| /* Dependency analysis |
| Copyright (C) 2000-2019 Free Software Foundation, Inc. |
| Contributed by Paul Brook <paul@nowt.org> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* dependency.c -- Expression dependency analysis code. */ |
| /* There's probably quite a bit of duplication in this file. We currently |
| have different dependency checking functions for different types |
| if dependencies. Ideally these would probably be merged. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "gfortran.h" |
| #include "dependency.h" |
| #include "constructor.h" |
| #include "arith.h" |
| |
| /* static declarations */ |
| /* Enums */ |
| enum range {LHS, RHS, MID}; |
| |
| /* Dependency types. These must be in reverse order of priority. */ |
| enum gfc_dependency |
| { |
| GFC_DEP_ERROR, |
| GFC_DEP_EQUAL, /* Identical Ranges. */ |
| GFC_DEP_FORWARD, /* e.g., a(1:3) = a(2:4). */ |
| GFC_DEP_BACKWARD, /* e.g. a(2:4) = a(1:3). */ |
| GFC_DEP_OVERLAP, /* May overlap in some other way. */ |
| GFC_DEP_NODEP /* Distinct ranges. */ |
| }; |
| |
| /* Macros */ |
| #define IS_ARRAY_EXPLICIT(as) ((as->type == AS_EXPLICIT ? 1 : 0)) |
| |
| /* Forward declarations */ |
| |
| static gfc_dependency check_section_vs_section (gfc_array_ref *, |
| gfc_array_ref *, int); |
| |
| /* Returns 1 if the expr is an integer constant value 1, 0 if it is not or |
| def if the value could not be determined. */ |
| |
| int |
| gfc_expr_is_one (gfc_expr *expr, int def) |
| { |
| gcc_assert (expr != NULL); |
| |
| if (expr->expr_type != EXPR_CONSTANT) |
| return def; |
| |
| if (expr->ts.type != BT_INTEGER) |
| return def; |
| |
| return mpz_cmp_si (expr->value.integer, 1) == 0; |
| } |
| |
| /* Check if two array references are known to be identical. Calls |
| gfc_dep_compare_expr if necessary for comparing array indices. */ |
| |
| static bool |
| identical_array_ref (gfc_array_ref *a1, gfc_array_ref *a2) |
| { |
| int i; |
| |
| if (a1->type == AR_FULL && a2->type == AR_FULL) |
| return true; |
| |
| if (a1->type == AR_SECTION && a2->type == AR_SECTION) |
| { |
| gcc_assert (a1->dimen == a2->dimen); |
| |
| for ( i = 0; i < a1->dimen; i++) |
| { |
| /* TODO: Currently, we punt on an integer array as an index. */ |
| if (a1->dimen_type[i] != DIMEN_RANGE |
| || a2->dimen_type[i] != DIMEN_RANGE) |
| return false; |
| |
| if (check_section_vs_section (a1, a2, i) != GFC_DEP_EQUAL) |
| return false; |
| } |
| return true; |
| } |
| |
| if (a1->type == AR_ELEMENT && a2->type == AR_ELEMENT) |
| { |
| if (a1->dimen != a2->dimen) |
| gfc_internal_error ("identical_array_ref(): inconsistent dimensions"); |
| |
| for (i = 0; i < a1->dimen; i++) |
| { |
| if (gfc_dep_compare_expr (a1->start[i], a2->start[i]) != 0) |
| return false; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| |
| |
| /* Return true for identical variables, checking for references if |
| necessary. Calls identical_array_ref for checking array sections. */ |
| |
| static bool |
| are_identical_variables (gfc_expr *e1, gfc_expr *e2) |
| { |
| gfc_ref *r1, *r2; |
| |
| if (e1->symtree->n.sym->attr.dummy && e2->symtree->n.sym->attr.dummy) |
| { |
| /* Dummy arguments: Only check for equal names. */ |
| if (e1->symtree->n.sym->name != e2->symtree->n.sym->name) |
| return false; |
| } |
| else |
| { |
| /* Check for equal symbols. */ |
| if (e1->symtree->n.sym != e2->symtree->n.sym) |
| return false; |
| } |
| |
| /* Volatile variables should never compare equal to themselves. */ |
| |
| if (e1->symtree->n.sym->attr.volatile_) |
| return false; |
| |
| r1 = e1->ref; |
| r2 = e2->ref; |
| |
| while (r1 != NULL || r2 != NULL) |
| { |
| |
| /* Assume the variables are not equal if one has a reference and the |
| other doesn't. |
| TODO: Handle full references like comparing a(:) to a. |
| */ |
| |
| if (r1 == NULL || r2 == NULL) |
| return false; |
| |
| if (r1->type != r2->type) |
| return false; |
| |
| switch (r1->type) |
| { |
| |
| case REF_ARRAY: |
| if (!identical_array_ref (&r1->u.ar, &r2->u.ar)) |
| return false; |
| |
| break; |
| |
| case REF_COMPONENT: |
| if (r1->u.c.component != r2->u.c.component) |
| return false; |
| break; |
| |
| case REF_SUBSTRING: |
| if (gfc_dep_compare_expr (r1->u.ss.start, r2->u.ss.start) != 0) |
| return false; |
| |
| /* If both are NULL, the end length compares equal, because we |
| are looking at the same variable. This can only happen for |
| assumed- or deferred-length character arguments. */ |
| |
| if (r1->u.ss.end == NULL && r2->u.ss.end == NULL) |
| break; |
| |
| if (gfc_dep_compare_expr (r1->u.ss.end, r2->u.ss.end) != 0) |
| return false; |
| |
| break; |
| |
| case REF_INQUIRY: |
| if (r1->u.i != r2->u.i) |
| return false; |
| break; |
| |
| default: |
| gfc_internal_error ("are_identical_variables: Bad type"); |
| } |
| r1 = r1->next; |
| r2 = r2->next; |
| } |
| return true; |
| } |
| |
| /* Compare two functions for equality. Returns 0 if e1==e2, -2 otherwise. If |
| impure_ok is false, only return 0 for pure functions. */ |
| |
| int |
| gfc_dep_compare_functions (gfc_expr *e1, gfc_expr *e2, bool impure_ok) |
| { |
| |
| gfc_actual_arglist *args1; |
| gfc_actual_arglist *args2; |
| |
| if (e1->expr_type != EXPR_FUNCTION || e2->expr_type != EXPR_FUNCTION) |
| return -2; |
| |
| if ((e1->value.function.esym && e2->value.function.esym |
| && e1->value.function.esym == e2->value.function.esym |
| && (e1->value.function.esym->result->attr.pure || impure_ok)) |
| || (e1->value.function.isym && e2->value.function.isym |
| && e1->value.function.isym == e2->value.function.isym |
| && (e1->value.function.isym->pure || impure_ok))) |
| { |
| args1 = e1->value.function.actual; |
| args2 = e2->value.function.actual; |
| |
| /* Compare the argument lists for equality. */ |
| while (args1 && args2) |
| { |
| /* Bitwise xor, since C has no non-bitwise xor operator. */ |
| if ((args1->expr == NULL) ^ (args2->expr == NULL)) |
| return -2; |
| |
| if (args1->expr != NULL && args2->expr != NULL) |
| { |
| gfc_expr *e1, *e2; |
| e1 = args1->expr; |
| e2 = args2->expr; |
| |
| if (gfc_dep_compare_expr (e1, e2) != 0) |
| return -2; |
| |
| /* Special case: String arguments which compare equal can have |
| different lengths, which makes them different in calls to |
| procedures. */ |
| |
| if (e1->expr_type == EXPR_CONSTANT |
| && e1->ts.type == BT_CHARACTER |
| && e2->expr_type == EXPR_CONSTANT |
| && e2->ts.type == BT_CHARACTER |
| && e1->value.character.length != e2->value.character.length) |
| return -2; |
| } |
| |
| args1 = args1->next; |
| args2 = args2->next; |
| } |
| return (args1 || args2) ? -2 : 0; |
| } |
| else |
| return -2; |
| } |
| |
| /* Helper function to look through parens, unary plus and widening |
| integer conversions. */ |
| |
| gfc_expr * |
| gfc_discard_nops (gfc_expr *e) |
| { |
| gfc_actual_arglist *arglist; |
| |
| if (e == NULL) |
| return NULL; |
| |
| while (true) |
| { |
| if (e->expr_type == EXPR_OP |
| && (e->value.op.op == INTRINSIC_UPLUS |
| || e->value.op.op == INTRINSIC_PARENTHESES)) |
| { |
| e = e->value.op.op1; |
| continue; |
| } |
| |
| if (e->expr_type == EXPR_FUNCTION && e->value.function.isym |
| && e->value.function.isym->id == GFC_ISYM_CONVERSION |
| && e->ts.type == BT_INTEGER) |
| { |
| arglist = e->value.function.actual; |
| if (arglist->expr->ts.type == BT_INTEGER |
| && e->ts.kind > arglist->expr->ts.kind) |
| { |
| e = arglist->expr; |
| continue; |
| } |
| } |
| break; |
| } |
| |
| return e; |
| } |
| |
| |
| /* Compare two expressions. Return values: |
| * +1 if e1 > e2 |
| * 0 if e1 == e2 |
| * -1 if e1 < e2 |
| * -2 if the relationship could not be determined |
| * -3 if e1 /= e2, but we cannot tell which one is larger. |
| REAL and COMPLEX constants are only compared for equality |
| or inequality; if they are unequal, -2 is returned in all cases. */ |
| |
| int |
