| /* Header file for SSA iterators. |
| Copyright (C) 2013-2021 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef GCC_SSA_ITERATORS_H |
| #define GCC_SSA_ITERATORS_H |
| |
| /* Immediate use lists are used to directly access all uses for an SSA |
| name and get pointers to the statement for each use. |
| |
| The structure ssa_use_operand_t consists of PREV and NEXT pointers |
| to maintain the list. A USE pointer, which points to address where |
| the use is located and a LOC pointer which can point to the |
| statement where the use is located, or, in the case of the root |
| node, it points to the SSA name itself. |
| |
| The list is anchored by an occurrence of ssa_operand_d *in* the |
| ssa_name node itself (named 'imm_uses'). This node is uniquely |
| identified by having a NULL USE pointer. and the LOC pointer |
| pointing back to the ssa_name node itself. This node forms the |
| base for a circular list, and initially this is the only node in |
| the list. |
| |
| Fast iteration allows each use to be examined, but does not allow |
| any modifications to the uses or stmts. |
| |
| Normal iteration allows insertion, deletion, and modification. the |
| iterator manages this by inserting a marker node into the list |
| immediately before the node currently being examined in the list. |
| this marker node is uniquely identified by having null stmt *and* a |
| null use pointer. |
| |
| When iterating to the next use, the iteration routines check to see |
| if the node after the marker has changed. if it has, then the node |
| following the marker is now the next one to be visited. if not, the |
| marker node is moved past that node in the list (visualize it as |
| bumping the marker node through the list). this continues until |
| the marker node is moved to the original anchor position. the |
| marker node is then removed from the list. |
| |
| If iteration is halted early, the marker node must be removed from |
| the list before continuing. */ |
| struct imm_use_iterator |
| { |
| /* This is the current use the iterator is processing. */ |
| ssa_use_operand_t *imm_use; |
| /* This marks the last use in the list (use node from SSA_NAME) */ |
| ssa_use_operand_t *end_p; |
| /* This node is inserted and used to mark the end of the uses for a stmt. */ |
| ssa_use_operand_t iter_node; |
| /* This is the next ssa_name to visit. IMM_USE may get removed before |
| the next one is traversed to, so it must be cached early. */ |
| ssa_use_operand_t *next_imm_name; |
| }; |
| |
| |
| /* Use this iterator when simply looking at stmts. Adding, deleting or |
| modifying stmts will cause this iterator to malfunction. */ |
| |
| #define FOR_EACH_IMM_USE_FAST(DEST, ITER, SSAVAR) \ |
| for ((DEST) = first_readonly_imm_use (&(ITER), (SSAVAR)); \ |
| !end_readonly_imm_use_p (&(ITER)); \ |
| (void) ((DEST) = next_readonly_imm_use (&(ITER)))) |
| |
| /* Forward declare for use in the class below. */ |
| static inline void end_imm_use_stmt_traverse (imm_use_iterator *); |
| |
| /* arrange to automatically call, upon descruction, end_imm_use_stmt_traverse |
| with a given pointer to imm_use_iterator. */ |
| struct auto_end_imm_use_stmt_traverse |
| { |
| imm_use_iterator *imm; |
| auto_end_imm_use_stmt_traverse (imm_use_iterator *imm) |
| : imm (imm) {} |
| ~auto_end_imm_use_stmt_traverse () |
| { end_imm_use_stmt_traverse (imm); } |
| }; |
| |
| /* Use this iterator to visit each stmt which has a use of SSAVAR. The |
| destructor of the auto_end_imm_use_stmt_traverse object deals with removing |
| ITER from SSAVAR's IMM_USE list even when leaving the scope early. */ |
| |
| #define FOR_EACH_IMM_USE_STMT(STMT, ITER, SSAVAR) \ |
| for (struct auto_end_imm_use_stmt_traverse \ |
| auto_end_imm_use_stmt_traverse \ |
| ((((STMT) = first_imm_use_stmt (&(ITER), (SSAVAR))), \ |
| &(ITER))); \ |
| !end_imm_use_stmt_p (&(ITER)); \ |
