| /* Support routines for value ranges. |
| Copyright (C) 2019-2021 Free Software Foundation, Inc. |
| Major hacks by Aldy Hernandez <aldyh@redhat.com> and |
| Andrew MacLeod <amacleod@redhat.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "ssa.h" |
| #include "tree-pretty-print.h" |
| #include "fold-const.h" |
| #include "gimple-range.h" |
| |
| // Here we copy between any two irange's. The ranges can be legacy or |
| // multi-ranges, and copying between any combination works correctly. |
| |
| irange & |
| irange::operator= (const irange &src) |
| { |
| if (legacy_mode_p ()) |
| { |
| copy_to_legacy (src); |
| return *this; |
| } |
| if (src.legacy_mode_p ()) |
| { |
| copy_legacy_to_multi_range (src); |
| return *this; |
| } |
| |
| unsigned x; |
| unsigned lim = src.m_num_ranges; |
| if (lim > m_max_ranges) |
| lim = m_max_ranges; |
| |
| for (x = 0; x < lim * 2; ++x) |
| m_base[x] = src.m_base[x]; |
| |
| // If the range didn't fit, the last range should cover the rest. |
| if (lim != src.m_num_ranges) |
| m_base[x - 1] = src.m_base[src.m_num_ranges * 2 - 1]; |
| |
| m_num_ranges = lim; |
| m_kind = src.m_kind; |
| return *this; |
| } |
| |
| // Return TRUE if range is a multi-range that can be represented as a |
| // VR_ANTI_RANGE. |
| |
| bool |
| irange::maybe_anti_range () const |
| { |
| tree ttype = type (); |
| unsigned int precision = TYPE_PRECISION (ttype); |
| signop sign = TYPE_SIGN (ttype); |
| return (num_pairs () > 1 |
| && precision > 1 |
| && lower_bound () == wi::min_value (precision, sign) |
| && upper_bound () == wi::max_value (precision, sign)); |
| } |
| |
| void |
| irange::copy_legacy_to_multi_range (const irange &src) |
| { |
| gcc_checking_assert (src.legacy_mode_p ()); |
| gcc_checking_assert (!legacy_mode_p ()); |
| if (src.undefined_p ()) |
| set_undefined (); |
| else if (src.varying_p ()) |
| set_varying (src.type ()); |
| else |
| { |
| if (range_has_numeric_bounds_p (&src)) |
| set (src.min (), src.max (), src.kind ()); |
| else |
| { |
| value_range cst (src); |
| cst.normalize_symbolics (); |
| gcc_checking_assert (cst.varying_p () || cst.kind () == VR_RANGE); |
| set (cst.min (), cst.max ()); |
| } |
| } |
| } |
| |
| // Copy any type of irange into a legacy. |
| |
| void |
| irange::copy_to_legacy (const irange &src) |
| { |
| gcc_checking_assert (legacy_mode_p ()); |
| // Handle legacy to legacy and other things that are easy to copy. |
| if (src.legacy_mode_p () || src.varying_p () || src.undefined_p ()) |
| { |
| m_num_ranges = src.m_num_ranges; |
| m_base[0] = src.m_base[0]; |
| m_base[1] = src.m_base[1]; |
| m_kind = src.m_kind; |
| return; |
| } |
| // Copy multi-range to legacy. |
| if (src.maybe_anti_range ()) |
| { |
| int_range<3> r (src); |
| r.invert (); |
| // Use tree variants to save on tree -> wi -> tree conversions. |
| set (r.tree_lower_bound (0), r.tree_upper_bound (0), VR_ANTI_RANGE); |
| } |
| else |
| set (src.tree_lower_bound (), src.tree_upper_bound ()); |
| } |
| |
| // Swap MIN/MAX if they are out of order and adjust KIND appropriately. |
| |
| static void |
| swap_out_of_order_endpoints (tree &min, tree &max, value_range_kind &kind) |
| { |
| gcc_checking_assert (kind != VR_UNDEFINED); |
| if (kind == VR_VARYING) |
| return; |
| /* Wrong order for min and max, to swap them and the VR type we need |
| to adjust them. */ |
| if (tree_int_cst_lt (max, min)) |
| { |
| tree one, tmp; |
| |
| /* For one bit precision if max < min, then the swapped |
| range covers all values, so for VR_RANGE it is varying and |
| for VR_ANTI_RANGE empty range, so drop to varying as well. */ |
| if (TYPE_PRECISION (TREE_TYPE (min)) == 1) |
| { |
| kind = VR_VARYING; |
| return; |
| } |
| |
| one = build_int_cst (TREE_TYPE (min), 1); |
| tmp = int_const_binop (PLUS_EXPR, max, one); |
| max = int_const_binop (MINUS_EXPR, min, one); |
| min = tmp; |
| |
| /* There's one corner case, if we had [C+1, C] before we now have |
| that again. But this represents an empty value range, so drop |
| to varying in this case. */ |
| if (tree_int_cst_lt (max, min)) |
| { |
| kind = VR_VARYING; |
| return; |
| } |
| kind = kind == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE; |
| } |
| } |
| |
| void |
| irange::irange_set (tree min, tree max) |
| { |
| gcc_checking_assert (!POLY_INT_CST_P (min)); |
| gcc_checking_assert (!POLY_INT_CST_P (max)); |
| |
| m_base[0] = min; |
| m_base[1] = max; |
| m_num_ranges = 1; |
| m_kind = VR_RANGE; |
| normalize_kind (); |
| |
| if (flag_checking) |
| verify_range (); |
| } |
| |
| void |
| irange::irange_set_1bit_anti_range (tree min, tree max) |
| { |
| tree type = TREE_TYPE (min); |
| gcc_checking_assert (TYPE_PRECISION (type) == 1); |
| |
| if (operand_equal_p (min, max)) |
| { |
| // Since these are 1-bit quantities, they can only be [MIN,MIN] |
| // or [MAX,MAX]. |
| if (vrp_val_is_min (min)) |
| min = max = vrp_val_max (type); |
| else |
| min = max = vrp_val_min (type); |
| set (min, max); |
| } |
| else |
| { |
| // The only alternative is [MIN,MAX], which is the empty range. |
| gcc_checking_assert (vrp_val_is_min (min)); |
| gcc_checking_assert (vrp_val_is_max (max)); |
| set_undefined (); |
| } |
| if (flag_checking) |
| verify_range (); |
| } |
| |
| void |
| irange::irange_set_anti_range (tree min, tree max) |
| { |
| gcc_checking_assert (!POLY_INT_CST_P (min)); |
| gcc_checking_assert (!POLY_INT_CST_P (max)); |
| |
| if (TYPE_PRECISION (TREE_TYPE (min)) == 1) |
| { |
| irange_set_1bit_anti_range (min, max); |
| return; |
| } |
| |
| // set an anti-range |
| tree type = TREE_TYPE (min); |
| signop sign = TYPE_SIGN (type); |
| int_range<2> type_range (type); |
| // Calculate INVERSE([I,J]) as [-MIN, I-1][J+1, +MAX]. |
| m_num_ranges = 0; |
| wi::overflow_type ovf; |
| |
| wide_int w_min = wi::to_wide (min); |
| if (wi::ne_p (w_min, type_range.lower_bound ())) |
| { |
| wide_int lim1 = wi::sub (w_min, 1, sign, &ovf); |
| gcc_checking_assert (ovf != wi::OVF_OVERFLOW); |
| m_base[0] = type_range.tree_lower_bound (0); |
| m_base[1] = wide_int_to_tree (type, lim1); |
| m_num_ranges = 1; |
| } |
| wide_int w_max = wi::to_wide (max); |
| if (wi::ne_p (w_max, type_range.upper_bound ())) |
| { |
| wide_int lim2 = wi::add (w_max, 1, sign, &ovf); |
| gcc_checking_assert (ovf != wi::OVF_OVERFLOW); |
| m_base[m_num_ranges * 2] = wide_int_to_tree (type, lim2); |
| m_base[m_num_ranges * 2 + 1] = type_range.tree_upper_bound (0); |
| ++m_num_ranges; |
| } |
| |
| m_kind = VR_RANGE; |
| normalize_kind (); |
| |
| if (flag_checking) |
| verify_range (); |
| } |
| |
| /* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}. |
| This means adjusting VRTYPE, MIN and MAX representing the case of a |
| wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX] |
| as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges. |
| In corner cases where MAX+1 or MIN-1 wraps this will fall back |
| to varying. |
| This routine exists to ease canonicalization in the case where we |
| extract ranges from var + CST op limit. */ |
| |
| void |
| irange::set (tree min, tree max, value_range_kind kind) |
| { |
| if (!legacy_mode_p ()) |
| { |
| if (kind == VR_RANGE) |
| irange_set (min, max); |
| else |
| { |
| gcc_checking_assert (kind == VR_ANTI_RANGE); |
| irange_set_anti_range (min, max); |
| } |
| return; |
| } |
| if (kind == VR_UNDEFINED) |
| { |
| set_undefined (); |
| return; |
| } |
| |
| if (kind == VR_VARYING |
| || POLY_INT_CST_P (min) |
| || POLY_INT_CST_P (max)) |
| { |
| set_varying (TREE_TYPE (min)); |
| return; |
| } |
| |
| // Nothing to canonicalize for symbolic ranges. |
| if (TREE_CODE (min) != INTEGER_CST |
| || TREE_CODE (max) != INTEGER_CST) |
| { |
| m_kind = kind; |
| m_base[0] = min; |
| m_base[1] = max; |
| m_num_ranges = 1; |
| return; |
| } |
| |
| swap_out_of_order_endpoints (min, max, kind); |
| if (kind == VR_VARYING) |
| { |
| set_varying (TREE_TYPE (min)); |
| return; |
| } |
| |
| // Anti-ranges that can be represented as ranges should be so. |
| if (kind == VR_ANTI_RANGE) |
| { |
| bool is_min = vrp_val_is_min (min); |
| bool is_max = vrp_val_is_max (max); |
| |
| if (is_min && is_max) |
| { |
| // Fall through. This will either be normalized as |
| // VR_UNDEFINED if the anti-range spans the entire |
| // precision, or it will remain an VR_ANTI_RANGE in the case |
| // of an -fstrict-enum where [MIN,MAX] is less than the span |
| // of underlying precision. |
| } |
| else if (TYPE_PRECISION (TREE_TYPE (min)) == 1) |
| { |
| irange_set_1bit_anti_range (min, max); |
| return; |
| } |
| else if (is_min) |
| { |
| tree one = build_int_cst (TREE_TYPE (max), 1); |
| min = int_const_binop (PLUS_EXPR, max, one); |
| max = vrp_val_max (TREE_TYPE (max)); |
| kind = VR_RANGE; |
| } |
| else if (is_max) |
| { |
| tree one = build_int_cst (TREE_TYPE (min), 1); |
| max = int_const_binop (MINUS_EXPR, min, one); |
| min = vrp_val_min (TREE_TYPE (min)); |
| kind = VR_RANGE; |
| } |
| } |
| |
| m_kind = kind; |
| m_base[0] = min; |
