| /* Integrated Register Allocator (IRA) intercommunication header file. |
| Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| Contributed by Vladimir Makarov <vmakarov@redhat.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef GCC_IRA_INT_H |
| #define GCC_IRA_INT_H |
| |
| #include "recog.h" |
| #include "function-abi.h" |
| |
| /* To provide consistency in naming, all IRA external variables, |
| functions, common typedefs start with prefix ira_. */ |
| |
| #if CHECKING_P |
| #define ENABLE_IRA_CHECKING |
| #endif |
| |
| #ifdef ENABLE_IRA_CHECKING |
| #define ira_assert(c) gcc_assert (c) |
| #else |
| /* Always define and include C, so that warnings for empty body in an |
| 'if' statement and unused variable do not occur. */ |
| #define ira_assert(c) ((void)(0 && (c))) |
| #endif |
| |
| /* Compute register frequency from edge frequency FREQ. It is |
| analogous to REG_FREQ_FROM_BB. When optimizing for size, or |
| profile driven feedback is available and the function is never |
| executed, frequency is always equivalent. Otherwise rescale the |
| edge frequency. */ |
| #define REG_FREQ_FROM_EDGE_FREQ(freq) \ |
| (optimize_function_for_size_p (cfun) \ |
| ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \ |
| ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1) |
| |
| /* A modified value of flag `-fira-verbose' used internally. */ |
| extern int internal_flag_ira_verbose; |
| |
| /* Dump file of the allocator if it is not NULL. */ |
| extern FILE *ira_dump_file; |
| |
| /* Typedefs for pointers to allocno live range, allocno, and copy of |
| allocnos. */ |
| typedef struct live_range *live_range_t; |
| typedef struct ira_allocno *ira_allocno_t; |
| typedef struct ira_allocno_pref *ira_pref_t; |
| typedef struct ira_allocno_copy *ira_copy_t; |
| typedef struct ira_object *ira_object_t; |
| |
| /* Definition of vector of allocnos and copies. */ |
| |
| /* Typedef for pointer to the subsequent structure. */ |
| typedef struct ira_loop_tree_node *ira_loop_tree_node_t; |
| |
| typedef unsigned short move_table[N_REG_CLASSES]; |
| |
| /* In general case, IRA is a regional allocator. The regions are |
| nested and form a tree. Currently regions are natural loops. The |
| following structure describes loop tree node (representing basic |
| block or loop). We need such tree because the loop tree from |
| cfgloop.h is not convenient for the optimization: basic blocks are |
| not a part of the tree from cfgloop.h. We also use the nodes for |
| storing additional information about basic blocks/loops for the |
| register allocation purposes. */ |
| struct ira_loop_tree_node |
| { |
| /* The node represents basic block if children == NULL. */ |
| basic_block bb; /* NULL for loop. */ |
| /* NULL for BB or for loop tree root if we did not build CFG loop tree. */ |
| class loop *loop; |
| /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent. |
| SUBLOOP_NEXT is always NULL for BBs. */ |
| ira_loop_tree_node_t subloop_next, next; |
| /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside |
| the node. They are NULL for BBs. */ |
| ira_loop_tree_node_t subloops, children; |
| /* The node immediately containing given node. */ |
| ira_loop_tree_node_t parent; |
| |
| /* Loop level in range [0, ira_loop_tree_height). */ |
| int level; |
| |
| /* All the following members are defined only for nodes representing |
| loops. */ |
| |
| /* The loop number from CFG loop tree. The root number is 0. */ |
| int loop_num; |
| |
| /* True if the loop was marked for removal from the register |
| allocation. */ |
| bool to_remove_p; |
| |
| /* Allocnos in the loop corresponding to their regnos. If it is |
| NULL the loop does not form a separate register allocation region |
| (e.g. because it has abnormal enter/exit edges and we cannot put |
| code for register shuffling on the edges if a different |
| allocation is used for a pseudo-register on different sides of |
| the edges). Caps are not in the map (remember we can have more |
| one cap with the same regno in a region). */ |
| ira_allocno_t *regno_allocno_map; |
| |
| /* True if there is an entry to given loop not from its parent (or |
| grandparent) basic block. For example, it is possible for two |
| adjacent loops inside another loop. */ |
| bool entered_from_non_parent_p; |
| |
| /* Maximal register pressure inside loop for given register class |
| (defined only for the pressure classes). */ |
| int reg_pressure[N_REG_CLASSES]; |
| |
| /* Numbers of allocnos referred or living in the loop node (except |
| for its subloops). */ |
| bitmap all_allocnos; |
| |
| /* Numbers of allocnos living at the loop borders. */ |
| bitmap border_allocnos; |
| |
| /* Regnos of pseudos modified in the loop node (including its |
| subloops). */ |
| bitmap modified_regnos; |
| |
| /* Numbers of copies referred in the corresponding loop. */ |
| bitmap local_copies; |
| }; |
| |
| /* The root of the loop tree corresponding to the all function. */ |
| extern ira_loop_tree_node_t ira_loop_tree_root; |
| |
| /* Height of the loop tree. */ |
| extern int ira_loop_tree_height; |
| |
| /* All nodes representing basic blocks are referred through the |
| following array. We cannot use basic block member `aux' for this |
| because it is used for insertion of insns on edges. */ |
| extern ira_loop_tree_node_t ira_bb_nodes; |
| |
| /* Two access macros to the nodes representing basic blocks. */ |
| #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007) |
| #define IRA_BB_NODE_BY_INDEX(index) __extension__ \ |
| (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \ |
| if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\ |
| { \ |
| fprintf (stderr, \ |
| "\n%s: %d: error in %s: it is not a block node\n", \ |
| __FILE__, __LINE__, __FUNCTION__); \ |
| gcc_unreachable (); \ |
| } \ |
| _node; })) |
| #else |
| #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index]) |
| #endif |
| |
| #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index) |
| |
| /* All nodes representing loops are referred through the following |
| array. */ |
| extern ira_loop_tree_node_t ira_loop_nodes; |
| |
| /* Two access macros to the nodes representing loops. */ |
| #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007) |
| #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \ |
| (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \ |
| if (_node->children == NULL || _node->bb != NULL \ |
| || (_node->loop == NULL && current_loops != NULL)) \ |
| { \ |
| fprintf (stderr, \ |
| "\n%s: %d: error in %s: it is not a loop node\n", \ |
| __FILE__, __LINE__, __FUNCTION__); \ |
| gcc_unreachable (); \ |
| } \ |
| _node; })) |
| #else |
| #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index]) |
| #endif |
| |
| #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num) |
| |
| |
| /* The structure describes program points where a given allocno lives. |
| If the live ranges of two allocnos are intersected, the allocnos |
| are in conflict. */ |
| struct live_range |
| { |
| /* Object whose live range is described by given structure. */ |
| ira_object_t object; |
| /* Program point range. */ |
| int start, finish; |
| /* Next structure describing program points where the allocno |
