| //===-- sanitizer_allocator_secondary.h -------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Part of the Sanitizer Allocator. |
| // |
| //===----------------------------------------------------------------------===// |
| #ifndef SANITIZER_ALLOCATOR_H |
| #error This file must be included inside sanitizer_allocator.h |
| #endif |
| |
| // Fixed array to store LargeMmapAllocator chunks list, limited to 32K total |
| // allocated chunks. To be used in memory constrained or not memory hungry cases |
| // (currently, 32 bits and internal allocator). |
| class LargeMmapAllocatorPtrArrayStatic { |
| public: |
| inline void *Init() { return &p_[0]; } |
| inline void EnsureSpace(uptr n) { CHECK_LT(n, kMaxNumChunks); } |
| private: |
| static const int kMaxNumChunks = 1 << 15; |
| uptr p_[kMaxNumChunks]; |
| }; |
| |
| // Much less restricted LargeMmapAllocator chunks list (comparing to |
| // PtrArrayStatic). Backed by mmaped memory region and can hold up to 1M chunks. |
| // ReservedAddressRange was used instead of just MAP_NORESERVE to achieve the |
| // same functionality in Fuchsia case, which does not support MAP_NORESERVE. |
| class LargeMmapAllocatorPtrArrayDynamic { |
| public: |
| inline void *Init() { |
| uptr p = address_range_.Init(kMaxNumChunks * sizeof(uptr), |
| SecondaryAllocatorName); |
| CHECK(p); |
| return reinterpret_cast<void*>(p); |
| } |
| |
| inline void EnsureSpace(uptr n) { |
| CHECK_LT(n, kMaxNumChunks); |
| DCHECK(n <= n_reserved_); |
| if (UNLIKELY(n == n_reserved_)) { |
| address_range_.MapOrDie( |
| reinterpret_cast<uptr>(address_range_.base()) + |
| n_reserved_ * sizeof(uptr), |
| kChunksBlockCount * sizeof(uptr)); |
| n_reserved_ += kChunksBlockCount; |
| } |
| } |
| |
| private: |
| static const int kMaxNumChunks = 1 << 20; |
| static const int kChunksBlockCount = 1 << 14; |
| ReservedAddressRange address_range_; |
| uptr n_reserved_; |
| }; |
| |
| #if SANITIZER_WORDSIZE == 32 |
| typedef LargeMmapAllocatorPtrArrayStatic DefaultLargeMmapAllocatorPtrArray; |
| #else |
| typedef LargeMmapAllocatorPtrArrayDynamic DefaultLargeMmapAllocatorPtrArray; |
| #endif |
| |
| // This class can (de)allocate only large chunks of memory using mmap/unmap. |
| // The main purpose of this allocator is to cover large and rare allocation |
| // sizes not covered by more efficient allocators (e.g. SizeClassAllocator64). |
| template <class MapUnmapCallback = NoOpMapUnmapCallback, |
| class PtrArrayT = DefaultLargeMmapAllocatorPtrArray, |
| class AddressSpaceViewTy = LocalAddressSpaceView> |
| class LargeMmapAllocator { |
| public: |
| using AddressSpaceView = AddressSpaceViewTy; |
| void InitLinkerInitialized() { |
| page_size_ = GetPageSizeCached(); |
| chunks_ = reinterpret_cast<Header**>(ptr_array_.Init()); |
| } |
| |
| void Init() { |
| internal_memset(this, 0, sizeof(*this)); |
| InitLinkerInitialized(); |
| } |
| |
| void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) { |
| CHECK(IsPowerOfTwo(alignment)); |
| uptr map_size = RoundUpMapSize(size); |
| if (alignment > page_size_) |
| map_size += alignment; |
| // Overflow. |
| if (map_size < size) { |
| Report("WARNING: %s: LargeMmapAllocator allocation overflow: " |
| "0x%zx bytes with 0x%zx alignment requested\n", |
| SanitizerToolName, map_size, alignment); |
| return nullptr; |
| } |
| uptr map_beg = reinterpret_cast<uptr>( |
| MmapOrDieOnFatalError(map_size, SecondaryAllocatorName)); |
| if (!map_beg) |
| return nullptr; |
| CHECK(IsAligned(map_beg, page_size_)); |
| MapUnmapCallback().OnMap(map_beg, map_size); |
| uptr map_end = map_beg + map_size; |