| m_base[1] = max; |
| m_num_ranges = 1; |
| normalize_kind (); |
| if (flag_checking) |
| verify_range (); |
| } |
| |
| // Check the validity of the range. |
| |
| void |
| irange::verify_range () |
| { |
| if (m_kind == VR_UNDEFINED) |
| { |
| gcc_checking_assert (m_num_ranges == 0); |
| return; |
| } |
| if (m_kind == VR_VARYING) |
| { |
| gcc_checking_assert (m_num_ranges == 1); |
| gcc_checking_assert (varying_compatible_p ()); |
| return; |
| } |
| if (!legacy_mode_p ()) |
| { |
| gcc_checking_assert (m_num_ranges != 0); |
| gcc_checking_assert (!varying_compatible_p ()); |
| for (unsigned i = 0; i < m_num_ranges; ++i) |
| { |
| tree lb = tree_lower_bound (i); |
| tree ub = tree_upper_bound (i); |
| int c = compare_values (lb, ub); |
| gcc_checking_assert (c == 0 || c == -1); |
| } |
| return; |
| } |
| if (m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE) |
| { |
| gcc_checking_assert (m_num_ranges == 1); |
| int cmp = compare_values (tree_lower_bound (0), tree_upper_bound (0)); |
| gcc_checking_assert (cmp == 0 || cmp == -1 || cmp == -2); |
| } |
| } |
| |
| // Return the lower bound for a sub-range. PAIR is the sub-range in |
| // question. |
| |
| wide_int |
| irange::legacy_lower_bound (unsigned pair) const |
| { |
| gcc_checking_assert (legacy_mode_p ()); |
| if (symbolic_p ()) |
| { |
| value_range numeric_range (*this); |
| numeric_range.normalize_symbolics (); |
| return numeric_range.legacy_lower_bound (pair); |
| } |
| gcc_checking_assert (m_num_ranges > 0); |
| gcc_checking_assert (pair + 1 <= num_pairs ()); |
| if (m_kind == VR_ANTI_RANGE) |
| { |
| tree typ = type (), t; |
| if (pair == 1 || vrp_val_is_min (min ())) |
| t = wide_int_to_tree (typ, wi::to_wide (max ()) + 1); |
| else |
| t = vrp_val_min (typ); |
| return wi::to_wide (t); |
| } |
| return wi::to_wide (tree_lower_bound (pair)); |
| } |
| |
| // Return the upper bound for a sub-range. PAIR is the sub-range in |
| // question. |
| |
| wide_int |
| irange::legacy_upper_bound (unsigned pair) const |
| { |
| gcc_checking_assert (legacy_mode_p ()); |
| if (symbolic_p ()) |
| { |
| value_range numeric_range (*this); |
| numeric_range.normalize_symbolics (); |
| return numeric_range.legacy_upper_bound (pair); |
| } |
| gcc_checking_assert (m_num_ranges > 0); |
| gcc_checking_assert (pair + 1 <= num_pairs ()); |
| if (m_kind == VR_ANTI_RANGE) |
| { |
| tree typ = type (), t; |
| if (pair == 1 || vrp_val_is_min (min ())) |
| t = vrp_val_max (typ); |
| else |
| t = wide_int_to_tree (typ, wi::to_wide (min ()) - 1); |
| return wi::to_wide (t); |
| } |
| return wi::to_wide (tree_upper_bound (pair)); |
| } |
| |
| bool |
| irange::legacy_equal_p (const irange &other) const |
| { |
| gcc_checking_assert (legacy_mode_p () && other.legacy_mode_p ()); |
| |
| if (m_kind != other.m_kind) |
| return false; |
| if (m_kind == VR_UNDEFINED) |
| return true; |
| if (m_kind == VR_VARYING) |
| return range_compatible_p (type (), other.type ()); |
| return (vrp_operand_equal_p (tree_lower_bound (0), |
| other.tree_lower_bound (0)) |
| && vrp_operand_equal_p (tree_upper_bound (0), |
| other.tree_upper_bound (0))); |
| } |
| |
| bool |
| irange::equal_p (const irange &other) const |
| { |
| if (legacy_mode_p ()) |
| { |
| if (other.legacy_mode_p ()) |
| return legacy_equal_p (other); |
| value_range tmp (other); |
| return legacy_equal_p (tmp); |
| } |
| if (other.legacy_mode_p ()) |
| { |
| value_range tmp2 (*this); |
| return tmp2.legacy_equal_p (other); |
| } |
| |
| if (m_num_ranges != other.m_num_ranges) |
| return false; |
| |
| for (unsigned i = 0; i < m_num_ranges; ++i) |
| { |
| tree lb = tree_lower_bound (i); |
| tree ub = tree_upper_bound (i); |
| tree lb_other = other.tree_lower_bound (i); |
| tree ub_other = other.tree_upper_bound (i); |
| if (!operand_equal_p (lb, lb_other, 0) |
| || !operand_equal_p (ub, ub_other, 0)) |
| return false; |
| } |
| return true; |
| } |
| |
| /* Return TRUE if this is a symbolic range. */ |
| |
| bool |
| irange::symbolic_p () const |
| { |
| return (m_num_ranges > 0 |
| && (!is_gimple_min_invariant (min ()) |
| || !is_gimple_min_invariant (max ()))); |
| } |
| |
| /* Return TRUE if this is a constant range. */ |
| |
| bool |
| irange::constant_p () const |
| { |
| return (m_num_ranges > 0 |
| && TREE_CODE (min ()) == INTEGER_CST |
| && TREE_CODE (max ()) == INTEGER_CST); |
| } |
| |
| /* If range is a singleton, place it in RESULT and return TRUE. |
| Note: A singleton can be any gimple invariant, not just constants. |
| So, [&x, &x] counts as a singleton. */ |
| |
| bool |
| irange::singleton_p (tree *result) const |
| { |
| if (!legacy_mode_p ()) |
| { |
| if (num_pairs () == 1 && (wi::to_wide (tree_lower_bound ()) |
| == wi::to_wide (tree_upper_bound ()))) |
| { |
| if (result) |
| *result = tree_lower_bound (); |
| return true; |
| } |
| return false; |
| } |
| if (m_kind == VR_ANTI_RANGE) |
| { |
| if (nonzero_p ()) |
| { |
| if (TYPE_PRECISION (type ()) == 1) |
| { |
| if (result) |
| *result = max (); |
| return true; |
| } |
| return false; |
| } |
| if (num_pairs () == 1) |
| { |
| value_range vr0, vr1; |
| ranges_from_anti_range ((const value_range *) this, &vr0, &vr1); |
| return vr0.singleton_p (result); |
| } |
| } |
| // Catches non-numeric extremes as well. |
| if (m_kind == VR_RANGE |
| && vrp_operand_equal_p (min (), max ()) |
| && is_gimple_min_invariant (min ())) |
| { |
| if (result) |
| *result = min (); |
| return true; |
| } |
| return false; |
| } |
| |
| /* Return 1 if VAL is inside value range. |
| 0 if VAL is not inside value range. |
| -2 if we cannot tell either way. |
| |
| Benchmark compile/20001226-1.c compilation time after changing this |
| function. */ |
| |
| int |
| irange::value_inside_range (tree val) const |
| { |
| if (varying_p ()) |
| return 1; |
| |
| if (undefined_p ()) |
| return 0; |
| |
| if (!legacy_mode_p () && TREE_CODE (val) == INTEGER_CST) |
| return contains_p (val); |
| |
| int cmp1 = operand_less_p (val, min ()); |
| if (cmp1 == -2) |
| return -2; |
| if (cmp1 == 1) |
| return m_kind != VR_RANGE; |
| |
| int cmp2 = operand_less_p (max (), val); |
| if (cmp2 == -2) |
| return -2; |
| |
| if (m_kind == VR_RANGE) |
| return !cmp2; |
| else |
| return !!cmp2; |
| } |
| |
| /* Return TRUE if it is possible that range contains VAL. */ |
| |
| bool |
| irange::may_contain_p (tree val) const |
| { |
| return value_inside_range (val) != 0; |
| } |
| |
| /* Return TRUE if range contains INTEGER_CST. */ |
| /* Return 1 if VAL is inside value range. |
| 0 if VAL is not inside value range. |
| |
| Benchmark compile/20001226-1.c compilation time after changing this |
| function. */ |
| |
| |
| bool |
| irange::contains_p (tree cst) const |
| { |
| if (undefined_p ()) |
| return false; |
| |
| if (legacy_mode_p ()) |
| { |
| gcc_checking_assert (TREE_CODE (cst) == INTEGER_CST); |
| if (symbolic_p ()) |
| { |
| value_range numeric_range (*this); |
| numeric_range.normalize_symbolics (); |
| return numeric_range.contains_p (cst); |
| } |
| return value_inside_range (cst) == 1; |
| } |
| |
| gcc_checking_assert (TREE_CODE (cst) == INTEGER_CST); |
| signop sign = TYPE_SIGN (TREE_TYPE (cst)); |
| wide_int v = wi::to_wide (cst); |
| for (unsigned r = 0; r < m_num_ranges; ++r) |
| { |
| if (wi::lt_p (v, lower_bound (r), sign)) |
| return false; |
| if (wi::le_p (v, upper_bound (r), sign)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| /* Normalize addresses into constants. */ |
| |
| void |
| irange::normalize_addresses () |
| { |
| if (undefined_p ()) |
| return; |
| |
| if (!POINTER_TYPE_P (type ()) || range_has_numeric_bounds_p (this)) |
| return; |
| |
| if (!range_includes_zero_p (this)) |
| { |
| gcc_checking_assert (TREE_CODE (min ()) == ADDR_EXPR |
| || TREE_CODE (max ()) == ADDR_EXPR); |
| set_nonzero (type ()); |
| return; |
| } |
| set_varying (type ()); |
| } |
| |
| /* Normalize symbolics and addresses into constants. */ |
| |
| void |
| irange::normalize_symbolics () |
| { |
| if (varying_p () || undefined_p ()) |
| return; |
| |
| tree ttype = type (); |
| bool min_symbolic = !is_gimple_min_invariant (min ()); |
| bool max_symbolic = !is_gimple_min_invariant (max ()); |
| if (!min_symbolic && !max_symbolic) |
| { |
| normalize_addresses (); |
| return; |
| } |
| |
| // [SYM, SYM] -> VARYING |
| if (min_symbolic && max_symbolic) |
| { |
| set_varying (ttype); |
| return; |
| } |
| if (kind () == VR_RANGE) |
| { |
| // [SYM, NUM] -> [-MIN, NUM] |
| if (min_symbolic) |
| { |
| set (vrp_val_min (ttype), max ()); |
| return; |
| } |
| // [NUM, SYM] -> [NUM, +MAX] |
| set (min (), vrp_val_max (ttype)); |
| return; |
| } |
| gcc_checking_assert (kind () == VR_ANTI_RANGE); |
| // ~[SYM, NUM] -> [NUM + 1, +MAX] |
| if (min_symbolic) |
| { |
| if (!vrp_val_is_max (max ())) |
| { |
| tree n = wide_int_to_tree (ttype, wi::to_wide (max ()) + 1); |
| set (n, vrp_val_max (ttype)); |
| return; |
| } |
| set_varying (ttype); |
| return; |
| } |
| // ~[NUM, SYM] -> [-MIN, NUM - 1] |