| gfc_dep_compare_expr (gfc_expr *e1, gfc_expr *e2) |
| { |
| int i; |
| |
| if (e1 == NULL && e2 == NULL) |
| return 0; |
| |
| e1 = gfc_discard_nops (e1); |
| e2 = gfc_discard_nops (e2); |
| |
| if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_PLUS) |
| { |
| /* Compare X+C vs. X, for INTEGER only. */ |
| if (e1->value.op.op2->expr_type == EXPR_CONSTANT |
| && e1->value.op.op2->ts.type == BT_INTEGER |
| && gfc_dep_compare_expr (e1->value.op.op1, e2) == 0) |
| return mpz_sgn (e1->value.op.op2->value.integer); |
| |
| /* Compare P+Q vs. R+S. */ |
| if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS) |
| { |
| int l, r; |
| |
| l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1); |
| r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2); |
| if (l == 0 && r == 0) |
| return 0; |
| if (l == 0 && r > -2) |
| return r; |
| if (l > -2 && r == 0) |
| return l; |
| if (l == 1 && r == 1) |
| return 1; |
| if (l == -1 && r == -1) |
| return -1; |
| |
| l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op2); |
| r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op1); |
| if (l == 0 && r == 0) |
| return 0; |
| if (l == 0 && r > -2) |
| return r; |
| if (l > -2 && r == 0) |
| return l; |
| if (l == 1 && r == 1) |
| return 1; |
| if (l == -1 && r == -1) |
| return -1; |
| } |
| } |
| |
| /* Compare X vs. X+C, for INTEGER only. */ |
| if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS) |
| { |
| if (e2->value.op.op2->expr_type == EXPR_CONSTANT |
| && e2->value.op.op2->ts.type == BT_INTEGER |
| && gfc_dep_compare_expr (e1, e2->value.op.op1) == 0) |
| return -mpz_sgn (e2->value.op.op2->value.integer); |
| } |
| |
| /* Compare X-C vs. X, for INTEGER only. */ |
| if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_MINUS) |
| { |
| if (e1->value.op.op2->expr_type == EXPR_CONSTANT |
| && e1->value.op.op2->ts.type == BT_INTEGER |
| && gfc_dep_compare_expr (e1->value.op.op1, e2) == 0) |
| return -mpz_sgn (e1->value.op.op2->value.integer); |
| |
| /* Compare P-Q vs. R-S. */ |
| if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS) |
| { |
| int l, r; |
| |
| l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1); |
| r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2); |
| if (l == 0 && r == 0) |
| return 0; |
| if (l > -2 && r == 0) |
| return l; |
| if (l == 0 && r > -2) |
| return -r; |
| if (l == 1 && r == -1) |
| return 1; |
| if (l == -1 && r == 1) |
| return -1; |
| } |
| } |
| |
| /* Compare A // B vs. C // D. */ |
| |
| if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_CONCAT |
| && e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_CONCAT) |
| { |
| int l, r; |
| |
| l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1); |
| r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2); |
| |
| if (l != 0) |
| return l; |
| |
| /* Left expressions of // compare equal, but |
| watch out for 'A ' // x vs. 'A' // x. */ |
| gfc_expr *e1_left = e1->value.op.op1; |
| gfc_expr *e2_left = e2->value.op.op1; |
| |
| if (e1_left->expr_type == EXPR_CONSTANT |
| && e2_left->expr_type == EXPR_CONSTANT |
| && e1_left->value.character.length |
| != e2_left->value.character.length) |
| return -2; |
| else |
| return r; |
| } |
| |
| /* Compare X vs. X-C, for INTEGER only. */ |
| if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS) |
| { |
| if (e2->value.op.op2->expr_type == EXPR_CONSTANT |
| && e2->value.op.op2->ts.type == BT_INTEGER |
| && gfc_dep_compare_expr (e1, e2->value.op.op1) == 0) |
| return mpz_sgn (e2->value.op.op2->value.integer); |
| } |
| |
| if (e1->expr_type != e2->expr_type) |
| return -3; |
| |
| switch (e1->expr_type) |
| { |
| case EXPR_CONSTANT: |
| /* Compare strings for equality. */ |
| if (e1->ts.type == BT_CHARACTER && e2->ts.type == BT_CHARACTER) |
| return gfc_compare_string (e1, e2); |
| |
| /* Compare REAL and COMPLEX constants. Because of the |
| traps and pitfalls associated with comparing |
| a + 1.0 with a + 0.5, check for equality only. */ |
| if (e2->expr_type == EXPR_CONSTANT) |
| { |
| if (e1->ts.type == BT_REAL && e2->ts.type == BT_REAL) |
| { |
| if (mpfr_cmp (e1->value.real, e2->value.real) == 0) |
| return 0; |
| else |
| return -2; |
| } |
| else if (e1->ts.type == BT_COMPLEX && e2->ts.type == BT_COMPLEX) |
| { |
| if (mpc_cmp (e1->value.complex, e2->value.complex) == 0) |
| return 0; |
| else |
| return -2; |
| } |
| } |
| |
| if (e1->ts.type != BT_INTEGER || e2->ts.type != BT_INTEGER) |
| return -2; |
| |
| /* For INTEGER, all cases where e2 is not constant should have |
| been filtered out above. */ |
| gcc_assert (e2->expr_type == EXPR_CONSTANT); |
| |
| i = mpz_cmp (e1->value.integer, e2->value.integer); |
| if (i == 0) |
| return 0; |
| else if (i < 0) |
| return -1; |
| return 1; |
| |
| case EXPR_VARIABLE: |
| if (are_identical_variables (e1, e2)) |
| return 0; |
| else |
| return -3; |
| |
| case EXPR_OP: |
| /* Intrinsic operators are the same if their operands are the same. */ |
| if (e1->value.op.op != e2->value.op.op) |
| return -2; |
| if (e1->value.op.op2 == 0) |
| { |
| i = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1); |
| return i == 0 ? 0 : -2; |
| } |
| if (gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1) == 0 |
| && gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2) == 0) |
| return 0; |
| else if (e1->value.op.op == INTRINSIC_TIMES |
| && gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op2) == 0 |
| && gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op1) == 0) |
| /* Commutativity of multiplication; addition is handled above. */ |
| return 0; |
| |
| return -2; |
| |
| case EXPR_FUNCTION: |
| return gfc_dep_compare_functions (e1, e2, false); |
| |
| default: |
| return -2; |
| } |
| } |
| |
| |
| /* Return the difference between two expressions. Integer expressions of |
| the form |
| |
| X + constant, X - constant and constant + X |
| |
| are handled. Return true on success, false on failure. result is assumed |
| to be uninitialized on entry, and will be initialized on success. |
| */ |
| |
| bool |
| gfc_dep_difference (gfc_expr *e1, gfc_expr *e2, mpz_t *result) |
| { |
| gfc_expr *e1_op1, *e1_op2, *e2_op1, *e2_op2; |
| |
| if (e1 == NULL || e2 == NULL) |
| return false; |
| |
| if (e1->ts.type != BT_INTEGER || e2->ts.type != BT_INTEGER) |
| return false; |
| |
| e1 = gfc_discard_nops (e1); |
| e2 = gfc_discard_nops (e2); |
| |
| /* Inizialize tentatively, clear if we don't return anything. */ |
| mpz_init (*result); |
| |
| /* Case 1: c1 - c2 = c1 - c2, trivially. */ |
| |
| if (e1->expr_type == EXPR_CONSTANT && e2->expr_type == EXPR_CONSTANT) |
| { |
| mpz_sub (*result, e1->value.integer, e2->value.integer); |
| return true; |
| } |
| |
| if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_PLUS) |
| { |
| e1_op1 = gfc_discard_nops (e1->value.op.op1); |
| e1_op2 = gfc_discard_nops (e1->value.op.op2); |
| |
| /* Case 2: (X + c1) - X = c1. */ |
| if (e1_op2->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1_op1, e2) == 0) |
| { |
| mpz_set (*result, e1_op2->value.integer); |
| return true; |
| } |
| |
| /* Case 3: (c1 + X) - X = c1. */ |
| if (e1_op1->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1_op2, e2) == 0) |
| { |
| mpz_set (*result, e1_op1->value.integer); |
| return true; |
| } |
| |
| if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS) |
| { |
| e2_op1 = gfc_discard_nops (e2->value.op.op1); |
| e2_op2 = gfc_discard_nops (e2->value.op.op2); |
| |
| if (e1_op2->expr_type == EXPR_CONSTANT) |
| { |
| /* Case 4: X + c1 - (X + c2) = c1 - c2. */ |
| if (e2_op2->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1_op1, e2_op1) == 0) |
| { |
| mpz_sub (*result, e1_op2->value.integer, |
| e2_op2->value.integer); |
| return true; |
| } |
| /* Case 5: X + c1 - (c2 + X) = c1 - c2. */ |
