| |
| /* Compiler implementation of the D programming language |
| * Copyright (C) 1999-2021 by The D Language Foundation, All Rights Reserved |
| * written by Walter Bright |
| * http://www.digitalmars.com |
| * Distributed under the Boost Software License, Version 1.0. |
| * http://www.boost.org/LICENSE_1_0.txt |
| * https://github.com/D-Programming-Language/dmd/blob/master/src/declaration.c |
| */ |
| |
| #include "root/dsystem.h" |
| #include "root/checkedint.h" |
| |
| #include "errors.h" |
| #include "init.h" |
| #include "declaration.h" |
| #include "attrib.h" |
| #include "mtype.h" |
| #include "template.h" |
| #include "scope.h" |
| #include "aggregate.h" |
| #include "module.h" |
| #include "import.h" |
| #include "id.h" |
| #include "expression.h" |
| #include "statement.h" |
| #include "ctfe.h" |
| #include "target.h" |
| #include "hdrgen.h" |
| |
| bool checkNestedRef(Dsymbol *s, Dsymbol *p); |
| |
| /************************************ |
| * Check to see the aggregate type is nested and its context pointer is |
| * accessible from the current scope. |
| * Returns true if error occurs. |
| */ |
| bool checkFrameAccess(Loc loc, Scope *sc, AggregateDeclaration *ad, size_t iStart = 0) |
| { |
| Dsymbol *sparent = ad->toParent2(); |
| Dsymbol *s = sc->func; |
| if (ad->isNested() && s) |
| { |
| //printf("ad = %p %s [%s], parent:%p\n", ad, ad->toChars(), ad->loc.toChars(), ad->parent); |
| //printf("sparent = %p %s [%s], parent: %s\n", sparent, sparent->toChars(), sparent->loc.toChars(), sparent->parent->toChars()); |
| if (checkNestedRef(s, sparent)) |
| { |
| error(loc, "cannot access frame pointer of %s", ad->toPrettyChars()); |
| return true; |
| } |
| } |
| |
| bool result = false; |
| for (size_t i = iStart; i < ad->fields.length; i++) |
| { |
| VarDeclaration *vd = ad->fields[i]; |
| Type *tb = vd->type->baseElemOf(); |
| if (tb->ty == Tstruct) |
| { |
| result |= checkFrameAccess(loc, sc, ((TypeStruct *)tb)->sym); |
| } |
| } |
| return result; |
| } |
| |
| /********************************* Declaration ****************************/ |
| |
| Declaration::Declaration(Identifier *id) |
| : Dsymbol(id) |
| { |
| type = NULL; |
| originalType = NULL; |
| storage_class = STCundefined; |
| protection = Prot(Prot::undefined); |
| linkage = LINKdefault; |
| inuse = 0; |
| mangleOverride = NULL; |
| } |
| |
| const char *Declaration::kind() const |
| { |
| return "declaration"; |
| } |
| |
| d_uns64 Declaration::size(Loc) |
| { |
| assert(type); |
| return type->size(); |
| } |
| |
| bool Declaration::isDelete() |
| { |
| return false; |
| } |
| |
| bool Declaration::isDataseg() |
| { |
| return false; |
| } |
| |
| bool Declaration::isThreadlocal() |
| { |
| return false; |
| } |
| |
| bool Declaration::isCodeseg() const |
| { |
| return false; |
| } |
| |
| Prot Declaration::prot() |
| { |
| return protection; |
| } |
| |
| /************************************* |
| * Check to see if declaration can be modified in this context (sc). |
| * Issue error if not. |
| */ |
| |
| int Declaration::checkModify(Loc loc, Scope *sc, Type *, Expression *e1, int flag) |
| { |
| VarDeclaration *v = isVarDeclaration(); |
| if (v && v->canassign) |
| return 2; |
| |
| if (isParameter() || isResult()) |
| { |
| for (Scope *scx = sc; scx; scx = scx->enclosing) |
| { |
| if (scx->func == parent && (scx->flags & SCOPEcontract)) |
| { |
| const char *s = isParameter() && parent->ident != Id::ensure ? "parameter" : "result"; |
| if (!flag) error(loc, "cannot modify %s `%s` in contract", s, toChars()); |
| return 2; // do not report type related errors |
| } |
| } |
| } |
| |
| if (e1 && e1->op == TOKthis && isField()) |
| { |
| VarDeclaration *vthis = e1->isThisExp()->var; |
| for (Scope *scx = sc; scx; scx = scx->enclosing) |
| { |
| if (scx->func == vthis->parent && (scx->flags & SCOPEcontract)) |
| { |
| if (!flag) |
| error(loc, "cannot modify parameter `this` in contract"); |
| return 2; // do not report type related errors |
| } |
| } |
| } |
| |
| if (v && (isCtorinit() || isField())) |
| { |
| // It's only modifiable if inside the right constructor |
| if ((storage_class & (STCforeach | STCref)) == (STCforeach | STCref)) |
| return 2; |
| return modifyFieldVar(loc, sc, v, e1) ? 2 : 1; |
| } |
| return 1; |
| } |
| |
| /** |
| * Issue an error if an attempt to call a disabled method is made |
| * |
| * If the declaration is disabled but inside a disabled function, |
| * returns `true` but do not issue an error message. |
| * |
| * Params: |
| * loc = Location information of the call |
| * sc = Scope in which the call occurs |
| * isAliasedDeclaration = if `true` searches overload set |
| * |
| * Returns: |
| * `true` if this `Declaration` is `@disable`d, `false` otherwise. |
| */ |
| bool Declaration::checkDisabled(Loc loc, Scope *sc, bool isAliasedDeclaration) |
| { |
| if (!(storage_class & STCdisable)) |
| return false; |
| |
| if (sc->func && (sc->func->storage_class & STCdisable)) |
| return true; |
| |
| Dsymbol *p = toParent(); |
| if (p && isPostBlitDeclaration()) |
| { |
| p->error(loc, "is not copyable because it is annotated with `@disable`"); |
| return true; |
| } |
| |
| // if the function is @disabled, maybe there |
| // is an overload in the overload set that isn't |