| uptr res = map_beg + page_size_; |
| if (res & (alignment - 1)) // Align. |
| res += alignment - (res & (alignment - 1)); |
| CHECK(IsAligned(res, alignment)); |
| CHECK(IsAligned(res, page_size_)); |
| CHECK_GE(res + size, map_beg); |
| CHECK_LE(res + size, map_end); |
| Header *h = GetHeader(res); |
| h->size = size; |
| h->map_beg = map_beg; |
| h->map_size = map_size; |
| uptr size_log = MostSignificantSetBitIndex(map_size); |
| CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log)); |
| { |
| SpinMutexLock l(&mutex_); |
| ptr_array_.EnsureSpace(n_chunks_); |
| uptr idx = n_chunks_++; |
| h->chunk_idx = idx; |
| chunks_[idx] = h; |
| chunks_sorted_ = false; |
| stats.n_allocs++; |
| stats.currently_allocated += map_size; |
| stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated); |
| stats.by_size_log[size_log]++; |
| stat->Add(AllocatorStatAllocated, map_size); |
| stat->Add(AllocatorStatMapped, map_size); |
| } |
| return reinterpret_cast<void*>(res); |
| } |
| |
| void Deallocate(AllocatorStats *stat, void *p) { |
| Header *h = GetHeader(p); |
| { |
| SpinMutexLock l(&mutex_); |
| uptr idx = h->chunk_idx; |
| CHECK_EQ(chunks_[idx], h); |
| CHECK_LT(idx, n_chunks_); |
| chunks_[idx] = chunks_[--n_chunks_]; |
| chunks_[idx]->chunk_idx = idx; |
| chunks_sorted_ = false; |
| stats.n_frees++; |
| stats.currently_allocated -= h->map_size; |
| stat->Sub(AllocatorStatAllocated, h->map_size); |
| stat->Sub(AllocatorStatMapped, h->map_size); |
| } |
| MapUnmapCallback().OnUnmap(h->map_beg, h->map_size); |
| UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size); |
| } |
| |
| uptr TotalMemoryUsed() { |
| SpinMutexLock l(&mutex_); |
| uptr res = 0; |
| for (uptr i = 0; i < n_chunks_; i++) { |
| Header *h = chunks_[i]; |
| CHECK_EQ(h->chunk_idx, i); |
| res += RoundUpMapSize(h->size); |
| } |
| return res; |
| } |
| |
| bool PointerIsMine(const void *p) { |
| return GetBlockBegin(p) != nullptr; |
| } |
| |
| uptr GetActuallyAllocatedSize(void *p) { |
| return RoundUpTo(GetHeader(p)->size, page_size_); |
| } |
| |
| // At least page_size_/2 metadata bytes is available. |
| void *GetMetaData(const void *p) { |
| // Too slow: CHECK_EQ(p, GetBlockBegin(p)); |
| if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) { |
| Printf("%s: bad pointer %p\n", SanitizerToolName, p); |
| CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_)); |
| } |
| return GetHeader(p) + 1; |
| } |
| |
| void *GetBlockBegin(const void *ptr) { |
| uptr p = reinterpret_cast<uptr>(ptr); |
| SpinMutexLock l(&mutex_); |
| uptr nearest_chunk = 0; |
| Header *const *chunks = AddressSpaceView::Load(chunks_, n_chunks_); |
| // Cache-friendly linear search. |
| for (uptr i = 0; i < n_chunks_; i++) { |
| uptr ch = reinterpret_cast<uptr>(chunks[i]); |
| if (p < ch) continue; // p is at left to this chunk, skip it. |
| if (p - ch < p - nearest_chunk) |
| nearest_chunk = ch; |
| } |
| if (!nearest_chunk) |
| return nullptr; |
| const Header *h = |
| AddressSpaceView::Load(reinterpret_cast<Header *>(nearest_chunk)); |
| Header *h_ptr = reinterpret_cast<Header *>(nearest_chunk); |
| CHECK_GE(nearest_chunk, h->map_beg); |
| CHECK_LT(nearest_chunk, h->map_beg + h->map_size); |
| CHECK_LE(nearest_chunk, p); |
| if (h->map_beg + h->map_size <= p) |
| return nullptr; |
| return GetUser(h_ptr); |
| } |
| |
| void EnsureSortedChunks() { |
| if (chunks_sorted_) return; |
| Header **chunks = AddressSpaceView::LoadWritable(chunks_, n_chunks_); |
| Sort(reinterpret_cast<uptr *>(chunks), n_chunks_); |
| for (uptr i = 0; i < n_chunks_; i++) |
