| /* Implementation of the MATMUL intrinsic |
| Copyright (C) 2002-2019 Free Software Foundation, Inc. |
| Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>. |
| |
| This file is part of the GNU Fortran runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public |
| License as published by the Free Software Foundation; either |
| version 3 of the License, or (at your option) any later version. |
| |
| Libgfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "libgfortran.h" |
| #include <string.h> |
| #include <assert.h> |
| |
| |
| /* These are the specific versions of matmul with -mprefer-avx128. */ |
| |
| #if defined (HAVE_GFC_COMPLEX_10) |
| |
| /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be |
| passed to us by the front-end, in which case we call it for large |
| matrices. */ |
| |
| typedef void (*blas_call)(const char *, const char *, const int *, const int *, |
| const int *, const GFC_COMPLEX_10 *, const GFC_COMPLEX_10 *, |
| const int *, const GFC_COMPLEX_10 *, const int *, |
| const GFC_COMPLEX_10 *, GFC_COMPLEX_10 *, const int *, |
| int, int); |
| |
| #if defined(HAVE_AVX) && defined(HAVE_FMA3) && defined(HAVE_AVX128) |
| void |
| matmul_c10_avx128_fma3 (gfc_array_c10 * const restrict retarray, |
| gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas, |
| int blas_limit, blas_call gemm) __attribute__((__target__("avx,fma"))); |
| internal_proto(matmul_c10_avx128_fma3); |
| void |
| matmul_c10_avx128_fma3 (gfc_array_c10 * const restrict retarray, |
| gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas, |
| int blas_limit, blas_call gemm) |
| { |
| const GFC_COMPLEX_10 * restrict abase; |
| const GFC_COMPLEX_10 * restrict bbase; |
| GFC_COMPLEX_10 * restrict dest; |
| |
| index_type rxstride, rystride, axstride, aystride, bxstride, bystride; |
| index_type x, y, n, count, xcount, ycount; |
| |
| assert (GFC_DESCRIPTOR_RANK (a) == 2 |
| || GFC_DESCRIPTOR_RANK (b) == 2); |
| |
| /* C[xcount,ycount] = A[xcount, count] * B[count,ycount] |
| |
| Either A or B (but not both) can be rank 1: |
| |
| o One-dimensional argument A is implicitly treated as a row matrix |
| dimensioned [1,count], so xcount=1. |
| |
| o One-dimensional argument B is implicitly treated as a column matrix |
| dimensioned [count, 1], so ycount=1. |
| */ |
| |
| if (retarray->base_addr == NULL) |
| { |
| if (GFC_DESCRIPTOR_RANK (a) == 1) |
| { |
| GFC_DIMENSION_SET(retarray->dim[0], 0, |
| GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); |
| } |
| else if (GFC_DESCRIPTOR_RANK (b) == 1) |
| { |
| GFC_DIMENSION_SET(retarray->dim[0], 0, |
| GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); |
| } |
| else |
| { |
| GFC_DIMENSION_SET(retarray->dim[0], 0, |
| GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); |
| |
| GFC_DIMENSION_SET(retarray->dim[1], 0, |
| GFC_DESCRIPTOR_EXTENT(b,1) - 1, |
| GFC_DESCRIPTOR_EXTENT(retarray,0)); |
| } |
| |
| retarray->base_addr |
| = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_10)); |
| retarray->offset = 0; |
| } |
| else if (unlikely (compile_options.bounds_check)) |
| { |
| index_type ret_extent, arg_extent; |
| |
| if (GFC_DESCRIPTOR_RANK (a) == 1) |
| { |
| arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); |
| if (arg_extent != ret_extent) |
| runtime_error ("Array bound mismatch for dimension 1 of " |
| "array (%ld/%ld) ", |
| (long int) ret_extent, (long int) arg_extent); |
| } |
| else if (GFC_DESCRIPTOR_RANK (b) == 1) |
| { |
| arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); |
| if (arg_extent != ret_extent) |
| runtime_error ("Array bound mismatch for dimension 1 of " |
| "array (%ld/%ld) ", |
| (long int) ret_extent, (long int) arg_extent); |
| } |
| else |
| { |
| arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); |
| if (arg_extent != ret_extent) |
| runtime_error ("Array bound mismatch for dimension 1 of " |
| "array (%ld/%ld) ", |
| (long int) ret_extent, (long int) arg_extent); |
| |
| arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); |
| if (arg_extent != ret_extent) |
| runtime_error ("Array bound mismatch for dimension 2 of " |
| "array (%ld/%ld) ", |