| if (isAliasedDeclaration) |
| { |
| FuncDeclaration *fd = isFuncDeclaration(); |
| if (fd) |
| { |
| for (FuncDeclaration *ovl = fd; ovl; ovl = (FuncDeclaration *)ovl->overnext) |
| if (!(ovl->storage_class & STCdisable)) |
| return false; |
| } |
| } |
| error(loc, "cannot be used because it is annotated with `@disable`"); |
| return true; |
| } |
| |
| Dsymbol *Declaration::search(const Loc &loc, Identifier *ident, int flags) |
| { |
| Dsymbol *s = Dsymbol::search(loc, ident, flags); |
| if (!s && type) |
| { |
| s = type->toDsymbol(_scope); |
| if (s) |
| s = s->search(loc, ident, flags); |
| } |
| return s; |
| } |
| |
| |
| /********************************* TupleDeclaration ****************************/ |
| |
| TupleDeclaration::TupleDeclaration(Loc loc, Identifier *id, Objects *objects) |
| : Declaration(id) |
| { |
| this->loc = loc; |
| this->type = NULL; |
| this->objects = objects; |
| this->isexp = false; |
| this->tupletype = NULL; |
| } |
| |
| Dsymbol *TupleDeclaration::syntaxCopy(Dsymbol *) |
| { |
| assert(0); |
| return NULL; |
| } |
| |
| const char *TupleDeclaration::kind() const |
| { |
| return "tuple"; |
| } |
| |
| Type *TupleDeclaration::getType() |
| { |
| /* If this tuple represents a type, return that type |
| */ |
| |
| //printf("TupleDeclaration::getType() %s\n", toChars()); |
| if (isexp) |
| return NULL; |
| if (!tupletype) |
| { |
| /* It's only a type tuple if all the Object's are types |
| */ |
| for (size_t i = 0; i < objects->length; i++) |
| { |
| RootObject *o = (*objects)[i]; |
| if (o->dyncast() != DYNCAST_TYPE) |
| { |
| //printf("\tnot[%d], %p, %d\n", i, o, o->dyncast()); |
| return NULL; |
| } |
| } |
| |
| /* We know it's a type tuple, so build the TypeTuple |
| */ |
| Types *types = (Types *)objects; |
| Parameters *args = new Parameters(); |
| args->setDim(objects->length); |
| OutBuffer buf; |
| int hasdeco = 1; |
| for (size_t i = 0; i < types->length; i++) |
| { |
| Type *t = (*types)[i]; |
| //printf("type = %s\n", t->toChars()); |
| Parameter *arg = new Parameter(0, t, NULL, NULL, NULL); |
| (*args)[i] = arg; |
| if (!t->deco) |
| hasdeco = 0; |
| } |
| |
| tupletype = new TypeTuple(args); |
| if (hasdeco) |
| return typeSemantic(tupletype, Loc(), NULL); |
| } |
| |
| return tupletype; |
| } |
| |
| Dsymbol *TupleDeclaration::toAlias2() |
| { |
| //printf("TupleDeclaration::toAlias2() '%s' objects = %s\n", toChars(), objects->toChars()); |
| |
| for (size_t i = 0; i < objects->length; i++) |
| { |
| RootObject *o = (*objects)[i]; |
| if (Dsymbol *s = isDsymbol(o)) |
| { |
| s = s->toAlias2(); |
| (*objects)[i] = s; |
| } |
| } |
| return this; |
| } |
| |
| bool TupleDeclaration::needThis() |
| { |
| //printf("TupleDeclaration::needThis(%s)\n", toChars()); |
| for (size_t i = 0; i < objects->length; i++) |
| { |
| RootObject *o = (*objects)[i]; |
| if (o->dyncast() == DYNCAST_EXPRESSION) |
| { |
| Expression *e = (Expression *)o; |
| if (e->op == TOKdsymbol) |
| { |
| DsymbolExp *ve = (DsymbolExp *)e; |
| Declaration *d = ve->s->isDeclaration(); |
| if (d && d->needThis()) |
| { |
| return true; |
| } |
| } |
| } |
| } |
| return false; |
| } |
| |
| /********************************* AliasDeclaration ****************************/ |
| |
| AliasDeclaration::AliasDeclaration(Loc loc, Identifier *id, Type *type) |
| : Declaration(id) |
| { |
| //printf("AliasDeclaration(id = '%s', type = %p)\n", id->toChars(), type); |
| //printf("type = '%s'\n", type->toChars()); |
| this->loc = loc; |
| this->type = type; |
| this->aliassym = NULL; |
| this->_import = NULL; |
| this->overnext = NULL; |
| assert(type); |
| } |
| |
| AliasDeclaration::AliasDeclaration(Loc loc, Identifier *id, Dsymbol *s) |
| : Declaration(id) |
| { |
| //printf("AliasDeclaration(id = '%s', s = %p)\n", id->toChars(), s); |
| assert(s != this); |
| this->loc = loc; |
| this->type = NULL; |
| this->aliassym = s; |
| this->_import = NULL; |
| this->overnext = NULL; |
| assert(s); |
| } |
| |
| AliasDeclaration *AliasDeclaration::create(Loc loc, Identifier *id, Type *type) |
| { |
| return new AliasDeclaration(loc, id, type); |
| } |
| |
| Dsymbol *AliasDeclaration::syntaxCopy(Dsymbol *s) |
| { |
| //printf("AliasDeclaration::syntaxCopy()\n"); |
| assert(!s); |
| AliasDeclaration *sa = |
| type ? new AliasDeclaration(loc, ident, type->syntaxCopy()) |
| : new AliasDeclaration(loc, ident, aliassym->syntaxCopy(NULL)); |
| sa->storage_class = storage_class; |
| return sa; |
| } |
| |
| bool AliasDeclaration::overloadInsert(Dsymbol *s) |
| { |
| //printf("[%s] AliasDeclaration::overloadInsert('%s') s = %s %s @ [%s]\n", |
| // loc.toChars(), toChars(), s->kind(), s->toChars(), s->loc.toChars()); |
| |
| /** Aliases aren't overloadable themselves, but if their Aliasee is |
| * overloadable they are converted to an overloadable Alias (either |
| * FuncAliasDeclaration or OverDeclaration). |
| * |
| * This is done by moving the Aliasee into such an overloadable alias |
| * which is then used to replace the existing Aliasee. The original |
| * Alias (_this_) remains a useless shell. |
| * |
| * This is a horrible mess. It was probably done to avoid replacing |
| * existing AST nodes and references, but it needs a major |