| AddressSpaceView::LoadWritable(chunks[i])->chunk_idx = i; |
| chunks_sorted_ = true; |
| } |
| |
| // This function does the same as GetBlockBegin, but is much faster. |
| // Must be called with the allocator locked. |
| void *GetBlockBeginFastLocked(void *ptr) { |
| mutex_.CheckLocked(); |
| uptr p = reinterpret_cast<uptr>(ptr); |
| uptr n = n_chunks_; |
| if (!n) return nullptr; |
| EnsureSortedChunks(); |
| Header *const *chunks = AddressSpaceView::Load(chunks_, n_chunks_); |
| auto min_mmap_ = reinterpret_cast<uptr>(chunks[0]); |
| auto max_mmap_ = reinterpret_cast<uptr>(chunks[n - 1]) + |
| AddressSpaceView::Load(chunks[n - 1])->map_size; |
| if (p < min_mmap_ || p >= max_mmap_) |
| return nullptr; |
| uptr beg = 0, end = n - 1; |
| // This loop is a log(n) lower_bound. It does not check for the exact match |
| // to avoid expensive cache-thrashing loads. |
| while (end - beg >= 2) { |
| uptr mid = (beg + end) / 2; // Invariant: mid >= beg + 1 |
| if (p < reinterpret_cast<uptr>(chunks[mid])) |
| end = mid - 1; // We are not interested in chunks[mid]. |
| else |
| beg = mid; // chunks[mid] may still be what we want. |
| } |
| |
| if (beg < end) { |
| CHECK_EQ(beg + 1, end); |
| // There are 2 chunks left, choose one. |
| if (p >= reinterpret_cast<uptr>(chunks[end])) |
| beg = end; |
| } |
| |
| const Header *h = AddressSpaceView::Load(chunks[beg]); |
| Header *h_ptr = chunks[beg]; |
| if (h->map_beg + h->map_size <= p || p < h->map_beg) |
| return nullptr; |
| return GetUser(h_ptr); |
| } |
| |
| void PrintStats() { |
| Printf("Stats: LargeMmapAllocator: allocated %zd times, " |
| "remains %zd (%zd K) max %zd M; by size logs: ", |
| stats.n_allocs, stats.n_allocs - stats.n_frees, |
| stats.currently_allocated >> 10, stats.max_allocated >> 20); |
| for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) { |
| uptr c = stats.by_size_log[i]; |
| if (!c) continue; |
| Printf("%zd:%zd; ", i, c); |
| } |
| Printf("\n"); |
| } |
| |
| // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone |
| // introspection API. |
| void ForceLock() { |
| mutex_.Lock(); |
| } |
| |
| void ForceUnlock() { |
| mutex_.Unlock(); |
| } |
| |
| // Iterate over all existing chunks. |
| // The allocator must be locked when calling this function. |
| void ForEachChunk(ForEachChunkCallback callback, void *arg) { |
| EnsureSortedChunks(); // Avoid doing the sort while iterating. |
| const Header *const *chunks = AddressSpaceView::Load(chunks_, n_chunks_); |
| for (uptr i = 0; i < n_chunks_; i++) { |
| const Header *t = chunks[i]; |
| callback(reinterpret_cast<uptr>(GetUser(t)), arg); |
| // Consistency check: verify that the array did not change. |
| CHECK_EQ(chunks[i], t); |
| CHECK_EQ(AddressSpaceView::Load(chunks[i])->chunk_idx, i); |
| } |
| } |
| |
| private: |
| struct Header { |
| uptr map_beg; |
| uptr map_size; |
| uptr size; |
| uptr chunk_idx; |
| }; |
| |
| Header *GetHeader(uptr p) { |
| CHECK(IsAligned(p, page_size_)); |
| return reinterpret_cast<Header*>(p - page_size_); |
| } |
| Header *GetHeader(const void *p) { |
| return GetHeader(reinterpret_cast<uptr>(p)); |
| } |
| |
| void *GetUser(const Header *h) { |
| CHECK(IsAligned((uptr)h, page_size_)); |
| return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_); |
| } |
| |
| uptr RoundUpMapSize(uptr size) { |
| return RoundUpTo(size, page_size_) + page_size_; |
| } |
| |
| uptr page_size_; |
| Header **chunks_; |
| PtrArrayT ptr_array_; |
| uptr n_chunks_; |
| bool chunks_sorted_; |
| struct Stats { |
| uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64]; |
| } stats; |
| StaticSpinMutex mutex_; |
| }; |