| if (!vrp_val_is_min (min ())) |
| { |
| tree n = wide_int_to_tree (ttype, wi::to_wide (min ()) - 1); |
| set (vrp_val_min (ttype), n); |
| return; |
| } |
| set_varying (ttype); |
| } |
| |
| /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and |
| { VR1TYPE, VR0MIN, VR0MAX } and store the result |
| in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest |
| possible such range. The resulting range is not canonicalized. */ |
| |
| static void |
| intersect_ranges (enum value_range_kind *vr0type, |
| tree *vr0min, tree *vr0max, |
| enum value_range_kind vr1type, |
| tree vr1min, tree vr1max) |
| { |
| bool mineq = vrp_operand_equal_p (*vr0min, vr1min); |
| bool maxeq = vrp_operand_equal_p (*vr0max, vr1max); |
| |
| /* [] is vr0, () is vr1 in the following classification comments. */ |
| if (mineq && maxeq) |
| { |
| /* [( )] */ |
| if (*vr0type == vr1type) |
| /* Nothing to do for equal ranges. */ |
| ; |
| else if ((*vr0type == VR_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| || (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_RANGE)) |
| { |
| /* For anti-range with range intersection the result is empty. */ |
| *vr0type = VR_UNDEFINED; |
| *vr0min = NULL_TREE; |
| *vr0max = NULL_TREE; |
| } |
| else |
| gcc_unreachable (); |
| } |
| else if (operand_less_p (*vr0max, vr1min) == 1 |
| || operand_less_p (vr1max, *vr0min) == 1) |
| { |
| /* [ ] ( ) or ( ) [ ] |
| If the ranges have an empty intersection, the result of the |
| intersect operation is the range for intersecting an |
| anti-range with a range or empty when intersecting two ranges. */ |
| if (*vr0type == VR_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| ; |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_RANGE) |
| { |
| *vr0type = vr1type; |
| *vr0min = vr1min; |
| *vr0max = vr1max; |
| } |
| else if (*vr0type == VR_RANGE |
| && vr1type == VR_RANGE) |
| { |
| *vr0type = VR_UNDEFINED; |
| *vr0min = NULL_TREE; |
| *vr0max = NULL_TREE; |
| } |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| { |
| /* If the anti-ranges are adjacent to each other merge them. */ |
| if (TREE_CODE (*vr0max) == INTEGER_CST |
| && TREE_CODE (vr1min) == INTEGER_CST |
| && operand_less_p (*vr0max, vr1min) == 1 |
| && integer_onep (int_const_binop (MINUS_EXPR, |
| vr1min, *vr0max))) |
| *vr0max = vr1max; |
| else if (TREE_CODE (vr1max) == INTEGER_CST |
| && TREE_CODE (*vr0min) == INTEGER_CST |
| && operand_less_p (vr1max, *vr0min) == 1 |
| && integer_onep (int_const_binop (MINUS_EXPR, |
| *vr0min, vr1max))) |
| *vr0min = vr1min; |
| /* Else arbitrarily take VR0. */ |
| } |
| } |
| else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1) |
| && (mineq || operand_less_p (*vr0min, vr1min) == 1)) |
| { |
| /* [ ( ) ] or [( ) ] or [ ( )] */ |
| if (*vr0type == VR_RANGE |
| && vr1type == VR_RANGE) |
| { |
| /* If both are ranges the result is the inner one. */ |
| *vr0type = vr1type; |
| *vr0min = vr1min; |
| *vr0max = vr1max; |
| } |
| else if (*vr0type == VR_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| { |
| /* Choose the right gap if the left one is empty. */ |
| if (mineq) |
| { |
| if (TREE_CODE (vr1max) != INTEGER_CST) |
| *vr0min = vr1max; |
| else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1 |
| && !TYPE_UNSIGNED (TREE_TYPE (vr1max))) |
| *vr0min |
| = int_const_binop (MINUS_EXPR, vr1max, |
| build_int_cst (TREE_TYPE (vr1max), -1)); |
| else |
| *vr0min |
| = int_const_binop (PLUS_EXPR, vr1max, |
| build_int_cst (TREE_TYPE (vr1max), 1)); |
| } |
| /* Choose the left gap if the right one is empty. */ |
| else if (maxeq) |
| { |
| if (TREE_CODE (vr1min) != INTEGER_CST) |
| *vr0max = vr1min; |
| else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1 |
| && !TYPE_UNSIGNED (TREE_TYPE (vr1min))) |
| *vr0max |
| = int_const_binop (PLUS_EXPR, vr1min, |
| build_int_cst (TREE_TYPE (vr1min), -1)); |
| else |
| *vr0max |
| = int_const_binop (MINUS_EXPR, vr1min, |
| build_int_cst (TREE_TYPE (vr1min), 1)); |
| } |
| /* Choose the anti-range if the range is effectively varying. */ |
| else if (vrp_val_is_min (*vr0min) |
| && vrp_val_is_max (*vr0max)) |
| { |
| *vr0type = vr1type; |
| *vr0min = vr1min; |
| *vr0max = vr1max; |
| } |
| /* Else choose the range. */ |
| } |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| /* If both are anti-ranges the result is the outer one. */ |
| ; |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_RANGE) |
| { |
| /* The intersection is empty. */ |
| *vr0type = VR_UNDEFINED; |
| *vr0min = NULL_TREE; |
| *vr0max = NULL_TREE; |
| } |
| else |
| gcc_unreachable (); |
| } |
| else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1) |
| && (mineq || operand_less_p (vr1min, *vr0min) == 1)) |
| { |
| /* ( [ ] ) or ([ ] ) or ( [ ]) */ |
| if (*vr0type == VR_RANGE |
| && vr1type == VR_RANGE) |
| /* Choose the inner range. */ |
| ; |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_RANGE) |
| { |
| /* Choose the right gap if the left is empty. */ |
| if (mineq) |
| { |
| *vr0type = VR_RANGE; |
| if (TREE_CODE (*vr0max) != INTEGER_CST) |
| *vr0min = *vr0max; |
| else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1 |
| && !TYPE_UNSIGNED (TREE_TYPE (*vr0max))) |
| *vr0min |
| = int_const_binop (MINUS_EXPR, *vr0max, |
| build_int_cst (TREE_TYPE (*vr0max), -1)); |
| else |
| *vr0min |
| = int_const_binop (PLUS_EXPR, *vr0max, |
| build_int_cst (TREE_TYPE (*vr0max), 1)); |
| *vr0max = vr1max; |
| } |
| /* Choose the left gap if the right is empty. */ |
| else if (maxeq) |
| { |
| *vr0type = VR_RANGE; |
| if (TREE_CODE (*vr0min) != INTEGER_CST) |
| *vr0max = *vr0min; |
| else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1 |
| && !TYPE_UNSIGNED (TREE_TYPE (*vr0min))) |
| *vr0max |
| = int_const_binop (PLUS_EXPR, *vr0min, |
| build_int_cst (TREE_TYPE (*vr0min), -1)); |
| else |
| *vr0max |
| = int_const_binop (MINUS_EXPR, *vr0min, |
| build_int_cst (TREE_TYPE (*vr0min), 1)); |
| *vr0min = vr1min; |
| } |
| /* Choose the anti-range if the range is effectively varying. */ |
| else if (vrp_val_is_min (vr1min) |
| && vrp_val_is_max (vr1max)) |
| ; |
| /* Choose the anti-range if it is ~[0,0], that range is special |
| enough to special case when vr1's range is relatively wide. |
| At least for types bigger than int - this covers pointers |
| and arguments to functions like ctz. */ |
| else if (*vr0min == *vr0max |
| && integer_zerop (*vr0min) |
| && ((TYPE_PRECISION (TREE_TYPE (*vr0min)) |
| >= TYPE_PRECISION (integer_type_node)) |
| || POINTER_TYPE_P (TREE_TYPE (*vr0min))) |
| && TREE_CODE (vr1max) == INTEGER_CST |
| && TREE_CODE (vr1min) == INTEGER_CST |
| && (wi::clz (wi::to_wide (vr1max) - wi::to_wide (vr1min)) |
| < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2)) |
| ; |
| /* Else choose the range. */ |
| else |
| { |
| *vr0type = vr1type; |
| *vr0min = vr1min; |
| *vr0max = vr1max; |
| } |
| } |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| { |
| /* If both are anti-ranges the result is the outer one. */ |
| *vr0type = vr1type; |
| *vr0min = vr1min; |
| *vr0max = vr1max; |
| } |
| else if (vr1type == VR_ANTI_RANGE |
| && *vr0type == VR_RANGE) |
| { |
| /* The intersection is empty. */ |
| *vr0type = VR_UNDEFINED; |
| *vr0min = NULL_TREE; |
| *vr0max = NULL_TREE; |
| } |
| else |
| gcc_unreachable (); |
| } |
| else if ((operand_less_p (vr1min, *vr0max) == 1 |
| || operand_equal_p (vr1min, *vr0max, 0)) |
| && operand_less_p (*vr0min, vr1min) == 1 |
| && operand_less_p (*vr0max, vr1max) == 1) |
| { |
| /* [ ( ] ) or [ ]( ) */ |
| if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| *vr0max = vr1max; |
| else if (*vr0type == VR_RANGE |
| && vr1type == VR_RANGE) |
| *vr0min = vr1min; |
| else if (*vr0type == VR_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| { |
| if (TREE_CODE (vr1min) == INTEGER_CST) |
| *vr0max = int_const_binop (MINUS_EXPR, vr1min, |
| build_int_cst (TREE_TYPE (vr1min), 1)); |
| else |
| *vr0max = vr1min; |
| } |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_RANGE) |
| { |
| *vr0type = VR_RANGE; |
| if (TREE_CODE (*vr0max) == INTEGER_CST) |
| *vr0min = int_const_binop (PLUS_EXPR, *vr0max, |
| build_int_cst (TREE_TYPE (*vr0max), 1)); |
| else |
| *vr0min = *vr0max; |
| *vr0max = vr1max; |
| } |
| else |
| gcc_unreachable (); |
| } |
| else if ((operand_less_p (*vr0min, vr1max) == 1 |
| || operand_equal_p (*vr0min, vr1max, 0)) |
| && operand_less_p (vr1min, *vr0min) == 1 |
| && operand_less_p (vr1max, *vr0max) == 1) |
| { |
| /* ( [ ) ] or ( )[ ] */ |
| if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| *vr0min = vr1min; |
| else if (*vr0type == VR_RANGE |
| && vr1type == VR_RANGE) |
| *vr0max = vr1max; |
| else if (*vr0type == VR_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| { |
| if (TREE_CODE (vr1max) == INTEGER_CST) |
| *vr0min = int_const_binop (PLUS_EXPR, vr1max, |
| build_int_cst (TREE_TYPE (vr1max), 1)); |
| else |
| *vr0min = vr1max; |
| } |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_RANGE) |
