;
end if;
end if;
end Set_SSO_From_Default;
------------------
-- Undelay_Type --
------------------
procedure Undelay_Type (T : Entity_Id) is
begin
Set_Has_Delayed_Freeze (T, False);
Set_Freeze_Node (T, Empty);
-- Since we don't want T to have a Freeze_Node, we don't want its
-- Full_View or Corresponding_Record_Type to have one either.
-- ??? Fundamentally, this whole handling is unpleasant. What we really
-- want is to be sure that for an Itype that's part of record R and is a
-- subtype of type T, that it's frozen after the later of the freeze
-- points of R and T. We have no way of doing that directly, so what we
-- do is force most such Itypes to be frozen as part of freezing R via
-- this procedure and only delay the ones that need to be delayed
-- (mostly the designated types of access types that are defined as part
-- of the record).
if Is_Private_Type (T)
and then Present (Full_View (T))
and then Is_Itype (Full_View (T))
and then Is_Record_Type (Scope (Full_View (T)))
then
Undelay_Type (Full_View (T));
end if;
if Is_Concurrent_Type (T)
and then Present (Corresponding_Record_Type (T))
and then Is_Itype (Corresponding_Record_Type (T))
and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
then
Undelay_Type (Corresponding_Record_Type (T));
end if;
end Undelay_Type;
------------------
-- Warn_Overlay --
------------------
procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id) is
Ent : constant Entity_Id := Entity (Nam);
-- The object to which the address clause applies
Init : Node_Id;
Old : Entity_Id := Empty;
Decl : Node_Id;
begin
-- No warning if address clause overlay warnings are off
if not Address_Clause_Overlay_Warnings then
return;
end if;
-- No warning if there is an explicit initialization
Init := Original_Node (Expression (Declaration_Node (Ent)));
if Present (Init) and then Comes_From_Source (Init) then
return;
end if;
-- We only give the warning for non-imported entities of a type for
-- which a non-null base init proc is defined, or for objects of access
-- types with implicit null initialization, or when Normalize_Scalars
-- applies and the type is scalar or a string type (the latter being
-- tested for because predefined String types are initialized by inline
-- code rather than by an init_proc). Note that we do not give the
-- warning for Initialize_Scalars, since we suppressed initialization
-- in this case. Also, do not warn if Suppress_Initialization is set
-- either on the type, or on the object via pragma or aspect.
if Present (Expr)
and then not Is_Imported (Ent)
and then not Initialization_Suppressed (Typ)
and then not (Ekind (Ent) = E_Variable
and then Initialization_Suppressed (Ent))
and then (Has_Non_Null_Base_Init_Proc (Typ)
or else Is_Access_Type (Typ)
or else (Normalize_Scalars
and then (Is_Scalar_Type (Typ)
or else Is_String_Type (Typ))))
then
if Nkind (Expr) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (Expr))
then
Old := Entity (Prefix (Expr));
elsif Is_Entity_Name (Expr)
and then Ekind (Entity (Expr)) = E_Constant
then
Decl := Declaration_Node (Entity (Expr));
if Nkind (Decl) = N_Object_Declaration
and then Present (Expression (Decl))
and then Nkind (Expression (Decl)) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (Expression (Decl)))
then
Old := Entity (Prefix (Expression (Decl)));
elsif Nkind (Expr) = N_Function_Call then
return;
end if;
-- A function call (most likely to To_Address) is probably not an
-- overlay, so skip warning. Ditto if the function call was inlined
-- and transformed into an entity.
elsif Nkind (Original_Node (Expr)) = N_Function_Call then
return;
end if;
-- If a pragma Import follows, we assume that it is for the current
-- target of the address clause, and skip the warning. There may be
-- a source pragma or an aspect that specifies import and generates
-- the corresponding pragma. These will indicate that the entity is
-- imported and that is checked above so that the spurious warning
-- (generated when the entity is frozen) will be suppressed. The
-- pragma may be attached to the aspect, so it is not yet a list
-- member.
if Is_List_Member (Parent (Expr)) then
Decl := Next (Parent (Expr));
if Present (Decl)
and then Nkind (Decl) = N_Pragma
and then Pragma_Name (Decl) = Name_Import
then
return;
end if;
end if;
-- Otherwise give warning message
if Present (Old) then
Error_Msg_Node_2 := Old;
Error_Msg_N
("default initialization of & may modify &??",
Nam);
else
Error_Msg_N
("default initialization of & may modify overlaid storage??",
Nam);
end if;
-- Add friendly warning if initialization comes from a packed array
-- component.
if Is_Record_Type (Typ) then
declare
Comp : Entity_Id;
begin
Comp := First_Component (Typ);
while Present (Comp) loop
if Nkind (Parent (Comp)) = N_Component_Declaration
and then Present (Expression (Parent (Comp)))
then
exit;
elsif Is_Array_Type (Etype (Comp))
and then Present (Packed_Array_Impl_Type (Etype (Comp)))
then
Error_Msg_NE
("\packed array component& " &
"will be initialized to zero??",
Nam, Comp);
exit;
else
Next_Component (Comp);
end if;
end loop;
end;
end if;
Error_Msg_N
("\use pragma Import for & to " &
"suppress initialization (RM B.1(24))??",
Nam);
end if;
end Warn_Overlay;
end Freeze;