| (void) ((STMT) = next_imm_use_stmt (&(ITER)))) |
| |
| /* Use this iterator in combination with FOR_EACH_IMM_USE_STMT to |
| get access to each occurrence of ssavar on the stmt returned by |
| that iterator.. for instance: |
| |
| FOR_EACH_IMM_USE_STMT (stmt, iter, ssavar) |
| { |
| FOR_EACH_IMM_USE_ON_STMT (use_p, iter) |
| { |
| SET_USE (use_p, blah); |
| } |
| update_stmt (stmt); |
| } */ |
| |
| #define FOR_EACH_IMM_USE_ON_STMT(DEST, ITER) \ |
| for ((DEST) = first_imm_use_on_stmt (&(ITER)); \ |
| !end_imm_use_on_stmt_p (&(ITER)); \ |
| (void) ((DEST) = next_imm_use_on_stmt (&(ITER)))) |
| |
| |
| |
| extern bool single_imm_use_1 (const ssa_use_operand_t *head, |
| use_operand_p *use_p, gimple **stmt); |
| |
| |
| enum ssa_op_iter_type { |
| ssa_op_iter_none = 0, |
| ssa_op_iter_tree, |
| ssa_op_iter_use, |
| ssa_op_iter_def |
| }; |
| |
| /* This structure is used in the operand iterator loops. It contains the |
| items required to determine which operand is retrieved next. During |
| optimization, this structure is scalarized, and any unused fields are |
| optimized away, resulting in little overhead. */ |
| |
| struct ssa_op_iter |
| { |
| enum ssa_op_iter_type iter_type; |
| bool done; |
| int flags; |
| unsigned i; |
| unsigned numops; |
| use_optype_p uses; |
| gimple *stmt; |
| }; |
| |
| /* NOTE: Keep these in sync with doc/tree-ssa.texi. */ |
| /* These flags are used to determine which operands are returned during |
| execution of the loop. */ |
| #define SSA_OP_USE 0x01 /* Real USE operands. */ |
| #define SSA_OP_DEF 0x02 /* Real DEF operands. */ |
| #define SSA_OP_VUSE 0x04 /* VUSE operands. */ |
| #define SSA_OP_VDEF 0x08 /* VDEF operands. */ |
| /* These are commonly grouped operand flags. */ |
| #define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE) |
| #define SSA_OP_VIRTUAL_DEFS (SSA_OP_VDEF) |
| #define SSA_OP_ALL_VIRTUALS (SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_DEFS) |
| #define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE) |
| #define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF) |
| #define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS) |
| |
| /* This macro executes a loop over the operands of STMT specified in FLAG, |
| returning each operand as a 'tree' in the variable TREEVAR. ITER is an |
| ssa_op_iter structure used to control the loop. */ |
| #define FOR_EACH_SSA_TREE_OPERAND(TREEVAR, STMT, ITER, FLAGS) \ |
| for (TREEVAR = op_iter_init_tree (&(ITER), STMT, FLAGS); \ |
| !op_iter_done (&(ITER)); \ |
| (void) (TREEVAR = op_iter_next_tree (&(ITER)))) |
| |
| /* This macro executes a loop over the operands of STMT specified in FLAG, |
| returning each operand as a 'use_operand_p' in the variable USEVAR. |
| ITER is an ssa_op_iter structure used to control the loop. */ |
| #define FOR_EACH_SSA_USE_OPERAND(USEVAR, STMT, ITER, FLAGS) \ |
| for (USEVAR = op_iter_init_use (&(ITER), STMT, FLAGS); \ |
| !op_iter_done (&(ITER)); \ |
| USEVAR = op_iter_next_use (&(ITER))) |
| |
| /* This macro executes a loop over the operands of STMT specified in FLAG, |
| returning each operand as a 'def_operand_p' in the variable DEFVAR. |
| ITER is an ssa_op_iter structure used to control the loop. */ |
| #define FOR_EACH_SSA_DEF_OPERAND(DEFVAR, STMT, ITER, FLAGS) \ |
| for (DEFVAR = op_iter_init_def (&(ITER), STMT, FLAGS); \ |
| !op_iter_done (&(ITER)); \ |
| DEFVAR = op_iter_next_def (&(ITER))) |
| |
| /* This macro will execute a loop over all the arguments of a PHI which |
| match FLAGS. A use_operand_p is always returned via USEVAR. FLAGS |
| can be either SSA_OP_USE or SSA_OP_VIRTUAL_USES or SSA_OP_ALL_USES. */ |
| #define FOR_EACH_PHI_ARG(USEVAR, STMT, ITER, FLAGS) \ |
| for ((USEVAR) = op_iter_init_phiuse (&(ITER), STMT, FLAGS); \ |
| !op_iter_done (&(ITER)); \ |
| (USEVAR) = op_iter_next_use (&(ITER))) |
| |
| |
| /* This macro will execute a loop over a stmt, regardless of whether it is |