| { |
| *vr0type = VR_RANGE; |
| if (TREE_CODE (*vr0min) == INTEGER_CST) |
| *vr0max = int_const_binop (MINUS_EXPR, *vr0min, |
| build_int_cst (TREE_TYPE (*vr0min), 1)); |
| else |
| *vr0max = *vr0min; |
| *vr0min = vr1min; |
| } |
| else |
| gcc_unreachable (); |
| } |
| |
| /* If we know the intersection is empty, there's no need to |
| conservatively add anything else to the set. */ |
| if (*vr0type == VR_UNDEFINED) |
| return; |
| |
| /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as |
| result for the intersection. That's always a conservative |
| correct estimate unless VR1 is a constant singleton range |
| in which case we choose that. */ |
| if (vr1type == VR_RANGE |
| && is_gimple_min_invariant (vr1min) |
| && vrp_operand_equal_p (vr1min, vr1max)) |
| { |
| *vr0type = vr1type; |
| *vr0min = vr1min; |
| *vr0max = vr1max; |
| } |
| } |
| |
| /* Helper for the intersection operation for value ranges. Given two |
| ranges VR0 and VR1, set VR0 to the intersection of both ranges. |
| This may not be the smallest possible such range. */ |
| |
| void |
| irange::legacy_intersect (irange *vr0, const irange *vr1) |
| { |
| gcc_checking_assert (vr0->legacy_mode_p ()); |
| gcc_checking_assert (vr1->legacy_mode_p ()); |
| /* If either range is VR_VARYING the other one wins. */ |
| if (vr1->varying_p ()) |
| return; |
| if (vr0->varying_p ()) |
| { |
| vr0->set (vr1->min (), vr1->max (), vr1->kind ()); |
| return; |
| } |
| |
| /* When either range is VR_UNDEFINED the resulting range is |
| VR_UNDEFINED, too. */ |
| if (vr0->undefined_p ()) |
| return; |
| if (vr1->undefined_p ()) |
| { |
| vr0->set_undefined (); |
| return; |
| } |
| |
| value_range_kind vr0kind = vr0->kind (); |
| tree vr0min = vr0->min (); |
| tree vr0max = vr0->max (); |
| |
| intersect_ranges (&vr0kind, &vr0min, &vr0max, |
| vr1->kind (), vr1->min (), vr1->max ()); |
| |
| /* Make sure to canonicalize the result though as the inversion of a |
| VR_RANGE can still be a VR_RANGE. */ |
| if (vr0kind == VR_UNDEFINED) |
| vr0->set_undefined (); |
| else if (vr0kind == VR_VARYING) |
| { |
| /* If we failed, use the original VR0. */ |
| return; |
| } |
| else |
| vr0->set (vr0min, vr0max, vr0kind); |
| } |
| |
| /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and |
| { VR1TYPE, VR0MIN, VR0MAX } and store the result |
| in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest |
| possible such range. The resulting range is not canonicalized. */ |
| |
| static void |
| union_ranges (enum value_range_kind *vr0type, |
| tree *vr0min, tree *vr0max, |
| enum value_range_kind vr1type, |
| tree vr1min, tree vr1max) |
| { |
| int cmpmin = compare_values (*vr0min, vr1min); |
| int cmpmax = compare_values (*vr0max, vr1max); |
| bool mineq = cmpmin == 0; |
| bool maxeq = cmpmax == 0; |
| |
| /* [] is vr0, () is vr1 in the following classification comments. */ |
| if (mineq && maxeq) |
| { |
| /* [( )] */ |
| if (*vr0type == vr1type) |
| /* Nothing to do for equal ranges. */ |
| ; |
| else if ((*vr0type == VR_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| || (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_RANGE)) |
| { |
| /* For anti-range with range union the result is varying. */ |
| goto give_up; |
| } |
| else |
| gcc_unreachable (); |
| } |
| else if (operand_less_p (*vr0max, vr1min) == 1 |
| || operand_less_p (vr1max, *vr0min) == 1) |
| { |
| /* [ ] ( ) or ( ) [ ] |
| If the ranges have an empty intersection, result of the union |
| operation is the anti-range or if both are anti-ranges |
| it covers all. */ |
| if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| goto give_up; |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_RANGE) |
| ; |
| else if (*vr0type == VR_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| { |
| *vr0type = vr1type; |
| *vr0min = vr1min; |
| *vr0max = vr1max; |
| } |
| else if (*vr0type == VR_RANGE |
| && vr1type == VR_RANGE) |
| { |
| /* The result is the convex hull of both ranges. */ |
| if (operand_less_p (*vr0max, vr1min) == 1) |
| { |
| /* If the result can be an anti-range, create one. */ |
| if (TREE_CODE (*vr0max) == INTEGER_CST |
| && TREE_CODE (vr1min) == INTEGER_CST |
| && vrp_val_is_min (*vr0min) |
| && vrp_val_is_max (vr1max)) |
| { |
| tree min = int_const_binop (PLUS_EXPR, |
| *vr0max, |
| build_int_cst (TREE_TYPE (*vr0max), 1)); |
| tree max = int_const_binop (MINUS_EXPR, |
| vr1min, |
| build_int_cst (TREE_TYPE (vr1min), 1)); |
| if (!operand_less_p (max, min)) |
| { |
| *vr0type = VR_ANTI_RANGE; |
| *vr0min = min; |
| *vr0max = max; |
| } |
| else |
| *vr0max = vr1max; |
| } |
| else |
| *vr0max = vr1max; |
| } |
| else |
| { |
| /* If the result can be an anti-range, create one. */ |
| if (TREE_CODE (vr1max) == INTEGER_CST |
| && TREE_CODE (*vr0min) == INTEGER_CST |
| && vrp_val_is_min (vr1min) |
| && vrp_val_is_max (*vr0max)) |
| { |
| tree min = int_const_binop (PLUS_EXPR, |
| vr1max, |
| build_int_cst (TREE_TYPE (vr1max), 1)); |
| tree max = int_const_binop (MINUS_EXPR, |
| *vr0min, |
| build_int_cst (TREE_TYPE (*vr0min), 1)); |
| if (!operand_less_p (max, min)) |
| { |
| *vr0type = VR_ANTI_RANGE; |
| *vr0min = min; |
| *vr0max = max; |
| } |
| else |
| *vr0min = vr1min; |
| } |
| else |
| *vr0min = vr1min; |
| } |
| } |
| else |
| gcc_unreachable (); |
| } |
| else if ((maxeq || cmpmax == 1) |
| && (mineq || cmpmin == -1)) |
| { |
| /* [ ( ) ] or [( ) ] or [ ( )] */ |
| if (*vr0type == VR_RANGE |
| && vr1type == VR_RANGE) |
| ; |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| { |
| *vr0type = vr1type; |
| *vr0min = vr1min; |
| *vr0max = vr1max; |
| } |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_RANGE) |
| { |
| /* Arbitrarily choose the right or left gap. */ |
| if (!mineq && TREE_CODE (vr1min) == INTEGER_CST) |
| *vr0max = int_const_binop (MINUS_EXPR, vr1min, |
| build_int_cst (TREE_TYPE (vr1min), 1)); |
| else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST) |
| *vr0min = int_const_binop (PLUS_EXPR, vr1max, |
| build_int_cst (TREE_TYPE (vr1max), 1)); |
| else |
| goto give_up; |
| } |
| else if (*vr0type == VR_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| /* The result covers everything. */ |
| goto give_up; |
| else |
| gcc_unreachable (); |
| } |
| else if ((maxeq || cmpmax == -1) |
| && (mineq || cmpmin == 1)) |
| { |
| /* ( [ ] ) or ([ ] ) or ( [ ]) */ |
| if (*vr0type == VR_RANGE |
| && vr1type == VR_RANGE) |
| { |
| *vr0type = vr1type; |
| *vr0min = vr1min; |
| *vr0max = vr1max; |
| } |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| ; |
| else if (*vr0type == VR_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| { |
| *vr0type = VR_ANTI_RANGE; |
| if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST) |
| { |
| *vr0max = int_const_binop (MINUS_EXPR, *vr0min, |
| build_int_cst (TREE_TYPE (*vr0min), 1)); |
| *vr0min = vr1min; |
| } |
| else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST) |
| { |
| *vr0min = int_const_binop (PLUS_EXPR, *vr0max, |
| build_int_cst (TREE_TYPE (*vr0max), 1)); |
| *vr0max = vr1max; |
| } |
| else |
| goto give_up; |
| } |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_RANGE) |
| /* The result covers everything. */ |
| goto give_up; |
| else |
| gcc_unreachable (); |
| } |
| else if (cmpmin == -1 |
| && cmpmax == -1 |
| && (operand_less_p (vr1min, *vr0max) == 1 |
| || operand_equal_p (vr1min, *vr0max, 0))) |
| { |
| /* [ ( ] ) or [ ]( ) */ |
| if (*vr0type == VR_RANGE |
| && vr1type == VR_RANGE) |
| *vr0max = vr1max; |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| *vr0min = vr1min; |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_RANGE) |
| { |
| if (TREE_CODE (vr1min) == INTEGER_CST) |
| *vr0max = int_const_binop (MINUS_EXPR, vr1min, |
| build_int_cst (TREE_TYPE (vr1min), 1)); |
| else |
| goto give_up; |
| } |
| else if (*vr0type == VR_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| { |
| if (TREE_CODE (*vr0max) == INTEGER_CST) |
| { |
| *vr0type = vr1type; |
| *vr0min = int_const_binop (PLUS_EXPR, *vr0max, |
| build_int_cst (TREE_TYPE (*vr0max), 1)); |
| *vr0max = vr1max; |
| } |
| else |
| goto give_up; |
| } |
| else |
| gcc_unreachable (); |
| } |
| else if (cmpmin == 1 |
| && cmpmax == 1 |
| && (operand_less_p (*vr0min, vr1max) == 1 |
| || operand_equal_p (*vr0min, vr1max, 0))) |
| { |
| /* ( [ ) ] or ( )[ ] */ |
| if (*vr0type == VR_RANGE |
| && vr1type == VR_RANGE) |
| *vr0min = vr1min; |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| *vr0max = vr1max; |
| else if (*vr0type == VR_ANTI_RANGE |
| && vr1type == VR_RANGE) |
| { |
| if (TREE_CODE (vr1max) == INTEGER_CST) |
| *vr0min = int_const_binop (PLUS_EXPR, vr1max, |
| build_int_cst (TREE_TYPE (vr1max), 1)); |
| else |
| goto give_up; |
| } |
| else if (*vr0type == VR_RANGE |
| && vr1type == VR_ANTI_RANGE) |
| { |
| if (TREE_CODE (*vr0min) == INTEGER_CST) |
| { |
| *vr0type = vr1type; |
| *vr0max = int_const_binop (MINUS_EXPR, *vr0min, |
| build_int_cst (TREE_TYPE (*vr0min), 1)); |