| (long int) ret_extent, (long int) arg_extent); |
| } |
| } |
| |
| |
| if (GFC_DESCRIPTOR_RANK (retarray) == 1) |
| { |
| /* One-dimensional result may be addressed in the code below |
| either as a row or a column matrix. We want both cases to |
| work. */ |
| rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0); |
| } |
| else |
| { |
| rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); |
| rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); |
| } |
| |
| |
| if (GFC_DESCRIPTOR_RANK (a) == 1) |
| { |
| /* Treat it as a a row matrix A[1,count]. */ |
| axstride = GFC_DESCRIPTOR_STRIDE(a,0); |
| aystride = 1; |
| |
| xcount = 1; |
| count = GFC_DESCRIPTOR_EXTENT(a,0); |
| } |
| else |
| { |
| axstride = GFC_DESCRIPTOR_STRIDE(a,0); |
| aystride = GFC_DESCRIPTOR_STRIDE(a,1); |
| |
| count = GFC_DESCRIPTOR_EXTENT(a,1); |
| xcount = GFC_DESCRIPTOR_EXTENT(a,0); |
| } |
| |
| if (count != GFC_DESCRIPTOR_EXTENT(b,0)) |
| { |
| if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0) |
| runtime_error ("Incorrect extent in argument B in MATMUL intrinsic " |
| "in dimension 1: is %ld, should be %ld", |
| (long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count); |
| } |
| |
| if (GFC_DESCRIPTOR_RANK (b) == 1) |
| { |
| /* Treat it as a column matrix B[count,1] */ |
| bxstride = GFC_DESCRIPTOR_STRIDE(b,0); |
| |
| /* bystride should never be used for 1-dimensional b. |
| The value is only used for calculation of the |
| memory by the buffer. */ |
| bystride = 256; |
| ycount = 1; |
| } |
| else |
| { |
| bxstride = GFC_DESCRIPTOR_STRIDE(b,0); |
| bystride = GFC_DESCRIPTOR_STRIDE(b,1); |
| ycount = GFC_DESCRIPTOR_EXTENT(b,1); |
| } |
| |
| abase = a->base_addr; |
| bbase = b->base_addr; |
| dest = retarray->base_addr; |
| |
| /* Now that everything is set up, we perform the multiplication |
| itself. */ |
| |
| #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) |
| #define min(a,b) ((a) <= (b) ? (a) : (b)) |
| #define max(a,b) ((a) >= (b) ? (a) : (b)) |
| |
| if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) |
| && (bxstride == 1 || bystride == 1) |
| && (((float) xcount) * ((float) ycount) * ((float) count) |
| > POW3(blas_limit))) |
| { |
| const int m = xcount, n = ycount, k = count, ldc = rystride; |
| const GFC_COMPLEX_10 one = 1, zero = 0; |
| const int lda = (axstride == 1) ? aystride : axstride, |
| ldb = (bxstride == 1) ? bystride : bxstride; |
| |
| if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) |
| { |
| assert (gemm != NULL); |
| const char *transa, *transb; |
| if (try_blas & 2) |
| transa = "C"; |
| else |
| transa = axstride == 1 ? "N" : "T"; |
| |
| if (try_blas & 4) |
| transb = "C"; |
| else |
| transb = bxstride == 1 ? "N" : "T"; |
| |
| gemm (transa, transb , &m, |
| &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, |
| &ldc, 1, 1); |
| return; |
| } |
| } |
| |
| if (rxstride == 1 && axstride == 1 && bxstride == 1) |
| { |
| /* This block of code implements a tuned matmul, derived from |
| Superscalar GEMM-based level 3 BLAS, Beta version 0.1 |
| |
| Bo Kagstrom and Per Ling |
| Department of Computing Science |
| Umea University |
| S-901 87 Umea, Sweden |
| |
| from netlib.org, translated to C, and modified for matmul.m4. */ |
| |
| const GFC_COMPLEX_10 *a, *b; |
| GFC_COMPLEX_10 *c; |
| const index_type m = xcount, n = ycount, k = count; |
| |
| /* System generated locals */ |
| index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, |
| i1, i2, i3, i4, i5, i6; |
| |
| /* Local variables */ |
| GFC_COMPLEX_10 f11, f12, f21, f22, f31, f32, f41, f42, |
| f13, f14, f23, f24, f33, f34, f43, f44; |
| index_type i, j, l, ii, jj, ll; |
| index_type isec, jsec, lsec, uisec, ujsec, ulsec; |
| GFC_COMPLEX_10 *t1; |
| |
| a = abase; |
| b = bbase; |
| c = retarray->base_addr; |
| |
| /* Parameter adjustments */ |
| c_dim1 = rystride; |
| c_offset = 1 + c_dim1; |
| c -= c_offset; |
| a_dim1 = aystride; |
| a_offset = 1 + a_dim1; |
| a -= a_offset; |
| b_dim1 = bystride; |
| b_offset = 1 + b_dim1; |
| b -= b_offset; |
| |
| /* Empty c first. */ |
| for (j=1; j<=n; j++) |
| for (i=1; i<=m; i++) |
| c[i + j * c_dim1] = (GFC_COMPLEX_10)0; |