| * simplification b/c it's too complex to maintain. |
| * |
| * A simpler approach might be to merge any colliding symbols into a |
| * simple Overload class (an array) and then later have that resolve |
| * all collisions. |
| */ |
| if (semanticRun >= PASSsemanticdone) |
| { |
| /* Semantic analysis is already finished, and the aliased entity |
| * is not overloadable. |
| */ |
| if (type) |
| return false; |
| |
| /* When s is added in member scope by static if, mixin("code") or others, |
| * aliassym is determined already. See the case in: test/compilable/test61.d |
| */ |
| Dsymbol *sa = aliassym->toAlias(); |
| if (FuncDeclaration *fd = sa->isFuncDeclaration()) |
| { |
| FuncAliasDeclaration *fa = new FuncAliasDeclaration(ident, fd); |
| fa->protection = protection; |
| fa->parent = parent; |
| aliassym = fa; |
| return aliassym->overloadInsert(s); |
| } |
| if (TemplateDeclaration *td = sa->isTemplateDeclaration()) |
| { |
| OverDeclaration *od = new OverDeclaration(ident, td); |
| od->protection = protection; |
| od->parent = parent; |
| aliassym = od; |
| return aliassym->overloadInsert(s); |
| } |
| if (OverDeclaration *od = sa->isOverDeclaration()) |
| { |
| if (sa->ident != ident || sa->parent != parent) |
| { |
| od = new OverDeclaration(ident, od); |
| od->protection = protection; |
| od->parent = parent; |
| aliassym = od; |
| } |
| return od->overloadInsert(s); |
| } |
| if (OverloadSet *os = sa->isOverloadSet()) |
| { |
| if (sa->ident != ident || sa->parent != parent) |
| { |
| os = new OverloadSet(ident, os); |
| // TODO: protection is lost here b/c OverloadSets have no protection attribute |
| // Might no be a practical issue, b/c the code below fails to resolve the overload anyhow. |
| // ---- |
| // module os1; |
| // import a, b; |
| // private alias merged = foo; // private alias to overload set of a.foo and b.foo |
| // ---- |
| // module os2; |
| // import a, b; |
| // public alias merged = bar; // public alias to overload set of a.bar and b.bar |
| // ---- |
| // module bug; |
| // import os1, os2; |
| // void test() { merged(123); } // should only look at os2.merged |
| // |
| // os.protection = protection; |
| os->parent = parent; |
| aliassym = os; |
| } |
| os->push(s); |
| return true; |
| } |
| return false; |
| } |
| |
| /* Don't know yet what the aliased symbol is, so assume it can |
| * be overloaded and check later for correctness. |
| */ |
| if (overnext) |
| return overnext->overloadInsert(s); |
| if (s == this) |
| return true; |
| overnext = s; |
| return true; |
| } |
| |
| const char *AliasDeclaration::kind() const |
| { |
| return "alias"; |
| } |
| |
| Type *AliasDeclaration::getType() |
| { |
| if (type) |
| return type; |
| return toAlias()->getType(); |
| } |
| |
| Dsymbol *AliasDeclaration::toAlias() |
| { |
| //printf("[%s] AliasDeclaration::toAlias('%s', this = %p, aliassym = %p, kind = '%s', inuse = %d)\n", |
| // loc.toChars(), toChars(), this, aliassym, aliassym ? aliassym->kind() : "", inuse); |
| assert(this != aliassym); |
| //static int count; if (++count == 10) *(char*)0=0; |
| if (inuse == 1 && type && _scope) |
| { |
| inuse = 2; |
| unsigned olderrors = global.errors; |
| Dsymbol *s = type->toDsymbol(_scope); |
| //printf("[%s] type = %s, s = %p, this = %p\n", loc.toChars(), type->toChars(), s, this); |
| if (global.errors != olderrors) |
| goto Lerr; |
| if (s) |
| { |
| s = s->toAlias(); |
| if (global.errors != olderrors) |
| goto Lerr; |
| aliassym = s; |
| inuse = 0; |
| } |
| else |
| { |
| Type *t = typeSemantic(type, loc, _scope); |
| if (t->ty == Terror) |
| goto Lerr; |
| if (global.errors != olderrors) |
| goto Lerr; |
| //printf("t = %s\n", t->toChars()); |
| inuse = 0; |
| } |
| } |
| if (inuse) |
| { |
| error("recursive alias declaration"); |
| |
| Lerr: |
| // Avoid breaking "recursive alias" state during errors gagged |
| if (global.gag) |
| return this; |
| |
| aliassym = new AliasDeclaration(loc, ident, Type::terror); |
| type = Type::terror; |
| return aliassym; |
| } |
| |
| if (semanticRun >= PASSsemanticdone) |
| { |
| // semantic is already done. |
| |
| // Do not see aliassym !is null, because of lambda aliases. |
| |
| // Do not see type.deco !is null, even so "alias T = const int;` needs |
| // semantic analysis to take the storage class `const` as type qualifier. |
| } |
| else |
| { |
| if (_import && _import->_scope) |
| { |
| /* If this is an internal alias for selective/renamed import, |
| * load the module first. |
| */ |
| dsymbolSemantic(_import, NULL); |
| } |
| if (_scope) |
| { |
| aliasSemantic(this, _scope); |
| } |
| } |
| |
| inuse = 1; |
| Dsymbol *s = aliassym ? aliassym->toAlias() : this; |
| inuse = 0; |
| return s; |
| } |
| |
| Dsymbol *AliasDeclaration::toAlias2() |
| { |
| if (inuse) |
| { |
| error("recursive alias declaration"); |
| return this; |
| } |
| inuse = 1; |
| Dsymbol *s = aliassym ? aliassym->toAlias2() : this; |
| inuse = 0; |
| return s; |
| } |
| |
| bool AliasDeclaration::isOverloadable() |
| { |
| // assume overloadable until alias is resolved |
| return semanticRun < PASSsemanticdone || |
| (aliassym && aliassym->isOverloadable()); |
| } |
| |
| /****************************** OverDeclaration **************************/ |
| |