| a real stmt or a PHI node, looking at the USE nodes matching FLAGS. */ |
| #define FOR_EACH_PHI_OR_STMT_USE(USEVAR, STMT, ITER, FLAGS) \ |
| for ((USEVAR) = (gimple_code (STMT) == GIMPLE_PHI \ |
| ? op_iter_init_phiuse (&(ITER), \ |
| as_a <gphi *> (STMT), \ |
| FLAGS) \ |
| : op_iter_init_use (&(ITER), STMT, FLAGS)); \ |
| !op_iter_done (&(ITER)); \ |
| (USEVAR) = op_iter_next_use (&(ITER))) |
| |
| /* This macro will execute a loop over a stmt, regardless of whether it is |
| a real stmt or a PHI node, looking at the DEF nodes matching FLAGS. */ |
| #define FOR_EACH_PHI_OR_STMT_DEF(DEFVAR, STMT, ITER, FLAGS) \ |
| for ((DEFVAR) = (gimple_code (STMT) == GIMPLE_PHI \ |
| ? op_iter_init_phidef (&(ITER), \ |
| as_a <gphi *> (STMT), \ |
| FLAGS) \ |
| : op_iter_init_def (&(ITER), STMT, FLAGS)); \ |
| !op_iter_done (&(ITER)); \ |
| (DEFVAR) = op_iter_next_def (&(ITER))) |
| |
| /* This macro returns an operand in STMT as a tree if it is the ONLY |
| operand matching FLAGS. If there are 0 or more than 1 operand matching |
| FLAGS, then NULL_TREE is returned. */ |
| #define SINGLE_SSA_TREE_OPERAND(STMT, FLAGS) \ |
| single_ssa_tree_operand (STMT, FLAGS) |
| |
| /* This macro returns an operand in STMT as a use_operand_p if it is the ONLY |
| operand matching FLAGS. If there are 0 or more than 1 operand matching |
| FLAGS, then NULL_USE_OPERAND_P is returned. */ |
| #define SINGLE_SSA_USE_OPERAND(STMT, FLAGS) \ |
| single_ssa_use_operand (STMT, FLAGS) |
| |
| /* This macro returns an operand in STMT as a def_operand_p if it is the ONLY |
| operand matching FLAGS. If there are 0 or more than 1 operand matching |
| FLAGS, then NULL_DEF_OPERAND_P is returned. */ |
| #define SINGLE_SSA_DEF_OPERAND(STMT, FLAGS) \ |
| single_ssa_def_operand (STMT, FLAGS) |
| |
| /* This macro returns TRUE if there are no operands matching FLAGS in STMT. */ |
| #define ZERO_SSA_OPERANDS(STMT, FLAGS) zero_ssa_operands (STMT, FLAGS) |
| |
| /* This macro counts the number of operands in STMT matching FLAGS. */ |
| #define NUM_SSA_OPERANDS(STMT, FLAGS) num_ssa_operands (STMT, FLAGS) |
| |
| |
| /* Delink an immediate_uses node from its chain. */ |
| static inline void |
| delink_imm_use (ssa_use_operand_t *linknode) |
| { |
| /* Return if this node is not in a list. */ |
| if (linknode->prev == NULL) |
| return; |
| |
| linknode->prev->next = linknode->next; |
| linknode->next->prev = linknode->prev; |
| linknode->prev = NULL; |
| linknode->next = NULL; |
| } |
| |
| /* Link ssa_imm_use node LINKNODE into the chain for LIST. */ |
| static inline void |
| link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list) |
| { |
| /* Link the new node at the head of the list. If we are in the process of |
| traversing the list, we won't visit any new nodes added to it. */ |
| linknode->prev = list; |
| linknode->next = list->next; |
| list->next->prev = linknode; |
| list->next = linknode; |
| } |
| |
| /* Link ssa_imm_use node LINKNODE into the chain for DEF. */ |
| static inline void |
| link_imm_use (ssa_use_operand_t *linknode, tree def) |
| { |
| ssa_use_operand_t *root; |
| |
| if (!def || TREE_CODE (def) != SSA_NAME) |
| linknode->prev = NULL; |
| else |
| { |
| root = &(SSA_NAME_IMM_USE_NODE (def)); |
| if (linknode->use) |
| gcc_checking_assert (*(linknode->use) == def); |
| link_imm_use_to_list (linknode, root); |
| } |
| } |
| |
| /* Set the value of a use pointed to by USE to VAL. */ |
| static inline void |
| set_ssa_use_from_ptr (use_operand_p use, tree val) |
| { |
| delink_imm_use (use); |
| *(use->use) = val; |
| link_imm_use (use, val); |
| } |
| |
| /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring |
| in STMT. */ |
| static inline void |
| link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple *stmt) |
| { |
| if (stmt) |
| link_imm_use (linknode, def); |
| else |
| link_imm_use (linknode, NULL); |