| |
| /* Early exit if possible */ |
| if (m == 0 || n == 0 || k == 0) |
| return; |
| |
| /* Adjust size of t1 to what is needed. */ |
| index_type t1_dim, a_sz; |
| if (aystride == 1) |
| a_sz = rystride; |
| else |
| a_sz = a_dim1; |
| |
| t1_dim = a_sz * 256 + b_dim1; |
| if (t1_dim > 65536) |
| t1_dim = 65536; |
| |
| t1 = malloc (t1_dim * sizeof(GFC_COMPLEX_10)); |
| |
| /* Start turning the crank. */ |
| i1 = n; |
| for (jj = 1; jj <= i1; jj += 512) |
| { |
| /* Computing MIN */ |
| i2 = 512; |
| i3 = n - jj + 1; |
| jsec = min(i2,i3); |
| ujsec = jsec - jsec % 4; |
| i2 = k; |
| for (ll = 1; ll <= i2; ll += 256) |
| { |
| /* Computing MIN */ |
| i3 = 256; |
| i4 = k - ll + 1; |
| lsec = min(i3,i4); |
| ulsec = lsec - lsec % 2; |
| |
| i3 = m; |
| for (ii = 1; ii <= i3; ii += 256) |
| { |
| /* Computing MIN */ |
| i4 = 256; |
| i5 = m - ii + 1; |
| isec = min(i4,i5); |
| uisec = isec - isec % 2; |
| i4 = ll + ulsec - 1; |
| for (l = ll; l <= i4; l += 2) |
| { |
| i5 = ii + uisec - 1; |
| for (i = ii; i <= i5; i += 2) |
| { |
| t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = |
| a[i + l * a_dim1]; |
| t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = |
| a[i + (l + 1) * a_dim1]; |
| t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = |
| a[i + 1 + l * a_dim1]; |
| t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = |
| a[i + 1 + (l + 1) * a_dim1]; |
| } |
| if (uisec < isec) |
| { |
| t1[l - ll + 1 + (isec << 8) - 257] = |
| a[ii + isec - 1 + l * a_dim1]; |
| t1[l - ll + 2 + (isec << 8) - 257] = |
| a[ii + isec - 1 + (l + 1) * a_dim1]; |
| } |
| } |
| if (ulsec < lsec) |
| { |
| i4 = ii + isec - 1; |
| for (i = ii; i<= i4; ++i) |
| { |
| t1[lsec + ((i - ii + 1) << 8) - 257] = |
| a[i + (ll + lsec - 1) * a_dim1]; |
| } |
| } |
| |
| uisec = isec - isec % 4; |
| i4 = jj + ujsec - 1; |
| for (j = jj; j <= i4; j += 4) |
| { |
| i5 = ii + uisec - 1; |
| for (i = ii; i <= i5; i += 4) |
| { |
| f11 = c[i + j * c_dim1]; |
| f21 = c[i + 1 + j * c_dim1]; |
| f12 = c[i + (j + 1) * c_dim1]; |
| f22 = c[i + 1 + (j + 1) * c_dim1]; |
| f13 = c[i + (j + 2) * c_dim1]; |
| f23 = c[i + 1 + (j + 2) * c_dim1]; |
| f14 = c[i + (j + 3) * c_dim1]; |
| f24 = c[i + 1 + (j + 3) * c_dim1]; |
| f31 = c[i + 2 + j * c_dim1]; |
| f41 = c[i + 3 + j * c_dim1]; |
| f32 = c[i + 2 + (j + 1) * c_dim1]; |
| f42 = c[i + 3 + (j + 1) * c_dim1]; |
| f33 = c[i + 2 + (j + 2) * c_dim1]; |
| f43 = c[i + 3 + (j + 2) * c_dim1]; |
| f34 = c[i + 2 + (j + 3) * c_dim1]; |
| f44 = c[i + 3 + (j + 3) * c_dim1]; |
| i6 = ll + lsec - 1; |
| for (l = ll; l <= i6; ++l) |
| { |
| f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] |
| * b[l + j * b_dim1]; |
| f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] |
| * b[l + j * b_dim1]; |
| f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] |
| * b[l + (j + 1) * b_dim1]; |
| f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] |
| * b[l + (j + 1) * b_dim1]; |
| f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] |
| * b[l + (j + 2) * b_dim1]; |
| f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] |
| * b[l + (j + 2) * b_dim1]; |
| f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] |
| * b[l + (j + 3) * b_dim1]; |
| f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] |
| * b[l + (j + 3) * b_dim1]; |
| f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] |
| * b[l + j * b_dim1]; |
| f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] |
| * b[l + j * b_dim1]; |
| f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] |
| * b[l + (j + 1) * b_dim1]; |
| f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] |
| * b[l + (j + 1) * b_dim1]; |
| f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] |
| * b[l + (j + 2) * b_dim1]; |
| f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] |
| * b[l + (j + 2) * b_dim1]; |
| f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] |
| * b[l + (j + 3) * b_dim1]; |
| f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] |
| * b[l + (j + 3) * b_dim1]; |
| } |
| c[i + j * c_dim1] = f11; |
| c[i + 1 + j * c_dim1] = f21; |
| c[i + (j + 1) * c_dim1] = f12; |
| c[i + 1 + (j + 1) * c_dim1] = f22; |