| *vr0min = vr1min; |
| } |
| else |
| goto give_up; |
| } |
| else |
| gcc_unreachable (); |
| } |
| else |
| goto give_up; |
| |
| return; |
| |
| give_up: |
| *vr0type = VR_VARYING; |
| *vr0min = NULL_TREE; |
| *vr0max = NULL_TREE; |
| } |
| |
| /* Helper for meet operation for value ranges. Given two ranges VR0 |
| and VR1, set VR0 to the union of both ranges. This may not be the |
| smallest possible such range. */ |
| |
| void |
| irange::legacy_union (irange *vr0, const irange *vr1) |
| { |
| gcc_checking_assert (vr0->legacy_mode_p ()); |
| gcc_checking_assert (vr1->legacy_mode_p ()); |
| |
| /* VR0 has the resulting range if VR1 is undefined or VR0 is varying. */ |
| if (vr1->undefined_p () |
| || vr0->varying_p ()) |
| return; |
| |
| /* VR1 has the resulting range if VR0 is undefined or VR1 is varying. */ |
| if (vr0->undefined_p ()) |
| { |
| vr0->set (vr1->min (), vr1->max (), vr1->kind ()); |
| return; |
| } |
| |
| if (vr1->varying_p ()) |
| { |
| vr0->set_varying (vr1->type ()); |
| return; |
| } |
| |
| value_range_kind vr0kind = vr0->kind (); |
| tree vr0min = vr0->min (); |
| tree vr0max = vr0->max (); |
| |
| union_ranges (&vr0kind, &vr0min, &vr0max, |
| vr1->kind (), vr1->min (), vr1->max ()); |
| |
| if (vr0kind == VR_UNDEFINED) |
| vr0->set_undefined (); |
| else if (vr0kind == VR_VARYING) |
| { |
| /* Failed to find an efficient meet. Before giving up and |
| setting the result to VARYING, see if we can at least derive |
| a non-zero range. */ |
| if (range_includes_zero_p (vr0) == 0 |
| && range_includes_zero_p (vr1) == 0) |
| vr0->set_nonzero (vr0->type ()); |
| else |
| vr0->set_varying (vr0->type ()); |
| } |
| else |
| vr0->set (vr0min, vr0max, vr0kind); |
| } |
| |
| /* Meet operation for value ranges. Given two value ranges VR0 and |
| VR1, store in VR0 a range that contains both VR0 and VR1. This |
| may not be the smallest possible such range. */ |
| |
| void |
| irange::union_ (const irange *other) |
| { |
| if (legacy_mode_p ()) |
| { |
| if (!other->legacy_mode_p ()) |
| { |
| int_range<1> tmp = *other; |
| legacy_union (this, &tmp); |
| return; |
| } |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Meeting\n "); |
| dump_value_range (dump_file, this); |
| fprintf (dump_file, "\nand\n "); |
| dump_value_range (dump_file, other); |
| fprintf (dump_file, "\n"); |
| } |
| |
| legacy_union (this, other); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "to\n "); |
| dump_value_range (dump_file, this); |
| fprintf (dump_file, "\n"); |
| } |
| return; |
| } |
| |
| if (other->legacy_mode_p ()) |
| { |
| int_range<2> wider = *other; |
| irange_union (wider); |
| } |
| else |
| irange_union (*other); |
| } |
| |
| void |
| irange::intersect (const irange *other) |
| { |
| if (legacy_mode_p ()) |
| { |
| if (!other->legacy_mode_p ()) |
| { |
| int_range<1> tmp = *other; |
| legacy_intersect (this, &tmp); |
| return; |
| } |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Intersecting\n "); |
| dump_value_range (dump_file, this); |
| fprintf (dump_file, "\nand\n "); |
| dump_value_range (dump_file, other); |
| fprintf (dump_file, "\n"); |
| } |
| |
| legacy_intersect (this, other); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "to\n "); |
| dump_value_range (dump_file, this); |
| fprintf (dump_file, "\n"); |
| } |
| return; |
| } |
| |
| if (other->legacy_mode_p ()) |
| { |
| int_range<2> wider; |
| wider = *other; |
| irange_intersect (wider); |
| } |
| else |
| irange_intersect (*other); |
| } |
| |
| // union_ for multi-ranges. |
| |
| void |
| irange::irange_union (const irange &r) |
| { |
| gcc_checking_assert (!legacy_mode_p () && !r.legacy_mode_p ()); |
| |
| if (r.undefined_p () || varying_p ()) |
| return; |
| |
| if (undefined_p () || r.varying_p ()) |
| { |
| operator= (r); |
| return; |
| } |
| |
| // Do not worry about merging and such by reserving twice as many |
| // pairs as needed, and then simply sort the 2 ranges into this |
| // intermediate form. |
| // |
| // The intermediate result will have the property that the beginning |
| // of each range is <= the beginning of the next range. There may |
| // be overlapping ranges at this point. I.e. this would be valid |
| // [-20, 10], [-10, 0], [0, 20], [40, 90] as it satisfies this |
| // contraint : -20 < -10 < 0 < 40. When the range is rebuilt into r, |
| // the merge is performed. |
| // |
| // [Xi,Yi]..[Xn,Yn] U [Xj,Yj]..[Xm,Ym] --> [Xk,Yk]..[Xp,Yp] |
| tree ttype = r.type (); |
| signop sign = TYPE_SIGN (ttype); |
| |
| auto_vec<tree, 20> res; |
| wide_int u1 ; |
| wi::overflow_type ovf; |
| unsigned i = 0, j = 0, k = 0; |
| |
| while (i < m_num_ranges * 2 && j < r.m_num_ranges * 2) |
| { |
| // lower of Xi and Xj is the lowest point. |
| if (wi::le_p (wi::to_wide (m_base[i]), wi::to_wide (r.m_base[j]), sign)) |
| { |
| res.safe_push (m_base[i]); |
| res.safe_push (m_base[i + 1]); |
| k += 2; |
| i += 2; |
| } |
| else |
| { |
| res.safe_push (r.m_base[j]); |
| res.safe_push (r.m_base[j + 1]); |
| k += 2; |
| j += 2; |
| } |
| } |
| for ( ; i < m_num_ranges * 2; i += 2) |
| { |
| res.safe_push (m_base[i]); |
| res.safe_push (m_base[i + 1]); |
| k += 2; |
| } |
| for ( ; j < r.m_num_ranges * 2; j += 2) |
| { |
| res.safe_push (r.m_base[j]); |
| res.safe_push (r.m_base[j + 1]); |
| k += 2; |
| } |
| |
| // Now normalize the vector removing any overlaps. |
| i = 2; |
| int prec = TYPE_PRECISION (ttype); |
| wide_int max_val = wi::max_value (prec, sign); |
| for (j = 2; j < k ; j += 2) |
| { |
| wide_int val_im1 = wi::to_wide (res[i - 1]); |
| if (val_im1 == max_val) |
| break; |
| u1 = wi::add (val_im1, 1, sign, &ovf); |
| |
| // Overflow indicates we are at MAX already. |
| // A wide int bug requires the previous max_val check |
| // trigger: gcc.c-torture/compile/pr80443.c with -O3 |
| if (ovf == wi::OVF_OVERFLOW) |
| break; |
| |
| wide_int val_j = wi::to_wide (res[j]); |
| wide_int val_jp1 = wi::to_wide (res[j+1]); |
| // Current upper+1 is >= lower bound next pair, then we merge ranges. |
| if (wi::ge_p (u1, val_j, sign)) |
| { |
| // New upper bounds is greater of current or the next one. |
| if (wi::gt_p (val_jp1, val_im1, sign)) |
| res [i - 1] = res[j + 1]; |
| } |
| else |
| { |
| // This is a new distinct range, but no point in copying it |
| // if it is already in the right place. |
| if (i != j) |
| { |
| res[i++] = res[j]; |
| res[i++] = res[j + 1]; |
| } |
| else |
| i += 2; |
| } |
| } |
| |
| // At this point, the vector should have i ranges, none overlapping. |
| // Now it simply needs to be copied, and if there are too many |
| // ranges, merge some. We wont do any analysis as to what the |
| // "best" merges are, simply combine the final ranges into one. |
| if (i > m_max_ranges * 2) |
| { |
| res[m_max_ranges * 2 - 1] = res[i - 1]; |
| i = m_max_ranges * 2; |
| } |
| |
| for (j = 0; j < i ; j++) |
| m_base[j] = res [j]; |
| m_num_ranges = i / 2; |
| |
| m_kind = VR_RANGE; |
| normalize_kind (); |
| |
| if (flag_checking) |
| verify_range (); |
| } |
| |
| // intersect for multi-ranges. |
| |
| void |
| irange::irange_intersect (const irange &r) |
| { |
| gcc_checking_assert (!legacy_mode_p () && !r.legacy_mode_p ()); |
| gcc_checking_assert (undefined_p () || r.undefined_p () |
| || range_compatible_p (type (), r.type ())); |
| |
| if (undefined_p () || r.varying_p ()) |
| return; |
| if (r.undefined_p ()) |
| { |
| set_undefined (); |
| return; |
| } |
| if (varying_p ()) |
| { |
| operator= (r); |
| return; |
| } |
| |
| if (r.num_pairs () == 1) |
| { |
| // R cannot be undefined, use more efficent pair routine. |
| intersect (r.lower_bound(), r.upper_bound ()); |
| return; |
| } |
| |
| signop sign = TYPE_SIGN (TREE_TYPE(m_base[0])); |
| unsigned bld_pair = 0; |
| unsigned bld_lim = m_max_ranges; |
| int_range_max r2 (*this); |
| unsigned r2_lim = r2.num_pairs (); |
| unsigned i2 = 0; |
| for (unsigned i = 0; i < r.num_pairs (); ) |
| { |
| // If r1's upper is < r2's lower, we can skip r1's pair. |
| tree ru = r.m_base[i * 2 + 1]; |
| tree r2l = r2.m_base[i2 * 2]; |
| if (wi::lt_p (wi::to_wide (ru), wi::to_wide (r2l), sign)) |
| { |
| i++; |
| continue; |
| } |
| // Likewise, skip r2's pair if its excluded. |
| tree r2u = r2.m_base[i2 * 2 + 1]; |
| tree rl = r.m_base[i * 2]; |
| if (wi::lt_p (wi::to_wide (r2u), wi::to_wide (rl), sign)) |
| { |
| i2++; |
| if (i2 < r2_lim) |
| continue; |
| // No more r2, break. |
| break; |
| } |
| |
| // Must be some overlap. Find the highest of the lower bounds, |
| // and set it, unless the build limits lower bounds is already |
| // set. |
| if (bld_pair < bld_lim) |
| { |
| if (wi::ge_p (wi::to_wide (rl), wi::to_wide (r2l), sign)) |
| m_base[bld_pair * 2] = rl; |
| else |
| m_base[bld_pair * 2] = r2l; |
| } |
| else |
| // Decrease and set a new upper. |
| bld_pair--; |
| |
| // ...and choose the lower of the upper bounds. |
| if (wi::le_p (wi::to_wide (ru), wi::to_wide (r2u), sign)) |
| { |
| m_base[bld_pair * 2 + 1] = ru; |