| if (e2_op1->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1_op1, e2_op2) == 0) |
| { |
| mpz_sub (*result, e1_op2->value.integer, |
| e2_op1->value.integer); |
| return true; |
| } |
| } |
| else if (e1_op1->expr_type == EXPR_CONSTANT) |
| { |
| /* Case 6: c1 + X - (X + c2) = c1 - c2. */ |
| if (e2_op2->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1_op2, e2_op1) == 0) |
| { |
| mpz_sub (*result, e1_op1->value.integer, |
| e2_op2->value.integer); |
| return true; |
| } |
| /* Case 7: c1 + X - (c2 + X) = c1 - c2. */ |
| if (e2_op1->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1_op2, e2_op2) == 0) |
| { |
| mpz_sub (*result, e1_op1->value.integer, |
| e2_op1->value.integer); |
| return true; |
| } |
| } |
| } |
| |
| if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS) |
| { |
| e2_op1 = gfc_discard_nops (e2->value.op.op1); |
| e2_op2 = gfc_discard_nops (e2->value.op.op2); |
| |
| if (e1_op2->expr_type == EXPR_CONSTANT) |
| { |
| /* Case 8: X + c1 - (X - c2) = c1 + c2. */ |
| if (e2_op2->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1_op1, e2_op1) == 0) |
| { |
| mpz_add (*result, e1_op2->value.integer, |
| e2_op2->value.integer); |
| return true; |
| } |
| } |
| if (e1_op1->expr_type == EXPR_CONSTANT) |
| { |
| /* Case 9: c1 + X - (X - c2) = c1 + c2. */ |
| if (e2_op2->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1_op2, e2_op1) == 0) |
| { |
| mpz_add (*result, e1_op1->value.integer, |
| e2_op2->value.integer); |
| return true; |
| } |
| } |
| } |
| } |
| |
| if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_MINUS) |
| { |
| e1_op1 = gfc_discard_nops (e1->value.op.op1); |
| e1_op2 = gfc_discard_nops (e1->value.op.op2); |
| |
| if (e1_op2->expr_type == EXPR_CONSTANT) |
| { |
| /* Case 10: (X - c1) - X = -c1 */ |
| |
| if (gfc_dep_compare_expr (e1_op1, e2) == 0) |
| { |
| mpz_neg (*result, e1_op2->value.integer); |
| return true; |
| } |
| |
| if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS) |
| { |
| e2_op1 = gfc_discard_nops (e2->value.op.op1); |
| e2_op2 = gfc_discard_nops (e2->value.op.op2); |
| |
| /* Case 11: (X - c1) - (X + c2) = -( c1 + c2). */ |
| if (e2_op2->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1_op1, e2_op1) == 0) |
| { |
| mpz_add (*result, e1_op2->value.integer, |
| e2_op2->value.integer); |
| mpz_neg (*result, *result); |
| return true; |
| } |
| |
| /* Case 12: X - c1 - (c2 + X) = - (c1 + c2). */ |
| if (e2_op1->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1_op1, e2_op2) == 0) |
| { |
| mpz_add (*result, e1_op2->value.integer, |
| e2_op1->value.integer); |
| mpz_neg (*result, *result); |
| return true; |
| } |
| } |
| |
| if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS) |
| { |
| e2_op1 = gfc_discard_nops (e2->value.op.op1); |
| e2_op2 = gfc_discard_nops (e2->value.op.op2); |
| |
| /* Case 13: (X - c1) - (X - c2) = c2 - c1. */ |
| if (e2_op2->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1_op1, e2_op1) == 0) |
| { |
| mpz_sub (*result, e2_op2->value.integer, |
| e1_op2->value.integer); |
| return true; |
| } |
| } |
| } |
| if (e1_op1->expr_type == EXPR_CONSTANT) |
| { |
| if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS) |
| { |
| e2_op1 = gfc_discard_nops (e2->value.op.op1); |
| e2_op2 = gfc_discard_nops (e2->value.op.op2); |
| |
| /* Case 14: (c1 - X) - (c2 - X) == c1 - c2. */ |
| if (gfc_dep_compare_expr (e1_op2, e2_op2) == 0) |
| { |
| mpz_sub (*result, e1_op1->value.integer, |
| e2_op1->value.integer); |
| return true; |
| } |
| } |
| |
| } |
| } |
| |
| if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS) |
| { |
| e2_op1 = gfc_discard_nops (e2->value.op.op1); |
| e2_op2 = gfc_discard_nops (e2->value.op.op2); |
| |
| /* Case 15: X - (X + c2) = -c2. */ |
| if (e2_op2->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1, e2_op1) == 0) |
| { |
| mpz_neg (*result, e2_op2->value.integer); |
| return true; |
| } |
| /* Case 16: X - (c2 + X) = -c2. */ |
| if (e2_op1->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1, e2_op2) == 0) |
| { |
| mpz_neg (*result, e2_op1->value.integer); |
| return true; |
| } |
| } |
| |
| if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS) |
| { |
| e2_op1 = gfc_discard_nops (e2->value.op.op1); |
| e2_op2 = gfc_discard_nops (e2->value.op.op2); |
| |
| /* Case 17: X - (X - c2) = c2. */ |
| if (e2_op2->expr_type == EXPR_CONSTANT |
| && gfc_dep_compare_expr (e1, e2_op1) == 0) |
| { |
| mpz_set (*result, e2_op2->value.integer); |
| return true; |
| } |
| } |
| |
| if (gfc_dep_compare_expr (e1, e2) == 0) |
| { |
| /* Case 18: X - X = 0. */ |
| mpz_set_si (*result, 0); |
| return true; |
| } |
| |
| mpz_clear (*result); |
| return false; |
| } |
| |
| /* Returns 1 if the two ranges are the same and 0 if they are not (or if the |
| results are indeterminate). 'n' is the dimension to compare. */ |
| |
| static int |
| is_same_range (gfc_array_ref *ar1, gfc_array_ref *ar2, int n) |
| { |
| gfc_expr *e1; |
| gfc_expr *e2; |
| int i; |
| |
| /* TODO: More sophisticated range comparison. */ |
| gcc_assert (ar1 && ar2); |
| |
| gcc_assert (ar1->dimen_type[n] == ar2->dimen_type[n]); |
| |
| e1 = ar1->stride[n]; |
| e2 = ar2->stride[n]; |
| /* Check for mismatching strides. A NULL stride means a stride of 1. */ |
| if (e1 && !e2) |
| { |
| i = gfc_expr_is_one (e1, -1); |
| if (i == -1 || i == 0) |
| return 0; |
| } |
| else if (e2 && !e1) |
| { |
| i = gfc_expr_is_one (e2, -1); |
| if (i == -1 || i == 0) |
| return 0; |
| } |
| else if (e1 && e2) |
| { |
| i = gfc_dep_compare_expr (e1, e2); |
| if (i != 0) |
| return 0; |
| } |
| /* The strides match. */ |
| |
| /* Check the range start. */ |
| e1 = ar1->start[n]; |
| e2 = ar2->start[n]; |
| if (e1 || e2) |
| { |
| /* Use the bound of the array if no bound is specified. */ |
| if (ar1->as && !e1) |
| e1 = ar1->as->lower[n]; |
| |
| if (ar2->as && !e2) |
| e2 = ar2->as->lower[n]; |
| |
| /* Check we have values for both. */ |
| if (!(e1 && e2)) |
| return 0; |
| |
| i = gfc_dep_compare_expr (e1, e2); |
| if (i != 0) |
| return 0; |
| } |
| |
| /* Check the range end. */ |
| e1 = ar1->end[n]; |
| e2 = ar2->end[n]; |
| if (e1 || e2) |
| { |
| /* Use the bound of the array if no bound is specified. */ |
| if (ar1->as && !e1) |
| e1 = ar1->as->upper[n]; |
| |
| if (ar2->as && !e2) |
| e2 = ar2->as->upper[n]; |
| |
| /* Check we have values for both. */ |
| if (!(e1 && e2)) |
| return 0; |
| |
| i = gfc_dep_compare_expr (e1, e2); |
| if (i != 0) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| |
| /* Some array-returning intrinsics can be implemented by reusing the |
| data from one of the array arguments. For example, TRANSPOSE does |
| not necessarily need to allocate new data: it can be implemented |
| by copying the original array's descriptor and simply swapping the |
| two dimension specifications. |
| |
| If EXPR is a call to such an intrinsic, return the argument |
| whose data can be reused, otherwise return NULL. */ |
| |
| gfc_expr * |
| gfc_get_noncopying_intrinsic_argument (gfc_expr *expr) |
| { |
| if (expr->expr_type != EXPR_FUNCTION || !expr->value.function.isym) |
| return NULL; |
| |
| switch (expr->value.function.isym->id) |
| { |
| case GFC_ISYM_TRANSPOSE: |
| return expr->value.function.actual->expr; |
| |
| default: |
| return NULL; |
| } |
| } |
| |
| |
| /* Return true if the result of reference REF can only be constructed |
| using a temporary array. */ |
| |
| bool |
| gfc_ref_needs_temporary_p (gfc_ref *ref) |
| { |
| int n; |
| bool subarray_p; |
| |
| subarray_p = false; |
| for (; ref; ref = ref->next) |
| switch (ref->type) |
| { |
| case REF_ARRAY: |
| /* Vector dimensions are generally not monotonic and must be |
| handled using a temporary. */ |
| if (ref->u.ar.type == AR_SECTION) |
| for (n = 0; n < ref->u.ar.dimen; n++) |
| if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR) |