| lives. */ |
| live_range_t next; |
| /* Pointer to structures with the same start/finish. */ |
| live_range_t start_next, finish_next; |
| }; |
| |
| /* Program points are enumerated by numbers from range |
| 0..IRA_MAX_POINT-1. There are approximately two times more program |
| points than insns. Program points are places in the program where |
| liveness info can be changed. In most general case (there are more |
| complicated cases too) some program points correspond to places |
| where input operand dies and other ones correspond to places where |
| output operands are born. */ |
| extern int ira_max_point; |
| |
| /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno |
| live ranges with given start/finish point. */ |
| extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges; |
| |
| /* A structure representing conflict information for an allocno |
| (or one of its subwords). */ |
| struct ira_object |
| { |
| /* The allocno associated with this record. */ |
| ira_allocno_t allocno; |
| /* Vector of accumulated conflicting conflict_redords with NULL end |
| marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector |
| otherwise. */ |
| void *conflicts_array; |
| /* Pointer to structures describing at what program point the |
| object lives. We always maintain the list in such way that *the |
| ranges in the list are not intersected and ordered by decreasing |
| their program points*. */ |
| live_range_t live_ranges; |
| /* The subword within ALLOCNO which is represented by this object. |
| Zero means the lowest-order subword (or the entire allocno in case |
| it is not being tracked in subwords). */ |
| int subword; |
| /* Allocated size of the conflicts array. */ |
| unsigned int conflicts_array_size; |
| /* A unique number for every instance of this structure, which is used |
| to represent it in conflict bit vectors. */ |
| int id; |
| /* Before building conflicts, MIN and MAX are initialized to |
| correspondingly minimal and maximal points of the accumulated |
| live ranges. Afterwards, they hold the minimal and maximal ids |
| of other ira_objects that this one can conflict with. */ |
| int min, max; |
| /* Initial and accumulated hard registers conflicting with this |
| object and as a consequences cannot be assigned to the allocno. |
| All non-allocatable hard regs and hard regs of register classes |
| different from given allocno one are included in the sets. */ |
| HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs; |
| /* Number of accumulated conflicts in the vector of conflicting |
| objects. */ |
| int num_accumulated_conflicts; |
| /* TRUE if conflicts are represented by a vector of pointers to |
| ira_object structures. Otherwise, we use a bit vector indexed |
| by conflict ID numbers. */ |
| unsigned int conflict_vec_p : 1; |
| }; |
| |
| /* A structure representing an allocno (allocation entity). Allocno |
| represents a pseudo-register in an allocation region. If |
| pseudo-register does not live in a region but it lives in the |
| nested regions, it is represented in the region by special allocno |
| called *cap*. There may be more one cap representing the same |
| pseudo-register in region. It means that the corresponding |
| pseudo-register lives in more one non-intersected subregion. */ |
| struct ira_allocno |
| { |
| /* The allocno order number starting with 0. Each allocno has an |
| unique number and the number is never changed for the |
| allocno. */ |
| int num; |
| /* Regno for allocno or cap. */ |
| int regno; |
| /* Mode of the allocno which is the mode of the corresponding |
| pseudo-register. */ |
| ENUM_BITFIELD (machine_mode) mode : 8; |
| /* Widest mode of the allocno which in at least one case could be |
| for paradoxical subregs where wmode > mode. */ |
| ENUM_BITFIELD (machine_mode) wmode : 8; |
| /* Register class which should be used for allocation for given |
| allocno. NO_REGS means that we should use memory. */ |
| ENUM_BITFIELD (reg_class) aclass : 16; |
| /* A bitmask of the ABIs used by calls that occur while the allocno |
| is live. */ |
| unsigned int crossed_calls_abis : NUM_ABI_IDS; |
| /* During the reload, value TRUE means that we should not reassign a |
| hard register to the allocno got memory earlier. It is set up |
| when we removed memory-memory move insn before each iteration of |
| the reload. */ |
| unsigned int dont_reassign_p : 1; |
| #ifdef STACK_REGS |
| /* Set to TRUE if allocno can't be assigned to the stack hard |
| register correspondingly in this region and area including the |
| region and all its subregions recursively. */ |
| unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1; |
| #endif |
| /* TRUE value means that there is no sense to spill the allocno |
| during coloring because the spill will result in additional |
| reloads in reload pass. */ |
| unsigned int bad_spill_p : 1; |
| /* TRUE if a hard register or memory has been assigned to the |
| allocno. */ |
| unsigned int assigned_p : 1; |
| /* TRUE if conflicts for given allocno are represented by vector of |
| pointers to the conflicting allocnos. Otherwise, we use a bit |
| vector where a bit with given index represents allocno with the |
| same number. */ |
| unsigned int conflict_vec_p : 1; |
| /* Hard register assigned to given allocno. Negative value means |
| that memory was allocated to the allocno. During the reload, |
| spilled allocno has value equal to the corresponding stack slot |
| number (0, ...) - 2. Value -1 is used for allocnos spilled by the |
| reload (at this point pseudo-register has only one allocno) which |
| did not get stack slot yet. */ |
| signed int hard_regno : 16; |
| /* Allocnos with the same regno are linked by the following member. |
| Allocnos corresponding to inner loops are first in the list (it |
| corresponds to depth-first traverse of the loops). */ |
| ira_allocno_t next_regno_allocno; |
| /* There may be different allocnos with the same regno in different |
| regions. Allocnos are bound to the corresponding loop tree node. |
| Pseudo-register may have only one regular allocno with given loop |
| tree node but more than one cap (see comments above). */ |
| ira_loop_tree_node_t loop_tree_node; |
| /* Accumulated usage references of the allocno. Here and below, |
| word 'accumulated' means info for given region and all nested |
| subregions. In this case, 'accumulated' means sum of references |
| of the corresponding pseudo-register in this region and in all |
| nested subregions recursively. */ |
| int nrefs; |
| /* Accumulated frequency of usage of the allocno. */ |
| int freq; |
| /* Minimal accumulated and updated costs of usage register of the |
| allocno class. */ |
| int class_cost, updated_class_cost; |
| /* Minimal accumulated, and updated costs of memory for the allocno. |
| At the allocation start, the original and updated costs are |
| equal. The updated cost may be changed after finishing |
| allocation in a region and starting allocation in a subregion. |
| The change reflects the cost of spill/restore code on the |
| subregion border if we assign memory to the pseudo in the |
| subregion. */ |
| int memory_cost, updated_memory_cost; |
| /* Accumulated number of points where the allocno lives and there is |