| OverDeclaration::OverDeclaration(Identifier *ident, Dsymbol *s, bool hasOverloads) |
| : Declaration(ident) |
| { |
| this->overnext = NULL; |
| this->aliassym = s; |
| |
| this->hasOverloads = hasOverloads; |
| if (hasOverloads) |
| { |
| if (OverDeclaration *od = aliassym->isOverDeclaration()) |
| this->hasOverloads = od->hasOverloads; |
| } |
| else |
| { |
| // for internal use |
| assert(!aliassym->isOverDeclaration()); |
| } |
| } |
| |
| const char *OverDeclaration::kind() const |
| { |
| return "overload alias"; // todo |
| } |
| |
| bool OverDeclaration::equals(RootObject *o) |
| { |
| if (this == o) |
| return true; |
| |
| Dsymbol *s = isDsymbol(o); |
| if (!s) |
| return false; |
| |
| OverDeclaration *od1 = this; |
| if (OverDeclaration *od2 = s->isOverDeclaration()) |
| { |
| return od1->aliassym->equals(od2->aliassym) && |
| od1->hasOverloads == od2->hasOverloads; |
| } |
| if (aliassym == s) |
| { |
| if (hasOverloads) |
| return true; |
| if (FuncDeclaration *fd = s->isFuncDeclaration()) |
| { |
| return fd->isUnique() != NULL; |
| } |
| if (TemplateDeclaration *td = s->isTemplateDeclaration()) |
| { |
| return td->overnext == NULL; |
| } |
| } |
| return false; |
| } |
| |
| bool OverDeclaration::overloadInsert(Dsymbol *s) |
| { |
| //printf("OverDeclaration::overloadInsert('%s') aliassym = %p, overnext = %p\n", s->toChars(), aliassym, overnext); |
| if (overnext) |
| return overnext->overloadInsert(s); |
| if (s == this) |
| return true; |
| overnext = s; |
| return true; |
| } |
| |
| Dsymbol *OverDeclaration::toAlias() |
| { |
| return this; |
| } |
| |
| bool OverDeclaration::isOverloadable() |
| { |
| return true; |
| } |
| |
| Dsymbol *OverDeclaration::isUnique() |
| { |
| if (!hasOverloads) |
| { |
| if (aliassym->isFuncDeclaration() || |
| aliassym->isTemplateDeclaration()) |
| { |
| return aliassym; |
| } |
| } |
| |
| struct ParamUniqueSym |
| { |
| static int fp(void *param, Dsymbol *s) |
| { |
| Dsymbol **ps = (Dsymbol **)param; |
| if (*ps) |
| { |
| *ps = NULL; |
| return 1; // ambiguous, done |
| } |
| else |
| { |
| *ps = s; |
| return 0; |
| } |
| } |
| }; |
| Dsymbol *result = NULL; |
| overloadApply(aliassym, &result, &ParamUniqueSym::fp); |
| return result; |
| } |
| |
| /********************************* VarDeclaration ****************************/ |
| |
| VarDeclaration::VarDeclaration(Loc loc, Type *type, Identifier *id, Initializer *init) |
| : Declaration(id) |
| { |
| //printf("VarDeclaration('%s')\n", id->toChars()); |
| assert(id); |
| assert(type || init); |
| this->type = type; |
| this->_init = init; |
| this->loc = loc; |
| offset = 0; |
| isargptr = false; |
| alignment = 0; |
| ctorinit = 0; |
| aliassym = NULL; |
| onstack = false; |
| mynew = false; |
| canassign = 0; |
| overlapped = false; |
| overlapUnsafe = false; |
| doNotInferScope = false; |
| isdataseg = 0; |
| lastVar = NULL; |
| endlinnum = 0; |
| ctfeAdrOnStack = -1; |
| edtor = NULL; |
| range = NULL; |
| |
| static unsigned nextSequenceNumber = 0; |
| this->sequenceNumber = ++nextSequenceNumber; |
| } |
| |
| VarDeclaration *VarDeclaration::create(Loc loc, Type *type, Identifier *id, Initializer *init) |
| { |
| return new VarDeclaration(loc, type, id, init); |
| } |
| |
| Dsymbol *VarDeclaration::syntaxCopy(Dsymbol *s) |
| { |
| //printf("VarDeclaration::syntaxCopy(%s)\n", toChars()); |
| assert(!s); |
| VarDeclaration *v = new VarDeclaration(loc, |
| type ? type->syntaxCopy() : NULL, |
| ident, |
| _init ? _init->syntaxCopy() : NULL); |
| v->storage_class = storage_class; |
| return v; |
| } |
| |
| void VarDeclaration::setFieldOffset(AggregateDeclaration *ad, unsigned *poffset, bool isunion) |
| { |
| //printf("VarDeclaration::setFieldOffset(ad = %s) %s\n", ad->toChars(), toChars()); |
| |
| if (aliassym) |
| { |
| // If this variable was really a tuple, set the offsets for the tuple fields |
| TupleDeclaration *v2 = aliassym->isTupleDeclaration(); |
| assert(v2); |
| for (size_t i = 0; i < v2->objects->length; i++) |
| { |
| RootObject *o = (*v2->objects)[i]; |
| assert(o->dyncast() == DYNCAST_EXPRESSION); |
| Expression *e = (Expression *)o; |
| assert(e->op == TOKdsymbol); |
| DsymbolExp *se = (DsymbolExp *)e; |
| se->s->setFieldOffset(ad, poffset, isunion); |
| } |
| return; |
| } |
| |
| if (!isField()) |
| return; |
| assert(!(storage_class & (STCstatic | STCextern | STCparameter | STCtls))); |
| |
| //printf("+VarDeclaration::setFieldOffset(ad = %s) %s\n", ad->toChars(), toChars()); |
| |
| /* Fields that are tuples appear both as part of TupleDeclarations and |
| * as members. That means ignore them if they are already a field. |
| */ |
| if (offset) |
| { |
| // already a field |
| *poffset = ad->structsize; // Bugzilla 13613 |
| return; |
| } |
| for (size_t i = 0; i < ad->fields.length; i++) |
| { |
| if (ad->fields[i] == this) |
| { |
| // already a field |
| *poffset = ad->structsize; // Bugzilla 13613 |
| return; |
| } |
| } |
| |
| // Check for forward referenced types which will fail the size() call |
| Type *t = type->toBasetype(); |
| if (storage_class & STCref) |
| { |
| // References are the size of a pointer |
| t = Type::tvoidptr; |
| } |
| Type *tv = t->baseElemOf(); |
| if (tv->ty == Tstruct) |
| { |
| TypeStruct *ts = (TypeStruct *)tv; |