| bld_pair++; |
| // Move past the r1 pair and keep trying. |
| i++; |
| continue; |
| } |
| else |
| { |
| m_base[bld_pair * 2 + 1] = r2u; |
| bld_pair++; |
| i2++; |
| if (i2 < r2_lim) |
| continue; |
| // No more r2, break. |
| break; |
| } |
| // r2 has the higher lower bound. |
| } |
| |
| // At the exit of this loop, it is one of 2 things: |
| // ran out of r1, or r2, but either means we are done. |
| m_num_ranges = bld_pair; |
| |
| m_kind = VR_RANGE; |
| normalize_kind (); |
| |
| if (flag_checking) |
| verify_range (); |
| } |
| |
| // Multirange intersect for a specified wide_int [lb, ub] range. |
| |
| void |
| irange::intersect (const wide_int& lb, const wide_int& ub) |
| { |
| // Undefined remains undefined. |
| if (undefined_p ()) |
| return; |
| |
| if (legacy_mode_p ()) |
| { |
| intersect (int_range<1> (type (), lb, ub)); |
| return; |
| } |
| |
| tree range_type = type(); |
| signop sign = TYPE_SIGN (range_type); |
| |
| gcc_checking_assert (TYPE_PRECISION (range_type) == wi::get_precision (lb)); |
| gcc_checking_assert (TYPE_PRECISION (range_type) == wi::get_precision (ub)); |
| |
| unsigned bld_index = 0; |
| unsigned pair_lim = num_pairs (); |
| for (unsigned i = 0; i < pair_lim; i++) |
| { |
| tree pairl = m_base[i * 2]; |
| tree pairu = m_base[i * 2 + 1]; |
| // Once UB is less than a pairs lower bound, we're done. |
| if (wi::lt_p (ub, wi::to_wide (pairl), sign)) |
| break; |
| // if LB is greater than this pairs upper, this pair is excluded. |
| if (wi::lt_p (wi::to_wide (pairu), lb, sign)) |
| continue; |
| |
| // Must be some overlap. Find the highest of the lower bounds, |
| // and set it |
| if (wi::gt_p (lb, wi::to_wide (pairl), sign)) |
| m_base[bld_index * 2] = wide_int_to_tree (range_type, lb); |
| else |
| m_base[bld_index * 2] = pairl; |
| |
| // ...and choose the lower of the upper bounds and if the base pair |
| // has the lower upper bound, need to check next pair too. |
| if (wi::lt_p (ub, wi::to_wide (pairu), sign)) |
| { |
| m_base[bld_index++ * 2 + 1] = wide_int_to_tree (range_type, ub); |
| break; |
| } |
| else |
| m_base[bld_index++ * 2 + 1] = pairu; |
| } |
| |
| m_num_ranges = bld_index; |
| |
| m_kind = VR_RANGE; |
| normalize_kind (); |
| |
| if (flag_checking) |
| verify_range (); |
| } |
| // Signed 1-bits are strange. You can't subtract 1, because you can't |
| // represent the number 1. This works around that for the invert routine. |
| |
| static wide_int inline |
| subtract_one (const wide_int &x, tree type, wi::overflow_type &overflow) |
| { |
| if (TYPE_SIGN (type) == SIGNED) |
| return wi::add (x, -1, SIGNED, &overflow); |
| else |
| return wi::sub (x, 1, UNSIGNED, &overflow); |
| } |
| |
| // The analogous function for adding 1. |
| |
| static wide_int inline |
| add_one (const wide_int &x, tree type, wi::overflow_type &overflow) |
| { |
| if (TYPE_SIGN (type) == SIGNED) |
| return wi::sub (x, -1, SIGNED, &overflow); |
| else |
| return wi::add (x, 1, UNSIGNED, &overflow); |
| } |
| |
| // Return the inverse of a range. |
| |
| void |
| irange::invert () |
| { |
| if (legacy_mode_p ()) |
| { |
| // We can't just invert VR_RANGE and VR_ANTI_RANGE because we may |
| // create non-canonical ranges. Use the constructors instead. |
| if (m_kind == VR_RANGE) |
| *this = value_range (min (), max (), VR_ANTI_RANGE); |
| else if (m_kind == VR_ANTI_RANGE) |
| *this = value_range (min (), max ()); |
| else |
| gcc_unreachable (); |
| return; |
| } |
| |
| gcc_checking_assert (!undefined_p () && !varying_p ()); |
| |
| // We always need one more set of bounds to represent an inverse, so |
| // if we're at the limit, we can't properly represent things. |
| // |
| // For instance, to represent the inverse of a 2 sub-range set |
| // [5, 10][20, 30], we would need a 3 sub-range set |
| // [-MIN, 4][11, 19][31, MAX]. |
| // |
| // In this case, return the most conservative thing. |
| // |
| // However, if any of the extremes of the range are -MIN/+MAX, we |
| // know we will not need an extra bound. For example: |
| // |
| // INVERT([-MIN,20][30,40]) => [21,29][41,+MAX] |
| // INVERT([-MIN,20][30,MAX]) => [21,29] |
| tree ttype = type (); |
| unsigned prec = TYPE_PRECISION (ttype); |
| signop sign = TYPE_SIGN (ttype); |
| wide_int type_min = wi::min_value (prec, sign); |
| wide_int type_max = wi::max_value (prec, sign); |
| if (m_num_ranges == m_max_ranges |
| && lower_bound () != type_min |
| && upper_bound () != type_max) |
| { |
| m_base[1] = wide_int_to_tree (ttype, type_max); |
| m_num_ranges = 1; |
| return; |
| } |
| // The algorithm is as follows. To calculate INVERT ([a,b][c,d]), we |
| // generate [-MIN, a-1][b+1, c-1][d+1, MAX]. |
| // |
| // If there is an over/underflow in the calculation for any |
| // sub-range, we eliminate that subrange. This allows us to easily |
| // calculate INVERT([-MIN, 5]) with: [-MIN, -MIN-1][6, MAX]. And since |
| // we eliminate the underflow, only [6, MAX] remains. |
| unsigned i = 0; |
| wi::overflow_type ovf; |
| // Construct leftmost range. |
| int_range_max orig_range (*this); |
| unsigned nitems = 0; |
| wide_int tmp; |
| // If this is going to underflow on the MINUS 1, don't even bother |
| // checking. This also handles subtracting one from an unsigned 0, |
| // which doesn't set the underflow bit. |
| if (type_min != orig_range.lower_bound ()) |
| { |
| m_base[nitems++] = wide_int_to_tree (ttype, type_min); |
| tmp = subtract_one (orig_range.lower_bound (), ttype, ovf); |
| m_base[nitems++] = wide_int_to_tree (ttype, tmp); |
| if (ovf) |
| nitems = 0; |
| } |
| i++; |
| // Construct middle ranges if applicable. |
| if (orig_range.num_pairs () > 1) |
| { |
| unsigned j = i; |
| for (; j < (orig_range.num_pairs () * 2) - 1; j += 2) |
| { |
| // The middle ranges cannot have MAX/MIN, so there's no need |
| // to check for unsigned overflow on the +1 and -1 here. |
| tmp = wi::add (wi::to_wide (orig_range.m_base[j]), 1, sign, &ovf); |
| m_base[nitems++] = wide_int_to_tree (ttype, tmp); |
| tmp = subtract_one (wi::to_wide (orig_range.m_base[j + 1]), |
| ttype, ovf); |
| m_base[nitems++] = wide_int_to_tree (ttype, tmp); |
| if (ovf) |
| nitems -= 2; |
| } |
| i = j; |
| } |
| // Construct rightmost range. |
| // |
| // However, if this will overflow on the PLUS 1, don't even bother. |
| // This also handles adding one to an unsigned MAX, which doesn't |
| // set the overflow bit. |
| if (type_max != wi::to_wide (orig_range.m_base[i])) |
| { |
| tmp = add_one (wi::to_wide (orig_range.m_base[i]), ttype, ovf); |
| m_base[nitems++] = wide_int_to_tree (ttype, tmp); |
| m_base[nitems++] = wide_int_to_tree (ttype, type_max); |
| if (ovf) |
| nitems -= 2; |
| } |
| m_num_ranges = nitems / 2; |
| |
| // We disallow undefined or varying coming in, so the result can |
| // only be a VR_RANGE. |
| gcc_checking_assert (m_kind == VR_RANGE); |
| |
| if (flag_checking) |
| verify_range (); |
| } |
| |
| static void |
| dump_bound_with_infinite_markers (FILE *file, tree bound) |
| { |
| tree type = TREE_TYPE (bound); |
| wide_int type_min = wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type)); |
| wide_int type_max = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type)); |
| |
| if (INTEGRAL_TYPE_P (type) |
| && !TYPE_UNSIGNED (type) |
| && TREE_CODE (bound) == INTEGER_CST |
| && wi::to_wide (bound) == type_min |
| && TYPE_PRECISION (type) != 1) |
| fprintf (file, "-INF"); |
| else if (TREE_CODE (bound) == INTEGER_CST |
| && wi::to_wide (bound) == type_max |
| && TYPE_PRECISION (type) != 1) |
| fprintf (file, "+INF"); |
| else |
| print_generic_expr (file, bound); |
| } |
| |
| void |
| irange::dump (FILE *file) const |
| { |
| if (undefined_p ()) |
| { |
| fprintf (file, "UNDEFINED"); |
| return; |
| } |
| print_generic_expr (file, type ()); |
| fprintf (file, " "); |
| if (varying_p ()) |
| { |
| fprintf (file, "VARYING"); |
| return; |
| } |
| if (legacy_mode_p ()) |
| { |
| fprintf (file, "%s[", (m_kind == VR_ANTI_RANGE) ? "~" : ""); |
| dump_bound_with_infinite_markers (file, min ()); |
| fprintf (file, ", "); |
| dump_bound_with_infinite_markers (file, max ()); |
| fprintf (file, "]"); |
| return; |
| } |
| for (unsigned i = 0; i < m_num_ranges; ++i) |
| { |
| tree lb = m_base[i * 2]; |
| tree ub = m_base[i * 2 + 1]; |
| fprintf (file, "["); |
| dump_bound_with_infinite_markers (file, lb); |
| fprintf (file, ", "); |
| dump_bound_with_infinite_markers (file, ub); |
| fprintf (file, "]"); |
| } |
| } |
| |
| void |
| irange::debug () const |
| { |
| dump (stderr); |
| fprintf (stderr, "\n"); |
| } |
| |
| void |
| dump_value_range (FILE *file, const irange *vr) |
| { |
| vr->dump (file); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (const irange *vr) |
| { |
| dump_value_range (stderr, vr); |
| fprintf (stderr, "\n"); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (const irange &vr) |
| { |
| debug (&vr); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (const value_range *vr) |
| { |
