| //===-- tsan_rtl.cpp ------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer (TSan), a race detector. |
| // |
| // Main file (entry points) for the TSan run-time. |
| //===----------------------------------------------------------------------===// |
| |
| #include "sanitizer_common/sanitizer_atomic.h" |
| #include "sanitizer_common/sanitizer_common.h" |
| #include "sanitizer_common/sanitizer_file.h" |
| #include "sanitizer_common/sanitizer_libc.h" |
| #include "sanitizer_common/sanitizer_stackdepot.h" |
| #include "sanitizer_common/sanitizer_placement_new.h" |
| #include "sanitizer_common/sanitizer_symbolizer.h" |
| #include "tsan_defs.h" |
| #include "tsan_platform.h" |
| #include "tsan_rtl.h" |
| #include "tsan_mman.h" |
| #include "tsan_suppressions.h" |
| #include "tsan_symbolize.h" |
| #include "ubsan/ubsan_init.h" |
| |
| #ifdef __SSE3__ |
| // <emmintrin.h> transitively includes <stdlib.h>, |
| // and it's prohibited to include std headers into tsan runtime. |
| // So we do this dirty trick. |
| #define _MM_MALLOC_H_INCLUDED |
| #define __MM_MALLOC_H |
| #include <emmintrin.h> |
| typedef __m128i m128; |
| #endif |
| |
| volatile int __tsan_resumed = 0; |
| |
| extern "C" void __tsan_resume() { |
| __tsan_resumed = 1; |
| } |
| |
| namespace __tsan { |
| |
| #if !SANITIZER_GO && !SANITIZER_MAC |
| __attribute__((tls_model("initial-exec"))) |
| THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64); |
| #endif |
| static char ctx_placeholder[sizeof(Context)] ALIGNED(64); |
| Context *ctx; |
| |
| // Can be overriden by a front-end. |
| #ifdef TSAN_EXTERNAL_HOOKS |
| bool OnFinalize(bool failed); |
| void OnInitialize(); |
| #else |
| SANITIZER_WEAK_CXX_DEFAULT_IMPL |
| bool OnFinalize(bool failed) { |
| return failed; |
| } |
| SANITIZER_WEAK_CXX_DEFAULT_IMPL |
| void OnInitialize() {} |
| #endif |
| |
| static char thread_registry_placeholder[sizeof(ThreadRegistry)]; |
| |
| static ThreadContextBase *CreateThreadContext(u32 tid) { |
| // Map thread trace when context is created. |
| char name[50]; |
| internal_snprintf(name, sizeof(name), "trace %u", tid); |
| MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name); |
| const uptr hdr = GetThreadTraceHeader(tid); |
| internal_snprintf(name, sizeof(name), "trace header %u", tid); |
| MapThreadTrace(hdr, sizeof(Trace), name); |
| new((void*)hdr) Trace(); |
| // We are going to use only a small part of the trace with the default |
| // value of history_size. However, the constructor writes to the whole trace. |
| // Unmap the unused part. |
| uptr hdr_end = hdr + sizeof(Trace); |
| hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts()); |
| hdr_end = RoundUp(hdr_end, GetPageSizeCached()); |
| if (hdr_end < hdr + sizeof(Trace)) |
| UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end); |
| void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext)); |
| return new(mem) ThreadContext(tid); |
| } |
| |
| #if !SANITIZER_GO |
| static const u32 kThreadQuarantineSize = 16; |
| #else |
| static const u32 kThreadQuarantineSize = 64; |
| #endif |
| |
| Context::Context() |
| : initialized() |
| , report_mtx(MutexTypeReport, StatMtxReport) |
| , nreported() |
| , nmissed_expected() |
| , thread_registry(new(thread_registry_placeholder) ThreadRegistry( |
| CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse)) |
| , racy_mtx(MutexTypeRacy, StatMtxRacy) |
| , racy_stacks() |
| , racy_addresses() |
| , fired_suppressions_mtx(MutexTypeFired, StatMtxFired) |
| , clock_alloc("clock allocator") { |
| fired_suppressions.reserve(8); |
| } |
| |
| // The objects are allocated in TLS, so one may rely on zero-initialization. |
| ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, |
| unsigned reuse_count, |
| uptr stk_addr, uptr stk_size, |
| uptr tls_addr, uptr tls_size) |
| : fast_state(tid, epoch) |
| // Do not touch these, rely on zero initialization, |
| // they may be accessed before the ctor. |
| // , ignore_reads_and_writes() |
| // , ignore_interceptors() |
| , clock(tid, reuse_count) |
| #if !SANITIZER_GO |
| , jmp_bufs() |
| #endif |
| , tid(tid) |
| , unique_id(unique_id) |
| , stk_addr(stk_addr) |
| , stk_size(stk_size) |
| , tls_addr(tls_addr) |
| , tls_size(tls_size) |
| #if !SANITIZER_GO |
| , last_sleep_clock(tid) |
| #endif |
| { |
| } |
| |
| #if !SANITIZER_GO |
| static void MemoryProfiler(Context *ctx, fd_t fd, int i) { |
| uptr n_threads; |
| uptr n_running_threads; |
| ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads); |
| InternalMmapVector<char> buf(4096); |
| WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads); |
| WriteToFile(fd, buf.data(), internal_strlen(buf.data())); |
| } |
| |
| static void *BackgroundThread(void *arg) { |
| // This is a non-initialized non-user thread, nothing to see here. |
| // We don't use ScopedIgnoreInterceptors, because we want ignores to be |
| // enabled even when the thread function exits (e.g. during pthread thread |
| // shutdown code). |
| cur_thread_init(); |
| cur_thread()->ignore_interceptors++; |
| const u64 kMs2Ns = 1000 * 1000; |
| |
| fd_t mprof_fd = kInvalidFd; |
| if (flags()->profile_memory && flags()->profile_memory[0]) { |
| if (internal_strcmp(flags()->profile_memory, "stdout") == 0) { |
| mprof_fd = 1; |
| } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) { |
| mprof_fd = 2; |
| } else { |
| InternalScopedString filename(kMaxPathLength); |
| filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid()); |
| fd_t fd = OpenFile(filename.data(), WrOnly); |
| if (fd == kInvalidFd) { |
| Printf("ThreadSanitizer: failed to open memory profile file '%s'\n", |
| &filename[0]); |
| } else { |
| mprof_fd = fd; |
| } |
| } |
| } |
| |
| u64 last_flush = NanoTime(); |
| uptr last_rss = 0; |
| for (int i = 0; |
| atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0; |
| i++) { |
| SleepForMillis(100); |
| u64 now = NanoTime(); |
| |
| // Flush memory if requested. |
| if (flags()->flush_memory_ms > 0) { |
| if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) { |
| VPrintf(1, "ThreadSanitizer: periodic memory flush\n"); |
| FlushShadowMemory(); |
| last_flush = NanoTime(); |
| } |
| } |
| // GetRSS can be expensive on huge programs, so don't do it every 100ms. |
| if (flags()->memory_limit_mb > 0) { |
| uptr rss = GetRSS(); |
| uptr limit = uptr(flags()->memory_limit_mb) << 20; |
| VPrintf(1, "ThreadSanitizer: memory flush check" |
| " RSS=%llu LAST=%llu LIMIT=%llu\n", |
| (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20); |
| if (2 * rss > limit + last_rss) { |
| VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n"); |
| FlushShadowMemory(); |
| rss = GetRSS(); |
| VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20); |
| } |
| last_rss = rss; |
| } |
| |
| // Write memory profile if requested. |
| if (mprof_fd != kInvalidFd) |
| MemoryProfiler(ctx, mprof_fd, i); |
| |
| // Flush symbolizer cache if requested. |
| if (flags()->flush_symbolizer_ms > 0) { |
| u64 last = atomic_load(&ctx->last_symbolize_time_ns, |
| memory_order_relaxed); |
| if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) { |
| Lock l(&ctx->report_mtx); |
| ScopedErrorReportLock l2; |
| SymbolizeFlush(); |
| atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed); |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| static void StartBackgroundThread() { |
| ctx->background_thread = internal_start_thread(&BackgroundThread, 0); |
| } |
| |
| #ifndef __mips__ |
| static void StopBackgroundThread() { |
| atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed); |
| internal_join_thread(ctx->background_thread); |
| ctx->background_thread = 0; |
| } |
| #endif |
| #endif |
| |
| void DontNeedShadowFor(uptr addr, uptr size) { |
| ReleaseMemoryPagesToOS(MemToShadow(addr), MemToShadow(addr + size)); |
| } |
| |
| #if !SANITIZER_GO |
| void UnmapShadow(ThreadState *thr, uptr addr, uptr size) { |
| if (size == 0) return; |
| DontNeedShadowFor(addr, size); |
| ScopedGlobalProcessor sgp; |
| ctx->metamap.ResetRange(thr->proc(), addr, size); |
| } |
| #endif |
| |
| void MapShadow(uptr addr, uptr size) { |
| // Global data is not 64K aligned, but there are no adjacent mappings, |
| // so we can get away with unaligned mapping. |
| // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment |
| const uptr kPageSize = GetPageSizeCached(); |
| uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize); |
| uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize); |
| if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, |
| "shadow")) |
| Die(); |
| |
| // Meta shadow is 2:1, so tread carefully. |
| static bool data_mapped = false; |
| static uptr mapped_meta_end = 0; |
| uptr meta_begin = (uptr)MemToMeta(addr); |
| uptr meta_end = (uptr)MemToMeta(addr + size); |
| meta_begin = RoundDownTo(meta_begin, 64 << 10); |
| meta_end = RoundUpTo(meta_end, 64 << 10); |
| if (!data_mapped) { |
| // First call maps data+bss. |
