blob: c319b483825255f61d6792d06bbdd39c9e31a13b [file] [log] [blame]
/* Generic helper function for repacking arrays.
Copyright (C) 2003-2019 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <string.h>
extern void internal_unpack (gfc_array_char *, const void *);
export_proto(internal_unpack);
void
internal_unpack (gfc_array_char * d, const void * s)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
index_type dsize;
char *dest;
const char *src;
index_type size;
int type_size;
dest = d->base_addr;
/* This check may be redundant, but do it anyway. */
if (s == dest || !s)
return;
type_size = GFC_DTYPE_TYPE_SIZE (d);
switch (type_size)
{
case GFC_DTYPE_INTEGER_1:
case GFC_DTYPE_LOGICAL_1:
internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s);
return;
case GFC_DTYPE_INTEGER_2:
case GFC_DTYPE_LOGICAL_2:
internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s);
return;
case GFC_DTYPE_INTEGER_4:
case GFC_DTYPE_LOGICAL_4:
internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s);
return;
case GFC_DTYPE_INTEGER_8:
case GFC_DTYPE_LOGICAL_8:
internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s);
return;
#if defined (HAVE_GFC_INTEGER_16)
case GFC_DTYPE_INTEGER_16:
case GFC_DTYPE_LOGICAL_16:
internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s);
return;
#endif
case GFC_DTYPE_REAL_4:
internal_unpack_r4 ((gfc_array_r4 *) d, (const GFC_REAL_4 *) s);
return;
case GFC_DTYPE_REAL_8:
internal_unpack_r8 ((gfc_array_r8 *) d, (const GFC_REAL_8 *) s);
return;
/* FIXME: This here is a hack, which will have to be removed when
the array descriptor is reworked. Currently, we don't store the
kind value for the type, but only the size. Because on targets with
__float128, we have sizeof(logn double) == sizeof(__float128),
we cannot discriminate here and have to fall back to the generic
handling (which is suboptimal). */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# if defined(HAVE_GFC_REAL_10)
case GFC_DTYPE_REAL_10:
internal_unpack_r10 ((gfc_array_r10 *) d, (const GFC_REAL_10 *) s);
return;
# endif
# if defined(HAVE_GFC_REAL_16)
case GFC_DTYPE_REAL_16:
internal_unpack_r16 ((gfc_array_r16 *) d, (const GFC_REAL_16 *) s);
return;
# endif
#endif
case GFC_DTYPE_COMPLEX_4:
internal_unpack_c4 ((gfc_array_c4 *)d, (const GFC_COMPLEX_4 *)s);
return;
case GFC_DTYPE_COMPLEX_8:
internal_unpack_c8 ((gfc_array_c8 *)d, (const GFC_COMPLEX_8 *)s);
return;
/* FIXME: This here is a hack, which will have to be removed when
the array descriptor is reworked. Currently, we don't store the
kind value for the type, but only the size. Because on targets with
__float128, we have sizeof(logn double) == sizeof(__float128),
we cannot discriminate here and have to fall back to the generic
handling (which is suboptimal). */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# if defined(HAVE_GFC_COMPLEX_10)
case GFC_DTYPE_COMPLEX_10:
internal_unpack_c10 ((gfc_array_c10 *) d, (const GFC_COMPLEX_10 *) s);
return;
# endif
# if defined(HAVE_GFC_COMPLEX_16)
case GFC_DTYPE_COMPLEX_16:
internal_unpack_c16 ((gfc_array_c16 *) d, (const GFC_COMPLEX_16 *) s);
return;
# endif
#endif
default:
break;
}
switch (GFC_DESCRIPTOR_SIZE(d))
{
case 1:
internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s);
return;
case 2:
if (GFC_UNALIGNED_2(d->base_addr) || GFC_UNALIGNED_2(s))
break;
else
{
internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s);
return;
}
case 4:
if (GFC_UNALIGNED_4(d->base_addr) || GFC_UNALIGNED_4(s))
break;
else
{
internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s);
return;
}
case 8:
if (GFC_UNALIGNED_8(d->base_addr) || GFC_UNALIGNED_8(s))
break;
else
{
internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s);
return;
}
#ifdef HAVE_GFC_INTEGER_16
case 16:
if (GFC_UNALIGNED_16(d->base_addr) || GFC_UNALIGNED_16(s))
break;
else
{
internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s);
return;
}
#endif
default:
break;
}
size = GFC_DESCRIPTOR_SIZE (d);
dim = GFC_DESCRIPTOR_RANK (d);
dsize = 1;
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(d,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(d,n);
if (extent[n] <= 0)
return;
if (dsize == stride[n])
dsize *= extent[n];
else
dsize = 0;
}
src = s;
if (dsize != 0)
{
memcpy (dest, src, dsize * size);
return;
}
stride0 = stride[0] * size;
while (dest)
{
/* Copy the data. */
memcpy (dest, src, size);
/* Advance to the next element. */
src += size;
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n] * size;
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n] * size;
}
}
}
}