blob: 694271306a764869a30d66420a3dd46887e5c151 [file] [log] [blame]
/* Basic block path solver.
Copyright (C) 2021 Free Software Foundation, Inc.
Contributed by Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "cfganal.h"
#include "value-range.h"
#include "gimple-range.h"
#include "tree-pretty-print.h"
#include "gimple-range-path.h"
#include "ssa.h"
#include "tree-cfg.h"
#include "gimple-iterator.h"
// Internal construct to help facilitate debugging of solver.
#define DEBUG_SOLVER (dump_file && dump_flags & TDF_THREADING)
path_range_query::path_range_query (gimple_ranger &ranger, bool resolve)
: m_ranger (ranger)
{
m_cache = new ssa_global_cache;
m_has_cache_entry = BITMAP_ALLOC (NULL);
m_path = NULL;
m_resolve = resolve;
m_oracle = new path_oracle (ranger.oracle ());
}
path_range_query::~path_range_query ()
{
BITMAP_FREE (m_has_cache_entry);
delete m_cache;
delete m_oracle;
}
// Mark cache entry for NAME as unused.
void
path_range_query::clear_cache (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
bitmap_clear_bit (m_has_cache_entry, v);
}
// If NAME has a cache entry, return it in R, and return TRUE.
inline bool
path_range_query::get_cache (irange &r, tree name)
{
if (!gimple_range_ssa_p (name))
return get_global_range_query ()->range_of_expr (r, name);
unsigned v = SSA_NAME_VERSION (name);
if (bitmap_bit_p (m_has_cache_entry, v))
return m_cache->get_global_range (r, name);
return false;
}
// Set the cache entry for NAME to R.
void
path_range_query::set_cache (const irange &r, tree name)
{
unsigned v = SSA_NAME_VERSION (name);
bitmap_set_bit (m_has_cache_entry, v);
m_cache->set_global_range (name, r);
}
void
path_range_query::dump (FILE *dump_file)
{
push_dump_file save (dump_file, dump_flags & ~TDF_DETAILS);
if (m_path->is_empty ())
return;
unsigned i;
bitmap_iterator bi;
fprintf (dump_file, "\nPath is (length=%d):\n", m_path->length ());
dump_ranger (dump_file, *m_path);
fprintf (dump_file, "Imports:\n");
EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
{
tree name = ssa_name (i);
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, "\n");
}
m_cache->dump (dump_file);
}
void
path_range_query::debug ()
{
dump (stderr);
}
// Return TRUE if NAME is defined outside the current path.
bool
path_range_query::defined_outside_path (tree name)
{
gimple *def = SSA_NAME_DEF_STMT (name);
basic_block bb = gimple_bb (def);
return !bb || !m_path->contains (bb);
}
// Return the range of NAME on entry to the path.
void
path_range_query::range_on_path_entry (irange &r, tree name)
{
gcc_checking_assert (defined_outside_path (name));
int_range_max tmp;
basic_block entry = entry_bb ();
bool changed = false;
r.set_undefined ();
for (unsigned i = 0; i < EDGE_COUNT (entry->preds); ++i)
{
edge e = EDGE_PRED (entry, i);
if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
&& m_ranger.range_on_edge (tmp, e, name))
{
r.union_ (tmp);
changed = true;
}
}
// Make sure we don't return UNDEFINED by mistake.
if (!changed)
r.set_varying (TREE_TYPE (name));
}
// Return the range of NAME at the end of the path being analyzed.
bool
path_range_query::internal_range_of_expr (irange &r, tree name, gimple *stmt)
{
if (!irange::supports_type_p (TREE_TYPE (name)))
return false;
if (get_cache (r, name))
return true;
if (m_resolve && defined_outside_path (name))
{
range_on_path_entry (r, name);
set_cache (r, name);
return true;
}
basic_block bb = stmt ? gimple_bb (stmt) : exit_bb ();
if (stmt && range_defined_in_block (r, name, bb))
{
if (TREE_CODE (name) == SSA_NAME)
r.intersect (gimple_range_global (name));
set_cache (r, name);
return true;
}
r.set_varying (TREE_TYPE (name));
return true;
}
bool
path_range_query::range_of_expr (irange &r, tree name, gimple *stmt)
{
if (internal_range_of_expr (r, name, stmt))
{
if (r.undefined_p ())
m_undefined_path = true;
return true;
}
return false;
}
bool
path_range_query::unreachable_path_p ()
{
return m_undefined_path;
}
// Initialize the current path to PATH. The current block is set to
// the entry block to the path.