| data_mapped = true; |
| if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, |
| "meta shadow")) |
| Die(); |
| } else { |
| // Mapping continous heap. |
| // Windows wants 64K alignment. |
| meta_begin = RoundDownTo(meta_begin, 64 << 10); |
| meta_end = RoundUpTo(meta_end, 64 << 10); |
| if (meta_end <= mapped_meta_end) |
| return; |
| if (meta_begin < mapped_meta_end) |
| meta_begin = mapped_meta_end; |
| if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, |
| "meta shadow")) |
| Die(); |
| mapped_meta_end = meta_end; |
| } |
| VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n", |
| addr, addr+size, meta_begin, meta_end); |
| } |
| |
| void MapThreadTrace(uptr addr, uptr size, const char *name) { |
| DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size); |
| CHECK_GE(addr, TraceMemBeg()); |
| CHECK_LE(addr + size, TraceMemEnd()); |
| CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment |
| if (!MmapFixedSuperNoReserve(addr, size, name)) { |
| Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p)\n", |
| addr, size); |
| Die(); |
| } |
| } |
| |
| static void CheckShadowMapping() { |
| uptr beg, end; |
| for (int i = 0; GetUserRegion(i, &beg, &end); i++) { |
| // Skip cases for empty regions (heap definition for architectures that |
| // do not use 64-bit allocator). |
| if (beg == end) |
| continue; |
| VPrintf(3, "checking shadow region %p-%p\n", beg, end); |
| uptr prev = 0; |
| for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) { |
| for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) { |
| const uptr p = RoundDown(p0 + x, kShadowCell); |
| if (p < beg || p >= end) |
| continue; |
| const uptr s = MemToShadow(p); |
| const uptr m = (uptr)MemToMeta(p); |
| VPrintf(3, " checking pointer %p: shadow=%p meta=%p\n", p, s, m); |
| CHECK(IsAppMem(p)); |
| CHECK(IsShadowMem(s)); |
| CHECK_EQ(p, ShadowToMem(s)); |
| CHECK(IsMetaMem(m)); |
| if (prev) { |
| // Ensure that shadow and meta mappings are linear within a single |
| // user range. Lots of code that processes memory ranges assumes it. |
| const uptr prev_s = MemToShadow(prev); |
| const uptr prev_m = (uptr)MemToMeta(prev); |
| CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier); |
| CHECK_EQ((m - prev_m) / kMetaShadowSize, |
| (p - prev) / kMetaShadowCell); |
| } |
| prev = p; |
| } |
| } |
| } |
| } |
| |
| #if !SANITIZER_GO |
| static void OnStackUnwind(const SignalContext &sig, const void *, |
| BufferedStackTrace *stack) { |
| stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context, |
| common_flags()->fast_unwind_on_fatal); |
| } |
| |
| static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) { |
| HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr); |
| } |
| #endif |
| |
| void Initialize(ThreadState *thr) { |
| // Thread safe because done before all threads exist. |
| static bool is_initialized = false; |
| if (is_initialized) |
| return; |
| is_initialized = true; |
| // We are not ready to handle interceptors yet. |
| ScopedIgnoreInterceptors ignore; |
| SanitizerToolName = "ThreadSanitizer"; |
| // Install tool-specific callbacks in sanitizer_common. |
| SetCheckFailedCallback(TsanCheckFailed); |
| |
| ctx = new(ctx_placeholder) Context; |
| const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS"; |
| const char *options = GetEnv(env_name); |
| CacheBinaryName(); |
| CheckASLR(); |
| InitializeFlags(&ctx->flags, options, env_name); |
| AvoidCVE_2016_2143(); |
| __sanitizer::InitializePlatformEarly(); |
| __tsan::InitializePlatformEarly(); |
| |
| #if !SANITIZER_GO |
| // Re-exec ourselves if we need to set additional env or command line args. |
| MaybeReexec(); |
| |
| InitializeAllocator(); |
| ReplaceSystemMalloc(); |
| #endif |
| if (common_flags()->detect_deadlocks) |
| ctx->dd = DDetector::Create(flags()); |
| Processor *proc = ProcCreate(); |
| ProcWire(proc, thr); |
| InitializeInterceptors(); |
| CheckShadowMapping(); |
| InitializePlatform(); |
| InitializeMutex(); |
| InitializeDynamicAnnotations(); |
| #if !SANITIZER_GO |
| InitializeShadowMemory(); |
| InitializeAllocatorLate(); |
| InstallDeadlySignalHandlers(TsanOnDeadlySignal); |
| #endif |
| // Setup correct file descriptor for error reports. |
| __sanitizer_set_report_path(common_flags()->log_path); |
| InitializeSuppressions(); |
| #if !SANITIZER_GO |
| InitializeLibIgnore(); |
| Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer); |
| #endif |
| |
| VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n", |
| (int)internal_getpid()); |
| |
| // Initialize thread 0. |
| int tid = ThreadCreate(thr, 0, 0, true); |
| CHECK_EQ(tid, 0); |
| ThreadStart(thr, tid, GetTid(), ThreadType::Regular); |
| #if TSAN_CONTAINS_UBSAN |
| __ubsan::InitAsPlugin(); |
| #endif |
| ctx->initialized = true; |
| |
| #if !SANITIZER_GO |
| Symbolizer::LateInitialize(); |
| #endif |
| |
| if (flags()->stop_on_start) { |
| Printf("ThreadSanitizer is suspended at startup (pid %d)." |
| " Call __tsan_resume().\n", |
| (int)internal_getpid()); |
| while (__tsan_resumed == 0) {} |
| } |
| |
| OnInitialize(); |
| } |
| |
| void MaybeSpawnBackgroundThread() { |
| // On MIPS, TSan initialization is run before |
| // __pthread_initialize_minimal_internal() is finished, so we can not spawn |
| // new threads. |
| #if !SANITIZER_GO && !defined(__mips__) |
| static atomic_uint32_t bg_thread = {}; |
| if (atomic_load(&bg_thread, memory_order_relaxed) == 0 && |
| atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) { |
| StartBackgroundThread(); |
| SetSandboxingCallback(StopBackgroundThread); |
| } |
| #endif |
| } |
| |
| |
| int Finalize(ThreadState *thr) { |
| bool failed = false; |
| |
| if (common_flags()->print_module_map == 1) |
| DumpProcessMap(); |
| |
| if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) |
| SleepForMillis(flags()->atexit_sleep_ms); |
| |
| // Wait for pending reports. |
| ctx->report_mtx.Lock(); |
| { ScopedErrorReportLock l; } |
| ctx->report_mtx.Unlock(); |
| |
| #if !SANITIZER_GO |
| if (Verbosity()) AllocatorPrintStats(); |
| #endif |
| |
| ThreadFinalize(thr); |
| |
| if (ctx->nreported) { |
| failed = true; |
| #if !SANITIZER_GO |
| Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); |
| #else |
| Printf("Found %d data race(s)\n", ctx->nreported); |
| #endif |
| } |
| |
| if (ctx->nmissed_expected) { |
| failed = true; |
| Printf("ThreadSanitizer: missed %d expected races\n", |
| ctx->nmissed_expected); |
| } |
| |
| if (common_flags()->print_suppressions) |
| PrintMatchedSuppressions(); |
| #if !SANITIZER_GO |
| if (flags()->print_benign) |
| PrintMatchedBenignRaces(); |
| #endif |
| |
| failed = OnFinalize(failed); |
| |
| #if TSAN_COLLECT_STATS |
| StatAggregate(ctx->stat, thr->stat); |
| StatOutput(ctx->stat); |
| #endif |
| |
| return failed ? common_flags()->exitcode : 0; |
| } |
| |
| #if !SANITIZER_GO |
| void ForkBefore(ThreadState *thr, uptr pc) { |
| ctx->thread_registry->Lock(); |
| ctx->report_mtx.Lock(); |
| // Ignore memory accesses in the pthread_atfork callbacks. |
| // If any of them triggers a data race we will deadlock |
| // on the report_mtx. |
| // We could ignore interceptors and sync operations as well, |
| // but so far it's unclear if it will do more good or harm. |
| // Unnecessarily ignoring things can lead to false positives later. |
| ThreadIgnoreBegin(thr, pc); |
| } |
| |
| void ForkParentAfter(ThreadState *thr, uptr pc) { |
| ThreadIgnoreEnd(thr, pc); // Begin is in ForkBefore. |
| ctx->report_mtx.Unlock(); |
| ctx->thread_registry->Unlock(); |
| } |
| |
| void ForkChildAfter(ThreadState *thr, uptr pc) { |
| ThreadIgnoreEnd(thr, pc); // Begin is in ForkBefore. |
| ctx->report_mtx.Unlock(); |
| ctx->thread_registry->Unlock(); |
| |
| uptr nthread = 0; |
| ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */); |
| VPrintf(1, "ThreadSanitizer: forked new process with pid %d," |
| " parent had %d threads\n", (int)internal_getpid(), (int)nthread); |
| if (nthread == 1) { |
| StartBackgroundThread(); |
| } else { |
| // We've just forked a multi-threaded process. We cannot reasonably function |
| // after that (some mutexes may be locked before fork). So just enable |
| // ignores for everything in the hope that we will exec soon. |
| ctx->after_multithreaded_fork = true; |
| thr->ignore_interceptors++; |
| ThreadIgnoreBegin(thr, pc); |
| ThreadIgnoreSyncBegin(thr, pc); |
| } |
| } |
| #endif |
| |
| #if SANITIZER_GO |
| NOINLINE |
| void GrowShadowStack(ThreadState *thr) { |
| const int sz = thr->shadow_stack_end - thr->shadow_stack; |
| const int newsz = 2 * sz; |
| uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack, |
| newsz * sizeof(uptr)); |
| internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); |
| internal_free(thr->shadow_stack); |
| thr->shadow_stack = newstack; |
| thr->shadow_stack_pos = newstack + sz; |
| thr->shadow_stack_end = newstack + newsz; |
| } |
| #endif |
| |