| return true; |
| |
| subarray_p = true; |
| break; |
| |
| case REF_SUBSTRING: |
| /* Within an array reference, character substrings generally |
| need a temporary. Character array strides are expressed as |
| multiples of the element size (consistent with other array |
| types), not in characters. */ |
| return subarray_p; |
| |
| case REF_COMPONENT: |
| case REF_INQUIRY: |
| break; |
| } |
| |
| return false; |
| } |
| |
| |
| static int |
| gfc_is_data_pointer (gfc_expr *e) |
| { |
| gfc_ref *ref; |
| |
| if (e->expr_type != EXPR_VARIABLE && e->expr_type != EXPR_FUNCTION) |
| return 0; |
| |
| /* No subreference if it is a function */ |
| gcc_assert (e->expr_type == EXPR_VARIABLE || !e->ref); |
| |
| if (e->symtree->n.sym->attr.pointer) |
| return 1; |
| |
| for (ref = e->ref; ref; ref = ref->next) |
| if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer) |
| return 1; |
| |
| return 0; |
| } |
| |
| |
| /* Return true if array variable VAR could be passed to the same function |
| as argument EXPR without interfering with EXPR. INTENT is the intent |
| of VAR. |
| |
| This is considerably less conservative than other dependencies |
| because many function arguments will already be copied into a |
| temporary. */ |
| |
| static int |
| gfc_check_argument_var_dependency (gfc_expr *var, sym_intent intent, |
| gfc_expr *expr, gfc_dep_check elemental) |
| { |
| gfc_expr *arg; |
| |
| gcc_assert (var->expr_type == EXPR_VARIABLE); |
| gcc_assert (var->rank > 0); |
| |
| switch (expr->expr_type) |
| { |
| case EXPR_VARIABLE: |
| /* In case of elemental subroutines, there is no dependency |
| between two same-range array references. */ |
| if (gfc_ref_needs_temporary_p (expr->ref) |
| || gfc_check_dependency (var, expr, elemental == NOT_ELEMENTAL)) |
| { |
| if (elemental == ELEM_DONT_CHECK_VARIABLE) |
| { |
| /* Too many false positive with pointers. */ |
| if (!gfc_is_data_pointer (var) && !gfc_is_data_pointer (expr)) |
| { |
| /* Elemental procedures forbid unspecified intents, |
| and we don't check dependencies for INTENT_IN args. */ |
| gcc_assert (intent == INTENT_OUT || intent == INTENT_INOUT); |
| |
| /* We are told not to check dependencies. |
| We do it, however, and issue a warning in case we find one. |
| If a dependency is found in the case |
| elemental == ELEM_CHECK_VARIABLE, we will generate |
| a temporary, so we don't need to bother the user. */ |
| gfc_warning (0, "INTENT(%s) actual argument at %L might " |
| "interfere with actual argument at %L.", |
| intent == INTENT_OUT ? "OUT" : "INOUT", |
| &var->where, &expr->where); |
| } |
| return 0; |
| } |
| else |
| return 1; |
| } |
| return 0; |
| |
| case EXPR_ARRAY: |
| /* the scalarizer always generates a temporary for array constructors, |
| so there is no dependency. */ |
| return 0; |
| |
| case EXPR_FUNCTION: |
| if (intent != INTENT_IN) |
| { |
| arg = gfc_get_noncopying_intrinsic_argument (expr); |
| if (arg != NULL) |
| return gfc_check_argument_var_dependency (var, intent, arg, |
| NOT_ELEMENTAL); |
| } |
| |
| if (elemental != NOT_ELEMENTAL) |
| { |
| if ((expr->value.function.esym |
| && expr->value.function.esym->attr.elemental) |
| || (expr->value.function.isym |
| && expr->value.function.isym->elemental)) |
| return gfc_check_fncall_dependency (var, intent, NULL, |
| expr->value.function.actual, |
| ELEM_CHECK_VARIABLE); |
| |
| if (gfc_inline_intrinsic_function_p (expr)) |
| { |
| /* The TRANSPOSE case should have been caught in the |
| noncopying intrinsic case above. */ |
| gcc_assert (expr->value.function.isym->id != GFC_ISYM_TRANSPOSE); |
| |
| return gfc_check_fncall_dependency (var, intent, NULL, |
| expr->value.function.actual, |
| ELEM_CHECK_VARIABLE); |
| } |
| } |
| return 0; |
| |
| case EXPR_OP: |
| /* In case of non-elemental procedures, there is no need to catch |
| dependencies, as we will make a temporary anyway. */ |
| if (elemental) |
| { |
| /* If the actual arg EXPR is an expression, we need to catch |
| a dependency between variables in EXPR and VAR, |
| an intent((IN)OUT) variable. */ |
| if (expr->value.op.op1 |
| && gfc_check_argument_var_dependency (var, intent, |
| expr->value.op.op1, |
| ELEM_CHECK_VARIABLE)) |
| return 1; |
| else if (expr->value.op.op2 |
| && gfc_check_argument_var_dependency (var, intent, |
| expr->value.op.op2, |
| ELEM_CHECK_VARIABLE)) |
| return 1; |
| } |
| return 0; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| |
| /* Like gfc_check_argument_var_dependency, but extended to any |
| array expression OTHER, not just variables. */ |
| |
| static int |
| gfc_check_argument_dependency (gfc_expr *other, sym_intent intent, |
| gfc_expr *expr, gfc_dep_check elemental) |
| { |
| switch (other->expr_type) |
| { |
| case EXPR_VARIABLE: |
| return gfc_check_argument_var_dependency (other, intent, expr, elemental); |
| |
| case EXPR_FUNCTION: |
| other = gfc_get_noncopying_intrinsic_argument (other); |
| if (other != NULL) |
| return gfc_check_argument_dependency (other, INTENT_IN, expr, |
| NOT_ELEMENTAL); |
| |
| return 0; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| |
| /* Like gfc_check_argument_dependency, but check all the arguments in ACTUAL. |
| FNSYM is the function being called, or NULL if not known. */ |
| |
| int |
| gfc_check_fncall_dependency (gfc_expr *other, sym_intent intent, |
| gfc_symbol *fnsym, gfc_actual_arglist *actual, |
| gfc_dep_check elemental) |
| { |
| gfc_formal_arglist *formal; |
| gfc_expr *expr; |
| |
| formal = fnsym ? gfc_sym_get_dummy_args (fnsym) : NULL; |
| for (; actual; actual = actual->next, formal = formal ? formal->next : NULL) |
| { |
| expr = actual->expr; |
| |
| /* Skip args which are not present. */ |
| if (!expr) |
| continue; |
| |
| /* Skip other itself. */ |
| if (expr == other) |
| continue; |
| |
| /* Skip intent(in) arguments if OTHER itself is intent(in). */ |
| if (formal && intent == INTENT_IN |
| && formal->sym->attr.intent == INTENT_IN) |
| continue; |
| |
| if (gfc_check_argument_dependency (other, intent, expr, elemental)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* Return 1 if e1 and e2 are equivalenced arrays, either |
| directly or indirectly; i.e., equivalence (a,b) for a and b |
| or equivalence (a,c),(b,c). This function uses the equiv_ |
| lists, generated in trans-common(add_equivalences), that are |
| guaranteed to pick up indirect equivalences. We explicitly |
| check for overlap using the offset and length of the equivalence. |
| This function is symmetric. |
| TODO: This function only checks whether the full top-level |
| symbols overlap. An improved implementation could inspect |
| e1->ref and e2->ref to determine whether the actually accessed |
| portions of these variables/arrays potentially overlap. */ |
| |
| int |
| gfc_are_equivalenced_arrays (gfc_expr *e1, gfc_expr *e2) |
| { |
| gfc_equiv_list *l; |
| gfc_equiv_info *s, *fl1, *fl2; |
| |
| gcc_assert (e1->expr_type == EXPR_VARIABLE |
| && e2->expr_type == EXPR_VARIABLE); |
| |
| if (!e1->symtree->n.sym->attr.in_equivalence |
| || !e2->symtree->n.sym->attr.in_equivalence|| !e1->rank || !e2->rank) |
| return 0; |
| |
| if (e1->symtree->n.sym->ns |
| && e1->symtree->n.sym->ns != gfc_current_ns) |
| l = e1->symtree->n.sym->ns->equiv_lists; |
| else |
| l = gfc_current_ns->equiv_lists; |
| |
| /* Go through the equiv_lists and return 1 if the variables |
| e1 and e2 are members of the same group and satisfy the |
| requirement on their relative offsets. */ |
| for (; l; l = l->next) |
| { |
| fl1 = NULL; |
| fl2 = NULL; |
| for (s = l->equiv; s; s = s->next) |
| { |
| if (s->sym == e1->symtree->n.sym) |
| { |
| fl1 = s; |
| if (fl2) |
| break; |
| } |
| if (s->sym == e2->symtree->n.sym) |
| { |
| fl2 = s; |
| if (fl1) |
| break; |
| } |
| } |
| |
| if (s) |
| { |
| /* Can these lengths be zero? */ |