| assert(ts->sym != ad); // already checked in ad->determineFields() |
| if (!ts->sym->determineSize(loc)) |
| { |
| type = Type::terror; |
| errors = true; |
| return; |
| } |
| } |
| |
| // List in ad->fields. Even if the type is error, it's necessary to avoid |
| // pointless error diagnostic "more initializers than fields" on struct literal. |
| ad->fields.push(this); |
| |
| if (t->ty == Terror) |
| return; |
| |
| const d_uns64 sz = t->size(loc); |
| assert(sz != SIZE_INVALID && sz < UINT32_MAX); |
| unsigned memsize = (unsigned)sz; // size of member |
| unsigned memalignsize = target.fieldalign(t); // size of member for alignment purposes |
| |
| offset = AggregateDeclaration::placeField(poffset, memsize, memalignsize, alignment, |
| &ad->structsize, &ad->alignsize, isunion); |
| |
| //printf("\t%s: memalignsize = %d\n", toChars(), memalignsize); |
| |
| //printf(" addField '%s' to '%s' at offset %d, size = %d\n", toChars(), ad->toChars(), offset, memsize); |
| } |
| |
| const char *VarDeclaration::kind() const |
| { |
| return "variable"; |
| } |
| |
| Dsymbol *VarDeclaration::toAlias() |
| { |
| //printf("VarDeclaration::toAlias('%s', this = %p, aliassym = %p)\n", toChars(), this, aliassym); |
| if ((!type || !type->deco) && _scope) |
| dsymbolSemantic(this, _scope); |
| |
| assert(this != aliassym); |
| Dsymbol *s = aliassym ? aliassym->toAlias() : this; |
| return s; |
| } |
| |
| AggregateDeclaration *VarDeclaration::isThis() |
| { |
| AggregateDeclaration *ad = NULL; |
| |
| if (!(storage_class & (STCstatic | STCextern | STCmanifest | STCtemplateparameter | |
| STCtls | STCgshared | STCctfe))) |
| { |
| for (Dsymbol *s = this; s; s = s->parent) |
| { |
| ad = s->isMember(); |
| if (ad) |
| break; |
| if (!s->parent || !s->parent->isTemplateMixin()) break; |
| } |
| } |
| return ad; |
| } |
| |
| bool VarDeclaration::needThis() |
| { |
| //printf("VarDeclaration::needThis(%s, x%x)\n", toChars(), storage_class); |
| return isField(); |
| } |
| |
| bool VarDeclaration::isExport() const |
| { |
| return protection.kind == Prot::export_; |
| } |
| |
| bool VarDeclaration::isImportedSymbol() const |
| { |
| if (protection.kind == Prot::export_ && !_init && |
| (storage_class & STCstatic || parent->isModule())) |
| return true; |
| return false; |
| } |
| |
| /******************************************* |
| * Helper function for the expansion of manifest constant. |
| */ |
| Expression *VarDeclaration::expandInitializer(Loc loc) |
| { |
| assert((storage_class & STCmanifest) && _init); |
| |
| Expression *e = getConstInitializer(); |
| if (!e) |
| { |
| ::error(loc, "cannot make expression out of initializer for %s", toChars()); |
| return new ErrorExp(); |
| } |
| |
| e = e->copy(); |
| e->loc = loc; // for better error message |
| return e; |
| } |
| |
| void VarDeclaration::checkCtorConstInit() |
| { |
| #if 0 /* doesn't work if more than one static ctor */ |
| if (ctorinit == 0 && isCtorinit() && !isField()) |
| error("missing initializer in static constructor for const variable"); |
| #endif |
| } |
| |
| bool lambdaCheckForNestedRef(Expression *e, Scope *sc); |
| |
| /************************************ |
| * Check to see if this variable is actually in an enclosing function |
| * rather than the current one. |
| * Returns true if error occurs. |
| */ |
| bool VarDeclaration::checkNestedReference(Scope *sc, Loc loc) |
| { |
| //printf("VarDeclaration::checkNestedReference() %s\n", toChars()); |
| if (sc->intypeof == 1 || (sc->flags & SCOPEctfe)) |
| return false; |
| if (!parent || parent == sc->parent) |
| return false; |
| if (isDataseg() || (storage_class & STCmanifest)) |
| return false; |
| |
| // The current function |
| FuncDeclaration *fdthis = sc->parent->isFuncDeclaration(); |
| if (!fdthis) |
| return false; // out of function scope |
| |
| Dsymbol *p = toParent2(); |
| |
| // Function literals from fdthis to p must be delegates |
| checkNestedRef(fdthis, p); |
| |
| // The function that this variable is in |
| FuncDeclaration *fdv = p->isFuncDeclaration(); |
| if (!fdv || fdv == fdthis) |
| return false; |
| |
| // Add fdthis to nestedrefs[] if not already there |
| if (!nestedrefs.contains(fdthis)) |
| nestedrefs.push(fdthis); |
| |
| /* __require and __ensure will always get called directly, |
| * so they never make outer functions closure. |
| */ |
| if (fdthis->ident == Id::require || fdthis->ident == Id::ensure) |
| return false; |
| |
| //printf("\tfdv = %s\n", fdv->toChars()); |
| //printf("\tfdthis = %s\n", fdthis->toChars()); |
| if (loc.filename) |
| { |
| int lv = fdthis->getLevel(loc, sc, fdv); |
| if (lv == -2) // error |
| return true; |
| } |
| |
| // Add this to fdv->closureVars[] if not already there |
| if (!sc->intypeof && !(sc->flags & SCOPEcompile)) |
| { |
| if (!fdv->closureVars.contains(this)) |
| fdv->closureVars.push(this); |
| } |
| |
| //printf("fdthis is %s\n", fdthis->toChars()); |
| //printf("var %s in function %s is nested ref\n", toChars(), fdv->toChars()); |
| // __dollar creates problems because it isn't a real variable Bugzilla 3326 |
| if (ident == Id::dollar) |
| { |
| ::error(loc, "cannnot use $ inside a function literal"); |
| return true; |
| } |
| |
| if (ident == Id::withSym) // Bugzilla 1759 |