| c[i + (j + 2) * c_dim1] = f13; |
| c[i + 1 + (j + 2) * c_dim1] = f23; |
| c[i + (j + 3) * c_dim1] = f14; |
| c[i + 1 + (j + 3) * c_dim1] = f24; |
| c[i + 2 + j * c_dim1] = f31; |
| c[i + 3 + j * c_dim1] = f41; |
| c[i + 2 + (j + 1) * c_dim1] = f32; |
| c[i + 3 + (j + 1) * c_dim1] = f42; |
| c[i + 2 + (j + 2) * c_dim1] = f33; |
| c[i + 3 + (j + 2) * c_dim1] = f43; |
| c[i + 2 + (j + 3) * c_dim1] = f34; |
| c[i + 3 + (j + 3) * c_dim1] = f44; |
| } |
| if (uisec < isec) |
| { |
| i5 = ii + isec - 1; |
| for (i = ii + uisec; i <= i5; ++i) |
| { |
| f11 = c[i + j * c_dim1]; |
| f12 = c[i + (j + 1) * c_dim1]; |
| f13 = c[i + (j + 2) * c_dim1]; |
| f14 = c[i + (j + 3) * c_dim1]; |
| i6 = ll + lsec - 1; |
| for (l = ll; l <= i6; ++l) |
| { |
| f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - |
| 257] * b[l + j * b_dim1]; |
| f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - |
| 257] * b[l + (j + 1) * b_dim1]; |
| f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - |
| 257] * b[l + (j + 2) * b_dim1]; |
| f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - |
| 257] * b[l + (j + 3) * b_dim1]; |
| } |
| c[i + j * c_dim1] = f11; |
| c[i + (j + 1) * c_dim1] = f12; |
| c[i + (j + 2) * c_dim1] = f13; |
| c[i + (j + 3) * c_dim1] = f14; |
| } |
| } |
| } |
| if (ujsec < jsec) |
| { |
| i4 = jj + jsec - 1; |
| for (j = jj + ujsec; j <= i4; ++j) |
| { |
| i5 = ii + uisec - 1; |
| for (i = ii; i <= i5; i += 4) |
| { |
| f11 = c[i + j * c_dim1]; |
| f21 = c[i + 1 + j * c_dim1]; |
| f31 = c[i + 2 + j * c_dim1]; |
| f41 = c[i + 3 + j * c_dim1]; |
| i6 = ll + lsec - 1; |
| for (l = ll; l <= i6; ++l) |
| { |
| f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - |
| 257] * b[l + j * b_dim1]; |
| f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - |
| 257] * b[l + j * b_dim1]; |
| f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - |
| 257] * b[l + j * b_dim1]; |
| f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - |
| 257] * b[l + j * b_dim1]; |
| } |
| c[i + j * c_dim1] = f11; |
| c[i + 1 + j * c_dim1] = f21; |
| c[i + 2 + j * c_dim1] = f31; |
| c[i + 3 + j * c_dim1] = f41; |
| } |
| i5 = ii + isec - 1; |
| for (i = ii + uisec; i <= i5; ++i) |
| { |
| f11 = c[i + j * c_dim1]; |
| i6 = ll + lsec - 1; |
| for (l = ll; l <= i6; ++l) |
| { |
| f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - |
| 257] * b[l + j * b_dim1]; |
| } |
| c[i + j * c_dim1] = f11; |
| } |
| } |
| } |
| } |
| } |
| } |
| free(t1); |
| return; |
| } |
| else if (rxstride == 1 && aystride == 1 && bxstride == 1) |
| { |
| if (GFC_DESCRIPTOR_RANK (a) != 1) |
| { |
| const GFC_COMPLEX_10 *restrict abase_x; |
| const GFC_COMPLEX_10 *restrict bbase_y; |
| GFC_COMPLEX_10 *restrict dest_y; |
| GFC_COMPLEX_10 s; |
| |
| for (y = 0; y < ycount; y++) |
| { |
| bbase_y = &bbase[y*bystride]; |
| dest_y = &dest[y*rystride]; |
| for (x = 0; x < xcount; x++) |
| { |
| abase_x = &abase[x*axstride]; |
| s = (GFC_COMPLEX_10) 0; |
| for (n = 0; n < count; n++) |
| s += abase_x[n] * bbase_y[n]; |
| dest_y[x] = s; |
| } |
| } |
| } |
| else |
| { |
| const GFC_COMPLEX_10 *restrict bbase_y; |
| GFC_COMPLEX_10 s; |
| |
| for (y = 0; y < ycount; y++) |
| { |
| bbase_y = &bbase[y*bystride]; |
| s = (GFC_COMPLEX_10) 0; |
| for (n = 0; n < count; n++) |
| s += abase[n*axstride] * bbase_y[n]; |
| dest[y*rystride] = s; |
| } |
| } |
| } |
| else if (axstride < aystride) |
| { |
| for (y = 0; y < ycount; y++) |
| for (x = 0; x < xcount; x++) |
| dest[x*rxstride + y*rystride] = (GFC_COMPLEX_10)0; |
| |
| for (y = 0; y < ycount; y++) |
| for (n = 0; n < count; n++) |
| for (x = 0; x < xcount; x++) |
| /* dest[x,y] += a[x,n] * b[n,y] */ |
| dest[x*rxstride + y*rystride] += |
| abase[x*axstride + n*aystride] * |
| bbase[n*bxstride + y*bystride]; |
| } |
| else if (GFC_DESCRIPTOR_RANK (a) == 1) |
| { |
| const GFC_COMPLEX_10 *restrict bbase_y; |
| GFC_COMPLEX_10 s; |
| |
| for (y = 0; y < ycount; y++) |
| { |
| bbase_y = &bbase[y*bystride]; |
| s = (GFC_COMPLEX_10) 0; |
| for (n = 0; n < count; n++) |
| s += abase[n*axstride] * bbase_y[n*bxstride]; |
| dest[y*rxstride] = s; |
| } |
| } |
| else |
| { |