| linknode->loc.stmt = stmt; |
| } |
| |
| /* Relink a new node in place of an old node in the list. */ |
| static inline void |
| relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old) |
| { |
| /* The node one had better be in the same list. */ |
| gcc_checking_assert (*(old->use) == *(node->use)); |
| node->prev = old->prev; |
| node->next = old->next; |
| if (old->prev) |
| { |
| old->prev->next = node; |
| old->next->prev = node; |
| /* Remove the old node from the list. */ |
| old->prev = NULL; |
| } |
| } |
| |
| /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring |
| in STMT. */ |
| static inline void |
| relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, |
| gimple *stmt) |
| { |
| if (stmt) |
| relink_imm_use (linknode, old); |
| else |
| link_imm_use (linknode, NULL); |
| linknode->loc.stmt = stmt; |
| } |
| |
| |
| /* Return true is IMM has reached the end of the immediate use list. */ |
| static inline bool |
| end_readonly_imm_use_p (const imm_use_iterator *imm) |
| { |
| return (imm->imm_use == imm->end_p); |
| } |
| |
| /* Initialize iterator IMM to process the list for VAR. */ |
| static inline use_operand_p |
| first_readonly_imm_use (imm_use_iterator *imm, tree var) |
| { |
| imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); |
| imm->imm_use = imm->end_p->next; |
| imm->iter_node.next = imm->imm_use->next; |
| if (end_readonly_imm_use_p (imm)) |
| return NULL_USE_OPERAND_P; |
| return imm->imm_use; |
| } |
| |
| /* Bump IMM to the next use in the list. */ |
| static inline use_operand_p |
| next_readonly_imm_use (imm_use_iterator *imm) |
| { |
| use_operand_p old = imm->imm_use; |
| |
| /* If this assertion fails, it indicates the 'next' pointer has changed |
| since the last bump. This indicates that the list is being modified |
| via stmt changes, or SET_USE, or somesuch thing, and you need to be |
| using the SAFE version of the iterator. */ |
| if (flag_checking) |
| { |
| gcc_assert (imm->iter_node.next == old->next); |
| imm->iter_node.next = old->next->next; |
| } |
| |
| imm->imm_use = old->next; |
| if (end_readonly_imm_use_p (imm)) |
| return NULL_USE_OPERAND_P; |
| return imm->imm_use; |
| } |
| |
| |
| /* Return true if VAR has no nondebug uses. */ |
| static inline bool |
| has_zero_uses (const_tree var) |
| { |
| const ssa_use_operand_t *const head = &(SSA_NAME_IMM_USE_NODE (var)); |
| const ssa_use_operand_t *ptr; |
| |
| for (ptr = head->next; ptr != head; ptr = ptr->next) |
| if (USE_STMT (ptr) && !is_gimple_debug (USE_STMT (ptr))) |
| return false; |
| |
| return true; |
| } |
| |
| /* Return true if VAR has a single nondebug use. */ |
| static inline bool |
| has_single_use (const_tree var) |
| { |
| const ssa_use_operand_t *const head = &(SSA_NAME_IMM_USE_NODE (var)); |
| const ssa_use_operand_t *ptr; |
| bool single = false; |
| |
| for (ptr = head->next; ptr != head; ptr = ptr->next) |
| if (USE_STMT(ptr) && !is_gimple_debug (USE_STMT (ptr))) |
| { |
| if (single) |
| return false; |
| else |
| single = true; |
| } |
| |
| return single; |
| } |
| |
| /* If VAR has only a single immediate nondebug use, return true, and |
| set USE_P and STMT to the use pointer and stmt of occurrence. */ |
| static inline bool |
| single_imm_use (const_tree var, use_operand_p *use_p, gimple **stmt) |
| { |
| const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); |
| |
| /* If there aren't any uses whatsoever, we're done. */ |
| if (ptr == ptr->next) |
| { |
| return_false: |
| *use_p = NULL_USE_OPERAND_P; |
| *stmt = NULL; |
| return false; |
| } |
| |
| /* If there's a single use, check that it's not a debug stmt. */ |
| if (ptr == ptr->next->next) |
| { |
| if (USE_STMT (ptr->next) && !is_gimple_debug (USE_STMT (ptr->next))) |
| { |
| *use_p = ptr->next; |
| *stmt = ptr->next->loc.stmt; |
| return true; |
| } |
| else |
| goto return_false; |