| u32 CurrentStackId(ThreadState *thr, uptr pc) { |
| if (!thr->is_inited) // May happen during bootstrap. |
| return 0; |
| if (pc != 0) { |
| #if !SANITIZER_GO |
| DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); |
| #else |
| if (thr->shadow_stack_pos == thr->shadow_stack_end) |
| GrowShadowStack(thr); |
| #endif |
| thr->shadow_stack_pos[0] = pc; |
| thr->shadow_stack_pos++; |
| } |
| u32 id = StackDepotPut( |
| StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack)); |
| if (pc != 0) |
| thr->shadow_stack_pos--; |
| return id; |
| } |
| |
| void TraceSwitch(ThreadState *thr) { |
| #if !SANITIZER_GO |
| if (ctx->after_multithreaded_fork) |
| return; |
| #endif |
| thr->nomalloc++; |
| Trace *thr_trace = ThreadTrace(thr->tid); |
| Lock l(&thr_trace->mtx); |
| unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts(); |
| TraceHeader *hdr = &thr_trace->headers[trace]; |
| hdr->epoch0 = thr->fast_state.epoch(); |
| ObtainCurrentStack(thr, 0, &hdr->stack0); |
| hdr->mset0 = thr->mset; |
| thr->nomalloc--; |
| } |
| |
| Trace *ThreadTrace(int tid) { |
| return (Trace*)GetThreadTraceHeader(tid); |
| } |
| |
| uptr TraceTopPC(ThreadState *thr) { |
| Event *events = (Event*)GetThreadTrace(thr->tid); |
| uptr pc = events[thr->fast_state.GetTracePos()]; |
| return pc; |
| } |
| |
| uptr TraceSize() { |
| return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1)); |
| } |
| |
| uptr TraceParts() { |
| return TraceSize() / kTracePartSize; |
| } |
| |
| #if !SANITIZER_GO |
| extern "C" void __tsan_trace_switch() { |
| TraceSwitch(cur_thread()); |
| } |
| |
| extern "C" void __tsan_report_race() { |
| ReportRace(cur_thread()); |
| } |
| #endif |
| |
| ALWAYS_INLINE |
| Shadow LoadShadow(u64 *p) { |
| u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed); |
| return Shadow(raw); |
| } |
| |
| ALWAYS_INLINE |
| void StoreShadow(u64 *sp, u64 s) { |
| atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed); |
| } |
| |
| ALWAYS_INLINE |
| void StoreIfNotYetStored(u64 *sp, u64 *s) { |
| StoreShadow(sp, *s); |
| *s = 0; |
| } |
| |
| ALWAYS_INLINE |
| void HandleRace(ThreadState *thr, u64 *shadow_mem, |
| Shadow cur, Shadow old) { |
| thr->racy_state[0] = cur.raw(); |
| thr->racy_state[1] = old.raw(); |
| thr->racy_shadow_addr = shadow_mem; |
| #if !SANITIZER_GO |
| HACKY_CALL(__tsan_report_race); |
| #else |
| ReportRace(thr); |
| #endif |
| } |
| |
| static inline bool HappensBefore(Shadow old, ThreadState *thr) { |
| return thr->clock.get(old.TidWithIgnore()) >= old.epoch(); |
| } |
| |
| ALWAYS_INLINE |
| void MemoryAccessImpl1(ThreadState *thr, uptr addr, |
| int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, |
| u64 *shadow_mem, Shadow cur) { |
| StatInc(thr, StatMop); |
| StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); |
| StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); |
| |
| // This potentially can live in an MMX/SSE scratch register. |
| // The required intrinsics are: |
| // __m128i _mm_move_epi64(__m128i*); |
| // _mm_storel_epi64(u64*, __m128i); |
| u64 store_word = cur.raw(); |
| bool stored = false; |
| |
| // scan all the shadow values and dispatch to 4 categories: |
| // same, replace, candidate and race (see comments below). |
| // we consider only 3 cases regarding access sizes: |
| // equal, intersect and not intersect. initially I considered |
| // larger and smaller as well, it allowed to replace some |
| // 'candidates' with 'same' or 'replace', but I think |
| // it's just not worth it (performance- and complexity-wise). |
| |
| Shadow old(0); |
| |
| // It release mode we manually unroll the loop, |
| // because empirically gcc generates better code this way. |
| // However, we can't afford unrolling in debug mode, because the function |
| // consumes almost 4K of stack. Gtest gives only 4K of stack to death test |
| // threads, which is not enough for the unrolled loop. |
| #if SANITIZER_DEBUG |
| for (int idx = 0; idx < 4; idx++) { |
| #include "tsan_update_shadow_word_inl.h" |
| } |
| #else |
| int idx = 0; |
| #include "tsan_update_shadow_word_inl.h" |
| idx = 1; |
| if (stored) { |
| #include "tsan_update_shadow_word_inl.h" |
| } else { |
| #include "tsan_update_shadow_word_inl.h" |
| } |
| idx = 2; |
| if (stored) { |
| #include "tsan_update_shadow_word_inl.h" |
| } else { |
| #include "tsan_update_shadow_word_inl.h" |
| } |
| idx = 3; |
| if (stored) { |
| #include "tsan_update_shadow_word_inl.h" |
| } else { |
| #include "tsan_update_shadow_word_inl.h" |