| if (fl1->length <= 0 || fl2->length <= 0) |
| return 1; |
| /* These can't overlap if [f11,fl1+length] is before |
| [fl2,fl2+length], or [fl2,fl2+length] is before |
| [fl1,fl1+length], otherwise they do overlap. */ |
| if (fl1->offset + fl1->length > fl2->offset |
| && fl2->offset + fl2->length > fl1->offset) |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* Return true if there is no possibility of aliasing because of a type |
| mismatch between all the possible pointer references and the |
| potential target. Note that this function is asymmetric in the |
| arguments and so must be called twice with the arguments exchanged. */ |
| |
| static bool |
| check_data_pointer_types (gfc_expr *expr1, gfc_expr *expr2) |
| { |
| gfc_component *cm1; |
| gfc_symbol *sym1; |
| gfc_symbol *sym2; |
| gfc_ref *ref1; |
| bool seen_component_ref; |
| |
| if (expr1->expr_type != EXPR_VARIABLE |
| || expr2->expr_type != EXPR_VARIABLE) |
| return false; |
| |
| sym1 = expr1->symtree->n.sym; |
| sym2 = expr2->symtree->n.sym; |
| |
| /* Keep it simple for now. */ |
| if (sym1->ts.type == BT_DERIVED && sym2->ts.type == BT_DERIVED) |
| return false; |
| |
| if (sym1->attr.pointer) |
| { |
| if (gfc_compare_types (&sym1->ts, &sym2->ts)) |
| return false; |
| } |
| |
| /* This is a conservative check on the components of the derived type |
| if no component references have been seen. Since we will not dig |
| into the components of derived type components, we play it safe by |
| returning false. First we check the reference chain and then, if |
| no component references have been seen, the components. */ |
| seen_component_ref = false; |
| if (sym1->ts.type == BT_DERIVED) |
| { |
| for (ref1 = expr1->ref; ref1; ref1 = ref1->next) |
| { |
| if (ref1->type != REF_COMPONENT) |
| continue; |
| |
| if (ref1->u.c.component->ts.type == BT_DERIVED) |
| return false; |
| |
| if ((sym2->attr.pointer || ref1->u.c.component->attr.pointer) |
| && gfc_compare_types (&ref1->u.c.component->ts, &sym2->ts)) |
| return false; |
| |
| seen_component_ref = true; |
| } |
| } |
| |
| if (sym1->ts.type == BT_DERIVED && !seen_component_ref) |
| { |
| for (cm1 = sym1->ts.u.derived->components; cm1; cm1 = cm1->next) |
| { |
| if (cm1->ts.type == BT_DERIVED) |
| return false; |
| |
| if ((sym2->attr.pointer || cm1->attr.pointer) |
| && gfc_compare_types (&cm1->ts, &sym2->ts)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| /* Return true if the statement body redefines the condition. Returns |
| true if expr2 depends on expr1. expr1 should be a single term |
| suitable for the lhs of an assignment. The IDENTICAL flag indicates |
| whether array references to the same symbol with identical range |
| references count as a dependency or not. Used for forall and where |
| statements. Also used with functions returning arrays without a |
| temporary. */ |
| |
| int |
| gfc_check_dependency (gfc_expr *expr1, gfc_expr *expr2, bool identical) |
| { |
| gfc_actual_arglist *actual; |
| gfc_constructor *c; |
| int n; |
| |
| /* -fcoarray=lib can end up here with expr1->expr_type set to EXPR_FUNCTION |
| and a reference to _F.caf_get, so skip the assert. */ |
| if (expr1->expr_type == EXPR_FUNCTION |
| && strcmp (expr1->value.function.name, "_F.caf_get") == 0) |
| return 0; |
| |
| if (expr1->expr_type != EXPR_VARIABLE) |
| gfc_internal_error ("gfc_check_dependency: expecting an EXPR_VARIABLE"); |
| |
| switch (expr2->expr_type) |
| { |
| case EXPR_OP: |
| n = gfc_check_dependency (expr1, expr2->value.op.op1, identical); |
| if (n) |
| return n; |
| if (expr2->value.op.op2) |
| return gfc_check_dependency (expr1, expr2->value.op.op2, identical); |
| return 0; |
| |
| case EXPR_VARIABLE: |
| /* The interesting cases are when the symbols don't match. */ |
| if (expr1->symtree->n.sym != expr2->symtree->n.sym) |
| { |
| symbol_attribute attr1, attr2; |
| gfc_typespec *ts1 = &expr1->symtree->n.sym->ts; |
| gfc_typespec *ts2 = &expr2->symtree->n.sym->ts; |
| |
| /* Return 1 if expr1 and expr2 are equivalenced arrays. */ |
| if (gfc_are_equivalenced_arrays (expr1, expr2)) |
| return 1; |
| |
| /* Symbols can only alias if they have the same type. */ |
| if (ts1->type != BT_UNKNOWN && ts2->type != BT_UNKNOWN |
| && ts1->type != BT_DERIVED && ts2->type != BT_DERIVED) |
| { |
| if (ts1->type != ts2->type || ts1->kind != ts2->kind) |
| return 0; |
| } |
| |
| /* We have to also include target-target as ptr%comp is not a |
| pointer but it still alias with "dt%comp" for "ptr => dt". As |
| subcomponents and array access to pointers retains the target |
| attribute, that's sufficient. */ |
| attr1 = gfc_expr_attr (expr1); |
| attr2 = gfc_expr_attr (expr2); |
| if ((attr1.pointer || attr1.target) && (attr2.pointer || attr2.target)) |
| { |
| if (check_data_pointer_types (expr1, expr2) |
| && check_data_pointer_types (expr2, expr1)) |
| return 0; |
| |
| return 1; |
| } |
| else |
| { |
| gfc_symbol *sym1 = expr1->symtree->n.sym; |
| gfc_symbol *sym2 = expr2->symtree->n.sym; |
| if (sym1->attr.target && sym2->attr.target |
| && ((sym1->attr.dummy && !sym1->attr.contiguous |
| && (!sym1->attr.dimension |
| || sym2->as->type == AS_ASSUMED_SHAPE)) |
| || (sym2->attr.dummy && !sym2->attr.contiguous |
| && (!sym2->attr.dimension |
| || sym2->as->type == AS_ASSUMED_SHAPE)))) |
| return 1; |
| } |
| |
| /* Otherwise distinct symbols have no dependencies. */ |
| return 0; |
| } |
| |
| if (identical) |
| return 1; |
| |
| /* Identical and disjoint ranges return 0, |
| overlapping ranges return 1. */ |
| if (expr1->ref && expr2->ref) |
| return gfc_dep_resolver (expr1->ref, expr2->ref, NULL); |
| |
| return 1; |
| |
| case EXPR_FUNCTION: |
| if (gfc_get_noncopying_intrinsic_argument (expr2) != NULL) |
| identical = 1; |
| |
| /* Remember possible differences between elemental and |
| transformational functions. All functions inside a FORALL |
| will be pure. */ |
| for (actual = expr2->value.function.actual; |
| actual; actual = actual->next) |
| { |
| if (!actual->expr) |
| continue; |
| n = gfc_check_dependency (expr1, actual->expr, identical); |
| if (n) |
| return n; |
| } |
| return 0; |
| |
| case EXPR_CONSTANT: |
| case EXPR_NULL: |
| return 0; |
| |
| case EXPR_ARRAY: |
| /* Loop through the array constructor's elements. */ |
| for (c = gfc_constructor_first (expr2->value.constructor); |
| c; c = gfc_constructor_next (c)) |
| { |
| /* If this is an iterator, assume the worst. */ |
| if (c->iterator) |
| return 1; |
| /* Avoid recursion in the common case. */ |
| if (c->expr->expr_type == EXPR_CONSTANT) |
| continue; |
| if (gfc_check_dependency (expr1, c->expr, 1)) |
| return 1; |
| } |
| return 0; |
| |
| default: |
| return 1; |
| } |
| } |
| |
| |
| /* Determines overlapping for two array sections. */ |
| |
| static gfc_dependency |
| check_section_vs_section (gfc_array_ref *l_ar, gfc_array_ref *r_ar, int n) |
| { |
| gfc_expr *l_start; |
| gfc_expr *l_end; |
| gfc_expr *l_stride; |
| gfc_expr *l_lower; |
| gfc_expr *l_upper; |
| int l_dir; |
| |
| gfc_expr *r_start; |
| gfc_expr *r_end; |
| gfc_expr *r_stride; |
| gfc_expr *r_lower; |
| gfc_expr *r_upper; |
| gfc_expr *one_expr; |
| int r_dir; |
| int stride_comparison; |
| int start_comparison; |
| mpz_t tmp; |
| |
| /* If they are the same range, return without more ado. */ |
| if (is_same_range (l_ar, r_ar, n)) |
| return GFC_DEP_EQUAL; |
| |
| l_start = l_ar->start[n]; |
| l_end = l_ar->end[n]; |
| l_stride = l_ar->stride[n]; |
| |
| r_start = r_ar->start[n]; |
| r_end = r_ar->end[n]; |
| r_stride = r_ar->stride[n]; |
| |
| /* If l_start is NULL take it from array specifier. */ |
| if (l_start == NULL && IS_ARRAY_EXPLICIT (l_ar->as)) |
| l_start = l_ar->as->lower[n]; |
| /* If l_end is NULL take it from array specifier. */ |
| if (l_end == NULL && IS_ARRAY_EXPLICIT (l_ar->as)) |
| l_end = l_ar->as->upper[n]; |