| { |
| ExpInitializer *ez = _init->isExpInitializer(); |
| assert(ez); |
| Expression *e = ez->exp; |
| if (e->op == TOKconstruct || e->op == TOKblit) |
| e = ((AssignExp *)e)->e2; |
| return lambdaCheckForNestedRef(e, sc); |
| } |
| |
| return false; |
| } |
| |
| /******************************************* |
| * If variable has a constant expression initializer, get it. |
| * Otherwise, return NULL. |
| */ |
| |
| Expression *VarDeclaration::getConstInitializer(bool needFullType) |
| { |
| assert(type && _init); |
| |
| // Ungag errors when not speculative |
| unsigned oldgag = global.gag; |
| if (global.gag) |
| { |
| Dsymbol *sym = toParent()->isAggregateDeclaration(); |
| if (sym && !sym->isSpeculative()) |
| global.gag = 0; |
| } |
| |
| if (_scope) |
| { |
| inuse++; |
| _init = initializerSemantic(_init, _scope, type, INITinterpret); |
| _scope = NULL; |
| inuse--; |
| } |
| Expression *e = initializerToExpression(_init, needFullType ? type : NULL); |
| |
| global.gag = oldgag; |
| return e; |
| } |
| |
| /************************************* |
| * Return true if we can take the address of this variable. |
| */ |
| |
| bool VarDeclaration::canTakeAddressOf() |
| { |
| return !(storage_class & STCmanifest); |
| } |
| |
| |
| /******************************* |
| * Does symbol go into data segment? |
| * Includes extern variables. |
| */ |
| |
| bool VarDeclaration::isDataseg() |
| { |
| if (isdataseg == 0) // the value is not cached |
| { |
| isdataseg = 2; // The Variables does not go into the datasegment |
| |
| if (!canTakeAddressOf()) |
| { |
| return false; |
| } |
| |
| Dsymbol *parent = toParent(); |
| if (!parent && !(storage_class & STCstatic)) |
| { |
| error("forward referenced"); |
| type = Type::terror; |
| } |
| else if (storage_class & (STCstatic | STCextern | STCtls | STCgshared) || |
| parent->isModule() || parent->isTemplateInstance() || parent->isNspace()) |
| { |
| assert(!isParameter() && !isResult()); |
| isdataseg = 1; // It is in the DataSegment |
| } |
| } |
| |
| return (isdataseg == 1); |
| } |
| |
| /************************************ |
| * Does symbol go into thread local storage? |
| */ |
| |
| bool VarDeclaration::isThreadlocal() |
| { |
| //printf("VarDeclaration::isThreadlocal(%p, '%s')\n", this, toChars()); |
| /* Data defaults to being thread-local. It is not thread-local |
| * if it is immutable, const or shared. |
| */ |
| bool i = isDataseg() && |
| !(storage_class & (STCimmutable | STCconst | STCshared | STCgshared)); |
| //printf("\treturn %d\n", i); |
| return i; |
| } |
| |
| /******************************************** |
| * Can variable be read and written by CTFE? |
| */ |
| |
| bool VarDeclaration::isCTFE() |
| { |
| return (storage_class & STCctfe) != 0; // || !isDataseg(); |
| } |
| |
| bool VarDeclaration::isOverlappedWith(VarDeclaration *v) |
| { |
| const d_uns64 vsz = v->type->size(); |
| const d_uns64 tsz = type->size(); |
| assert(vsz != SIZE_INVALID && tsz != SIZE_INVALID); |
| return offset < v->offset + vsz && |
| v->offset < offset + tsz; |
| } |
| |
| bool VarDeclaration::hasPointers() |
| { |
| //printf("VarDeclaration::hasPointers() %s, ty = %d\n", toChars(), type->ty); |
| return (!isDataseg() && type->hasPointers()); |
| } |
| |
| /****************************************** |
| * Return true if variable needs to call the destructor. |
| */ |
| |
| bool VarDeclaration::needsScopeDtor() |
| { |
| //printf("VarDeclaration::needsScopeDtor() %s\n", toChars()); |
| return edtor && !(storage_class & STCnodtor); |
| } |
| |
| |
| /****************************************** |
| * If a variable has a scope destructor call, return call for it. |
| * Otherwise, return NULL. |
| */ |
| |
| Expression *VarDeclaration::callScopeDtor(Scope *) |
| { |
| //printf("VarDeclaration::callScopeDtor() %s\n", toChars()); |
| |
| // Destruction of STCfield's is handled by buildDtor() |
| if (storage_class & (STCnodtor | STCref | STCout | STCfield)) |
| { |
| return NULL; |
| } |
| |
| Expression *e = NULL; |
| |
| // Destructors for structs and arrays of structs |
| Type *tv = type->baseElemOf(); |
| if (tv->ty == Tstruct) |
| { |
| StructDeclaration *sd = ((TypeStruct *)tv)->sym; |
| if (!sd->dtor || sd->errors) |
| return NULL; |
| |
| const d_uns64 sz = type->size(); |
| assert(sz != SIZE_INVALID); |
| if (!sz) |
| return NULL; |
| |
| if (type->toBasetype()->ty == Tstruct) |
| { |
| // v.__xdtor() |
| e = new VarExp(loc, this); |
| |
| /* This is a hack so we can call destructors on const/immutable objects. |
| * Need to add things like "const ~this()" and "immutable ~this()" to |
| * fix properly. |
| */ |
| e->type = e->type->mutableOf(); |
| |
| // Enable calling destructors on shared objects. |
| // The destructor is always a single, non-overloaded function, |
| // and must serve both shared and non-shared objects. |
| e->type = e->type->unSharedOf(); |
| |
| e = new DotVarExp(loc, e, sd->dtor, false); |
| e = new CallExp(loc, e); |
| } |
| else |
| { |
| // __ArrayDtor(v[0 .. n]) |
| e = new VarExp(loc, this); |
| |
| const d_uns64 sdsz = sd->type->size(); |
| assert(sdsz != SIZE_INVALID && sdsz != 0); |
| const d_uns64 n = sz / sdsz; |
| e = new SliceExp(loc, e, new IntegerExp(loc, 0, Type::tsize_t), |