| excess pressure for its class. Excess pressure for a register |
| class at some point means that there are more allocnos of given |
| register class living at the point than number of hard-registers |
| of the class available for the allocation. */ |
| int excess_pressure_points_num; |
| /* Allocno hard reg preferences. */ |
| ira_pref_t allocno_prefs; |
| /* Copies to other non-conflicting allocnos. The copies can |
| represent move insn or potential move insn usually because of two |
| operand insn constraints. */ |
| ira_copy_t allocno_copies; |
| /* It is a allocno (cap) representing given allocno on upper loop tree |
| level. */ |
| ira_allocno_t cap; |
| /* It is a link to allocno (cap) on lower loop level represented by |
| given cap. Null if given allocno is not a cap. */ |
| ira_allocno_t cap_member; |
| /* The number of objects tracked in the following array. */ |
| int num_objects; |
| /* An array of structures describing conflict information and live |
| ranges for each object associated with the allocno. There may be |
| more than one such object in cases where the allocno represents a |
| multi-word register. */ |
| ira_object_t objects[2]; |
| /* Accumulated frequency of calls which given allocno |
| intersects. */ |
| int call_freq; |
| /* Accumulated number of the intersected calls. */ |
| int calls_crossed_num; |
| /* The number of calls across which it is live, but which should not |
| affect register preferences. */ |
| int cheap_calls_crossed_num; |
| /* Registers clobbered by intersected calls. */ |
| HARD_REG_SET crossed_calls_clobbered_regs; |
| /* Array of usage costs (accumulated and the one updated during |
| coloring) for each hard register of the allocno class. The |
| member value can be NULL if all costs are the same and equal to |
| CLASS_COST. For example, the costs of two different hard |
| registers can be different if one hard register is callee-saved |
| and another one is callee-used and the allocno lives through |
| calls. Another example can be case when for some insn the |
| corresponding pseudo-register value should be put in specific |
| register class (e.g. AREG for x86) which is a strict subset of |
| the allocno class (GENERAL_REGS for x86). We have updated costs |
| to reflect the situation when the usage cost of a hard register |
| is decreased because the allocno is connected to another allocno |
| by a copy and the another allocno has been assigned to the hard |
| register. */ |
| int *hard_reg_costs, *updated_hard_reg_costs; |
| /* Array of decreasing costs (accumulated and the one updated during |
| coloring) for allocnos conflicting with given allocno for hard |
| regno of the allocno class. The member value can be NULL if all |
| costs are the same. These costs are used to reflect preferences |
| of other allocnos not assigned yet during assigning to given |
| allocno. */ |
| int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs; |
| /* Different additional data. It is used to decrease size of |
| allocno data footprint. */ |
| void *add_data; |
| }; |
| |
| |
| /* All members of the allocno structures should be accessed only |
| through the following macros. */ |
| #define ALLOCNO_NUM(A) ((A)->num) |
| #define ALLOCNO_REGNO(A) ((A)->regno) |
| #define ALLOCNO_REG(A) ((A)->reg) |
| #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno) |
| #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node) |
| #define ALLOCNO_CAP(A) ((A)->cap) |
| #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member) |
| #define ALLOCNO_NREFS(A) ((A)->nrefs) |
| #define ALLOCNO_FREQ(A) ((A)->freq) |
| #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno) |
| #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq) |
| #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num) |
| #define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num) |
| #define ALLOCNO_CROSSED_CALLS_ABIS(A) ((A)->crossed_calls_abis) |
| #define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \ |
| ((A)->crossed_calls_clobbered_regs) |
| #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest) |
| #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p) |
| #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p) |
| #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p) |
| #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p) |
| #ifdef STACK_REGS |
| #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p) |
| #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p) |
| #endif |
| #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p) |
| #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p) |
| #define ALLOCNO_MODE(A) ((A)->mode) |
| #define ALLOCNO_WMODE(A) ((A)->wmode) |
| #define ALLOCNO_PREFS(A) ((A)->allocno_prefs) |
| #define ALLOCNO_COPIES(A) ((A)->allocno_copies) |
| #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs) |
| #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs) |
| #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \ |
| ((A)->conflict_hard_reg_costs) |
| #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \ |
| ((A)->updated_conflict_hard_reg_costs) |
| #define ALLOCNO_CLASS(A) ((A)->aclass) |
| #define ALLOCNO_CLASS_COST(A) ((A)->class_cost) |
| #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost) |
| #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost) |
| #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost) |
| #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \ |
| ((A)->excess_pressure_points_num) |
| #define ALLOCNO_OBJECT(A,N) ((A)->objects[N]) |
| #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects) |
| #define ALLOCNO_ADD_DATA(A) ((A)->add_data) |
| |
| /* Typedef for pointer to the subsequent structure. */ |
| typedef struct ira_emit_data *ira_emit_data_t; |
| |
| /* Allocno bound data used for emit pseudo live range split insns and |
| to flattening IR. */ |
| struct ira_emit_data |
| { |
| /* TRUE if the allocno assigned to memory was a destination of |
| removed move (see ira-emit.c) at loop exit because the value of |
| the corresponding pseudo-register is not changed inside the |
| loop. */ |
| unsigned int mem_optimized_dest_p : 1; |
| /* TRUE if the corresponding pseudo-register has disjoint live |
| ranges and the other allocnos of the pseudo-register except this |
| one changed REG. */ |
| unsigned int somewhere_renamed_p : 1; |
| /* TRUE if allocno with the same REGNO in a subregion has been |
| renamed, in other words, got a new pseudo-register. */ |
| unsigned int child_renamed_p : 1; |
| /* Final rtx representation of the allocno. */ |
| rtx reg; |
| /* Non NULL if we remove restoring value from given allocno to |
| MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the |
| allocno value is not changed inside the loop. */ |
| ira_allocno_t mem_optimized_dest; |
| }; |
| |
| #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a)) |
| |
| /* Data used to emit live range split insns and to flattening IR. */ |
| extern ira_emit_data_t ira_allocno_emit_data; |
| |
| /* Abbreviation for frequent emit data access. */ |
| static inline rtx |
| allocno_emit_reg (ira_allocno_t a) |
| { |
| return ALLOCNO_EMIT_DATA (a)->reg; |
| } |
| |