| |
| /* If r_start is NULL take it from array specifier. */ |
| if (r_start == NULL && IS_ARRAY_EXPLICIT (r_ar->as)) |
| r_start = r_ar->as->lower[n]; |
| /* If r_end is NULL take it from array specifier. */ |
| if (r_end == NULL && IS_ARRAY_EXPLICIT (r_ar->as)) |
| r_end = r_ar->as->upper[n]; |
| |
| /* Determine whether the l_stride is positive or negative. */ |
| if (!l_stride) |
| l_dir = 1; |
| else if (l_stride->expr_type == EXPR_CONSTANT |
| && l_stride->ts.type == BT_INTEGER) |
| l_dir = mpz_sgn (l_stride->value.integer); |
| else if (l_start && l_end) |
| l_dir = gfc_dep_compare_expr (l_end, l_start); |
| else |
| l_dir = -2; |
| |
| /* Determine whether the r_stride is positive or negative. */ |
| if (!r_stride) |
| r_dir = 1; |
| else if (r_stride->expr_type == EXPR_CONSTANT |
| && r_stride->ts.type == BT_INTEGER) |
| r_dir = mpz_sgn (r_stride->value.integer); |
| else if (r_start && r_end) |
| r_dir = gfc_dep_compare_expr (r_end, r_start); |
| else |
| r_dir = -2; |
| |
| /* The strides should never be zero. */ |
| if (l_dir == 0 || r_dir == 0) |
| return GFC_DEP_OVERLAP; |
| |
| /* Determine the relationship between the strides. Set stride_comparison to |
| -2 if the dependency cannot be determined |
| -1 if l_stride < r_stride |
| 0 if l_stride == r_stride |
| 1 if l_stride > r_stride |
| as determined by gfc_dep_compare_expr. */ |
| |
| one_expr = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1); |
| |
| stride_comparison = gfc_dep_compare_expr (l_stride ? l_stride : one_expr, |
| r_stride ? r_stride : one_expr); |
| |
| if (l_start && r_start) |
| start_comparison = gfc_dep_compare_expr (l_start, r_start); |
| else |
| start_comparison = -2; |
| |
| gfc_free_expr (one_expr); |
| |
| /* Determine LHS upper and lower bounds. */ |
| if (l_dir == 1) |
| { |
| l_lower = l_start; |
| l_upper = l_end; |
| } |
| else if (l_dir == -1) |
| { |
| l_lower = l_end; |
| l_upper = l_start; |
| } |
| else |
| { |
| l_lower = NULL; |
| l_upper = NULL; |
| } |
| |
| /* Determine RHS upper and lower bounds. */ |
| if (r_dir == 1) |
| { |
| r_lower = r_start; |
| r_upper = r_end; |
| } |
| else if (r_dir == -1) |
| { |
| r_lower = r_end; |
| r_upper = r_start; |
| } |
| else |
| { |
| r_lower = NULL; |
| r_upper = NULL; |
| } |
| |
| /* Check whether the ranges are disjoint. */ |
| if (l_upper && r_lower && gfc_dep_compare_expr (l_upper, r_lower) == -1) |
| return GFC_DEP_NODEP; |
| if (r_upper && l_lower && gfc_dep_compare_expr (r_upper, l_lower) == -1) |
| return GFC_DEP_NODEP; |
| |
| /* Handle cases like x:y:1 vs. x:z:-1 as GFC_DEP_EQUAL. */ |
| if (l_start && r_start && gfc_dep_compare_expr (l_start, r_start) == 0) |
| { |
| if (l_dir == 1 && r_dir == -1) |
| return GFC_DEP_EQUAL; |
| if (l_dir == -1 && r_dir == 1) |
| return GFC_DEP_EQUAL; |
| } |
| |
| /* Handle cases like x:y:1 vs. z:y:-1 as GFC_DEP_EQUAL. */ |
| if (l_end && r_end && gfc_dep_compare_expr (l_end, r_end) == 0) |
| { |
| if (l_dir == 1 && r_dir == -1) |
| return GFC_DEP_EQUAL; |
| if (l_dir == -1 && r_dir == 1) |
| return GFC_DEP_EQUAL; |
| } |
| |
| /* Handle cases like x:y:2 vs. x+1:z:4 as GFC_DEP_NODEP. |
| There is no dependency if the remainder of |
| (l_start - r_start) / gcd(l_stride, r_stride) is |
| nonzero. |
| TODO: |
| - Cases like a(1:4:2) = a(2:3) are still not handled. |
| */ |
| |
| #define IS_CONSTANT_INTEGER(a) ((a) && ((a)->expr_type == EXPR_CONSTANT) \ |
| && (a)->ts.type == BT_INTEGER) |
| |
| if (IS_CONSTANT_INTEGER (l_stride) && IS_CONSTANT_INTEGER (r_stride) |
| && gfc_dep_difference (l_start, r_start, &tmp)) |
| { |
| mpz_t gcd; |
| int result; |
| |
| mpz_init (gcd); |
| mpz_gcd (gcd, l_stride->value.integer, r_stride->value.integer); |
| |
| mpz_fdiv_r (tmp, tmp, gcd); |
| result = mpz_cmp_si (tmp, 0L); |
| |
| mpz_clear (gcd); |
| mpz_clear (tmp); |
| |
| if (result != 0) |
| return GFC_DEP_NODEP; |
| } |
| |
| #undef IS_CONSTANT_INTEGER |
| |
| /* Check for forward dependencies x:y vs. x+1:z and x:y:z vs. x:y:z+1. */ |
| |
| if (l_dir == 1 && r_dir == 1 && |
| (start_comparison == 0 || start_comparison == -1) |
| && (stride_comparison == 0 || stride_comparison == -1)) |
| return GFC_DEP_FORWARD; |
| |
| /* Check for forward dependencies x:y:-1 vs. x-1:z:-1 and |
| x:y:-1 vs. x:y:-2. */ |
| if (l_dir == -1 && r_dir == -1 && |
| (start_comparison == 0 || start_comparison == 1) |
| && (stride_comparison == 0 || stride_comparison == 1)) |
| return GFC_DEP_FORWARD; |
| |
| if (stride_comparison == 0 || stride_comparison == -1) |
| { |
| if (l_start && IS_ARRAY_EXPLICIT (l_ar->as)) |
| { |
| |
| /* Check for a(low:y:s) vs. a(z:x:s) or |
| a(low:y:s) vs. a(z:x:s+1) where a has a lower bound |
| of low, which is always at least a forward dependence. */ |
| |
| if (r_dir == 1 |
| && gfc_dep_compare_expr (l_start, l_ar->as->lower[n]) == 0) |
| return GFC_DEP_FORWARD; |
| } |
| } |
| |
| if (stride_comparison == 0 || stride_comparison == 1) |
| { |
| if (l_start && IS_ARRAY_EXPLICIT (l_ar->as)) |
| { |
| |
| /* Check for a(high:y:-s) vs. a(z:x:-s) or |
| a(high:y:-s vs. a(z:x:-s-1) where a has a higher bound |
| of high, which is always at least a forward dependence. */ |
| |
| if (r_dir == -1 |
| && gfc_dep_compare_expr (l_start, l_ar->as->upper[n]) == 0) |
| return GFC_DEP_FORWARD; |
| } |
| } |
| |
| |
| if (stride_comparison == 0) |
| { |
| /* From here, check for backwards dependencies. */ |
| /* x+1:y vs. x:z. */ |
| if (l_dir == 1 && r_dir == 1 && start_comparison == 1) |
| return GFC_DEP_BACKWARD; |
| |
| /* x-1:y:-1 vs. x:z:-1. */ |
| if (l_dir == -1 && r_dir == -1 && start_comparison == -1) |
| return GFC_DEP_BACKWARD; |
| } |
| |
| return GFC_DEP_OVERLAP; |
| } |
| |
| |
| /* Determines overlapping for a single element and a section. */ |
| |
| static gfc_dependency |
| gfc_check_element_vs_section( gfc_ref *lref, gfc_ref *rref, int n) |
| { |
| gfc_array_ref *ref; |
| gfc_expr *elem; |
| gfc_expr *start; |
| gfc_expr *end; |
| gfc_expr *stride; |
| int s; |
| |
| elem = lref->u.ar.start[n]; |
| if (!elem) |
| return GFC_DEP_OVERLAP; |
| |
| ref = &rref->u.ar; |
| start = ref->start[n] ; |
| end = ref->end[n] ; |
| stride = ref->stride[n]; |
| |
| if (!start && IS_ARRAY_EXPLICIT (ref->as)) |
| start = ref->as->lower[n]; |
| if (!end && IS_ARRAY_EXPLICIT (ref->as)) |
| end = ref->as->upper[n]; |
| |
| /* Determine whether the stride is positive or negative. */ |
| if (!stride) |
| s = 1; |
| else if (stride->expr_type == EXPR_CONSTANT |
| && stride->ts.type == BT_INTEGER) |
| s = mpz_sgn (stride->value.integer); |
| else |
| s = -2; |
| |
| /* Stride should never be zero. */ |
| if (s == 0) |
| return GFC_DEP_OVERLAP; |
| |
| /* Positive strides. */ |
| if (s == 1) |
| { |
| /* Check for elem < lower. */ |
| if (start && gfc_dep_compare_expr (elem, start) == -1) |
| return GFC_DEP_NODEP; |
| /* Check for elem > upper. */ |
| if (end && gfc_dep_compare_expr (elem, end) == 1) |
| return GFC_DEP_NODEP; |
| |
| if (start && end) |
| { |
| s = gfc_dep_compare_expr (start, end); |
| /* Check for an empty range. */ |
| if (s == 1) |
| return GFC_DEP_NODEP; |
| if (s == 0 && gfc_dep_compare_expr (elem, start) == 0) |
| return GFC_DEP_EQUAL; |
| } |
| } |
| /* Negative strides. */ |
| else if (s == -1) |
| { |
| /* Check for elem > upper. */ |
| if (end && gfc_dep_compare_expr (elem, start) == 1) |
| return GFC_DEP_NODEP; |
| /* Check for elem < lower. */ |
| if (start && gfc_dep_compare_expr (elem, end) == -1) |
| return GFC_DEP_NODEP; |
| |
| if (start && end) |
| { |
| s = gfc_dep_compare_expr (start, end); |
| /* Check for an empty range. */ |
| if (s == -1) |
| return GFC_DEP_NODEP; |
| if (s == 0 && gfc_dep_compare_expr (elem, start) == 0) |
| return GFC_DEP_EQUAL; |
| } |
| } |
| /* Unknown strides. */ |
| else |
| { |
| if (!start || !end) |
| return GFC_DEP_OVERLAP; |