| } |
| #endif |
| |
| // we did not find any races and had already stored |
| // the current access info, so we are done |
| if (LIKELY(stored)) |
| return; |
| // choose a random candidate slot and replace it |
| StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word); |
| StatInc(thr, StatShadowReplace); |
| return; |
| RACE: |
| HandleRace(thr, shadow_mem, cur, old); |
| return; |
| } |
| |
| void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, |
| int size, bool kAccessIsWrite, bool kIsAtomic) { |
| while (size) { |
| int size1 = 1; |
| int kAccessSizeLog = kSizeLog1; |
| if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) { |
| size1 = 8; |
| kAccessSizeLog = kSizeLog8; |
| } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) { |
| size1 = 4; |
| kAccessSizeLog = kSizeLog4; |
| } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) { |
| size1 = 2; |
| kAccessSizeLog = kSizeLog2; |
| } |
| MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic); |
| addr += size1; |
| size -= size1; |
| } |
| } |
| |
| ALWAYS_INLINE |
| bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) { |
| Shadow cur(a); |
| for (uptr i = 0; i < kShadowCnt; i++) { |
| Shadow old(LoadShadow(&s[i])); |
| if (Shadow::Addr0AndSizeAreEqual(cur, old) && |
| old.TidWithIgnore() == cur.TidWithIgnore() && |
| old.epoch() > sync_epoch && |
| old.IsAtomic() == cur.IsAtomic() && |
| old.IsRead() <= cur.IsRead()) |
| return true; |
| } |
| return false; |
| } |
| |
| #if defined(__SSE3__) |
| #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \ |
| _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \ |
| (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64)) |
| ALWAYS_INLINE |
| bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) { |
| // This is an optimized version of ContainsSameAccessSlow. |
| // load current access into access[0:63] |
| const m128 access = _mm_cvtsi64_si128(a); |
| // duplicate high part of access in addr0: |
| // addr0[0:31] = access[32:63] |
| // addr0[32:63] = access[32:63] |
| // addr0[64:95] = access[32:63] |
| // addr0[96:127] = access[32:63] |
| const m128 addr0 = SHUF(access, access, 1, 1, 1, 1); |
| // load 4 shadow slots |
| const m128 shadow0 = _mm_load_si128((__m128i*)s); |
| const m128 shadow1 = _mm_load_si128((__m128i*)s + 1); |
| // load high parts of 4 shadow slots into addr_vect: |
| // addr_vect[0:31] = shadow0[32:63] |
| // addr_vect[32:63] = shadow0[96:127] |
| // addr_vect[64:95] = shadow1[32:63] |
| // addr_vect[96:127] = shadow1[96:127] |
| m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3); |
| if (!is_write) { |
| // set IsRead bit in addr_vect |
| const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15); |
| const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0); |
| addr_vect = _mm_or_si128(addr_vect, rw_mask); |
| } |
| // addr0 == addr_vect? |
| const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect); |
| // epoch1[0:63] = sync_epoch |
| const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch); |
| // epoch[0:31] = sync_epoch[0:31] |
| // epoch[32:63] = sync_epoch[0:31] |
| // epoch[64:95] = sync_epoch[0:31] |
| // epoch[96:127] = sync_epoch[0:31] |
| const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0); |
| // load low parts of shadow cell epochs into epoch_vect: |
| // epoch_vect[0:31] = shadow0[0:31] |
| // epoch_vect[32:63] = shadow0[64:95] |
| // epoch_vect[64:95] = shadow1[0:31] |
| // epoch_vect[96:127] = shadow1[64:95] |
| const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2); |
| // epoch_vect >= sync_epoch? |
| const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch); |
| // addr_res & epoch_res |
| const m128 res = _mm_and_si128(addr_res, epoch_res); |
| // mask[0] = res[7] |
| // mask[1] = res[15] |
| // ... |
| // mask[15] = res[127] |
| const int mask = _mm_movemask_epi8(res); |
| return mask != 0; |
| } |
| #endif |
| |
| ALWAYS_INLINE |
| bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) { |
| #if defined(__SSE3__) |
| bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write); |
| // NOTE: this check can fail if the shadow is concurrently mutated |
| // by other threads. But it still can be useful if you modify |
| // ContainsSameAccessFast and want to ensure that it's not completely broken. |
| // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write)); |
| return res; |
| #else |
| return ContainsSameAccessSlow(s, a, sync_epoch, is_write); |