//
// Note that the blocks are in reverse order, so the exit block is
// path[0].
void
path_range_query::set_path (const vec<basic_block> &path)
{
gcc_checking_assert (path.length () > 1);
m_path = &path;
m_pos = m_path->length () - 1;
bitmap_clear (m_has_cache_entry);
}
// Return the range of the result of PHI in R.
void
path_range_query::ssa_range_in_phi (irange &r, gphi *phi)
{
tree name = gimple_phi_result (phi);
basic_block bb = gimple_bb (phi);
if (at_entry ())
{
if (m_resolve && m_ranger.range_of_expr (r, name, phi))
return;
// Try fold just in case we can resolve simple things like PHI <5(99), 6(88)>.
if (!fold_range (r, phi, this))
r.set_varying (TREE_TYPE (name));
return;
}
basic_block prev = prev_bb ();
edge e_in = find_edge (prev, bb);
unsigned nargs = gimple_phi_num_args (phi);
for (size_t i = 0; i < nargs; ++i)
if (e_in == gimple_phi_arg_edge (phi, i))
{
tree arg = gimple_phi_arg_def (phi, i);
if (!get_cache (r, arg))
{
if (m_resolve)
{
int_range_max tmp;
// Using both the range on entry to the path, and the
// range on this edge yields significantly better
// results.
if (defined_outside_path (arg))
range_on_path_entry (r, arg);
else
r.set_varying (TREE_TYPE (name));
m_ranger.range_on_edge (tmp, e_in, arg);
r.intersect (tmp);
return;
}
r.set_varying (TREE_TYPE (name));
}
return;
}
gcc_unreachable ();
}
// If NAME is defined in BB, set R to the range of NAME, and return
// TRUE. Otherwise, return FALSE.
bool
path_range_query::range_defined_in_block (irange &r, tree name, basic_block bb)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
basic_block def_bb = gimple_bb (def_stmt);
if (def_bb != bb)
return false;
if (gimple_code (def_stmt) == GIMPLE_PHI)
ssa_range_in_phi (r, as_a<gphi *> (def_stmt));
else if (!range_of_stmt (r, def_stmt, name))
r.set_varying (TREE_TYPE (name));
if (bb)
m_non_null.adjust_range (r, name, bb);
if (DEBUG_SOLVER && (bb || !r.varying_p ()))
{
fprintf (dump_file, "range_defined_in_block (BB%d) for ", bb ? bb->index : -1);
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " is ");
r.dump (dump_file);
fprintf (dump_file, "\n");
}
return true;
}
// Compute ranges defined in the current block, or exported to the
// next block.
void
path_range_query::compute_ranges_in_block (basic_block bb)
{
bitmap_iterator bi;
int_range_max r, cached_range;
unsigned i;
// Force recalculation of any names in the cache that are defined in
// this block. This can happen on interdependent SSA/phis in loops.
EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
{
tree name = ssa_name (i);
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
basic_block def_bb = gimple_bb (def_stmt);
if (def_bb == bb)
clear_cache (name);
}
// Solve imports defined in this block.
EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
{
tree name = ssa_name (i);
if (range_defined_in_block (r, name, bb))
set_cache (r, name);
}
if (at_exit ())
return;
// Solve imports that are exported to the next block.
edge e = find_edge (bb, next_bb ());
EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
{
tree name = ssa_name (i);
gori_compute &g = m_ranger.gori ();
bitmap exports = g.exports (bb);
if (bitmap_bit_p (exports, i))
{
if (g.outgoing_edge_range_p (r, e, name, *this))
{
if (get_cache (cached_range, name))
r.intersect (cached_range);
set_cache (r, name);
if (DEBUG_SOLVER)
{
fprintf (dump_file, "outgoing_edge_range_p for ");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " on edge %d->%d ",
e->src->index, e->dest->index);
fprintf (dump_file, "is ");
r.dump (dump_file);
fprintf (dump_file, "\n");
}
}
}
}
}
// Adjust all pointer imports in BB with non-null information.