| } |
| |
| return single_imm_use_1 (ptr, use_p, stmt); |
| } |
| |
| /* Return the number of nondebug immediate uses of VAR. */ |
| static inline unsigned int |
| num_imm_uses (const_tree var) |
| { |
| const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var)); |
| const ssa_use_operand_t *ptr; |
| unsigned int num = 0; |
| |
| if (!MAY_HAVE_DEBUG_BIND_STMTS) |
| { |
| for (ptr = start->next; ptr != start; ptr = ptr->next) |
| if (USE_STMT (ptr)) |
| num++; |
| } |
| else |
| for (ptr = start->next; ptr != start; ptr = ptr->next) |
| if (USE_STMT (ptr) && !is_gimple_debug (USE_STMT (ptr))) |
| num++; |
| |
| return num; |
| } |
| |
| /* ----------------------------------------------------------------------- */ |
| |
| /* The following set of routines are used to iterator over various type of |
| SSA operands. */ |
| |
| /* Return true if PTR is finished iterating. */ |
| static inline bool |
| op_iter_done (const ssa_op_iter *ptr) |
| { |
| return ptr->done; |
| } |
| |
| /* Get the next iterator use value for PTR. */ |
| static inline use_operand_p |
| op_iter_next_use (ssa_op_iter *ptr) |
| { |
| use_operand_p use_p; |
| gcc_checking_assert (ptr->iter_type == ssa_op_iter_use); |
| if (ptr->uses) |
| { |
| use_p = USE_OP_PTR (ptr->uses); |
| ptr->uses = ptr->uses->next; |
| return use_p; |
| } |
| if (ptr->i < ptr->numops) |
| { |
| return PHI_ARG_DEF_PTR (ptr->stmt, (ptr->i)++); |
| } |
| ptr->done = true; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| /* Get the next iterator def value for PTR. */ |
| static inline def_operand_p |
| op_iter_next_def (ssa_op_iter *ptr) |
| { |
| gcc_checking_assert (ptr->iter_type == ssa_op_iter_def); |
| if (ptr->flags & SSA_OP_VDEF) |
| { |
| tree *p; |
| ptr->flags &= ~SSA_OP_VDEF; |
| p = gimple_vdef_ptr (ptr->stmt); |
| if (p && *p) |
| return p; |
| } |
| if (ptr->flags & SSA_OP_DEF) |
| { |
| while (ptr->i < ptr->numops) |
| { |
| tree *val = gimple_op_ptr (ptr->stmt, ptr->i); |
| ptr->i++; |
| if (*val) |
| { |
| if (TREE_CODE (*val) == TREE_LIST) |
| val = &TREE_VALUE (*val); |
| if (TREE_CODE (*val) == SSA_NAME |
| || is_gimple_reg (*val)) |
| return val; |
| } |
| } |
| ptr->flags &= ~SSA_OP_DEF; |
| } |
| |
| ptr->done = true; |
| return NULL_DEF_OPERAND_P; |
| } |
| |
| /* Get the next iterator tree value for PTR. */ |
| static inline tree |
| op_iter_next_tree (ssa_op_iter *ptr) |
| { |
| tree val; |
| gcc_checking_assert (ptr->iter_type == ssa_op_iter_tree); |
| if (ptr->uses) |
| { |
| val = USE_OP (ptr->uses); |
| ptr->uses = ptr->uses->next; |
| return val; |
| } |
| if (ptr->flags & SSA_OP_VDEF) |
| { |
| ptr->flags &= ~SSA_OP_VDEF; |
| if ((val = gimple_vdef (ptr->stmt))) |
| return val; |
| } |
| if (ptr->flags & SSA_OP_DEF) |
| { |
| while (ptr->i < ptr->numops) |
| { |
| val = gimple_op (ptr->stmt, ptr->i); |
| ptr->i++; |
| if (val) |
| { |
| if (TREE_CODE (val) == TREE_LIST) |
| val = TREE_VALUE (val); |
| if (TREE_CODE (val) == SSA_NAME |
| || is_gimple_reg (val)) |
| return val; |
| } |
| } |
| ptr->flags &= ~SSA_OP_DEF; |
| } |
| |
| ptr->done = true; |
| return NULL_TREE; |
| } |
| |
| |
| /* This functions clears the iterator PTR, and marks it done. This is normally |
| used to prevent warnings in the compile about might be uninitialized |
| components. */ |
| |
| static inline void |
| clear_and_done_ssa_iter (ssa_op_iter *ptr) |
| { |
| ptr->i = 0; |
| ptr->numops = 0; |
| ptr->uses = NULL; |
| ptr->iter_type = ssa_op_iter_none; |
| ptr->stmt = NULL; |
| ptr->done = true; |
| ptr->flags = 0; |
| } |
| |
| /* Initialize the iterator PTR to the virtual defs in STMT. */ |
| static inline void |
| op_iter_init (ssa_op_iter *ptr, gimple *stmt, int flags) |
| { |
| /* PHI nodes require a different iterator initialization path. We |
| do not support iterating over virtual defs or uses without |
| iterating over defs or uses at the same time. */ |
| gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI |
| && (!(flags & SSA_OP_VDEF) || (flags & SSA_OP_DEF)) |
| && (!(flags & SSA_OP_VUSE) || (flags & SSA_OP_USE))); |
| ptr->numops = 0; |
| if (flags & (SSA_OP_DEF | SSA_OP_VDEF)) |
| { |
| switch (gimple_code (stmt)) |
| { |
| case GIMPLE_ASSIGN: |
| case GIMPLE_CALL: |
| ptr->numops = 1; |
| break; |
| case GIMPLE_ASM: |
| ptr->numops = gimple_asm_noutputs (as_a <gasm *> (stmt)); |
| break; |
| case GIMPLE_TRANSACTION: |
| ptr->numops = 0; |
| flags &= ~SSA_OP_DEF; |
| break; |
| default: |
| ptr->numops = 0; |
| flags &= ~(SSA_OP_DEF | SSA_OP_VDEF); |
| break; |
| } |
| } |
| ptr->uses = (flags & (SSA_OP_USE|SSA_OP_VUSE)) ? gimple_use_ops (stmt) : NULL; |
| if (!(flags & SSA_OP_VUSE) |
| && ptr->uses |
| && gimple_vuse (stmt) != NULL_TREE) |
| ptr->uses = ptr->uses->next; |
| ptr->done = false; |
| ptr->i = 0; |
| |
| ptr->stmt = stmt; |
| ptr->flags = flags; |
| } |
| |
| /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return |
| the first use. */ |
| static inline use_operand_p |
| op_iter_init_use (ssa_op_iter *ptr, gimple *stmt, int flags) |
| { |
| gcc_checking_assert ((flags & SSA_OP_ALL_DEFS) == 0 |
| && (flags & SSA_OP_USE)); |
| op_iter_init (ptr, stmt, flags); |
| ptr->iter_type = ssa_op_iter_use; |
| return op_iter_next_use (ptr); |
| } |
| |
| /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return |
| the first def. */ |
| static inline def_operand_p |
| op_iter_init_def (ssa_op_iter *ptr, gimple *stmt, int flags) |
| { |
| gcc_checking_assert ((flags & SSA_OP_ALL_USES) == 0 |
| && (flags & SSA_OP_DEF)); |
| op_iter_init (ptr, stmt, flags); |
| ptr->iter_type = ssa_op_iter_def; |
| return op_iter_next_def (ptr); |
| } |
| |
| /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return |
| the first operand as a tree. */ |
| static inline tree |
| op_iter_init_tree (ssa_op_iter *ptr, gimple *stmt, int flags) |
| { |
| op_iter_init (ptr, stmt, flags); |
| ptr->iter_type = ssa_op_iter_tree; |
| return op_iter_next_tree (ptr); |
| } |
| |
| |
| /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
| return NULL. */ |
| static inline tree |
| single_ssa_tree_operand (gimple *stmt, int flags) |
| { |
| tree var; |
| ssa_op_iter iter; |
| |
| var = op_iter_init_tree (&iter, stmt, flags); |
| if (op_iter_done (&iter)) |
| return NULL_TREE; |
| op_iter_next_tree (&iter); |
| if (op_iter_done (&iter)) |
| return var; |
| return NULL_TREE; |
| } |
| |
| |
| /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
| return NULL. */ |
| static inline use_operand_p |
| single_ssa_use_operand (gimple *stmt, int flags) |
| { |
| use_operand_p var; |
| ssa_op_iter iter; |
| |
| var = op_iter_init_use (&iter, stmt, flags); |
| if (op_iter_done (&iter)) |
| return NULL_USE_OPERAND_P; |
| op_iter_next_use (&iter); |
| if (op_iter_done (&iter)) |
| return var; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| /* Return the single virtual use operand in STMT if present. Otherwise |
| return NULL. */ |
| static inline use_operand_p |
| ssa_vuse_operand (gimple *stmt) |
| { |
| if (! gimple_vuse (stmt)) |
| return NULL_USE_OPERAND_P; |
| return USE_OP_PTR (gimple_use_ops (stmt)); |
| } |
| |
| |
| /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
| return NULL. */ |
| static inline def_operand_p |
| single_ssa_def_operand (gimple *stmt, int flags) |
| { |
| def_operand_p var; |
| ssa_op_iter iter; |
| |
| var = op_iter_init_def (&iter, stmt, flags); |
| if (op_iter_done (&iter)) |
| return NULL_DEF_OPERAND_P; |
| op_iter_next_def (&iter); |
| if (op_iter_done (&iter)) |
| return var; |
| return NULL_DEF_OPERAND_P; |
| } |
| |
| |
| /* Return true if there are zero operands in STMT matching the type |
| given in FLAGS. */ |
| static inline bool |
| zero_ssa_operands (gimple *stmt, int flags) |
| { |
| ssa_op_iter iter; |
| |