| #endif |
| } |
| |
| ALWAYS_INLINE USED |
| void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, |
| int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) { |
| u64 *shadow_mem = (u64*)MemToShadow(addr); |
| DPrintf2("#%d: MemoryAccess: @%p %p size=%d" |
| " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n", |
| (int)thr->fast_state.tid(), (void*)pc, (void*)addr, |
| (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem, |
| (uptr)shadow_mem[0], (uptr)shadow_mem[1], |
| (uptr)shadow_mem[2], (uptr)shadow_mem[3]); |
| #if SANITIZER_DEBUG |
| if (!IsAppMem(addr)) { |
| Printf("Access to non app mem %zx\n", addr); |
| DCHECK(IsAppMem(addr)); |
| } |
| if (!IsShadowMem((uptr)shadow_mem)) { |
| Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); |
| DCHECK(IsShadowMem((uptr)shadow_mem)); |
| } |
| #endif |
| |
| if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) { |
| // Access to .rodata section, no races here. |
| // Measurements show that it can be 10-20% of all memory accesses. |
| StatInc(thr, StatMop); |
| StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); |
| StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); |
| StatInc(thr, StatMopRodata); |
| return; |
| } |
| |
| FastState fast_state = thr->fast_state; |
| if (UNLIKELY(fast_state.GetIgnoreBit())) { |
| StatInc(thr, StatMop); |
| StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); |
| StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); |
| StatInc(thr, StatMopIgnored); |
| return; |
| } |
| |
| Shadow cur(fast_state); |
| cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog); |
| cur.SetWrite(kAccessIsWrite); |
| cur.SetAtomic(kIsAtomic); |
| |
| if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), |
| thr->fast_synch_epoch, kAccessIsWrite))) { |
| StatInc(thr, StatMop); |
| StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); |
| StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); |
| StatInc(thr, StatMopSame); |
| return; |
| } |
| |
| if (kCollectHistory) { |
| fast_state.IncrementEpoch(); |
| thr->fast_state = fast_state; |
| TraceAddEvent(thr, fast_state, EventTypeMop, pc); |
| cur.IncrementEpoch(); |
| } |
| |
| MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, |
| shadow_mem, cur); |
| } |
| |
| // Called by MemoryAccessRange in tsan_rtl_thread.cpp |
| ALWAYS_INLINE USED |
| void MemoryAccessImpl(ThreadState *thr, uptr addr, |
| int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, |
| u64 *shadow_mem, Shadow cur) { |
| if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), |
| thr->fast_synch_epoch, kAccessIsWrite))) { |
| StatInc(thr, StatMop); |
| StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); |
| StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); |
| StatInc(thr, StatMopSame); |
| return; |
| } |
| |
| MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, |
| shadow_mem, cur); |
| } |
| |
| static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| u64 val) { |
| (void)thr; |
| (void)pc; |
| if (size == 0) |
| return; |
| // FIXME: fix me. |
| uptr offset = addr % kShadowCell; |
| if (offset) { |
| offset = kShadowCell - offset; |
| if (size <= offset) |
| return; |
| addr += offset; |
| size -= offset; |
| } |
| DCHECK_EQ(addr % 8, 0); |
| // If a user passes some insane arguments (memset(0)), |
| // let it just crash as usual. |
| if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) |
| return; |
| // Don't want to touch lots of shadow memory. |
| // If a program maps 10MB stack, there is no need reset the whole range. |
| size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1); |
| // UnmapOrDie/MmapFixedNoReserve does not work on Windows. |
| if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) { |
| u64 *p = (u64*)MemToShadow(addr); |
| CHECK(IsShadowMem((uptr)p)); |
| CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1))); |
| // FIXME: may overwrite a part outside the region |
| for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) { |
| p[i++] = val; |
| for (uptr j = 1; j < kShadowCnt; j++) |
| p[i++] = 0; |
| } |
| } else { |
| // The region is big, reset only beginning and end. |
| const uptr kPageSize = GetPageSizeCached(); |
| u64 *begin = (u64*)MemToShadow(addr); |
| u64 *end = begin + size / kShadowCell * kShadowCnt; |
| u64 *p = begin; |
| // Set at least first kPageSize/2 to page boundary. |
| while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) { |
| *p++ = val; |