| s = gfc_dep_compare_expr (start, end); |
| if (s <= -2) |
| return GFC_DEP_OVERLAP; |
| /* Assume positive stride. */ |
| if (s == -1) |
| { |
| /* Check for elem < lower. */ |
| if (gfc_dep_compare_expr (elem, start) == -1) |
| return GFC_DEP_NODEP; |
| /* Check for elem > upper. */ |
| if (gfc_dep_compare_expr (elem, end) == 1) |
| return GFC_DEP_NODEP; |
| } |
| /* Assume negative stride. */ |
| else if (s == 1) |
| { |
| /* Check for elem > upper. */ |
| if (gfc_dep_compare_expr (elem, start) == 1) |
| return GFC_DEP_NODEP; |
| /* Check for elem < lower. */ |
| if (gfc_dep_compare_expr (elem, end) == -1) |
| return GFC_DEP_NODEP; |
| } |
| /* Equal bounds. */ |
| else if (s == 0) |
| { |
| s = gfc_dep_compare_expr (elem, start); |
| if (s == 0) |
| return GFC_DEP_EQUAL; |
| if (s == 1 || s == -1) |
| return GFC_DEP_NODEP; |
| } |
| } |
| |
| return GFC_DEP_OVERLAP; |
| } |
| |
| |
| /* Traverse expr, checking all EXPR_VARIABLE symbols for their |
| forall_index attribute. Return true if any variable may be |
| being used as a FORALL index. Its safe to pessimistically |
| return true, and assume a dependency. */ |
| |
| static bool |
| contains_forall_index_p (gfc_expr *expr) |
| { |
| gfc_actual_arglist *arg; |
| gfc_constructor *c; |
| gfc_ref *ref; |
| int i; |
| |
| if (!expr) |
| return false; |
| |
| switch (expr->expr_type) |
| { |
| case EXPR_VARIABLE: |
| if (expr->symtree->n.sym->forall_index) |
| return true; |
| break; |
| |
| case EXPR_OP: |
| if (contains_forall_index_p (expr->value.op.op1) |
| || contains_forall_index_p (expr->value.op.op2)) |
| return true; |
| break; |
| |
| case EXPR_FUNCTION: |
| for (arg = expr->value.function.actual; arg; arg = arg->next) |
| if (contains_forall_index_p (arg->expr)) |
| return true; |
| break; |
| |
| case EXPR_CONSTANT: |
| case EXPR_NULL: |
| case EXPR_SUBSTRING: |
| break; |
| |
| case EXPR_STRUCTURE: |
| case EXPR_ARRAY: |
| for (c = gfc_constructor_first (expr->value.constructor); |
| c; gfc_constructor_next (c)) |
| if (contains_forall_index_p (c->expr)) |
| return true; |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| for (ref = expr->ref; ref; ref = ref->next) |
| switch (ref->type) |
| { |
| case REF_ARRAY: |
| for (i = 0; i < ref->u.ar.dimen; i++) |
| if (contains_forall_index_p (ref->u.ar.start[i]) |
| || contains_forall_index_p (ref->u.ar.end[i]) |
| || contains_forall_index_p (ref->u.ar.stride[i])) |
| return true; |
| break; |
| |
| case REF_COMPONENT: |
| break; |
| |
| case REF_SUBSTRING: |
| if (contains_forall_index_p (ref->u.ss.start) |
| || contains_forall_index_p (ref->u.ss.end)) |
| return true; |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| return false; |
| } |
| |
| /* Determines overlapping for two single element array references. */ |
| |
| static gfc_dependency |
| gfc_check_element_vs_element (gfc_ref *lref, gfc_ref *rref, int n) |
| { |
| gfc_array_ref l_ar; |
| gfc_array_ref r_ar; |
| gfc_expr *l_start; |
| gfc_expr *r_start; |
| int i; |
| |
| l_ar = lref->u.ar; |
| r_ar = rref->u.ar; |
| l_start = l_ar.start[n] ; |
| r_start = r_ar.start[n] ; |
| i = gfc_dep_compare_expr (r_start, l_start); |
| if (i == 0) |
| return GFC_DEP_EQUAL; |
| |
| /* Treat two scalar variables as potentially equal. This allows |
| us to prove that a(i,:) and a(j,:) have no dependency. See |
| Gerald Roth, "Evaluation of Array Syntax Dependence Analysis", |
| Proceedings of the International Conference on Parallel and |
| Distributed Processing Techniques and Applications (PDPTA2001), |
| Las Vegas, Nevada, June 2001. */ |
| /* However, we need to be careful when either scalar expression |
| contains a FORALL index, as these can potentially change value |
| during the scalarization/traversal of this array reference. */ |
| if (contains_forall_index_p (r_start) || contains_forall_index_p (l_start)) |
| return GFC_DEP_OVERLAP; |
| |
| if (i > -2) |
| return GFC_DEP_NODEP; |
| return GFC_DEP_EQUAL; |
| } |
| |
| /* Callback function for checking if an expression depends on a |
| dummy variable which is any other than INTENT(IN). */ |
| |
| static int |
| callback_dummy_intent_not_in (gfc_expr **ep, |
| int *walk_subtrees ATTRIBUTE_UNUSED, |
| void *data ATTRIBUTE_UNUSED) |
| { |
| gfc_expr *e = *ep; |
| |
| if (e->expr_type == EXPR_VARIABLE && e->symtree |
| && e->symtree->n.sym->attr.dummy) |
| return e->symtree->n.sym->attr.intent != INTENT_IN; |
| else |
| return 0; |
| } |
| |
| /* Auxiliary function to check if subexpressions have dummy variables which |
| are not intent(in). |
| */ |
| |
| static bool |
| dummy_intent_not_in (gfc_expr **ep) |
| { |
| return gfc_expr_walker (ep, callback_dummy_intent_not_in, NULL); |
| } |
| |
| /* Determine if an array ref, usually an array section specifies the |
| entire array. In addition, if the second, pointer argument is |
| provided, the function will return true if the reference is |
| contiguous; eg. (:, 1) gives true but (1,:) gives false. |
| If one of the bounds depends on a dummy variable which is |
| not INTENT(IN), also return false, because the user may |
| have changed the variable. */ |
| |
| bool |
| gfc_full_array_ref_p (gfc_ref *ref, bool *contiguous) |
| { |
| int i; |
| int n; |
| bool lbound_OK = true; |
| bool ubound_OK = true; |
| |
| if (contiguous) |
| *contiguous = false; |
| |
| if (ref->type != REF_ARRAY) |
| return false; |
| |
| if (ref->u.ar.type == AR_FULL) |
| { |
| if (contiguous) |
| *contiguous = true; |
| return true; |
| } |
| |
| if (ref->u.ar.type != AR_SECTION) |
| return false; |
| if (ref->next) |
| return false; |
| |
| for (i = 0; i < ref->u.ar.dimen; i++) |
| { |
| /* If we have a single element in the reference, for the reference |
| to be full, we need to ascertain that the array has a single |
| element in this dimension and that we actually reference the |
| correct element. */ |
| if (ref->u.ar.dimen_type[i] == DIMEN_ELEMENT) |
| { |
| /* This is unconditionally a contiguous reference if all the |
| remaining dimensions are elements. */ |
| if (contiguous) |
| { |
| *contiguous = true; |
| for (n = i + 1; n < ref->u.ar.dimen; n++) |
| if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT) |
| *contiguous = false; |
| } |
| |
| if (!ref->u.ar.as |
| || !ref->u.ar.as->lower[i] |
| || !ref->u.ar.as->upper[i] |
| || gfc_dep_compare_expr (ref->u.ar.as->lower[i], |
| ref->u.ar.as->upper[i]) |
| || !ref->u.ar.start[i] |
| || gfc_dep_compare_expr (ref->u.ar.start[i], |
| ref->u.ar.as->lower[i])) |
| return false; |
| else |
| continue; |
| } |
| |
| /* Check the lower bound. */ |
| if (ref->u.ar.start[i] |
| && (!ref->u.ar.as |
| || !ref->u.ar.as->lower[i] |
| || gfc_dep_compare_expr (ref->u.ar.start[i], |
| ref->u.ar.as->lower[i]) |
| || dummy_intent_not_in (&ref->u.ar.start[i]))) |
| lbound_OK = false; |
| /* Check the upper bound. */ |
| if (ref->u.ar.end[i] |
| && (!ref->u.ar.as |
| || !ref->u.ar.as->upper[i] |
| || gfc_dep_compare_expr (ref->u.ar.end[i], |
| ref->u.ar.as->upper[i]) |
| || dummy_intent_not_in (&ref->u.ar.end[i]))) |
| ubound_OK = false; |
| /* Check the stride. */ |
| if (ref->u.ar.stride[i] |
| && !gfc_expr_is_one (ref->u.ar.stride[i], 0)) |
| return false; |
| |
| /* This is unconditionally a contiguous reference as long as all |
| the subsequent dimensions are elements. */ |
| if (contiguous) |
| { |
| *contiguous = true; |
| for (n = i + 1; n < ref->u.ar.dimen; n++) |
| if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT) |
| *contiguous = false; |
| } |
| |
| if (!lbound_OK || !ubound_OK) |
| return false; |
| } |
| return true; |
| } |
| |
| |
| /* Determine if a full array is the same as an array section with one |
| variable limit. For this to be so, the strides must both be unity |
| and one of either start == lower or end == upper must be true. */ |
| |
| static bool |