| op_iter_init_tree (&iter, stmt, flags); |
| return op_iter_done (&iter); |
| } |
| |
| |
| /* Return the number of operands matching FLAGS in STMT. */ |
| static inline int |
| num_ssa_operands (gimple *stmt, int flags) |
| { |
| ssa_op_iter iter; |
| tree t; |
| int num = 0; |
| |
| gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI); |
| FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags) |
| num++; |
| return num; |
| } |
| |
| /* If there is a single DEF in the PHI node which matches FLAG, return it. |
| Otherwise return NULL_DEF_OPERAND_P. */ |
| static inline tree |
| single_phi_def (gphi *stmt, int flags) |
| { |
| tree def = PHI_RESULT (stmt); |
| if ((flags & SSA_OP_DEF) && is_gimple_reg (def)) |
| return def; |
| if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def)) |
| return def; |
| return NULL_TREE; |
| } |
| |
| /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should |
| be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */ |
| static inline use_operand_p |
| op_iter_init_phiuse (ssa_op_iter *ptr, gphi *phi, int flags) |
| { |
| tree phi_def = gimple_phi_result (phi); |
| int comp; |
| |
| clear_and_done_ssa_iter (ptr); |
| ptr->done = false; |
| |
| gcc_checking_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0); |
| |
| comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); |
| |
| /* If the PHI node doesn't the operand type we care about, we're done. */ |
| if ((flags & comp) == 0) |
| { |
| ptr->done = true; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| ptr->stmt = phi; |
| ptr->numops = gimple_phi_num_args (phi); |
| ptr->iter_type = ssa_op_iter_use; |
| ptr->flags = flags; |
| return op_iter_next_use (ptr); |
| } |
| |
| |
| /* Start an iterator for a PHI definition. */ |
| |
| static inline def_operand_p |
| op_iter_init_phidef (ssa_op_iter *ptr, gphi *phi, int flags) |
| { |
| tree phi_def = PHI_RESULT (phi); |
| int comp; |
| |
| clear_and_done_ssa_iter (ptr); |
| ptr->done = false; |
| |
| gcc_checking_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0); |
| |
| comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS); |
| |
| /* If the PHI node doesn't have the operand type we care about, |
| we're done. */ |
| if ((flags & comp) == 0) |
| { |
| ptr->done = true; |
| return NULL_DEF_OPERAND_P; |
| } |
| |
| ptr->iter_type = ssa_op_iter_def; |
| /* The first call to op_iter_next_def will terminate the iterator since |
| all the fields are NULL. Simply return the result here as the first and |
| therefore only result. */ |
| return PHI_RESULT_PTR (phi); |
| } |
| |
| /* Return true is IMM has reached the end of the immediate use stmt list. */ |
| |
| static inline bool |
| end_imm_use_stmt_p (const imm_use_iterator *imm) |
| { |
| return (imm->imm_use == imm->end_p); |
| } |
| |
| /* Finished the traverse of an immediate use stmt list IMM by removing the |
| placeholder node from the list. */ |
| |
| static inline void |
| end_imm_use_stmt_traverse (imm_use_iterator *imm) |
| { |
| delink_imm_use (&(imm->iter_node)); |
| } |
| |
| /* Immediate use traversal of uses within a stmt require that all the |
| uses on a stmt be sequentially listed. This routine is used to build up |
| this sequential list by adding USE_P to the end of the current list |
| currently delimited by HEAD and LAST_P. The new LAST_P value is |
| returned. */ |
| |
| static inline use_operand_p |
| move_use_after_head (use_operand_p use_p, use_operand_p head, |
| use_operand_p last_p) |
| { |
| gcc_checking_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head)); |
| /* Skip head when we find it. */ |
| if (use_p != head) |
| { |
| /* If use_p is already linked in after last_p, continue. */ |
| if (last_p->next == use_p) |
| last_p = use_p; |
| else |
| { |
| /* Delink from current location, and link in at last_p. */ |
| delink_imm_use (use_p); |
| link_imm_use_to_list (use_p, last_p); |
