| dnl Support macro file for intrinsic functions. |
| dnl Contains the generic sections of the array functions. |
| dnl This file is part of the GNU Fortran Runtime Library (libgfortran) |
| dnl Distributed under the GNU GPL with exception. See COPYING for details. |
| define(START_FOREACH_FUNCTION, |
| `static inline int |
| compare_fcn (const atype_name *a, const atype_name *b, gfc_charlen_type n) |
| { |
| if (sizeof ('atype_name`) == 1) |
| return memcmp (a, b, n); |
| else |
| return memcmp_char4 (a, b, n); |
| |
| } |
| |
| #define INITVAL 'initval` |
| |
| extern void 'name`'rtype_qual`_'atype_code (atype_name * restrict, |
| gfc_charlen_type, |
| atype * const restrict array, gfc_charlen_type); |
| export_proto(name`'rtype_qual`_'atype_code); |
| |
| void |
| name`'rtype_qual`_'atype_code` ('atype_name` * restrict ret, |
| gfc_charlen_type xlen, |
| 'atype` * const restrict array, gfc_charlen_type len) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| const 'atype_name` *base; |
| index_type rank; |
| index_type n; |
| |
| rank = GFC_DESCRIPTOR_RANK (array); |
| if (rank <= 0) |
| runtime_error ("Rank of array needs to be > 0"); |
| |
| assert (xlen == len); |
| |
| /* Initialize return value. */ |
| memset (ret, INITVAL, sizeof(*ret) * len); |
| |
| for (n = 0; n < rank; n++) |
| { |
| sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len; |
| extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); |
| count[n] = 0; |
| if (extent[n] <= 0) |
| return; |
| } |
| |
| base = array->base_addr; |
| |
| { |
| ')dnl |
| define(START_FOREACH_BLOCK, |
| ` while (base) |
| { |
| do |
| { |
| /* Implementation start. */ |
| ')dnl |
| define(FINISH_FOREACH_FUNCTION, |
| ` /* Implementation end. */ |
| /* Advance to the next element. */ |
| base += sstride[0]; |
| } |
| while (++count[0] != extent[0]); |
| n = 0; |
| do |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| base -= sstride[n] * extent[n]; |
| n++; |
| if (n >= rank) |
| { |
| /* Break out of the loop. */ |
| base = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| base += sstride[n]; |
| } |
| } |
| while (count[n] == extent[n]); |
| } |
| memcpy (ret, retval, len * sizeof (*ret)); |
| } |
| }')dnl |
| define(START_MASKED_FOREACH_FUNCTION, |
| ` |
| extern void `m'name`'rtype_qual`_'atype_code (atype_name * restrict, |
| gfc_charlen_type, atype * const restrict array, |
| gfc_array_l1 * const restrict mask, gfc_charlen_type len); |
| export_proto(`m'name`'rtype_qual`_'atype_code); |
| |
| void |
| `m'name`'rtype_qual`_'atype_code (atype_name * const restrict ret, |
| gfc_charlen_type xlen, atype * const restrict array, |
| gfc_array_l1 * const restrict mask, gfc_charlen_type len) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| index_type mstride[GFC_MAX_DIMENSIONS]; |
| const atype_name *base; |
| GFC_LOGICAL_1 *mbase; |
| int rank; |
| index_type n; |
| int mask_kind; |
| |
| if (mask == NULL) |
| { |
| name`'rtype_qual`_'atype_code (ret, xlen, array, len); |
| return; |
| } |
| |
| rank = GFC_DESCRIPTOR_RANK (array); |
| if (rank <= 0) |
| runtime_error ("Rank of array needs to be > 0"); |
| |
| assert (xlen == len); |
| |
| /* Initialize return value. */ |
| memset (ret, INITVAL, sizeof(*ret) * len); |
| |
| mask_kind = GFC_DESCRIPTOR_SIZE (mask); |
| |
| mbase = mask->base_addr; |
| |
| if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 |
| #ifdef HAVE_GFC_LOGICAL_16 |
| || mask_kind == 16 |
| #endif |
| ) |
| mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); |
| else |
| runtime_error ("Funny sized logical array"); |
| |
| for (n = 0; n < rank; n++) |
| { |
| sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * len; |
| mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); |
| extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); |
| count[n] = 0; |
| if (extent[n] <= 0) |
| return; |
| } |
| |
| base = array->base_addr; |
| { |
| ')dnl |
| define(START_MASKED_FOREACH_BLOCK, `START_FOREACH_BLOCK')dnl |
| define(FINISH_MASKED_FOREACH_FUNCTION, |
| ` /* Implementation end. */ |
| /* Advance to the next element. */ |
| base += sstride[0]; |
| mbase += mstride[0]; |
| } |
| while (++count[0] != extent[0]); |
| n = 0; |
| do |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| base -= sstride[n] * extent[n]; |
| mbase -= mstride[n] * extent[n]; |
| n++; |
| if (n >= rank) |
| { |
| /* Break out of the loop. */ |
| base = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| base += sstride[n]; |
| mbase += mstride[n]; |
| } |
| } |
| while (count[n] == extent[n]); |
| } |
| memcpy (ret, retval, len * sizeof (*ret)); |
| } |
| }')dnl |
| define(FOREACH_FUNCTION, |
| `START_FOREACH_FUNCTION |
| $1 |
| START_FOREACH_BLOCK |
| $2 |
| FINISH_FOREACH_FUNCTION')dnl |
| define(MASKED_FOREACH_FUNCTION, |
| `START_MASKED_FOREACH_FUNCTION |
| $1 |
| START_MASKED_FOREACH_BLOCK |
| $2 |
| FINISH_MASKED_FOREACH_FUNCTION')dnl |
| define(SCALAR_FOREACH_FUNCTION, |
| ` |
| extern void `s'name`'rtype_qual`_'atype_code (atype_name * restrict, |
| gfc_charlen_type, |
| atype * const restrict array, GFC_LOGICAL_4 *, gfc_charlen_type); |
| export_proto(`s'name`'rtype_qual`_'atype_code); |
| |
| void |
| `s'name`'rtype_qual`_'atype_code (atype_name * restrict ret, |
| gfc_charlen_type xlen, atype * const restrict array, |
| GFC_LOGICAL_4 *mask, gfc_charlen_type len) |
| |
| { |
| if (mask == NULL || *mask) |
| { |
| name`'rtype_qual`_'atype_code (ret, xlen, array, len); |
| return; |
| } |
| memset (ret, INITVAL, sizeof (*ret) * len); |
| }')dnl |