blob: 2ec338b12182d2ed0599a8374307ce73decdad30 [file] [log] [blame]
.. Copyright (C) 2014-2021 Free Software Foundation, Inc.
Originally contributed by David Malcolm <dmalcolm@redhat.com>
This is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see
<http://www.gnu.org/licenses/>.
.. default-domain:: c
Tutorial part 2: Creating a trivial machine code function
---------------------------------------------------------
Consider this C function:
.. code-block:: c
int square (int i)
{
return i * i;
}
How can we construct this at run-time using libgccjit?
First we need to include the relevant header:
.. code-block:: c
#include <libgccjit.h>
All state associated with compilation is associated with a
:c:type:`gcc_jit_context *`.
Create one using :c:func:`gcc_jit_context_acquire`:
.. code-block:: c
gcc_jit_context *ctxt;
ctxt = gcc_jit_context_acquire ();
The JIT library has a system of types. It is statically-typed: every
expression is of a specific type, fixed at compile-time. In our example,
all of the expressions are of the C `int` type, so let's obtain this from
the context, as a :c:type:`gcc_jit_type *`, using
:c:func:`gcc_jit_context_get_type`:
.. code-block:: c
gcc_jit_type *int_type =
gcc_jit_context_get_type (ctxt, GCC_JIT_TYPE_INT);
:c:type:`gcc_jit_type *` is an example of a "contextual" object: every
entity in the API is associated with a :c:type:`gcc_jit_context *`.
Memory management is easy: all such "contextual" objects are automatically
cleaned up for you when the context is released, using
:c:func:`gcc_jit_context_release`:
.. code-block:: c
gcc_jit_context_release (ctxt);
so you don't need to manually track and cleanup all objects, just the
contexts.
Although the API is C-based, there is a form of class hierarchy, which
looks like this::
+- gcc_jit_object
+- gcc_jit_location
+- gcc_jit_type
+- gcc_jit_struct
+- gcc_jit_field
+- gcc_jit_function
+- gcc_jit_block
+- gcc_jit_rvalue
+- gcc_jit_lvalue
+- gcc_jit_param
There are casting methods for upcasting from subclasses to parent classes.
For example, :c:func:`gcc_jit_type_as_object`:
.. code-block:: c
gcc_jit_object *obj = gcc_jit_type_as_object (int_type);
One thing you can do with a :c:type:`gcc_jit_object *` is
to ask it for a human-readable description, using
:c:func:`gcc_jit_object_get_debug_string`:
.. code-block:: c
printf ("obj: %s\n", gcc_jit_object_get_debug_string (obj));
giving this text on stdout:
.. code-block:: bash
obj: int
This is invaluable when debugging.
Let's create the function. To do so, we first need to construct
its single parameter, specifying its type and giving it a name,
using :c:func:`gcc_jit_context_new_param`:
.. code-block:: c
gcc_jit_param *param_i =
gcc_jit_context_new_param (ctxt, NULL, int_type, "i");
Now we can create the function, using
:c:func:`gcc_jit_context_new_function`:
.. code-block:: c
gcc_jit_function *func =
gcc_jit_context_new_function (ctxt, NULL,
GCC_JIT_FUNCTION_EXPORTED,
int_type,
"square",
1, &param_i,
0);
To define the code within the function, we must create basic blocks
containing statements.
Every basic block contains a list of statements, eventually terminated
by a statement that either returns, or jumps to another basic block.
Our function has no control-flow, so we just need one basic block:
.. code-block:: c
gcc_jit_block *block = gcc_jit_function_new_block (func, NULL);
Our basic block is relatively simple: it immediately terminates by
returning the value of an expression.
We can build the expression using :c:func:`gcc_jit_context_new_binary_op`:
.. code-block:: c
gcc_jit_rvalue *expr =
gcc_jit_context_new_binary_op (
ctxt, NULL,
GCC_JIT_BINARY_OP_MULT, int_type,
gcc_jit_param_as_rvalue (param_i),
gcc_jit_param_as_rvalue (param_i));
A :c:type:`gcc_jit_rvalue *` is another example of a
:c:type:`gcc_jit_object *` subclass. We can upcast it using
:c:func:`gcc_jit_rvalue_as_object` and as before print it with
:c:func:`gcc_jit_object_get_debug_string`.