| last_p = use_p; |
| } |
| } |
| return last_p; |
| } |
| |
| |
| /* This routine will relink all uses with the same stmt as HEAD into the list |
| immediately following HEAD for iterator IMM. */ |
| |
| static inline void |
| link_use_stmts_after (use_operand_p head, imm_use_iterator *imm) |
| { |
| use_operand_p use_p; |
| use_operand_p last_p = head; |
| gimple *head_stmt = USE_STMT (head); |
| tree use = USE_FROM_PTR (head); |
| ssa_op_iter op_iter; |
| int flag; |
| |
| /* Only look at virtual or real uses, depending on the type of HEAD. */ |
| flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); |
| |
| if (gphi *phi = dyn_cast <gphi *> (head_stmt)) |
| { |
| FOR_EACH_PHI_ARG (use_p, phi, op_iter, flag) |
| if (USE_FROM_PTR (use_p) == use) |
| last_p = move_use_after_head (use_p, head, last_p); |
| } |
| else |
| { |
| if (flag == SSA_OP_USE) |
| { |
| FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag) |
| if (USE_FROM_PTR (use_p) == use) |
| last_p = move_use_after_head (use_p, head, last_p); |
| } |
| else if ((use_p = gimple_vuse_op (head_stmt)) != NULL_USE_OPERAND_P) |
| { |
| if (USE_FROM_PTR (use_p) == use) |
| last_p = move_use_after_head (use_p, head, last_p); |
| } |
| } |
| /* Link iter node in after last_p. */ |
| if (imm->iter_node.prev != NULL) |
| delink_imm_use (&imm->iter_node); |
| link_imm_use_to_list (&(imm->iter_node), last_p); |
| } |
| |
| /* Initialize IMM to traverse over uses of VAR. Return the first statement. */ |
| static inline gimple * |
| first_imm_use_stmt (imm_use_iterator *imm, tree var) |
| { |
| imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); |
| imm->imm_use = imm->end_p->next; |
| imm->next_imm_name = NULL_USE_OPERAND_P; |
| |
| /* iter_node is used as a marker within the immediate use list to indicate |
| where the end of the current stmt's uses are. Initialize it to NULL |
| stmt and use, which indicates a marker node. */ |
| imm->iter_node.prev = NULL_USE_OPERAND_P; |
| imm->iter_node.next = NULL_USE_OPERAND_P; |
| imm->iter_node.loc.stmt = NULL; |
| imm->iter_node.use = NULL; |
| |
| if (end_imm_use_stmt_p (imm)) |
| return NULL; |
| |
| link_use_stmts_after (imm->imm_use, imm); |
| |
| return USE_STMT (imm->imm_use); |
| } |
| |
| /* Bump IMM to the next stmt which has a use of var. */ |
| |
| static inline gimple * |
| next_imm_use_stmt (imm_use_iterator *imm) |
| { |
| imm->imm_use = imm->iter_node.next; |
| if (end_imm_use_stmt_p (imm)) |
| { |
| if (imm->iter_node.prev != NULL) |
| delink_imm_use (&imm->iter_node); |
| return NULL; |
| } |
| |
| link_use_stmts_after (imm->imm_use, imm); |
| return USE_STMT (imm->imm_use); |
| } |
| |
| /* This routine will return the first use on the stmt IMM currently refers |
| to. */ |
| |
| static inline use_operand_p |
| first_imm_use_on_stmt (imm_use_iterator *imm) |
| { |
| imm->next_imm_name = imm->imm_use->next; |
| return imm->imm_use; |
| } |
| |
| /* Return TRUE if the last use on the stmt IMM refers to has been visited. */ |
| |
| static inline bool |
| end_imm_use_on_stmt_p (const imm_use_iterator *imm) |
| { |
| return (imm->imm_use == &(imm->iter_node)); |
| } |
| |
| /* Bump to the next use on the stmt IMM refers to, return NULL if done. */ |
| |
| static inline use_operand_p |
| next_imm_use_on_stmt (imm_use_iterator *imm) |
| { |
| imm->imm_use = imm->next_imm_name; |
| if (end_imm_use_on_stmt_p (imm)) |
| return NULL_USE_OPERAND_P; |
| else |
| { |
| imm->next_imm_name = imm->imm_use->next; |
| return imm->imm_use; |
| } |
| } |
| |
| /* Delink all immediate_use information for STMT. */ |
| static inline void |
| delink_stmt_imm_use (gimple *stmt) |
| { |
| ssa_op_iter iter; |
| use_operand_p use_p; |
| |
| if (ssa_operands_active (cfun)) |
| FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_ALL_USES) |
| delink_imm_use (use_p); |
| } |
| |
| #endif /* GCC_TREE_SSA_ITERATORS_H */ |