| dump_value_range (stderr, vr); |
| fprintf (stderr, "\n"); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (const value_range &vr) |
| { |
| dump_value_range (stderr, &vr); |
| fprintf (stderr, "\n"); |
| } |
| |
| /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR |
| so that *VR0 U *VR1 == *AR. Returns true if that is possible, |
| false otherwise. If *AR can be represented with a single range |
| *VR1 will be VR_UNDEFINED. */ |
| |
| bool |
| ranges_from_anti_range (const value_range *ar, |
| value_range *vr0, value_range *vr1) |
| { |
| tree type = ar->type (); |
| |
| vr0->set_undefined (); |
| vr1->set_undefined (); |
| |
| /* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U |
| [A+1, +INF]. Not sure if this helps in practice, though. */ |
| |
| if (ar->kind () != VR_ANTI_RANGE |
| || TREE_CODE (ar->min ()) != INTEGER_CST |
| || TREE_CODE (ar->max ()) != INTEGER_CST |
| || !vrp_val_min (type) |
| || !vrp_val_max (type)) |
| return false; |
| |
| if (tree_int_cst_lt (vrp_val_min (type), ar->min ())) |
| vr0->set (vrp_val_min (type), |
| wide_int_to_tree (type, wi::to_wide (ar->min ()) - 1)); |
| if (tree_int_cst_lt (ar->max (), vrp_val_max (type))) |
| vr1->set (wide_int_to_tree (type, wi::to_wide (ar->max ()) + 1), |
| vrp_val_max (type)); |
| if (vr0->undefined_p ()) |
| { |
| *vr0 = *vr1; |
| vr1->set_undefined (); |
| } |
| |
| return !vr0->undefined_p (); |
| } |
| |
| bool |
| range_has_numeric_bounds_p (const irange *vr) |
| { |
| return (!vr->undefined_p () |
| && TREE_CODE (vr->min ()) == INTEGER_CST |
| && TREE_CODE (vr->max ()) == INTEGER_CST); |
| } |
| |
| /* Return whether VAL is equal to the maximum value of its type. |
| We can't do a simple equality comparison with TYPE_MAX_VALUE because |
| C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE |
| is not == to the integer constant with the same value in the type. */ |
| |
| bool |
| vrp_val_is_max (const_tree val) |
| { |
| tree type_max = vrp_val_max (TREE_TYPE (val)); |
| return (val == type_max |
| || (type_max != NULL_TREE |
| && operand_equal_p (val, type_max, 0))); |
| } |
| |
| /* Return whether VAL is equal to the minimum value of its type. */ |
| |
| bool |
| vrp_val_is_min (const_tree val) |
| { |
| tree type_min = vrp_val_min (TREE_TYPE (val)); |
| return (val == type_min |
| || (type_min != NULL_TREE |
| && operand_equal_p (val, type_min, 0))); |
| } |
| |
| /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */ |
| |
| bool |
| vrp_operand_equal_p (const_tree val1, const_tree val2) |
| { |
| if (val1 == val2) |
| return true; |
| if (!val1 || !val2 || !operand_equal_p (val1, val2, 0)) |
| return false; |
| return true; |
| } |
| |
| // ?? These stubs are for ipa-prop.c which use a value_range in a |
| // hash_traits. hash-traits.h defines an extern of gt_ggc_mx (T &) |
| // instead of picking up the gt_ggc_mx (T *) version. |
| void |
| gt_pch_nx (int_range<1> *&x) |
| { |
| return gt_pch_nx ((irange *) x); |
| } |
| |
| void |
| gt_ggc_mx (int_range<1> *&x) |
| { |
| return gt_ggc_mx ((irange *) x); |
| } |
| |
| #define DEFINE_INT_RANGE_INSTANCE(N) \ |
| template int_range<N>::int_range(tree, tree, value_range_kind); \ |
| template int_range<N>::int_range(tree_node *, \ |
| const wide_int &, \ |
| const wide_int &, \ |
| value_range_kind); \ |
| template int_range<N>::int_range(tree); \ |
| template int_range<N>::int_range(const irange &); \ |
| template int_range<N>::int_range(const int_range &); \ |
| template int_range<N>& int_range<N>::operator= (const int_range &); |
| |
| DEFINE_INT_RANGE_INSTANCE(1) |
| DEFINE_INT_RANGE_INSTANCE(2) |
| DEFINE_INT_RANGE_INSTANCE(3) |
| DEFINE_INT_RANGE_INSTANCE(255) |
| |
| #if CHECKING_P |
| #include "selftest.h" |
| |
| namespace selftest |
| { |
| #define INT(N) build_int_cst (integer_type_node, (N)) |
| #define UINT(N) build_int_cstu (unsigned_type_node, (N)) |
| #define UINT128(N) build_int_cstu (u128_type, (N)) |
| #define UCHAR(N) build_int_cstu (unsigned_char_type_node, (N)) |
| #define SCHAR(N) build_int_cst (signed_char_type_node, (N)) |
| |
| static int_range<3> |
| build_range3 (int a, int b, int c, int d, int e, int f) |
| { |
| int_range<3> i1 (INT (a), INT (b)); |
| int_range<3> i2 (INT (c), INT (d)); |
| int_range<3> i3 (INT (e), INT (f)); |
| i1.union_ (i2); |
| i1.union_ (i3); |
| return i1; |
| } |
| |
| static void |
| range_tests_irange3 () |
| { |
| typedef int_range<3> int_range3; |
| int_range3 r0, r1, r2; |
| int_range3 i1, i2, i3; |
| |
| // ([10,20] U [5,8]) U [1,3] ==> [1,3][5,8][10,20]. |
| r0 = int_range3 (INT (10), INT (20)); |
| r1 = int_range3 (INT (5), INT (8)); |
| r0.union_ (r1); |
| r1 = int_range3 (INT (1), INT (3)); |
| r0.union_ (r1); |
| ASSERT_TRUE (r0 == build_range3 (1, 3, 5, 8, 10, 20)); |
| |
| // [1,3][5,8][10,20] U [-5,0] => [-5,3][5,8][10,20]. |
| r1 = int_range3 (INT (-5), INT (0)); |
| r0.union_ (r1); |
| ASSERT_TRUE (r0 == build_range3 (-5, 3, 5, 8, 10, 20)); |
| |
| // [10,20][30,40] U [50,60] ==> [10,20][30,40][50,60]. |
| r1 = int_range3 (INT (50), INT (60)); |
| r0 = int_range3 (INT (10), INT (20)); |
| r0.union_ (int_range3 (INT (30), INT (40))); |
| r0.union_ (r1); |
| ASSERT_TRUE (r0 == build_range3 (10, 20, 30, 40, 50, 60)); |
| // [10,20][30,40][50,60] U [70, 80] ==> [10,20][30,40][50,60][70,80]. |
| r1 = int_range3 (INT (70), INT (80)); |
| r0.union_ (r1); |
| |
| r2 = build_range3 (10, 20, 30, 40, 50, 60); |
| r2.union_ (int_range3 (INT (70), INT (80))); |
| ASSERT_TRUE (r0 == r2); |
| |
| // [10,20][30,40][50,60] U [6,35] => [6,40][50,60]. |
| r0 = build_range3 (10, 20, 30, 40, 50, 60); |
| r1 = int_range3 (INT (6), INT (35)); |
| r0.union_ (r1); |
| r1 = int_range3 (INT (6), INT (40)); |
| r1.union_ (int_range3 (INT (50), INT (60))); |
| ASSERT_TRUE (r0 == r1); |
| |
| // [10,20][30,40][50,60] U [6,60] => [6,60]. |
| r0 = build_range3 (10, 20, 30, 40, 50, 60); |
| r1 = int_range3 (INT (6), INT (60)); |
| r0.union_ (r1); |
| ASSERT_TRUE (r0 == int_range3 (INT (6), INT (60))); |
| |
| // [10,20][30,40][50,60] U [6,70] => [6,70]. |
| r0 = build_range3 (10, 20, 30, 40, 50, 60); |
| r1 = int_range3 (INT (6), INT (70)); |
| r0.union_ (r1); |
| ASSERT_TRUE (r0 == int_range3 (INT (6), INT (70))); |
| |
| // [10,20][30,40][50,60] U [35,70] => [10,20][30,70]. |
| r0 = build_range3 (10, 20, 30, 40, 50, 60); |
| r1 = int_range3 (INT (35), INT (70)); |
| r0.union_ (r1); |
| r1 = int_range3 (INT (10), INT (20)); |
| r1.union_ (int_range3 (INT (30), INT (70))); |
| ASSERT_TRUE (r0 == r1); |
| |
| // [10,20][30,40][50,60] U [15,35] => [10,40][50,60]. |
| r0 = build_range3 (10, 20, 30, 40, 50, 60); |
| r1 = int_range3 (INT (15), INT (35)); |
| r0.union_ (r1); |
| r1 = int_range3 (INT (10), INT (40)); |
| r1.union_ (int_range3 (INT (50), INT (60))); |
| ASSERT_TRUE (r0 == r1); |
| |
| // [10,20][30,40][50,60] U [35,35] => [10,20][30,40][50,60]. |
| r0 = build_range3 (10, 20, 30, 40, 50, 60); |
| r1 = int_range3 (INT (35), INT (35)); |
| r0.union_ (r1); |
| ASSERT_TRUE (r0 == build_range3 (10, 20, 30, 40, 50, 60)); |
| } |
| |
| static void |
| range_tests_int_range_max () |
| { |
| int_range_max big; |
| unsigned int nrange; |
| |
| // Build a huge multi-range range. |
| for (nrange = 0; nrange < 50; ++nrange) |
| { |
| int_range<1> tmp (INT (nrange*10), INT (nrange*10 + 5)); |
| big.union_ (tmp); |
| } |
| ASSERT_TRUE (big.num_pairs () == nrange); |
| |
| // Verify that we can copy it without loosing precision. |
| int_range_max copy (big); |
| ASSERT_TRUE (copy.num_pairs () == nrange); |
| |
| // Inverting it should produce one more sub-range. |
| big.invert (); |
| ASSERT_TRUE (big.num_pairs () == nrange + 1); |
| |
| int_range<1> tmp (INT (5), INT (37)); |
| big.intersect (tmp); |
| ASSERT_TRUE (big.num_pairs () == 4); |
| |
| // Test that [10,10][20,20] does NOT contain 15. |
| { |
| int_range_max i1 (build_int_cst (integer_type_node, 10), |
| build_int_cst (integer_type_node, 10)); |
| int_range_max i2 (build_int_cst (integer_type_node, 20), |
| build_int_cst (integer_type_node, 20)); |
| i1.union_ (i2); |
| ASSERT_FALSE (i1.contains_p (build_int_cst (integer_type_node, 15))); |
| } |
| } |
| |
| static void |
| range_tests_legacy () |
| { |
| // Test truncating copy to int_range<1>. |
| int_range<3> big = build_range3 (10, 20, 30, 40, 50, 60); |
| int_range<1> small = big; |
| ASSERT_TRUE (small == int_range<1> (INT (10), INT (60))); |
| |
| // Test truncating copy to int_range<2>. |
| int_range<2> medium = big; |
| ASSERT_TRUE (!medium.undefined_p ()); |
| |
| // Test that a truncating copy of [MIN,20][22,40][80,MAX] |
| // ends up as a conservative anti-range of ~[21,21]. |
| big = int_range<3> (vrp_val_min (integer_type_node), INT (20)); |
| big.union_ (int_range<1> (INT (22), INT (40))); |
| big.union_ (int_range<1> (INT (80), vrp_val_max (integer_type_node))); |
| small = big; |
| ASSERT_TRUE (small == int_range<1> (INT (21), INT (21), VR_ANTI_RANGE)); |
| |
| // Copying a legacy symbolic to an int_range should normalize the |