| const GFC_COMPLEX_10 *restrict abase_x; |
| const GFC_COMPLEX_10 *restrict bbase_y; |
| GFC_COMPLEX_10 *restrict dest_y; |
| GFC_COMPLEX_10 s; |
| |
| for (y = 0; y < ycount; y++) |
| { |
| bbase_y = &bbase[y*bystride]; |
| dest_y = &dest[y*rystride]; |
| for (x = 0; x < xcount; x++) |
| { |
| abase_x = &abase[x*axstride]; |
| s = (GFC_COMPLEX_10) 0; |
| for (n = 0; n < count; n++) |
| s += abase_x[n*aystride] * bbase_y[n*bxstride]; |
| dest_y[x*rxstride] = s; |
| } |
| } |
| } |
| } |
| #undef POW3 |
| #undef min |
| #undef max |
| |
| #endif |
| |
| #if defined(HAVE_AVX) && defined(HAVE_FMA4) && defined(HAVE_AVX128) |
| void |
| matmul_c10_avx128_fma4 (gfc_array_c10 * const restrict retarray, |
| gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas, |
| int blas_limit, blas_call gemm) __attribute__((__target__("avx,fma4"))); |
| internal_proto(matmul_c10_avx128_fma4); |
| void |
| matmul_c10_avx128_fma4 (gfc_array_c10 * const restrict retarray, |
| gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas, |
| int blas_limit, blas_call gemm) |
| { |
| const GFC_COMPLEX_10 * restrict abase; |
| const GFC_COMPLEX_10 * restrict bbase; |
| GFC_COMPLEX_10 * restrict dest; |
| |
| index_type rxstride, rystride, axstride, aystride, bxstride, bystride; |
| index_type x, y, n, count, xcount, ycount; |
| |
| assert (GFC_DESCRIPTOR_RANK (a) == 2 |
| || GFC_DESCRIPTOR_RANK (b) == 2); |
| |
| /* C[xcount,ycount] = A[xcount, count] * B[count,ycount] |
| |
| Either A or B (but not both) can be rank 1: |
| |
| o One-dimensional argument A is implicitly treated as a row matrix |
| dimensioned [1,count], so xcount=1. |
| |
| o One-dimensional argument B is implicitly treated as a column matrix |
| dimensioned [count, 1], so ycount=1. |
| */ |
| |
| if (retarray->base_addr == NULL) |
| { |
| if (GFC_DESCRIPTOR_RANK (a) == 1) |
| { |
| GFC_DIMENSION_SET(retarray->dim[0], 0, |
| GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); |
| } |
| else if (GFC_DESCRIPTOR_RANK (b) == 1) |
| { |
| GFC_DIMENSION_SET(retarray->dim[0], 0, |
| GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); |
| } |
| else |
| { |
| GFC_DIMENSION_SET(retarray->dim[0], 0, |
| GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); |
| |
| GFC_DIMENSION_SET(retarray->dim[1], 0, |
| GFC_DESCRIPTOR_EXTENT(b,1) - 1, |
| GFC_DESCRIPTOR_EXTENT(retarray,0)); |
| } |
| |
| retarray->base_addr |
| = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_10)); |
| retarray->offset = 0; |
| } |
| else if (unlikely (compile_options.bounds_check)) |
| { |
| index_type ret_extent, arg_extent; |
| |
| if (GFC_DESCRIPTOR_RANK (a) == 1) |
| { |
| arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); |
| if (arg_extent != ret_extent) |
| runtime_error ("Array bound mismatch for dimension 1 of " |
| "array (%ld/%ld) ", |
| (long int) ret_extent, (long int) arg_extent); |
| } |
| else if (GFC_DESCRIPTOR_RANK (b) == 1) |
| { |
| arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); |
| if (arg_extent != ret_extent) |
| runtime_error ("Array bound mismatch for dimension 1 of " |
| "array (%ld/%ld) ", |
| (long int) ret_extent, (long int) arg_extent); |
| } |
| else |
| { |
| arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); |
| if (arg_extent != ret_extent) |
| runtime_error ("Array bound mismatch for dimension 1 of " |
| "array (%ld/%ld) ", |
| (long int) ret_extent, (long int) arg_extent); |
| |
| arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); |
| if (arg_extent != ret_extent) |
| runtime_error ("Array bound mismatch for dimension 2 of " |
| "array (%ld/%ld) ", |
| (long int) ret_extent, (long int) arg_extent); |
| } |
| } |
| |
| |
| if (GFC_DESCRIPTOR_RANK (retarray) == 1) |
| { |
| /* One-dimensional result may be addressed in the code below |
| either as a row or a column matrix. We want both cases to |
| work. */ |
| rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0); |
| } |
| else |
| { |
| rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); |
| rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); |
| } |
| |
| |
| if (GFC_DESCRIPTOR_RANK (a) == 1) |
| { |
| /* Treat it as a a row matrix A[1,count]. */ |