| #define OBJECT_ALLOCNO(O) ((O)->allocno) |
| #define OBJECT_SUBWORD(O) ((O)->subword) |
| #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array) |
| #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array) |
| #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array) |
| #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size) |
| #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p) |
| #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts) |
| #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs) |
| #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs) |
| #define OBJECT_MIN(O) ((O)->min) |
| #define OBJECT_MAX(O) ((O)->max) |
| #define OBJECT_CONFLICT_ID(O) ((O)->id) |
| #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges) |
| |
| /* Map regno -> allocnos with given regno (see comments for |
| allocno member `next_regno_allocno'). */ |
| extern ira_allocno_t *ira_regno_allocno_map; |
| |
| /* Array of references to all allocnos. The order number of the |
| allocno corresponds to the index in the array. Removed allocnos |
| have NULL element value. */ |
| extern ira_allocno_t *ira_allocnos; |
| |
| /* The size of the previous array. */ |
| extern int ira_allocnos_num; |
| |
| /* Map a conflict id to its corresponding ira_object structure. */ |
| extern ira_object_t *ira_object_id_map; |
| |
| /* The size of the previous array. */ |
| extern int ira_objects_num; |
| |
| /* The following structure represents a hard register preference of |
| allocno. The preference represent move insns or potential move |
| insns usually because of two operand insn constraints. One move |
| operand is a hard register. */ |
| struct ira_allocno_pref |
| { |
| /* The unique order number of the preference node starting with 0. */ |
| int num; |
| /* Preferred hard register. */ |
| int hard_regno; |
| /* Accumulated execution frequency of insns from which the |
| preference created. */ |
| int freq; |
| /* Given allocno. */ |
| ira_allocno_t allocno; |
| /* All preferences with the same allocno are linked by the following |
| member. */ |
| ira_pref_t next_pref; |
| }; |
| |
| /* Array of references to all allocno preferences. The order number |
| of the preference corresponds to the index in the array. */ |
| extern ira_pref_t *ira_prefs; |
| |
| /* Size of the previous array. */ |
| extern int ira_prefs_num; |
| |
| /* The following structure represents a copy of two allocnos. The |
| copies represent move insns or potential move insns usually because |
| of two operand insn constraints. To remove register shuffle, we |
| also create copies between allocno which is output of an insn and |
| allocno becoming dead in the insn. */ |
| struct ira_allocno_copy |
| { |
| /* The unique order number of the copy node starting with 0. */ |
| int num; |
| /* Allocnos connected by the copy. The first allocno should have |
| smaller order number than the second one. */ |
| ira_allocno_t first, second; |
| /* Execution frequency of the copy. */ |
| int freq; |
| bool constraint_p; |
| /* It is a move insn which is an origin of the copy. The member |
| value for the copy representing two operand insn constraints or |
| for the copy created to remove register shuffle is NULL. In last |
| case the copy frequency is smaller than the corresponding insn |
| execution frequency. */ |
| rtx_insn *insn; |
| /* All copies with the same allocno as FIRST are linked by the two |
| following members. */ |
| ira_copy_t prev_first_allocno_copy, next_first_allocno_copy; |
| /* All copies with the same allocno as SECOND are linked by the two |
| following members. */ |
| ira_copy_t prev_second_allocno_copy, next_second_allocno_copy; |
| /* Region from which given copy is originated. */ |
| ira_loop_tree_node_t loop_tree_node; |
| }; |
| |
| /* Array of references to all copies. The order number of the copy |
| corresponds to the index in the array. Removed copies have NULL |
| element value. */ |
| extern ira_copy_t *ira_copies; |
| |
| /* Size of the previous array. */ |
| extern int ira_copies_num; |
| |
| /* The following structure describes a stack slot used for spilled |
| pseudo-registers. */ |
| class ira_spilled_reg_stack_slot |
| { |
| public: |
| /* pseudo-registers assigned to the stack slot. */ |
| bitmap_head spilled_regs; |
| /* RTL representation of the stack slot. */ |
| rtx mem; |
| /* Size of the stack slot. */ |
| poly_uint64_pod width; |
| }; |
| |
| /* The number of elements in the following array. */ |
| extern int ira_spilled_reg_stack_slots_num; |
| |
| /* The following array contains info about spilled pseudo-registers |
| stack slots used in current function so far. */ |
| extern class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots; |
| |
| /* Correspondingly overall cost of the allocation, cost of the |
| allocnos assigned to hard-registers, cost of the allocnos assigned |
| to memory, cost of loads, stores and register move insns generated |
| for pseudo-register live range splitting (see ira-emit.c). */ |
| extern int64_t ira_overall_cost; |
| extern int64_t ira_reg_cost, ira_mem_cost; |
| extern int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost; |
| extern int ira_move_loops_num, ira_additional_jumps_num; |
| |
| |
| /* This page contains a bitset implementation called 'min/max sets' used to |
| record conflicts in IRA. |
| They are named min/maxs set since we keep track of a minimum and a maximum |
| bit number for each set representing the bounds of valid elements. Otherwise, |
| the implementation resembles sbitmaps in that we store an array of integers |
| whose bits directly represent the members of the set. */ |
| |
| /* The type used as elements in the array, and the number of bits in |
| this type. */ |
| |
| #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT |
| #define IRA_INT_TYPE HOST_WIDE_INT |
| |
| /* Set, clear or test bit number I in R, a bit vector of elements with |
| minimal index and maximal index equal correspondingly to MIN and |
| MAX. */ |
| #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007) |
| |
| #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \ |
| (({ int _min = (MIN), _max = (MAX), _i = (I); \ |
| if (_i < _min || _i > _max) \ |
| { \ |
| fprintf (stderr, \ |
| "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \ |
| __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \ |
| gcc_unreachable (); \ |
| } \ |
| ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \ |
| |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); })) |
| |
| |
| #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \ |
| (({ int _min = (MIN), _max = (MAX), _i = (I); \ |
| if (_i < _min || _i > _max) \ |
| { \ |
| fprintf (stderr, \ |
| "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \ |
| __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \ |
| gcc_unreachable (); \ |
| } \ |
| ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \ |
| &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); })) |
| |
| #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \ |
| (({ int _min = (MIN), _max = (MAX), _i = (I); \ |
| if (_i < _min || _i > _max) \ |
| { \ |
| fprintf (stderr, \ |
| "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \ |
| __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \ |
| gcc_unreachable (); \ |
| } \ |
| ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \ |
| & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); })) |
| |
| #else |
| |
| #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \ |
| ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \ |
| |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS))) |
| |
| #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \ |
| ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \ |
| &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS))) |
| |
| #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \ |
| ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \ |
| & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS))) |
| |
| #endif |
| |
| /* The iterator for min/max sets. */ |
| struct minmax_set_iterator { |
| |
| /* Array containing the bit vector. */ |
| IRA_INT_TYPE *vec; |
| |
| /* The number of the current element in the vector. */ |
| unsigned int word_num; |
| |
| /* The number of bits in the bit vector. */ |
| unsigned int nel; |
| |
| /* The current bit index of the bit vector. */ |
| unsigned int bit_num; |
| |
| /* Index corresponding to the 1st bit of the bit vector. */ |
| int start_val; |
| |
| /* The word of the bit vector currently visited. */ |
| unsigned IRA_INT_TYPE word; |
| }; |
| |
| /* Initialize the iterator I for bit vector VEC containing minimal and |
| maximal values MIN and MAX. */ |
| static inline void |
| minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min, |
| int max) |
| { |
| i->vec = vec; |
| i->word_num = 0; |
| i->nel = max < min ? 0 : max - min + 1; |
| i->start_val = min; |
| i->bit_num = 0; |
| i->word = i->nel == 0 ? 0 : vec[0]; |
| } |
| |
| /* Return TRUE if we have more allocnos to visit, in which case *N is |
| set to the number of the element to be visited. Otherwise, return |
| FALSE. */ |
| static inline bool |
| minmax_set_iter_cond (minmax_set_iterator *i, int *n) |
| { |
| /* Skip words that are zeros. */ |
| for (; i->word == 0; i->word = i->vec[i->word_num]) |
| { |
| i->word_num++; |
| i->bit_num = i->word_num * IRA_INT_BITS; |
| |
| /* If we have reached the end, break. */ |
| if (i->bit_num >= i->nel) |
| return false; |
| } |
| |
| /* Skip bits that are zero. */ |
| for (; (i->word & 1) == 0; i->word >>= 1) |
| i->bit_num++; |
| |
| *n = (int) i->bit_num + i->start_val; |
| |
| return true; |
| } |
| |
| /* Advance to the next element in the set. */ |
| static inline void |
| minmax_set_iter_next (minmax_set_iterator *i) |
| { |
| i->word >>= 1; |
| i->bit_num++; |
| } |
| |
| /* Loop over all elements of a min/max set given by bit vector VEC and |
| their minimal and maximal values MIN and MAX. In each iteration, N |
| is set to the number of next allocno. ITER is an instance of |
| minmax_set_iterator used to iterate over the set. */ |
| #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \ |
| for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \ |
| minmax_set_iter_cond (&(ITER), &(N)); \ |
| minmax_set_iter_next (&(ITER))) |
| |
| class target_ira_int { |
| public: |
| ~target_ira_int (); |
| |
| void free_ira_costs (); |
| void free_register_move_costs (); |
| |
| /* Initialized once. It is a maximal possible size of the allocated |
| struct costs. */ |
| size_t x_max_struct_costs_size; |
| |
| /* Allocated and initialized once, and used to initialize cost values |
| for each insn. */ |
| struct costs *x_init_cost; |
| |
| /* Allocated once, and used for temporary purposes. */ |
| struct costs *x_temp_costs; |
| |
| /* Allocated once, and used for the cost calculation. */ |
| struct costs *x_op_costs[MAX_RECOG_OPERANDS]; |
| struct costs *x_this_op_costs[MAX_RECOG_OPERANDS]; |
| |
| /* Hard registers that cannot be used for the register allocator for |
| all functions of the current compilation unit. */ |
| HARD_REG_SET x_no_unit_alloc_regs; |
| |
| /* Map: hard regs X modes -> set of hard registers for storing value |
| of given mode starting with given hard register. */ |
| HARD_REG_SET (x_ira_reg_mode_hard_regset |
| [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]); |
| |
| /* Maximum cost of moving from a register in one class to a register |
| in another class. Based on TARGET_REGISTER_MOVE_COST. */ |
| move_table *x_ira_register_move_cost[MAX_MACHINE_MODE]; |
| |
| /* Similar, but here we don't have to move if the first index is a |
| subset of the second so in that case the cost is zero. */ |
| move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE]; |
| |
| /* Similar, but here we don't have to move if the first index is a |
| superset of the second so in that case the cost is zero. */ |
| move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE]; |
| |
| /* Keep track of the last mode we initialized move costs for. */ |
| int x_last_mode_for_init_move_cost; |
| |
| /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal |
| cost not minimal. */ |
| short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2]; |
| |
| /* Map class->true if class is a possible allocno class, false |
| otherwise. */ |
| bool x_ira_reg_allocno_class_p[N_REG_CLASSES]; |
| |
| /* Map class->true if class is a pressure class, false otherwise. */ |
| bool x_ira_reg_pressure_class_p[N_REG_CLASSES]; |
| |
| /* Array of the number of hard registers of given class which are |
| available for allocation. The order is defined by the hard |
| register numbers. */ |
| short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER]; |
| |
| /* Index (in ira_class_hard_regs; for given register class and hard |
| register (in general case a hard register can belong to several |
| register classes;. The index is negative for hard registers |
| unavailable for the allocation. */ |
| short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER]; |
| |
| /* Index [CL][M] contains R if R appears somewhere in a register of the form: |
| |
| (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M] |
| |
| For example, if: |
| |
| - (reg:M 2) is valid and occupies two registers; |
| - register 2 belongs to CL; and |
| - register 3 belongs to the same pressure class as CL |
| |
| then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be |
| in the set. */ |
| HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES]; |
| |
| /* The value is number of elements in the subsequent array. */ |
| int x_ira_important_classes_num; |
| |
| /* The array containing all non-empty classes. Such classes is |
| important for calculation of the hard register usage costs. */ |
| enum reg_class x_ira_important_classes[N_REG_CLASSES]; |
| |
| /* The array containing indexes of important classes in the previous |
| array. The array elements are defined only for important |
| classes. */ |
| int x_ira_important_class_nums[N_REG_CLASSES]; |
| |
| /* Map class->true if class is an uniform class, false otherwise. */ |
| bool x_ira_uniform_class_p[N_REG_CLASSES]; |
| |
| /* The biggest important class inside of intersection of the two |
| classes (that is calculated taking only hard registers available |
| for allocation into account;. If the both classes contain no hard |