| // symbolic at copy time. |
| { |
| tree ssa = make_ssa_name (integer_type_node); |
| value_range legacy_range (ssa, INT (25)); |
| int_range<2> copy = legacy_range; |
| ASSERT_TRUE (copy == int_range<2> (vrp_val_min (integer_type_node), |
| INT (25))); |
| |
| // Test that copying ~[abc_23, abc_23] to a multi-range yields varying. |
| legacy_range = value_range (ssa, ssa, VR_ANTI_RANGE); |
| copy = legacy_range; |
| ASSERT_TRUE (copy.varying_p ()); |
| } |
| |
| // VARYING of different sizes should not be equal. |
| tree big_type = build_nonstandard_integer_type (32, 1); |
| tree small_type = build_nonstandard_integer_type (16, 1); |
| int_range_max r0 (big_type); |
| int_range_max r1 (small_type); |
| ASSERT_TRUE (r0 != r1); |
| value_range vr0 (big_type); |
| int_range_max vr1 (small_type); |
| ASSERT_TRUE (vr0 != vr1); |
| } |
| |
| // Simulate -fstrict-enums where the domain of a type is less than the |
| // underlying type. |
| |
| static void |
| range_tests_strict_enum () |
| { |
| // The enum can only hold [0, 3]. |
| tree rtype = copy_node (unsigned_type_node); |
| TYPE_MIN_VALUE (rtype) = build_int_cstu (rtype, 0); |
| TYPE_MAX_VALUE (rtype) = build_int_cstu (rtype, 3); |
| |
| // Test that even though vr1 covers the strict enum domain ([0, 3]), |
| // it does not cover the domain of the underlying type. |
| int_range<1> vr1 (build_int_cstu (rtype, 0), build_int_cstu (rtype, 1)); |
| int_range<1> vr2 (build_int_cstu (rtype, 2), build_int_cstu (rtype, 3)); |
| vr1.union_ (vr2); |
| ASSERT_TRUE (vr1 == int_range<1> (build_int_cstu (rtype, 0), |
| build_int_cstu (rtype, 3))); |
| ASSERT_FALSE (vr1.varying_p ()); |
| |
| // Test that copying to a multi-range does not change things. |
| int_range<2> ir1 (vr1); |
| ASSERT_TRUE (ir1 == vr1); |
| ASSERT_FALSE (ir1.varying_p ()); |
| |
| // The same test as above, but using TYPE_{MIN,MAX}_VALUE instead of [0,3]. |
| vr1 = int_range<1> (TYPE_MIN_VALUE (rtype), TYPE_MAX_VALUE (rtype)); |
| ir1 = vr1; |
| ASSERT_TRUE (ir1 == vr1); |
| ASSERT_FALSE (ir1.varying_p ()); |
| } |
| |
| static void |
| range_tests_misc () |
| { |
| tree u128_type = build_nonstandard_integer_type (128, /*unsigned=*/1); |
| int_range<1> i1, i2, i3; |
| int_range<1> r0, r1, rold; |
| |
| // Test 1-bit signed integer union. |
| // [-1,-1] U [0,0] = VARYING. |
| tree one_bit_type = build_nonstandard_integer_type (1, 0); |
| tree one_bit_min = vrp_val_min (one_bit_type); |
| tree one_bit_max = vrp_val_max (one_bit_type); |
| { |
| int_range<2> min (one_bit_min, one_bit_min); |
| int_range<2> max (one_bit_max, one_bit_max); |
| max.union_ (min); |
| ASSERT_TRUE (max.varying_p ()); |
| } |
| |
| // Test inversion of 1-bit signed integers. |
| { |
| int_range<2> min (one_bit_min, one_bit_min); |
| int_range<2> max (one_bit_max, one_bit_max); |
| int_range<2> t; |
| t = min; |
| t.invert (); |
| ASSERT_TRUE (t == max); |
| t = max; |
| t.invert (); |
| ASSERT_TRUE (t == min); |
| } |
| |
| // Test that NOT(255) is [0..254] in 8-bit land. |
| int_range<1> not_255 (UCHAR (255), UCHAR (255), VR_ANTI_RANGE); |
| ASSERT_TRUE (not_255 == int_range<1> (UCHAR (0), UCHAR (254))); |
| |
| // Test that NOT(0) is [1..255] in 8-bit land. |
| int_range<1> not_zero = range_nonzero (unsigned_char_type_node); |
| ASSERT_TRUE (not_zero == int_range<1> (UCHAR (1), UCHAR (255))); |
| |
| // Check that [0,127][0x..ffffff80,0x..ffffff] |
| // => ~[128, 0x..ffffff7f]. |
| r0 = int_range<1> (UINT128 (0), UINT128 (127)); |
| tree high = build_minus_one_cst (u128_type); |
| // low = -1 - 127 => 0x..ffffff80. |
| tree low = fold_build2 (MINUS_EXPR, u128_type, high, UINT128(127)); |
| r1 = int_range<1> (low, high); // [0x..ffffff80, 0x..ffffffff] |
| // r0 = [0,127][0x..ffffff80,0x..fffffff]. |
| r0.union_ (r1); |
| // r1 = [128, 0x..ffffff7f]. |
| r1 = int_range<1> (UINT128(128), |
| fold_build2 (MINUS_EXPR, u128_type, |
| build_minus_one_cst (u128_type), |
| UINT128(128))); |
| r0.invert (); |
| ASSERT_TRUE (r0 == r1); |
| |
| r0.set_varying (integer_type_node); |
| tree minint = wide_int_to_tree (integer_type_node, r0.lower_bound ()); |
| tree maxint = wide_int_to_tree (integer_type_node, r0.upper_bound ()); |
| |
| r0.set_varying (short_integer_type_node); |
| |
| r0.set_varying (unsigned_type_node); |
| tree maxuint = wide_int_to_tree (unsigned_type_node, r0.upper_bound ()); |
| |
| // Check that ~[0,5] => [6,MAX] for unsigned int. |
| r0 = int_range<1> (UINT (0), UINT (5)); |
| r0.invert (); |
| ASSERT_TRUE (r0 == int_range<1> (UINT(6), maxuint)); |
| |
| // Check that ~[10,MAX] => [0,9] for unsigned int. |
| r0 = int_range<1> (UINT(10), maxuint); |
| r0.invert (); |
| ASSERT_TRUE (r0 == int_range<1> (UINT (0), UINT (9))); |
| |
| // Check that ~[0,5] => [6,MAX] for unsigned 128-bit numbers. |
| r0 = int_range<1> (UINT128 (0), UINT128 (5), VR_ANTI_RANGE); |
| r1 = int_range<1> (UINT128(6), build_minus_one_cst (u128_type)); |
| ASSERT_TRUE (r0 == r1); |
| |
| // Check that [~5] is really [-MIN,4][6,MAX]. |
| r0 = int_range<1> (INT (5), INT (5), VR_ANTI_RANGE); |
| r1 = int_range<1> (minint, INT (4)); |
| r1.union_ (int_range<1> (INT (6), maxint)); |
| ASSERT_FALSE (r1.undefined_p ()); |
| ASSERT_TRUE (r0 == r1); |
| |
| r1 = int_range<1> (INT (5), INT (5)); |
| int_range<1> r2 (r1); |
| ASSERT_TRUE (r1 == r2); |
| |
| r1 = int_range<1> (INT (5), INT (10)); |
| |
| r1 = int_range<1> (integer_type_node, |
| wi::to_wide (INT (5)), wi::to_wide (INT (10))); |
| ASSERT_TRUE (r1.contains_p (INT (7))); |
| |
| r1 = int_range<1> (SCHAR (0), SCHAR (20)); |
| ASSERT_TRUE (r1.contains_p (SCHAR(15))); |
| ASSERT_FALSE (r1.contains_p (SCHAR(300))); |
| |
| // NOT([10,20]) ==> [-MIN,9][21,MAX]. |
| r0 = r1 = int_range<1> (INT (10), INT (20)); |
| r2 = int_range<1> (minint, INT(9)); |
| r2.union_ (int_range<1> (INT(21), maxint)); |
| ASSERT_FALSE (r2.undefined_p ()); |
| r1.invert (); |
| ASSERT_TRUE (r1 == r2); |
| // Test that NOT(NOT(x)) == x. |
| r2.invert (); |
| ASSERT_TRUE (r0 == r2); |
| |
| // Test that booleans and their inverse work as expected. |
| r0 = range_zero (boolean_type_node); |
| ASSERT_TRUE (r0 == int_range<1> (build_zero_cst (boolean_type_node), |
| build_zero_cst (boolean_type_node))); |
| r0.invert (); |
| ASSERT_TRUE (r0 == int_range<1> (build_one_cst (boolean_type_node), |
| build_one_cst (boolean_type_node))); |
| |
| // Make sure NULL and non-NULL of pointer types work, and that |
| // inverses of them are consistent. |
| tree voidp = build_pointer_type (void_type_node); |
| r0 = range_zero (voidp); |
| r1 = r0; |
| r0.invert (); |
| r0.invert (); |
| ASSERT_TRUE (r0 == r1); |
| |
| // [10,20] U [15, 30] => [10, 30]. |
| r0 = int_range<1> (INT (10), INT (20)); |
| r1 = int_range<1> (INT (15), INT (30)); |
| r0.union_ (r1); |
| ASSERT_TRUE (r0 == int_range<1> (INT (10), INT (30))); |
| |
| // [15,40] U [] => [15,40]. |
| r0 = int_range<1> (INT (15), INT (40)); |
| r1.set_undefined (); |
| r0.union_ (r1); |
| ASSERT_TRUE (r0 == int_range<1> (INT (15), INT (40))); |
| |
| // [10,20] U [10,10] => [10,20]. |
| r0 = int_range<1> (INT (10), INT (20)); |
| r1 = int_range<1> (INT (10), INT (10)); |
| r0.union_ (r1); |
| ASSERT_TRUE (r0 == int_range<1> (INT (10), INT (20))); |
| |
| // [10,20] U [9,9] => [9,20]. |
| r0 = int_range<1> (INT (10), INT (20)); |
| r1 = int_range<1> (INT (9), INT (9)); |
| r0.union_ (r1); |
| ASSERT_TRUE (r0 == int_range<1> (INT (9), INT (20))); |
| |
| // [10,20] ^ [15,30] => [15,20]. |
| r0 = int_range<1> (INT (10), INT (20)); |
| r1 = int_range<1> (INT (15), INT (30)); |
| r0.intersect (r1); |
| ASSERT_TRUE (r0 == int_range<1> (INT (15), INT (20))); |
| |
| // Test the internal sanity of wide_int's wrt HWIs. |
| ASSERT_TRUE (wi::max_value (TYPE_PRECISION (boolean_type_node), |
| TYPE_SIGN (boolean_type_node)) |
| == wi::uhwi (1, TYPE_PRECISION (boolean_type_node))); |
| |
| // Test zero_p(). |
| r0 = int_range<1> (INT (0), INT (0)); |
| ASSERT_TRUE (r0.zero_p ()); |
| |
| // Test nonzero_p(). |
| r0 = int_range<1> (INT (0), INT (0)); |
| r0.invert (); |
| ASSERT_TRUE (r0.nonzero_p ()); |
| |
| // test legacy interaction |
| // r0 = ~[1,1] |
| r0 = int_range<1> (UINT (1), UINT (1), VR_ANTI_RANGE); |
| // r1 = ~[3,3] |
| r1 = int_range<1> (UINT (3), UINT (3), VR_ANTI_RANGE); |
| |
| // vv = [0,0][2,2][4, MAX] |
| int_range<3> vv = r0; |
| vv.intersect (r1); |
| |
| ASSERT_TRUE (vv.contains_p (UINT (2))); |
| ASSERT_TRUE (vv.num_pairs () == 3); |
| |
| // create r0 as legacy [1,1] |
| r0 = int_range<1> (UINT (1), UINT (1)); |
| // And union it with [0,0][2,2][4,MAX] multi range |
| r0.union_ (vv); |
| // The result should be [0,2][4,MAX], or ~[3,3] but it must contain 2 |
| ASSERT_TRUE (r0.contains_p (UINT (2))); |
| } |
| |
| void |
| range_tests () |
| { |
| range_tests_legacy (); |
| range_tests_irange3 (); |
| range_tests_int_range_max (); |
| range_tests_strict_enum (); |
| range_tests_misc (); |
| } |
| |
| } // namespace selftest |
| |
| #endif // CHECKING_P |