| axstride = GFC_DESCRIPTOR_STRIDE(a,0); |
| aystride = 1; |
| |
| xcount = 1; |
| count = GFC_DESCRIPTOR_EXTENT(a,0); |
| } |
| else |
| { |
| axstride = GFC_DESCRIPTOR_STRIDE(a,0); |
| aystride = GFC_DESCRIPTOR_STRIDE(a,1); |
| |
| count = GFC_DESCRIPTOR_EXTENT(a,1); |
| xcount = GFC_DESCRIPTOR_EXTENT(a,0); |
| } |
| |
| if (count != GFC_DESCRIPTOR_EXTENT(b,0)) |
| { |
| if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0) |
| runtime_error ("Incorrect extent in argument B in MATMUL intrinsic " |
| "in dimension 1: is %ld, should be %ld", |
| (long int) GFC_DESCRIPTOR_EXTENT(b,0), (long int) count); |
| } |
| |
| if (GFC_DESCRIPTOR_RANK (b) == 1) |
| { |
| /* Treat it as a column matrix B[count,1] */ |
| bxstride = GFC_DESCRIPTOR_STRIDE(b,0); |
| |
| /* bystride should never be used for 1-dimensional b. |
| The value is only used for calculation of the |
| memory by the buffer. */ |
| bystride = 256; |
| ycount = 1; |
| } |
| else |
| { |
| bxstride = GFC_DESCRIPTOR_STRIDE(b,0); |
| bystride = GFC_DESCRIPTOR_STRIDE(b,1); |
| ycount = GFC_DESCRIPTOR_EXTENT(b,1); |
| } |
| |
| abase = a->base_addr; |
| bbase = b->base_addr; |
| dest = retarray->base_addr; |
| |
| /* Now that everything is set up, we perform the multiplication |
| itself. */ |
| |
| #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) |
| #define min(a,b) ((a) <= (b) ? (a) : (b)) |
| #define max(a,b) ((a) >= (b) ? (a) : (b)) |
| |
| if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) |
| && (bxstride == 1 || bystride == 1) |
| && (((float) xcount) * ((float) ycount) * ((float) count) |
| > POW3(blas_limit))) |
| { |
| const int m = xcount, n = ycount, k = count, ldc = rystride; |
| const GFC_COMPLEX_10 one = 1, zero = 0; |
| const int lda = (axstride == 1) ? aystride : axstride, |
| ldb = (bxstride == 1) ? bystride : bxstride; |
| |
| if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) |
| { |
| assert (gemm != NULL); |
| const char *transa, *transb; |
| if (try_blas & 2) |
| transa = "C"; |
| else |
| transa = axstride == 1 ? "N" : "T"; |
| |
| if (try_blas & 4) |
| transb = "C"; |
| else |
| transb = bxstride == 1 ? "N" : "T"; |
| |
| gemm (transa, transb , &m, |
| &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, |
| &ldc, 1, 1); |
| return; |
| } |
| } |
| |
| if (rxstride == 1 && axstride == 1 && bxstride == 1) |
| { |
| /* This block of code implements a tuned matmul, derived from |
| Superscalar GEMM-based level 3 BLAS, Beta version 0.1 |
| |
| Bo Kagstrom and Per Ling |
| Department of Computing Science |
| Umea University |
| S-901 87 Umea, Sweden |
| |
| from netlib.org, translated to C, and modified for matmul.m4. */ |
| |
| const GFC_COMPLEX_10 *a, *b; |
| GFC_COMPLEX_10 *c; |
| const index_type m = xcount, n = ycount, k = count; |
| |
| /* System generated locals */ |
| index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, |
| i1, i2, i3, i4, i5, i6; |
| |
| /* Local variables */ |
| GFC_COMPLEX_10 f11, f12, f21, f22, f31, f32, f41, f42, |
| f13, f14, f23, f24, f33, f34, f43, f44; |
| index_type i, j, l, ii, jj, ll; |
| index_type isec, jsec, lsec, uisec, ujsec, ulsec; |
| GFC_COMPLEX_10 *t1; |
| |
| a = abase; |
| b = bbase; |
| c = retarray->base_addr; |
| |
| /* Parameter adjustments */ |
| c_dim1 = rystride; |
| c_offset = 1 + c_dim1; |
| c -= c_offset; |
| a_dim1 = aystride; |
| a_offset = 1 + a_dim1; |
| a -= a_offset; |
| b_dim1 = bystride; |
| b_offset = 1 + b_dim1; |
| b -= b_offset; |
| |
| /* Empty c first. */ |
| for (j=1; j<=n; j++) |
| for (i=1; i<=m; i++) |
| c[i + j * c_dim1] = (GFC_COMPLEX_10)0; |
| |
| /* Early exit if possible */ |
| if (m == 0 || n == 0 || k == 0) |
| return; |
| |
| /* Adjust size of t1 to what is needed. */ |
| index_type t1_dim, a_sz; |
| if (aystride == 1) |
| a_sz = rystride; |
| else |
| a_sz = a_dim1; |
| |
| t1_dim = a_sz * 256 + b_dim1; |
| if (t1_dim > 65536) |
| t1_dim = 65536; |
| |
| t1 = malloc (t1_dim * sizeof(GFC_COMPLEX_10)); |
| |
| /* Start turning the crank. */ |
| i1 = n; |
| for (jj = 1; jj <= i1; jj += 512) |
| { |
| /* Computing MIN */ |
| i2 = 512; |
| i3 = n - jj + 1; |
| jsec = min(i2,i3); |