| new IntegerExp(loc, n, Type::tsize_t)); |
| // Prevent redundant bounds check |
| ((SliceExp *)e)->upperIsInBounds = true; |
| ((SliceExp *)e)->lowerIsLessThanUpper = true; |
| |
| // This is a hack so we can call destructors on const/immutable objects. |
| e->type = sd->type->arrayOf(); |
| |
| e = new CallExp(loc, new IdentifierExp(loc, Id::__ArrayDtor), e); |
| } |
| return e; |
| } |
| |
| // Destructors for classes |
| if (storage_class & (STCauto | STCscope) && !(storage_class & STCparameter)) |
| { |
| for (ClassDeclaration *cd = type->isClassHandle(); |
| cd; |
| cd = cd->baseClass) |
| { |
| /* We can do better if there's a way with onstack |
| * classes to determine if there's no way the monitor |
| * could be set. |
| */ |
| //if (cd->isInterfaceDeclaration()) |
| //error("interface %s cannot be scope", cd->toChars()); |
| |
| // Destroying C++ scope classes crashes currently. Since C++ class dtors are not currently supported, simply do not run dtors for them. |
| // See https://issues.dlang.org/show_bug.cgi?id=13182 |
| if (cd->isCPPclass()) |
| { |
| break; |
| } |
| if (mynew || onstack) // if any destructors |
| { |
| // delete this; |
| Expression *ec; |
| |
| ec = new VarExp(loc, this); |
| e = new DeleteExp(loc, ec, true); |
| e->type = Type::tvoid; |
| break; |
| } |
| } |
| } |
| return e; |
| } |
| |
| /********************************** |
| * Determine if `this` has a lifetime that lasts past |
| * the destruction of `v` |
| * Params: |
| * v = variable to test against |
| * Returns: |
| * true if it does |
| */ |
| bool VarDeclaration::enclosesLifetimeOf(VarDeclaration *v) const |
| { |
| return sequenceNumber < v->sequenceNumber; |
| } |
| |
| /****************************************** |
| */ |
| |
| void ObjectNotFound(Identifier *id) |
| { |
| Type::error(Loc(), "%s not found. object.d may be incorrectly installed or corrupt.", id->toChars()); |
| fatal(); |
| } |
| |
| /******************************** SymbolDeclaration ********************************/ |
| |
| SymbolDeclaration::SymbolDeclaration(Loc loc, StructDeclaration *dsym) |
| : Declaration(dsym->ident) |
| { |
| this->loc = loc; |
| this->dsym = dsym; |
| storage_class |= STCconst; |
| } |
| |
| /********************************* TypeInfoDeclaration ****************************/ |
| |
| TypeInfoDeclaration::TypeInfoDeclaration(Type *tinfo) |
| : VarDeclaration(Loc(), Type::dtypeinfo->type, tinfo->getTypeInfoIdent(), NULL) |
| { |
| this->tinfo = tinfo; |
| storage_class = STCstatic | STCgshared; |
| protection = Prot(Prot::public_); |
| linkage = LINKc; |
| alignment = target.ptrsize; |
| } |
| |
| TypeInfoDeclaration *TypeInfoDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoDeclaration(tinfo); |
| } |
| |
| Dsymbol *TypeInfoDeclaration::syntaxCopy(Dsymbol *) |
| { |
| assert(0); // should never be produced by syntax |
| return NULL; |
| } |
| |
| const char *TypeInfoDeclaration::toChars() |
| { |
| //printf("TypeInfoDeclaration::toChars() tinfo = %s\n", tinfo->toChars()); |
| OutBuffer buf; |
| buf.writestring("typeid("); |
| buf.writestring(tinfo->toChars()); |
| buf.writeByte(')'); |
| return buf.extractChars(); |
| } |
| |
| /***************************** TypeInfoConstDeclaration **********************/ |
| |
| TypeInfoConstDeclaration::TypeInfoConstDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfoconst) |
| { |
| ObjectNotFound(Id::TypeInfo_Const); |
| } |
| type = Type::typeinfoconst->type; |
| } |
| |
| TypeInfoConstDeclaration *TypeInfoConstDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoConstDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoInvariantDeclaration **********************/ |
| |
| TypeInfoInvariantDeclaration::TypeInfoInvariantDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfoinvariant) |
| { |
| ObjectNotFound(Id::TypeInfo_Invariant); |
| } |
| type = Type::typeinfoinvariant->type; |
| } |
| |
| TypeInfoInvariantDeclaration *TypeInfoInvariantDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoInvariantDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoSharedDeclaration **********************/ |
| |
| TypeInfoSharedDeclaration::TypeInfoSharedDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfoshared) |
| { |
| ObjectNotFound(Id::TypeInfo_Shared); |
| } |
| type = Type::typeinfoshared->type; |
| } |
| |
| TypeInfoSharedDeclaration *TypeInfoSharedDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoSharedDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoWildDeclaration **********************/ |
| |
| TypeInfoWildDeclaration::TypeInfoWildDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfowild) |
| { |
| ObjectNotFound(Id::TypeInfo_Wild); |
| } |
| type = Type::typeinfowild->type; |
| } |
| |
| TypeInfoWildDeclaration *TypeInfoWildDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoWildDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoStructDeclaration **********************/ |
| |
| TypeInfoStructDeclaration::TypeInfoStructDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfostruct) |
| { |
| ObjectNotFound(Id::TypeInfo_Struct); |
| } |
| type = Type::typeinfostruct->type; |
| } |
| |
| TypeInfoStructDeclaration *TypeInfoStructDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoStructDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoClassDeclaration ***********************/ |