| ref_same_as_full_array (gfc_ref *full_ref, gfc_ref *ref) |
| { |
| int i; |
| bool upper_or_lower; |
| |
| if (full_ref->type != REF_ARRAY) |
| return false; |
| if (full_ref->u.ar.type != AR_FULL) |
| return false; |
| if (ref->type != REF_ARRAY) |
| return false; |
| if (ref->u.ar.type != AR_SECTION) |
| return false; |
| |
| for (i = 0; i < ref->u.ar.dimen; i++) |
| { |
| /* If we have a single element in the reference, we need to check |
| that the array has a single element and that we actually reference |
| the correct element. */ |
| if (ref->u.ar.dimen_type[i] == DIMEN_ELEMENT) |
| { |
| if (!full_ref->u.ar.as |
| || !full_ref->u.ar.as->lower[i] |
| || !full_ref->u.ar.as->upper[i] |
| || gfc_dep_compare_expr (full_ref->u.ar.as->lower[i], |
| full_ref->u.ar.as->upper[i]) |
| || !ref->u.ar.start[i] |
| || gfc_dep_compare_expr (ref->u.ar.start[i], |
| full_ref->u.ar.as->lower[i])) |
| return false; |
| } |
| |
| /* Check the strides. */ |
| if (full_ref->u.ar.stride[i] && !gfc_expr_is_one (full_ref->u.ar.stride[i], 0)) |
| return false; |
| if (ref->u.ar.stride[i] && !gfc_expr_is_one (ref->u.ar.stride[i], 0)) |
| return false; |
| |
| upper_or_lower = false; |
| /* Check the lower bound. */ |
| if (ref->u.ar.start[i] |
| && (ref->u.ar.as |
| && full_ref->u.ar.as->lower[i] |
| && gfc_dep_compare_expr (ref->u.ar.start[i], |
| full_ref->u.ar.as->lower[i]) == 0)) |
| upper_or_lower = true; |
| /* Check the upper bound. */ |
| if (ref->u.ar.end[i] |
| && (ref->u.ar.as |
| && full_ref->u.ar.as->upper[i] |
| && gfc_dep_compare_expr (ref->u.ar.end[i], |
| full_ref->u.ar.as->upper[i]) == 0)) |
| upper_or_lower = true; |
| if (!upper_or_lower) |
| return false; |
| } |
| return true; |
| } |
| |
| |
| /* Finds if two array references are overlapping or not. |
| Return value |
| 2 : array references are overlapping but reversal of one or |
| more dimensions will clear the dependency. |
| 1 : array references are overlapping. |
| 0 : array references are identical or not overlapping. */ |
| |
| int |
| gfc_dep_resolver (gfc_ref *lref, gfc_ref *rref, gfc_reverse *reverse) |
| { |
| int n; |
| int m; |
| gfc_dependency fin_dep; |
| gfc_dependency this_dep; |
| |
| this_dep = GFC_DEP_ERROR; |
| fin_dep = GFC_DEP_ERROR; |
| /* Dependencies due to pointers should already have been identified. |
| We only need to check for overlapping array references. */ |
| |
| while (lref && rref) |
| { |
| /* We're resolving from the same base symbol, so both refs should be |
| the same type. We traverse the reference chain until we find ranges |
| that are not equal. */ |
| gcc_assert (lref->type == rref->type); |
| switch (lref->type) |
| { |
| case REF_COMPONENT: |
| /* The two ranges can't overlap if they are from different |
| components. */ |
| if (lref->u.c.component != rref->u.c.component) |
| return 0; |
| break; |
| |
| case REF_SUBSTRING: |
| /* Substring overlaps are handled by the string assignment code |
| if there is not an underlying dependency. */ |
| return (fin_dep == GFC_DEP_OVERLAP) ? 1 : 0; |
| |
| case REF_ARRAY: |
| |
| if (ref_same_as_full_array (lref, rref)) |
| return 0; |
| |
| if (ref_same_as_full_array (rref, lref)) |
| return 0; |
| |
| if (lref->u.ar.dimen != rref->u.ar.dimen) |
| { |
| if (lref->u.ar.type == AR_FULL) |
| fin_dep = gfc_full_array_ref_p (rref, NULL) ? GFC_DEP_EQUAL |
| : GFC_DEP_OVERLAP; |
| else if (rref->u.ar.type == AR_FULL) |
| fin_dep = gfc_full_array_ref_p (lref, NULL) ? GFC_DEP_EQUAL |
| : GFC_DEP_OVERLAP; |
| else |
| return 1; |
| break; |
| } |
| |
| /* Index for the reverse array. */ |
| m = -1; |
| for (n=0; n < lref->u.ar.dimen; n++) |
| { |
| /* Handle dependency when either of array reference is vector |
| subscript. There is no dependency if the vector indices |
| are equal or if indices are known to be different in a |
| different dimension. */ |
| if (lref->u.ar.dimen_type[n] == DIMEN_VECTOR |
| || rref->u.ar.dimen_type[n] == DIMEN_VECTOR) |
| { |
| if (lref->u.ar.dimen_type[n] == DIMEN_VECTOR |
| && rref->u.ar.dimen_type[n] == DIMEN_VECTOR |
| && gfc_dep_compare_expr (lref->u.ar.start[n], |
| rref->u.ar.start[n]) == 0) |
| this_dep = GFC_DEP_EQUAL; |
| else |
| this_dep = GFC_DEP_OVERLAP; |
| |
| goto update_fin_dep; |
| } |
| |
| if (lref->u.ar.dimen_type[n] == DIMEN_RANGE |
| && rref->u.ar.dimen_type[n] == DIMEN_RANGE) |
| this_dep = check_section_vs_section (&lref->u.ar, &rref->u.ar, n); |
| else if (lref->u.ar.dimen_type[n] == DIMEN_ELEMENT |
| && rref->u.ar.dimen_type[n] == DIMEN_RANGE) |
| this_dep = gfc_check_element_vs_section (lref, rref, n); |
| else if (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT |
| && lref->u.ar.dimen_type[n] == DIMEN_RANGE) |
| this_dep = gfc_check_element_vs_section (rref, lref, n); |
| else |
| { |
| gcc_assert (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT |
| && lref->u.ar.dimen_type[n] == DIMEN_ELEMENT); |
| this_dep = gfc_check_element_vs_element (rref, lref, n); |
| } |
| |
| /* If any dimension doesn't overlap, we have no dependency. */ |
| if (this_dep == GFC_DEP_NODEP) |
| return 0; |
| |
| /* Now deal with the loop reversal logic: This only works on |
| ranges and is activated by setting |
| reverse[n] == GFC_ENABLE_REVERSE |
| The ability to reverse or not is set by previous conditions |
| in this dimension. If reversal is not activated, the |
| value GFC_DEP_BACKWARD is reset to GFC_DEP_OVERLAP. */ |
| |
| /* Get the indexing right for the scalarizing loop. If this |
| is an element, there is no corresponding loop. */ |
| if (lref->u.ar.dimen_type[n] != DIMEN_ELEMENT) |
| m++; |
| |
| if (rref->u.ar.dimen_type[n] == DIMEN_RANGE |
| && lref->u.ar.dimen_type[n] == DIMEN_RANGE) |
| { |
| /* Set reverse if backward dependence and not inhibited. */ |
| if (reverse && reverse[m] == GFC_ENABLE_REVERSE) |
| reverse[m] = (this_dep == GFC_DEP_BACKWARD) ? |
| GFC_REVERSE_SET : reverse[m]; |
| |
| /* Set forward if forward dependence and not inhibited. */ |
| if (reverse && reverse[m] == GFC_ENABLE_REVERSE) |
| reverse[m] = (this_dep == GFC_DEP_FORWARD) ? |
| GFC_FORWARD_SET : reverse[m]; |
| |
| /* Flag up overlap if dependence not compatible with |
| the overall state of the expression. */ |
| if (reverse && reverse[m] == GFC_REVERSE_SET |
| && this_dep == GFC_DEP_FORWARD) |
| { |
| reverse[m] = GFC_INHIBIT_REVERSE; |
| this_dep = GFC_DEP_OVERLAP; |
| } |
| else if (reverse && reverse[m] == GFC_FORWARD_SET |
| && this_dep == GFC_DEP_BACKWARD) |
| { |
| reverse[m] = GFC_INHIBIT_REVERSE; |
| this_dep = GFC_DEP_OVERLAP; |
| } |
| |
| /* If no intention of reversing or reversing is explicitly |
| inhibited, convert backward dependence to overlap. */ |
| if ((reverse == NULL && this_dep == GFC_DEP_BACKWARD) |
| || (reverse != NULL && reverse[m] == GFC_INHIBIT_REVERSE)) |
| this_dep = GFC_DEP_OVERLAP; |
| } |
| |
| /* Overlap codes are in order of priority. We only need to |
| know the worst one.*/ |
| |
| update_fin_dep: |
| if (this_dep > fin_dep) |
| fin_dep = this_dep; |
| } |
| |
| /* If this is an equal element, we have to keep going until we find |
| the "real" array reference. */ |
| if (lref->u.ar.type == AR_ELEMENT |
| && rref->u.ar.type == AR_ELEMENT |
| && fin_dep == GFC_DEP_EQUAL) |
| break; |
| |
| /* Exactly matching and forward overlapping ranges don't cause a |
| dependency. */ |
| if (fin_dep < GFC_DEP_BACKWARD) |
| return 0; |
| |
| /* Keep checking. We only have a dependency if |
| subsequent references also overlap. */ |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| lref = lref->next; |
| rref = rref->next; |
| } |
| |
| /* If we haven't seen any array refs then something went wrong. */ |
| gcc_assert (fin_dep != GFC_DEP_ERROR); |
| |
| /* Assume the worst if we nest to different depths. */ |
| if (lref || rref) |
| return 1; |
| |
| return fin_dep == GFC_DEP_OVERLAP; |
| } |