.. code-block:: c
printf ("expr: %s\n",
gcc_jit_object_get_debug_string (
gcc_jit_rvalue_as_object (expr)));
giving this output:
.. code-block:: bash
expr: i * i
Creating the expression in itself doesn't do anything; we have to add
this expression to a statement within the block. In this case, we use it
to build a return statement, which terminates the basic block:
.. code-block:: c
gcc_jit_block_end_with_return (block, NULL, expr);
OK, we've populated the context. We can now compile it using
:c:func:`gcc_jit_context_compile`:
.. code-block:: c
gcc_jit_result *result;
result = gcc_jit_context_compile (ctxt);
and get a :c:type:`gcc_jit_result *`.
At this point we're done with the context; we can release it:
.. code-block:: c
gcc_jit_context_release (ctxt);
We can now use :c:func:`gcc_jit_result_get_code` to look up a specific
machine code routine within the result, in this case, the function we
created above.
.. code-block:: c
void *fn_ptr = gcc_jit_result_get_code (result, "square");
if (!fn_ptr)
{
fprintf (stderr, "NULL fn_ptr");
goto error;
}
We can now cast the pointer to an appropriate function pointer type, and
then call it:
.. code-block:: c
typedef int (*fn_type) (int);
fn_type square = (fn_type)fn_ptr;
printf ("result: %d", square (5));
.. code-block:: bash
result: 25
Once we're done with the code, we can release the result:
.. code-block:: c
gcc_jit_result_release (result);
We can't call ``square`` anymore once we've released ``result``.
Error-handling
**************
Various kinds of errors are possible when using the API, such as
mismatched types in an assignment. You can only compile and get code
from a context if no errors occur.
Errors are printed on stderr; they typically contain the name of the API
entrypoint where the error occurred, and pertinent information on the
problem:
.. code-block:: console
./buggy-program: error: gcc_jit_block_add_assignment: mismatching types: assignment to i (type: int) from "hello world" (type: const char *)
The API is designed to cope with errors without crashing, so you can get
away with having a single error-handling check in your code:
.. code-block:: c
void *fn_ptr = gcc_jit_result_get_code (result, "square");
if (!fn_ptr)
{
fprintf (stderr, "NULL fn_ptr");
goto error;
}
For more information, see the :ref:`error-handling guide <error-handling>`
within the Topic eference.
Options
*******
To get more information on what's going on, you can set debugging flags
on the context using :c:func:`gcc_jit_context_set_bool_option`.
.. (I'm deliberately not mentioning
:c:macro:`GCC_JIT_BOOL_OPTION_DUMP_INITIAL_TREE` here since I think
it's probably more of use to implementors than to users)
Setting :c:macro:`GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE` will dump a
C-like representation to stderr when you compile (GCC's "GIMPLE"
representation):
.. code-block:: c
gcc_jit_context_set_bool_option (
ctxt,
GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE,
1);
result = gcc_jit_context_compile (ctxt);
.. code-block:: c
square (signed int i)
{
signed int D.260;
entry:
D.260 = i * i;
return D.260;
}
We can see the generated machine code in assembler form (on stderr) by
setting :c:macro:`GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE` on the context
before compiling:
.. code-block:: c
gcc_jit_context_set_bool_option (
ctxt,
GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE,
1);
result = gcc_jit_context_compile (ctxt);
.. code-block:: gas
.file "fake.c"
.text
.globl square
.type square, @function
square:
.LFB6:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl %edi, -4(%rbp)
.L14:
movl -4(%rbp), %eax
imull -4(%rbp), %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE6:
.size square, .-square
.ident "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2-0.5.1920c315ff984892399893b380305ab36e07b455.fc20)"
.section .note.GNU-stack,"",@progbits
By default, no optimizations are performed, the equivalent of GCC's
`-O0` option. We can turn things up to e.g. `-O3` by calling
:c:func:`gcc_jit_context_set_int_option` with
:c:macro:`GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL`:
.. code-block:: c
gcc_jit_context_set_int_option (
ctxt,
GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL,
3);
.. code-block:: gas
.file "fake.c"
.text
.p2align 4,,15
.globl square
.type square, @function
square:
.LFB7:
.cfi_startproc
.L16:
movl %edi, %eax
imull %edi, %eax
ret
.cfi_endproc
.LFE7:
.size square, .-square
.ident "GCC: (GNU) 4.9.0 20131023 (Red Hat 0.2-0.5.1920c315ff984892399893b380305ab36e07b455.fc20)"
.section .note.GNU-stack,"",@progbits
Naturally this has only a small effect on such a trivial function.
Full example
************
Here's what the above looks like as a complete program:
.. literalinclude:: ../examples/tut02-square.c
:lines: 1-
:language: c
Building and running it:
.. code-block:: console
$ gcc \
tut02-square.c \
-o tut02-square \
-lgccjit
# Run the built program:
$ ./tut02-square
result: 25