| registers available for allocation, the value is calculated with |
| taking all hard-registers including fixed ones into account. */ |
| enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES]; |
| |
| /* Classes with end marker LIM_REG_CLASSES which are intersected with |
| given class (the first index). That includes given class itself. |
| This is calculated taking only hard registers available for |
| allocation into account. */ |
| enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES]; |
| |
| /* The biggest (smallest) important class inside of (covering) union |
| of the two classes (that is calculated taking only hard registers |
| available for allocation into account). If the both classes |
| contain no hard registers available for allocation, the value is |
| calculated with taking all hard-registers including fixed ones |
| into account. In other words, the value is the corresponding |
| reg_class_subunion (reg_class_superunion) value. */ |
| enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES]; |
| enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES]; |
| |
| /* For each reg class, table listing all the classes contained in it |
| (excluding the class itself. Non-allocatable registers are |
| excluded from the consideration). */ |
| enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES]; |
| |
| /* Array whose values are hard regset of hard registers for which |
| move of the hard register in given mode into itself is |
| prohibited. */ |
| HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES]; |
| |
| /* Flag of that the above array has been initialized. */ |
| bool x_ira_prohibited_mode_move_regs_initialized_p; |
| }; |
| |
| extern class target_ira_int default_target_ira_int; |
| #if SWITCHABLE_TARGET |
| extern class target_ira_int *this_target_ira_int; |
| #else |
| #define this_target_ira_int (&default_target_ira_int) |
| #endif |
| |
| #define ira_reg_mode_hard_regset \ |
| (this_target_ira_int->x_ira_reg_mode_hard_regset) |
| #define ira_register_move_cost \ |
| (this_target_ira_int->x_ira_register_move_cost) |
| #define ira_max_memory_move_cost \ |
| (this_target_ira_int->x_ira_max_memory_move_cost) |
| #define ira_may_move_in_cost \ |
| (this_target_ira_int->x_ira_may_move_in_cost) |
| #define ira_may_move_out_cost \ |
| (this_target_ira_int->x_ira_may_move_out_cost) |
| #define ira_reg_allocno_class_p \ |
| (this_target_ira_int->x_ira_reg_allocno_class_p) |
| #define ira_reg_pressure_class_p \ |
| (this_target_ira_int->x_ira_reg_pressure_class_p) |
| #define ira_non_ordered_class_hard_regs \ |
| (this_target_ira_int->x_ira_non_ordered_class_hard_regs) |
| #define ira_class_hard_reg_index \ |
| (this_target_ira_int->x_ira_class_hard_reg_index) |
| #define ira_useful_class_mode_regs \ |
| (this_target_ira_int->x_ira_useful_class_mode_regs) |
| #define ira_important_classes_num \ |
| (this_target_ira_int->x_ira_important_classes_num) |
| #define ira_important_classes \ |
| (this_target_ira_int->x_ira_important_classes) |
| #define ira_important_class_nums \ |
| (this_target_ira_int->x_ira_important_class_nums) |
| #define ira_uniform_class_p \ |
| (this_target_ira_int->x_ira_uniform_class_p) |
| #define ira_reg_class_intersect \ |
| (this_target_ira_int->x_ira_reg_class_intersect) |
| #define ira_reg_class_super_classes \ |
| (this_target_ira_int->x_ira_reg_class_super_classes) |
| #define ira_reg_class_subunion \ |
| (this_target_ira_int->x_ira_reg_class_subunion) |
| #define ira_reg_class_superunion \ |
| (this_target_ira_int->x_ira_reg_class_superunion) |
| #define ira_prohibited_mode_move_regs \ |
| (this_target_ira_int->x_ira_prohibited_mode_move_regs) |
| |
| /* ira.c: */ |
| |
| extern void *ira_allocate (size_t); |
| extern void ira_free (void *addr); |
| extern bitmap ira_allocate_bitmap (void); |
| extern void ira_free_bitmap (bitmap); |
| extern void ira_print_disposition (FILE *); |
| extern void ira_debug_disposition (void); |
| extern void ira_debug_allocno_classes (void); |
| extern void ira_init_register_move_cost (machine_mode); |
| extern alternative_mask ira_setup_alts (rtx_insn *); |
| extern int ira_get_dup_out_num (int, alternative_mask, bool &); |
| |
| /* ira-build.c */ |
| |
| /* The current loop tree node and its regno allocno map. */ |
| extern ira_loop_tree_node_t ira_curr_loop_tree_node; |
| extern ira_allocno_t *ira_curr_regno_allocno_map; |
| |
| extern void ira_debug_pref (ira_pref_t); |
| extern void ira_debug_prefs (void); |
| extern void ira_debug_allocno_prefs (ira_allocno_t); |
| |
| extern void ira_debug_copy (ira_copy_t); |
| extern void debug (ira_allocno_copy &ref); |
| extern void debug (ira_allocno_copy *ptr); |
| |
| extern void ira_debug_copies (void); |
| extern void ira_debug_allocno_copies (ira_allocno_t); |
| extern void debug (ira_allocno &ref); |
| extern void debug (ira_allocno *ptr); |
| |
| extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t, |
| void (*) (ira_loop_tree_node_t), |
| void (*) (ira_loop_tree_node_t)); |
| extern ira_allocno_t ira_parent_allocno (ira_allocno_t); |
| extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t); |
| extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t); |
| extern void ira_create_allocno_objects (ira_allocno_t); |
| extern void ira_set_allocno_class (ira_allocno_t, enum reg_class); |
| extern bool ira_conflict_vector_profitable_p (ira_object_t, int); |
| extern void ira_allocate_conflict_vec (ira_object_t, int); |
| extern void ira_allocate_object_conflicts (ira_object_t, int); |
| extern void ior_hard_reg_conflicts (ira_allocno_t, const_hard_reg_set); |
| extern void ira_print_expanded_allocno (ira_allocno_t); |
| extern void ira_add_live_range_to_object (ira_object_t, int, int); |
| extern live_range_t ira_create_live_range (ira_object_t, int, int, |
| live_range_t); |
| extern live_range_t ira_copy_live_range_list (live_range_t); |
| extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t); |
| extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t); |
| extern void ira_finish_live_range (live_range_t); |
| extern void ira_finish_live_range_list (live_range_t); |
| extern void ira_free_allocno_updated_costs (ira_allocno_t); |
| extern ira_pref_t ira_create_pref (ira_allocno_t, int, int); |
| extern void ira_add_allocno_pref (ira_allocno_t, int, int); |
| extern void ira_remove_pref (ira_pref_t); |
| extern void ira_remove_allocno_prefs (ira_allocno_t); |
| extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t, |
| int, bool, rtx_insn *, |
| ira_loop_tree_node_t); |
| extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int, |
| bool, rtx_insn *, |
| ira_loop_tree_node_t); |
| |
| extern int *ira_allocate_cost_vector (reg_class_t); |
| extern void ira_free_cost_vector (int *, reg_class_t); |
| |
| extern void ira_flattening (int, int); |
| extern bool ira_build (void); |
| extern void ira_destroy (void); |
| |
| /* ira-costs.c */ |
| extern void ira_init_costs_once (void); |
| extern void ira_init_costs (void); |
| extern void ira_costs (void); |
| extern void ira_tune_allocno_costs (void); |
| |
| /* ira-lives.c */ |
| |
| extern void ira_rebuild_start_finish_chains (void); |
| extern void ira_print_live_range_list (FILE *, live_range_t); |
