| /* Generic helper function for repacking arrays. |
| Copyright (C) 2003-2019 Free Software Foundation, Inc. |
| Contributed by Paul Brook <paul@nowt.org> |
| |
| This file is part of the GNU Fortran runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public |
| License as published by the Free Software Foundation; either |
| version 3 of the License, or (at your option) any later version. |
| |
| Libgfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "libgfortran.h" |
| #include <string.h> |
| |
| extern void internal_unpack (gfc_array_char *, const void *); |
| export_proto(internal_unpack); |
| |
| void |
| internal_unpack (gfc_array_char * d, const void * s) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type stride[GFC_MAX_DIMENSIONS]; |
| index_type stride0; |
| index_type dim; |
| index_type dsize; |
| char *dest; |
| const char *src; |
| index_type size; |
| int type_size; |
| |
| dest = d->base_addr; |
| /* This check may be redundant, but do it anyway. */ |
| if (s == dest || !s) |
| return; |
| |
| type_size = GFC_DTYPE_TYPE_SIZE (d); |
| switch (type_size) |
| { |
| case GFC_DTYPE_INTEGER_1: |
| case GFC_DTYPE_LOGICAL_1: |
| internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s); |
| return; |
| |
| case GFC_DTYPE_INTEGER_2: |
| case GFC_DTYPE_LOGICAL_2: |
| internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s); |
| return; |
| |
| case GFC_DTYPE_INTEGER_4: |
| case GFC_DTYPE_LOGICAL_4: |
| internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s); |
| return; |
| |
| case GFC_DTYPE_INTEGER_8: |
| case GFC_DTYPE_LOGICAL_8: |
| internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s); |
| return; |
| |
| #if defined (HAVE_GFC_INTEGER_16) |
| case GFC_DTYPE_INTEGER_16: |
| case GFC_DTYPE_LOGICAL_16: |
| internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s); |
| return; |
| #endif |
| |
| case GFC_DTYPE_REAL_4: |
| internal_unpack_r4 ((gfc_array_r4 *) d, (const GFC_REAL_4 *) s); |
| return; |
| |
| case GFC_DTYPE_REAL_8: |
| internal_unpack_r8 ((gfc_array_r8 *) d, (const GFC_REAL_8 *) s); |
| return; |
| |
| /* FIXME: This here is a hack, which will have to be removed when |
| the array descriptor is reworked. Currently, we don't store the |
| kind value for the type, but only the size. Because on targets with |
| __float128, we have sizeof(logn double) == sizeof(__float128), |
| we cannot discriminate here and have to fall back to the generic |
| handling (which is suboptimal). */ |
| #if !defined(GFC_REAL_16_IS_FLOAT128) |
| # if defined(HAVE_GFC_REAL_10) |
| case GFC_DTYPE_REAL_10: |
| internal_unpack_r10 ((gfc_array_r10 *) d, (const GFC_REAL_10 *) s); |
| return; |
| # endif |
| |
| # if defined(HAVE_GFC_REAL_16) |
| case GFC_DTYPE_REAL_16: |
| internal_unpack_r16 ((gfc_array_r16 *) d, (const GFC_REAL_16 *) s); |
| return; |
| # endif |
| #endif |
| |
| case GFC_DTYPE_COMPLEX_4: |
| internal_unpack_c4 ((gfc_array_c4 *)d, (const GFC_COMPLEX_4 *)s); |
| return; |
| |
| case GFC_DTYPE_COMPLEX_8: |
| internal_unpack_c8 ((gfc_array_c8 *)d, (const GFC_COMPLEX_8 *)s); |
| return; |
| |
| /* FIXME: This here is a hack, which will have to be removed when |
| the array descriptor is reworked. Currently, we don't store the |
| kind value for the type, but only the size. Because on targets with |
| __float128, we have sizeof(logn double) == sizeof(__float128), |
| we cannot discriminate here and have to fall back to the generic |
| handling (which is suboptimal). */ |
| #if !defined(GFC_REAL_16_IS_FLOAT128) |
| # if defined(HAVE_GFC_COMPLEX_10) |
| case GFC_DTYPE_COMPLEX_10: |
| internal_unpack_c10 ((gfc_array_c10 *) d, (const GFC_COMPLEX_10 *) s); |
| return; |
| # endif |
| |
| # if defined(HAVE_GFC_COMPLEX_16) |
| case GFC_DTYPE_COMPLEX_16: |
| internal_unpack_c16 ((gfc_array_c16 *) d, (const GFC_COMPLEX_16 *) s); |
| return; |
| # endif |
| #endif |
| |
| default: |
| break; |
| } |
| |
| switch (GFC_DESCRIPTOR_SIZE(d)) |
| { |
| case 1: |
| internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s); |
| return; |
| |
| case 2: |
| if (GFC_UNALIGNED_2(d->base_addr) || GFC_UNALIGNED_2(s)) |
| break; |
| else |
| { |
| internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s); |
| return; |
| } |
| |
| case 4: |
| if (GFC_UNALIGNED_4(d->base_addr) || GFC_UNALIGNED_4(s)) |
| break; |
| else |
| { |
| internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s); |
| return; |
| } |
| |
| case 8: |
| if (GFC_UNALIGNED_8(d->base_addr) || GFC_UNALIGNED_8(s)) |
| break; |
| else |
| { |
| internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s); |
| return; |
| } |
| |
| #ifdef HAVE_GFC_INTEGER_16 |
| case 16: |
| if (GFC_UNALIGNED_16(d->base_addr) || GFC_UNALIGNED_16(s)) |
| break; |
| else |
| { |
| internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s); |
| return; |
| } |
| #endif |
| default: |
| break; |
| } |
| |
| size = GFC_DESCRIPTOR_SIZE (d); |
| |
| dim = GFC_DESCRIPTOR_RANK (d); |
| dsize = 1; |
| for (index_type n = 0; n < dim; n++) |
| { |
| count[n] = 0; |
| stride[n] = GFC_DESCRIPTOR_STRIDE(d,n); |
| extent[n] = GFC_DESCRIPTOR_EXTENT(d,n); |
| if (extent[n] <= 0) |
| return; |
| |
| if (dsize == stride[n]) |
| dsize *= extent[n]; |
| else |
| dsize = 0; |
| } |
| |
| src = s; |
| |
| if (dsize != 0) |
| { |
| memcpy (dest, src, dsize * size); |
| return; |
| } |
| |
| stride0 = stride[0] * size; |
| |
| while (dest) |
| { |
| /* Copy the data. */ |
| memcpy (dest, src, size); |
| /* Advance to the next element. */ |
| src += size; |
| dest += stride0; |
| count[0]++; |
| /* Advance to the next source element. */ |
| index_type n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| dest -= stride[n] * extent[n] * size; |
| n++; |
| if (n == dim) |
| { |
| dest = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| dest += stride[n] * size; |
| } |
| } |
| } |
| } |