| |
| TypeInfoClassDeclaration::TypeInfoClassDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfoclass) |
| { |
| ObjectNotFound(Id::TypeInfo_Class); |
| } |
| type = Type::typeinfoclass->type; |
| } |
| |
| TypeInfoClassDeclaration *TypeInfoClassDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoClassDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoInterfaceDeclaration *******************/ |
| |
| TypeInfoInterfaceDeclaration::TypeInfoInterfaceDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfointerface) |
| { |
| ObjectNotFound(Id::TypeInfo_Interface); |
| } |
| type = Type::typeinfointerface->type; |
| } |
| |
| TypeInfoInterfaceDeclaration *TypeInfoInterfaceDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoInterfaceDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoPointerDeclaration *********************/ |
| |
| TypeInfoPointerDeclaration::TypeInfoPointerDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfopointer) |
| { |
| ObjectNotFound(Id::TypeInfo_Pointer); |
| } |
| type = Type::typeinfopointer->type; |
| } |
| |
| TypeInfoPointerDeclaration *TypeInfoPointerDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoPointerDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoArrayDeclaration ***********************/ |
| |
| TypeInfoArrayDeclaration::TypeInfoArrayDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfoarray) |
| { |
| ObjectNotFound(Id::TypeInfo_Array); |
| } |
| type = Type::typeinfoarray->type; |
| } |
| |
| TypeInfoArrayDeclaration *TypeInfoArrayDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoArrayDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoStaticArrayDeclaration *****************/ |
| |
| TypeInfoStaticArrayDeclaration::TypeInfoStaticArrayDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfostaticarray) |
| { |
| ObjectNotFound(Id::TypeInfo_StaticArray); |
| } |
| type = Type::typeinfostaticarray->type; |
| } |
| |
| TypeInfoStaticArrayDeclaration *TypeInfoStaticArrayDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoStaticArrayDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoAssociativeArrayDeclaration ************/ |
| |
| TypeInfoAssociativeArrayDeclaration::TypeInfoAssociativeArrayDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfoassociativearray) |
| { |
| ObjectNotFound(Id::TypeInfo_AssociativeArray); |
| } |
| type = Type::typeinfoassociativearray->type; |
| } |
| |
| TypeInfoAssociativeArrayDeclaration *TypeInfoAssociativeArrayDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoAssociativeArrayDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoVectorDeclaration ***********************/ |
| |
| TypeInfoVectorDeclaration::TypeInfoVectorDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfovector) |
| { |
| ObjectNotFound(Id::TypeInfo_Vector); |
| } |
| type = Type::typeinfovector->type; |
| } |
| |
| TypeInfoVectorDeclaration *TypeInfoVectorDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoVectorDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoEnumDeclaration ***********************/ |
| |
| TypeInfoEnumDeclaration::TypeInfoEnumDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfoenum) |
| { |
| ObjectNotFound(Id::TypeInfo_Enum); |
| } |
| type = Type::typeinfoenum->type; |
| } |
| |
| TypeInfoEnumDeclaration *TypeInfoEnumDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoEnumDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoFunctionDeclaration ********************/ |
| |
| TypeInfoFunctionDeclaration::TypeInfoFunctionDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfofunction) |
| { |
| ObjectNotFound(Id::TypeInfo_Function); |
| } |
| type = Type::typeinfofunction->type; |
| } |
| |
| TypeInfoFunctionDeclaration *TypeInfoFunctionDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoFunctionDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoDelegateDeclaration ********************/ |
| |
| TypeInfoDelegateDeclaration::TypeInfoDelegateDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfodelegate) |
| { |
| ObjectNotFound(Id::TypeInfo_Delegate); |
| } |
| type = Type::typeinfodelegate->type; |
| } |
| |
| TypeInfoDelegateDeclaration *TypeInfoDelegateDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoDelegateDeclaration(tinfo); |
| } |
| |
| /***************************** TypeInfoTupleDeclaration **********************/ |
| |
| TypeInfoTupleDeclaration::TypeInfoTupleDeclaration(Type *tinfo) |
| : TypeInfoDeclaration(tinfo) |
| { |
| if (!Type::typeinfotypelist) |
| { |
| ObjectNotFound(Id::TypeInfo_Tuple); |
| } |
| type = Type::typeinfotypelist->type; |
| } |
| |
| TypeInfoTupleDeclaration *TypeInfoTupleDeclaration::create(Type *tinfo) |
| { |
| return new TypeInfoTupleDeclaration(tinfo); |
| } |
| |
| /********************************* ThisDeclaration ****************************/ |
| |
| // For the "this" parameter to member functions |
| |
| ThisDeclaration::ThisDeclaration(Loc loc, Type *t) |
| : VarDeclaration(loc, t, Id::This, NULL) |
| { |
| storage_class |= STCnodtor; |
| } |
| |
| Dsymbol *ThisDeclaration::syntaxCopy(Dsymbol *) |
| { |
| assert(0); // should never be produced by syntax |
| return NULL; |
| } |
| |