| ujsec = jsec - jsec % 4; |
| i2 = k; |
| for (ll = 1; ll <= i2; ll += 256) |
| { |
| /* Computing MIN */ |
| i3 = 256; |
| i4 = k - ll + 1; |
| lsec = min(i3,i4); |
| ulsec = lsec - lsec % 2; |
| |
| i3 = m; |
| for (ii = 1; ii <= i3; ii += 256) |
| { |
| /* Computing MIN */ |
| i4 = 256; |
| i5 = m - ii + 1; |
| isec = min(i4,i5); |
| uisec = isec - isec % 2; |
| i4 = ll + ulsec - 1; |
| for (l = ll; l <= i4; l += 2) |
| { |
| i5 = ii + uisec - 1; |
| for (i = ii; i <= i5; i += 2) |
| { |
| t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = |
| a[i + l * a_dim1]; |
| t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = |
| a[i + (l + 1) * a_dim1]; |
| t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = |
| a[i + 1 + l * a_dim1]; |
| t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = |
| a[i + 1 + (l + 1) * a_dim1]; |
| } |
| if (uisec < isec) |
| { |
| t1[l - ll + 1 + (isec << 8) - 257] = |
| a[ii + isec - 1 + l * a_dim1]; |
| t1[l - ll + 2 + (isec << 8) - 257] = |
| a[ii + isec - 1 + (l + 1) * a_dim1]; |
| } |
| } |
| if (ulsec < lsec) |
| { |
| i4 = ii + isec - 1; |
| for (i = ii; i<= i4; ++i) |
| { |
| t1[lsec + ((i - ii + 1) << 8) - 257] = |
| a[i + (ll + lsec - 1) * a_dim1]; |
| } |
| } |
| |
| uisec = isec - isec % 4; |
| i4 = jj + ujsec - 1; |
| for (j = jj; j <= i4; j += 4) |
| { |
| i5 = ii + uisec - 1; |
| for (i = ii; i <= i5; i += 4) |
| { |
| f11 = c[i + j * c_dim1]; |
| f21 = c[i + 1 + j * c_dim1]; |
| f12 = c[i + (j + 1) * c_dim1]; |
| f22 = c[i + 1 + (j + 1) * c_dim1]; |
| f13 = c[i + (j + 2) * c_dim1]; |
| f23 = c[i + 1 + (j + 2) * c_dim1]; |
| f14 = c[i + (j + 3) * c_dim1]; |
| f24 = c[i + 1 + (j + 3) * c_dim1]; |
| f31 = c[i + 2 + j * c_dim1]; |
| f41 = c[i + 3 + j * c_dim1]; |
| f32 = c[i + 2 + (j + 1) * c_dim1]; |
| f42 = c[i + 3 + (j + 1) * c_dim1]; |
| f33 = c[i + 2 + (j + 2) * c_dim1]; |
| f43 = c[i + 3 + (j + 2) * c_dim1]; |
| f34 = c[i + 2 + (j + 3) * c_dim1]; |
| f44 = c[i + 3 + (j + 3) * c_dim1]; |
| i6 = ll + lsec - 1; |
| for (l = ll; l <= i6; ++l) |
| { |
| f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] |
| * b[l + j * b_dim1]; |
| f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] |
| * b[l + j * b_dim1]; |
| f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] |
| * b[l + (j + 1) * b_dim1]; |
| f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] |
| * b[l + (j + 1) * b_dim1]; |
| f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] |
| * b[l + (j + 2) * b_dim1]; |
| f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] |
| * b[l + (j + 2) * b_dim1]; |
| f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] |
| * b[l + (j + 3) * b_dim1]; |
| f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] |
| * b[l + (j + 3) * b_dim1]; |
| f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] |
| * b[l + j * b_dim1]; |
| f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] |
| * b[l + j * b_dim1]; |
| f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] |
| * b[l + (j + 1) * b_dim1]; |
| f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] |
| * b[l + (j + 1) * b_dim1]; |
| f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] |
| * b[l + (j + 2) * b_dim1]; |
| f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] |
| * b[l + (j + 2) * b_dim1]; |
| f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] |
| * b[l + (j + 3) * b_dim1]; |
| f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] |
| * b[l + (j + 3) * b_dim1]; |
| } |
| c[i + j * c_dim1] = f11; |
| c[i + 1 + j * c_dim1] = f21; |
| c[i + (j + 1) * c_dim1] = f12; |
| c[i + 1 + (j + 1) * c_dim1] = f22; |
| c[i + (j + 2) * c_dim1] = f13; |
| c[i + 1 + (j + 2) * c_dim1] = f23; |
| c[i + (j + 3) * c_dim1] = f14; |
| c[i + 1 + (j + 3) * c_dim1] = f24; |
| c[i + 2 + j * c_dim1] = f31; |
| c[i + 3 + j * c_dim1] = f41; |
| c[i + 2 + (j + 1) * c_dim1] = f32; |
| c[i + 3 + (j + 1) * c_dim1] = f42; |
| c[i + 2 + (j + 2) * c_dim1] = f33; |
| c[i + 3 + (j + 2) * c_dim1] = f43; |
| c[i + 2 + (j + 3) * c_dim1] = f34; |
| c[i + 3 + (j + 3) * c_dim1] = f44; |
| } |
| if (uisec < isec) |
| { |
| i5 = ii + isec - 1; |
| for (i = ii + uisec; i <= i5; ++i) |
| { |