| extern void debug (live_range &ref); |
| extern void debug (live_range *ptr); |
| extern void ira_debug_live_range_list (live_range_t); |
| extern void ira_debug_allocno_live_ranges (ira_allocno_t); |
| extern void ira_debug_live_ranges (void); |
| extern void ira_create_allocno_live_ranges (void); |
| extern void ira_compress_allocno_live_ranges (void); |
| extern void ira_finish_allocno_live_ranges (void); |
| extern void ira_implicitly_set_insn_hard_regs (HARD_REG_SET *, |
| alternative_mask); |
| |
| /* ira-conflicts.c */ |
| extern void ira_debug_conflicts (bool); |
| extern void ira_build_conflicts (void); |
| |
| /* ira-color.c */ |
| extern void ira_debug_hard_regs_forest (void); |
| extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool); |
| extern void ira_reassign_conflict_allocnos (int); |
| extern void ira_initiate_assign (void); |
| extern void ira_finish_assign (void); |
| extern void ira_color (void); |
| |
| /* ira-emit.c */ |
| extern void ira_initiate_emit_data (void); |
| extern void ira_finish_emit_data (void); |
| extern void ira_emit (bool); |
| |
| |
| |
| /* Return true if equivalence of pseudo REGNO is not a lvalue. */ |
| static inline bool |
| ira_equiv_no_lvalue_p (int regno) |
| { |
| if (regno >= ira_reg_equiv_len) |
| return false; |
| return (ira_reg_equiv[regno].constant != NULL_RTX |
| || ira_reg_equiv[regno].invariant != NULL_RTX |
| || (ira_reg_equiv[regno].memory != NULL_RTX |
| && MEM_READONLY_P (ira_reg_equiv[regno].memory))); |
| } |
| |
| |
| |
| /* Initialize register costs for MODE if necessary. */ |
| static inline void |
| ira_init_register_move_cost_if_necessary (machine_mode mode) |
| { |
| if (ira_register_move_cost[mode] == NULL) |
| ira_init_register_move_cost (mode); |
| } |
| |
| |
| |
| /* The iterator for all allocnos. */ |
| struct ira_allocno_iterator { |
| /* The number of the current element in IRA_ALLOCNOS. */ |
| int n; |
| }; |
| |
| /* Initialize the iterator I. */ |
| static inline void |
| ira_allocno_iter_init (ira_allocno_iterator *i) |
| { |
| i->n = 0; |
| } |
| |
| /* Return TRUE if we have more allocnos to visit, in which case *A is |
| set to the allocno to be visited. Otherwise, return FALSE. */ |
| static inline bool |
| ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a) |
| { |
| int n; |
| |
| for (n = i->n; n < ira_allocnos_num; n++) |
| if (ira_allocnos[n] != NULL) |
| { |
| *a = ira_allocnos[n]; |
| i->n = n + 1; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Loop over all allocnos. In each iteration, A is set to the next |
| allocno. ITER is an instance of ira_allocno_iterator used to iterate |
| the allocnos. */ |
| #define FOR_EACH_ALLOCNO(A, ITER) \ |
| for (ira_allocno_iter_init (&(ITER)); \ |
| ira_allocno_iter_cond (&(ITER), &(A));) |
| |
| /* The iterator for all objects. */ |
| struct ira_object_iterator { |
| /* The number of the current element in ira_object_id_map. */ |
| int n; |
| }; |
| |
| /* Initialize the iterator I. */ |
| static inline void |
| ira_object_iter_init (ira_object_iterator *i) |
| { |
| i->n = 0; |
| } |
| |
| /* Return TRUE if we have more objects to visit, in which case *OBJ is |
| set to the object to be visited. Otherwise, return FALSE. */ |
| static inline bool |
| ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj) |
| { |
| int n; |
| |
| for (n = i->n; n < ira_objects_num; n++) |
| if (ira_object_id_map[n] != NULL) |
| { |
| *obj = ira_object_id_map[n]; |
| i->n = n + 1; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Loop over all objects. In each iteration, OBJ is set to the next |
| object. ITER is an instance of ira_object_iterator used to iterate |
| the objects. */ |
| #define FOR_EACH_OBJECT(OBJ, ITER) \ |
| for (ira_object_iter_init (&(ITER)); \ |
| ira_object_iter_cond (&(ITER), &(OBJ));) |
| |
| /* The iterator for objects associated with an allocno. */ |
| struct ira_allocno_object_iterator { |
| /* The number of the element the allocno's object array. */ |
| int n; |
| }; |
| |
| /* Initialize the iterator I. */ |
| static inline void |
| ira_allocno_object_iter_init (ira_allocno_object_iterator *i) |
| { |
| i->n = 0; |
| } |
| |
| /* Return TRUE if we have more objects to visit in allocno A, in which |
| case *O is set to the object to be visited. Otherwise, return |
| FALSE. */ |
| static inline bool |
| ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a, |
| ira_object_t *o) |
| { |
| int n = i->n++; |
| if (n < ALLOCNO_NUM_OBJECTS (a)) |
| { |
| *o = ALLOCNO_OBJECT (a, n); |
| return true; |
| } |
| return false; |
| } |
| |
| /* Loop over all objects associated with allocno A. In each |
| iteration, O is set to the next object. ITER is an instance of |
| ira_allocno_object_iterator used to iterate the conflicts. */ |
| #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \ |
| for (ira_allocno_object_iter_init (&(ITER)); \ |
| ira_allocno_object_iter_cond (&(ITER), (A), &(O));) |
| |
| |
| /* The iterator for prefs. */ |
| struct ira_pref_iterator { |
| /* The number of the current element in IRA_PREFS. */ |
| int n; |
| }; |
| |
| /* Initialize the iterator I. */ |
| static inline void |
| ira_pref_iter_init (ira_pref_iterator *i) |
| { |
| i->n = 0; |
| } |
| |
| /* Return TRUE if we have more prefs to visit, in which case *PREF is |
| set to the pref to be visited. Otherwise, return FALSE. */ |
| static inline bool |
| ira_pref_iter_cond (ira_pref_iterator *i, ira_pref_t *pref) |
| { |
| int n; |
| |
| for (n = i->n; n < ira_prefs_num; n++) |
| if (ira_prefs[n] != NULL) |
| { |
| *pref = ira_prefs[n]; |
| i->n = n + 1; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Loop over all prefs. In each iteration, P is set to the next |
| pref. ITER is an instance of ira_pref_iterator used to iterate |
| the prefs. */ |
| #define FOR_EACH_PREF(P, ITER) \ |
| for (ira_pref_iter_init (&(ITER)); \ |
| ira_pref_iter_cond (&(ITER), &(P));) |
| |
| |
| /* The iterator for copies. */ |
| struct ira_copy_iterator { |
| /* The number of the current element in IRA_COPIES. */ |
| int n; |
| }; |
| |
| /* Initialize the iterator I. */ |
| static inline void |
| ira_copy_iter_init (ira_copy_iterator *i) |
| { |
| i->n = 0; |
| } |
| |
| /* Return TRUE if we have more copies to visit, in which case *CP is |
| set to the copy to be visited. Otherwise, return FALSE. */ |
| static inline bool |
| ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp) |
| { |
| int n; |
| |
| for (n = i->n; n < ira_copies_num; n++) |
| if (ira_copies[n] != NULL) |
| { |
| *cp = ira_copies[n]; |
| i->n = n + 1; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Loop over all copies. In each iteration, C is set to the next |
| copy. ITER is an instance of ira_copy_iterator used to iterate |
| the copies. */ |
| #define FOR_EACH_COPY(C, ITER) \ |
| for (ira_copy_iter_init (&(ITER)); \ |
| ira_copy_iter_cond (&(ITER), &(C));) |
| |
| /* The iterator for object conflicts. */ |
| struct ira_object_conflict_iterator { |
| |
| /* TRUE if the conflicts are represented by vector of allocnos. */ |
| bool conflict_vec_p; |
| |
| /* The conflict vector or conflict bit vector. */ |
| void *vec; |
| |
| /* The number of the current element in the vector (of type |
| ira_object_t or IRA_INT_TYPE). */ |