void
path_range_query::adjust_for_non_null_uses (basic_block bb)
{
int_range_max r;
bitmap_iterator bi;
unsigned i;
EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
{
tree name = ssa_name (i);
if (!POINTER_TYPE_P (TREE_TYPE (name)))
continue;
if (get_cache (r, name))
{
if (r.nonzero_p ())
continue;
}
else
r.set_varying (TREE_TYPE (name));
if (m_non_null.adjust_range (r, name, bb))
set_cache (r, name);
}
}
// If NAME is a supported SSA_NAME, add it the bitmap in IMPORTS.
bool
path_range_query::add_to_imports (tree name, bitmap imports)
{
if (TREE_CODE (name) == SSA_NAME
&& irange::supports_type_p (TREE_TYPE (name)))
return bitmap_set_bit (imports, SSA_NAME_VERSION (name));
return false;
}
// Add the copies of any SSA names in IMPORTS to IMPORTS.
//
// These are hints for the solver. Adding more elements (within
// reason) doesn't slow us down, because we don't solve anything that
// doesn't appear in the path. On the other hand, not having enough
// imports will limit what we can solve.
void
path_range_query::add_copies_to_imports ()
{
auto_vec<tree> worklist (bitmap_count_bits (m_imports));
bitmap_iterator bi;
unsigned i;
EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi)
{
tree name = ssa_name (i);
worklist.quick_push (name);
}
while (!worklist.is_empty ())
{
tree name = worklist.pop ();
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
if (is_gimple_assign (def_stmt))
{
// ?? Adding assignment copies doesn't get us much. At the
// time of writing, we got 63 more threaded paths across the
// .ii files from a bootstrap.
add_to_imports (gimple_assign_rhs1 (def_stmt), m_imports);
tree rhs = gimple_assign_rhs2 (def_stmt);
if (rhs && add_to_imports (rhs, m_imports))
worklist.safe_push (rhs);
rhs = gimple_assign_rhs3 (def_stmt);
if (rhs && add_to_imports (rhs, m_imports))
worklist.safe_push (rhs);
}
else if (gphi *phi = dyn_cast <gphi *> (def_stmt))
{
for (size_t i = 0; i < gimple_phi_num_args (phi); ++i)
{
edge e = gimple_phi_arg_edge (phi, i);
tree arg = gimple_phi_arg (phi, i)->def;
if (TREE_CODE (arg) == SSA_NAME
&& m_path->contains (e->src)
&& bitmap_set_bit (m_imports, SSA_NAME_VERSION (arg)))
worklist.safe_push (arg);
}
}
}
}
// Compute the ranges for IMPORTS along PATH.
//
// IMPORTS are the set of SSA names, any of which could potentially
// change the value of the final conditional in PATH.
void
path_range_query::compute_ranges (const vec<basic_block> &path,
const bitmap_head *imports)
{
if (DEBUG_SOLVER)
fprintf (dump_file, "\n*********** path_range_query ******************\n");
set_path (path);
bitmap_copy (m_imports, imports);
m_undefined_path = false;
if (m_resolve)
{
add_copies_to_imports ();
get_path_oracle ()->reset_path ();
compute_relations (path);
}
if (DEBUG_SOLVER)
{
fprintf (dump_file, "\npath_range_query: compute_ranges for path: ");
for (unsigned i = path.length (); i > 0; --i)
{
basic_block bb = path[i - 1];
fprintf (dump_file, "BB %d", bb->index);
if (i > 1)
fprintf (dump_file, ", ");
}
fprintf (dump_file, "\n");
}
while (1)
{
basic_block bb = curr_bb ();
if (m_resolve)
{
gori_compute &gori = m_ranger.gori ();
tree name;
// Exported booleans along the path, may help conditionals.
// Add them as interesting imports.
FOR_EACH_GORI_EXPORT_NAME (gori, bb, name)
if (TREE_CODE (TREE_TYPE (name)) == BOOLEAN_TYPE)
bitmap_set_bit (m_imports, SSA_NAME_VERSION (name));
}
compute_ranges_in_block (bb);
adjust_for_non_null_uses (bb);
if (at_exit ())
break;
move_next ();
}
if (DEBUG_SOLVER)
dump (dump_file);
}
// A folding aid used to register and query relations along a path.
// When queried, it returns relations as they would appear on exit to
// the path.