| f11 = c[i + j * c_dim1]; |
| f12 = c[i + (j + 1) * c_dim1]; |
| f13 = c[i + (j + 2) * c_dim1]; |
| f14 = c[i + (j + 3) * c_dim1]; |
| i6 = ll + lsec - 1; |
| for (l = ll; l <= i6; ++l) |
| { |
| f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - |
| 257] * b[l + j * b_dim1]; |
| f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - |
| 257] * b[l + (j + 1) * b_dim1]; |
| f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - |
| 257] * b[l + (j + 2) * b_dim1]; |
| f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - |
| 257] * b[l + (j + 3) * b_dim1]; |
| } |
| c[i + j * c_dim1] = f11; |
| c[i + (j + 1) * c_dim1] = f12; |
| c[i + (j + 2) * c_dim1] = f13; |
| c[i + (j + 3) * c_dim1] = f14; |
| } |
| } |
| } |
| if (ujsec < jsec) |
| { |
| i4 = jj + jsec - 1; |
| for (j = jj + ujsec; j <= i4; ++j) |
| { |
| i5 = ii + uisec - 1; |
| for (i = ii; i <= i5; i += 4) |
| { |
| f11 = c[i + j * c_dim1]; |
| f21 = c[i + 1 + j * c_dim1]; |
| f31 = c[i + 2 + j * c_dim1]; |
| f41 = c[i + 3 + j * c_dim1]; |
| i6 = ll + lsec - 1; |
| for (l = ll; l <= i6; ++l) |
| { |
| f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - |
| 257] * b[l + j * b_dim1]; |
| f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - |
| 257] * b[l + j * b_dim1]; |
| f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - |
| 257] * b[l + j * b_dim1]; |
| f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - |
| 257] * b[l + j * b_dim1]; |
| } |
| c[i + j * c_dim1] = f11; |
| c[i + 1 + j * c_dim1] = f21; |
| c[i + 2 + j * c_dim1] = f31; |
| c[i + 3 + j * c_dim1] = f41; |
| } |
| i5 = ii + isec - 1; |
| for (i = ii + uisec; i <= i5; ++i) |
| { |
| f11 = c[i + j * c_dim1]; |
| i6 = ll + lsec - 1; |
| for (l = ll; l <= i6; ++l) |
| { |
| f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - |
| 257] * b[l + j * b_dim1]; |
| } |
| c[i + j * c_dim1] = f11; |
| } |
| } |
| } |
| } |
| } |
| } |
| free(t1); |
| return; |
| } |
| else if (rxstride == 1 && aystride == 1 && bxstride == 1) |
| { |
| if (GFC_DESCRIPTOR_RANK (a) != 1) |
| { |
| const GFC_COMPLEX_10 *restrict abase_x; |
| const GFC_COMPLEX_10 *restrict bbase_y; |
| GFC_COMPLEX_10 *restrict dest_y; |
| GFC_COMPLEX_10 s; |
| |
| for (y = 0; y < ycount; y++) |
| { |
| bbase_y = &bbase[y*bystride]; |
| dest_y = &dest[y*rystride]; |
| for (x = 0; x < xcount; x++) |
| { |
| abase_x = &abase[x*axstride]; |
| s = (GFC_COMPLEX_10) 0; |
| for (n = 0; n < count; n++) |
| s += abase_x[n] * bbase_y[n]; |
| dest_y[x] = s; |
| } |
| } |
| } |
| else |
| { |
| const GFC_COMPLEX_10 *restrict bbase_y; |
| GFC_COMPLEX_10 s; |
| |
| for (y = 0; y < ycount; y++) |
| { |
| bbase_y = &bbase[y*bystride]; |
| s = (GFC_COMPLEX_10) 0; |
| for (n = 0; n < count; n++) |
| s += abase[n*axstride] * bbase_y[n]; |
| dest[y*rystride] = s; |
| } |
| } |
| } |
| else if (axstride < aystride) |
| { |
| for (y = 0; y < ycount; y++) |
| for (x = 0; x < xcount; x++) |
| dest[x*rxstride + y*rystride] = (GFC_COMPLEX_10)0; |
| |
| for (y = 0; y < ycount; y++) |
| for (n = 0; n < count; n++) |
| for (x = 0; x < xcount; x++) |
| /* dest[x,y] += a[x,n] * b[n,y] */ |
| dest[x*rxstride + y*rystride] += |
| abase[x*axstride + n*aystride] * |
| bbase[n*bxstride + y*bystride]; |
| } |
| else if (GFC_DESCRIPTOR_RANK (a) == 1) |
| { |
| const GFC_COMPLEX_10 *restrict bbase_y; |
| GFC_COMPLEX_10 s; |
| |
| for (y = 0; y < ycount; y++) |
| { |
| bbase_y = &bbase[y*bystride]; |
| s = (GFC_COMPLEX_10) 0; |
| for (n = 0; n < count; n++) |
| s += abase[n*axstride] * bbase_y[n*bxstride]; |
| dest[y*rxstride] = s; |
| } |
| } |
| else |
| { |
| const GFC_COMPLEX_10 *restrict abase_x; |
| const GFC_COMPLEX_10 *restrict bbase_y; |
| GFC_COMPLEX_10 *restrict dest_y; |
| GFC_COMPLEX_10 s; |
| |
| for (y = 0; y < ycount; y++) |
| { |
| bbase_y = &bbase[y*bystride]; |
| dest_y = &dest[y*rystride]; |
| for (x = 0; x < xcount; x++) |
| { |
| abase_x = &abase[x*axstride]; |
| s = (GFC_COMPLEX_10) 0; |
| for (n = 0; n < count; n++) |
| s += abase_x[n*aystride] * bbase_y[n*bxstride]; |
| dest_y[x*rxstride] = s; |
| } |
| } |
| } |
| } |
| #undef POW3 |
| #undef min |
| #undef max |
| |
| #endif |
| |
| #endif |
| |