| unsigned int word_num; |
| |
| /* The bit vector size. It is defined only if |
| OBJECT_CONFLICT_VEC_P is FALSE. */ |
| unsigned int size; |
| |
| /* The current bit index of bit vector. It is defined only if |
| OBJECT_CONFLICT_VEC_P is FALSE. */ |
| unsigned int bit_num; |
| |
| /* The object id corresponding to the 1st bit of the bit vector. It |
| is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */ |
| int base_conflict_id; |
| |
| /* The word of bit vector currently visited. It is defined only if |
| OBJECT_CONFLICT_VEC_P is FALSE. */ |
| unsigned IRA_INT_TYPE word; |
| }; |
| |
| /* Initialize the iterator I with ALLOCNO conflicts. */ |
| static inline void |
| ira_object_conflict_iter_init (ira_object_conflict_iterator *i, |
| ira_object_t obj) |
| { |
| i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj); |
| i->vec = OBJECT_CONFLICT_ARRAY (obj); |
| i->word_num = 0; |
| if (i->conflict_vec_p) |
| i->size = i->bit_num = i->base_conflict_id = i->word = 0; |
| else |
| { |
| if (OBJECT_MIN (obj) > OBJECT_MAX (obj)) |
| i->size = 0; |
| else |
| i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) |
| + IRA_INT_BITS) |
| / IRA_INT_BITS) * sizeof (IRA_INT_TYPE); |
| i->bit_num = 0; |
| i->base_conflict_id = OBJECT_MIN (obj); |
| i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]); |
| } |
| } |
| |
| /* Return TRUE if we have more conflicting allocnos to visit, in which |
| case *A is set to the allocno to be visited. Otherwise, return |
| FALSE. */ |
| static inline bool |
| ira_object_conflict_iter_cond (ira_object_conflict_iterator *i, |
| ira_object_t *pobj) |
| { |
| ira_object_t obj; |
| |
| if (i->conflict_vec_p) |
| { |
| obj = ((ira_object_t *) i->vec)[i->word_num++]; |
| if (obj == NULL) |
| return false; |
| } |
| else |
| { |
| unsigned IRA_INT_TYPE word = i->word; |
| unsigned int bit_num = i->bit_num; |
| |
| /* Skip words that are zeros. */ |
| for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num]) |
| { |
| i->word_num++; |
| |
| /* If we have reached the end, break. */ |
| if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size) |
| return false; |
| |
| bit_num = i->word_num * IRA_INT_BITS; |
| } |
| |
| /* Skip bits that are zero. */ |
| for (; (word & 1) == 0; word >>= 1) |
| bit_num++; |
| |
| obj = ira_object_id_map[bit_num + i->base_conflict_id]; |
| i->bit_num = bit_num + 1; |
| i->word = word >> 1; |
| } |
| |
| *pobj = obj; |
| return true; |
| } |
| |
| /* Loop over all objects conflicting with OBJ. In each iteration, |
| CONF is set to the next conflicting object. ITER is an instance |
| of ira_object_conflict_iterator used to iterate the conflicts. */ |
| #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \ |
| for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \ |
| ira_object_conflict_iter_cond (&(ITER), &(CONF));) |
| |
| |
| |
| /* The function returns TRUE if at least one hard register from ones |
| starting with HARD_REGNO and containing value of MODE are in set |
| HARD_REGSET. */ |
| static inline bool |
| ira_hard_reg_set_intersection_p (int hard_regno, machine_mode mode, |
| HARD_REG_SET hard_regset) |
| { |
| int i; |
| |
| gcc_assert (hard_regno >= 0); |
| for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--) |
| if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i)) |
| return true; |
| return false; |
| } |
| |
| /* Return number of hard registers in hard register SET. */ |
| static inline int |
| hard_reg_set_size (HARD_REG_SET set) |
| { |
| int i, size; |
| |
| for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (TEST_HARD_REG_BIT (set, i)) |
| size++; |
| return size; |
| } |
| |
| /* The function returns TRUE if hard registers starting with |
| HARD_REGNO and containing value of MODE are fully in set |
| HARD_REGSET. */ |
| static inline bool |
| ira_hard_reg_in_set_p (int hard_regno, machine_mode mode, |
| HARD_REG_SET hard_regset) |
| { |
| int i; |
| |
| ira_assert (hard_regno >= 0); |
| for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--) |
| if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i)) |
| return false; |
| return true; |
| } |
| |
| |
| |
| /* To save memory we use a lazy approach for allocation and |
| initialization of the cost vectors. We do this only when it is |
| really necessary. */ |
| |
| /* Allocate cost vector *VEC for hard registers of ACLASS and |
| initialize the elements by VAL if it is necessary */ |
| static inline void |
| ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val) |
| { |
| int i, *reg_costs; |
| int len; |
| |
| if (*vec != NULL) |
| return; |
| *vec = reg_costs = ira_allocate_cost_vector (aclass); |
| len = ira_class_hard_regs_num[(int) aclass]; |
| for (i = 0; i < len; i++) |
| reg_costs[i] = val; |
| } |
| |
| /* Allocate cost vector *VEC for hard registers of ACLASS and copy |
| values of vector SRC into the vector if it is necessary */ |
| static inline void |
| ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src) |
| { |
| int len; |
| |
| if (*vec != NULL || src == NULL) |
| return; |
| *vec = ira_allocate_cost_vector (aclass); |
| len = ira_class_hard_regs_num[aclass]; |
| memcpy (*vec, src, sizeof (int) * len); |
| } |
| |
| /* Allocate cost vector *VEC for hard registers of ACLASS and add |
| values of vector SRC into the vector if it is necessary */ |
| static inline void |
| ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src) |
| { |
| int i, len; |
| |
| if (src == NULL) |
| return; |
| len = ira_class_hard_regs_num[aclass]; |
| if (*vec == NULL) |
| { |
| *vec = ira_allocate_cost_vector (aclass); |
| memset (*vec, 0, sizeof (int) * len); |
| } |
| for (i = 0; i < len; i++) |
| (*vec)[i] += src[i]; |
| } |
| |
| /* Allocate cost vector *VEC for hard registers of ACLASS and copy |
| values of vector SRC into the vector or initialize it by VAL (if |
| SRC is null). */ |
| static inline void |
| ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass, |
| int val, int *src) |
| { |
| int i, *reg_costs; |
| int len; |
| |
| if (*vec != NULL) |
| return; |
| *vec = reg_costs = ira_allocate_cost_vector (aclass); |
| len = ira_class_hard_regs_num[aclass]; |
| if (src != NULL) |
| memcpy (reg_costs, src, sizeof (int) * len); |
| else |
| { |
| for (i = 0; i < len; i++) |
| reg_costs[i] = val; |
| } |
| } |
| |
| extern rtx ira_create_new_reg (rtx); |
| extern int first_moveable_pseudo, last_moveable_pseudo; |
| |
| /* Return the set of registers that would need a caller save if allocno A |
| overlapped them. */ |
| |
| inline HARD_REG_SET |
| ira_need_caller_save_regs (ira_allocno_t a) |
| { |
| return call_clobbers_in_region (ALLOCNO_CROSSED_CALLS_ABIS (a), |
| ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a), |
| ALLOCNO_MODE (a)); |
| } |
| |
| /* Return true if we would need to save allocno A around a call if we |
| assigned hard register REGNO. */ |
| |
| inline bool |
| ira_need_caller_save_p (ira_allocno_t a, unsigned int regno) |
| { |
| if (ALLOCNO_CALLS_CROSSED_NUM (a) == 0) |
| return false; |
| return call_clobbered_in_region_p (ALLOCNO_CROSSED_CALLS_ABIS (a), |
| ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a), |
| ALLOCNO_MODE (a), regno); |
| } |
| |
| #endif /* GCC_IRA_INT_H */ |