//
// Relations are registered on entry so the path_oracle knows which
// block to query the root oracle at when a relation lies outside the
// path. However, when queried we return the relation on exit to the
// path, since the root_oracle ignores the registered.
class jt_fur_source : public fur_depend
{
public:
jt_fur_source (gimple *s, path_range_query *, gori_compute *,
const vec<basic_block> &);
relation_kind query_relation (tree op1, tree op2) override;
void register_relation (gimple *, relation_kind, tree op1, tree op2) override;
void register_relation (edge, relation_kind, tree op1, tree op2) override;
private:
basic_block m_entry;
};
jt_fur_source::jt_fur_source (gimple *s,
path_range_query *query,
gori_compute *gori,
const vec<basic_block> &path)
: fur_depend (s, gori, query)
{
gcc_checking_assert (!path.is_empty ());
m_entry = path[path.length () - 1];
if (dom_info_available_p (CDI_DOMINATORS))
m_oracle = query->oracle ();
else
m_oracle = NULL;
}
// Ignore statement and register relation on entry to path.
void
jt_fur_source::register_relation (gimple *, relation_kind k, tree op1, tree op2)
{
if (m_oracle)
m_oracle->register_relation (m_entry, k, op1, op2);
}
// Ignore edge and register relation on entry to path.
void
jt_fur_source::register_relation (edge, relation_kind k, tree op1, tree op2)
{
if (m_oracle)
m_oracle->register_relation (m_entry, k, op1, op2);
}
relation_kind
jt_fur_source::query_relation (tree op1, tree op2)
{
if (!m_oracle)
return VREL_NONE;
if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
return VREL_NONE;
return m_oracle->query_relation (m_entry, op1, op2);
}
// Return the range of STMT at the end of the path being analyzed.
bool
path_range_query::range_of_stmt (irange &r, gimple *stmt, tree)
{
tree type = gimple_range_type (stmt);
if (!irange::supports_type_p (type))
return false;
// If resolving unknowns, fold the statement as it would have
// appeared at the end of the path.
if (m_resolve)
{
fold_using_range f;
jt_fur_source src (stmt, this, &m_ranger.gori (), *m_path);
if (!f.fold_stmt (r, stmt, src))
r.set_varying (type);
}
// Otherwise, use the global ranger to fold it as it would appear in
// the original IL. This is more conservative, but faster.
else if (!fold_range (r, stmt, this))
r.set_varying (type);
return true;
}
// Compute relations on a path. This involves two parts: relations
// along the conditionals joining a path, and relations determined by
// examining PHIs.
void
path_range_query::compute_relations (const vec<basic_block> &path)
{
if (!dom_info_available_p (CDI_DOMINATORS))
return;
jt_fur_source src (NULL, this, &m_ranger.gori (), path);
basic_block prev = NULL;
for (unsigned i = path.length (); i > 0; --i)
{
basic_block bb = path[i - 1];
gimple *stmt = last_stmt (bb);
compute_phi_relations (bb, prev);
// Compute relations in outgoing edges along the path. Skip the
// final conditional which we don't know yet.
if (i > 1
&& stmt
&& gimple_code (stmt) == GIMPLE_COND
&& irange::supports_type_p (TREE_TYPE (gimple_cond_lhs (stmt))))
{
basic_block next = path[i - 2];
int_range<2> r;
gcond *cond = as_a<gcond *> (stmt);
edge e0 = EDGE_SUCC (bb, 0);
edge e1 = EDGE_SUCC (bb, 1);
if (e0->dest == next)
gcond_edge_range (r, e0);
else if (e1->dest == next)
gcond_edge_range (r, e1);
else
gcc_unreachable ();
src.register_outgoing_edges (cond, r, e0, e1);
}
prev = bb;
}
}
// Compute relations for each PHI in BB. For example:
//
// x_5 = PHI<y_9(5),...>
//
// If the path flows through BB5, we can register that x_5 == y_9.
void
path_range_query::compute_phi_relations (basic_block bb, basic_block prev)
{
if (prev == NULL)
return;
basic_block entry = entry_bb ();
edge e_in = find_edge (prev, bb);
gcc_checking_assert (e_in);
for (gphi_iterator iter = gsi_start_phis (bb); !gsi_end_p (iter);
gsi_next (&iter))
{
gphi *phi = iter.phi ();
tree result = gimple_phi_result (phi);
unsigned nargs = gimple_phi_num_args (phi);
for (size_t i = 0; i < nargs; ++i)
if (e_in == gimple_phi_arg_edge (phi, i))
{
tree arg = gimple_phi_arg_def (phi, i);
if (gimple_range_ssa_p (arg))
m_oracle->register_relation (entry, EQ_EXPR, arg, result);
break;
}
}
}