| for (uptr j = 1; j < kShadowCnt; j++) |
| *p++ = 0; |
| } |
| // Reset middle part. |
| u64 *p1 = p; |
| p = RoundDown(end, kPageSize); |
| UnmapOrDie((void*)p1, (uptr)p - (uptr)p1); |
| if (!MmapFixedSuperNoReserve((uptr)p1, (uptr)p - (uptr)p1)) |
| Die(); |
| // Set the ending. |
| while (p < end) { |
| *p++ = val; |
| for (uptr j = 1; j < kShadowCnt; j++) |
| *p++ = 0; |
| } |
| } |
| } |
| |
| void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { |
| MemoryRangeSet(thr, pc, addr, size, 0); |
| } |
| |
| void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) { |
| // Processing more than 1k (4k of shadow) is expensive, |
| // can cause excessive memory consumption (user does not necessary touch |
| // the whole range) and most likely unnecessary. |
| if (size > 1024) |
| size = 1024; |
| CHECK_EQ(thr->is_freeing, false); |
| thr->is_freeing = true; |
| MemoryAccessRange(thr, pc, addr, size, true); |
| thr->is_freeing = false; |
| if (kCollectHistory) { |
| thr->fast_state.IncrementEpoch(); |
| TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); |
| } |
| Shadow s(thr->fast_state); |
| s.ClearIgnoreBit(); |
| s.MarkAsFreed(); |
| s.SetWrite(true); |
| s.SetAddr0AndSizeLog(0, 3); |
| MemoryRangeSet(thr, pc, addr, size, s.raw()); |
| } |
| |
| void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) { |
| if (kCollectHistory) { |
| thr->fast_state.IncrementEpoch(); |
| TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); |
| } |
| Shadow s(thr->fast_state); |
| s.ClearIgnoreBit(); |
| s.SetWrite(true); |
| s.SetAddr0AndSizeLog(0, 3); |
| MemoryRangeSet(thr, pc, addr, size, s.raw()); |
| } |
| |
| void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr, |
| uptr size) { |
| if (thr->ignore_reads_and_writes == 0) |
| MemoryRangeImitateWrite(thr, pc, addr, size); |
| else |
| MemoryResetRange(thr, pc, addr, size); |
| } |
| |
| ALWAYS_INLINE USED |
| void FuncEntry(ThreadState *thr, uptr pc) { |
| StatInc(thr, StatFuncEnter); |
| DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc); |
| if (kCollectHistory) { |
| thr->fast_state.IncrementEpoch(); |
| TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc); |
| } |
| |
| // Shadow stack maintenance can be replaced with |
| // stack unwinding during trace switch (which presumably must be faster). |
| DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack); |
| #if !SANITIZER_GO |
| DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); |
| #else |
| if (thr->shadow_stack_pos == thr->shadow_stack_end) |
| GrowShadowStack(thr); |
| #endif |
| thr->shadow_stack_pos[0] = pc; |
| thr->shadow_stack_pos++; |
| } |
| |
| ALWAYS_INLINE USED |
| void FuncExit(ThreadState *thr) { |
| StatInc(thr, StatFuncExit); |
| DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid()); |
| if (kCollectHistory) { |
| thr->fast_state.IncrementEpoch(); |
| TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0); |
| } |
| |
| DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack); |
| #if !SANITIZER_GO |
| DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); |
| #endif |
| thr->shadow_stack_pos--; |
| } |
| |
| void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack) { |
| DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid); |
| thr->ignore_reads_and_writes++; |
| CHECK_GT(thr->ignore_reads_and_writes, 0); |
| thr->fast_state.SetIgnoreBit(); |
| #if !SANITIZER_GO |
| if (save_stack && !ctx->after_multithreaded_fork) |
| thr->mop_ignore_set.Add(CurrentStackId(thr, pc)); |
| #endif |
| } |
| |
| void ThreadIgnoreEnd(ThreadState *thr, uptr pc) { |
| DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid); |
| CHECK_GT(thr->ignore_reads_and_writes, 0); |
| thr->ignore_reads_and_writes--; |
| if (thr->ignore_reads_and_writes == 0) { |
| thr->fast_state.ClearIgnoreBit(); |
| #if !SANITIZER_GO |
| thr->mop_ignore_set.Reset(); |
| #endif |
| } |
| } |
| |
| #if !SANITIZER_GO |
| extern "C" SANITIZER_INTERFACE_ATTRIBUTE |
| uptr __tsan_testonly_shadow_stack_current_size() { |
| ThreadState *thr = cur_thread(); |
| return thr->shadow_stack_pos - thr->shadow_stack; |
| } |
| #endif |
| |
| void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack) { |
| DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid); |
| thr->ignore_sync++; |
| CHECK_GT(thr->ignore_sync, 0); |
| #if !SANITIZER_GO |
| if (save_stack && !ctx->after_multithreaded_fork) |
| thr->sync_ignore_set.Add(CurrentStackId(thr, pc)); |
| #endif |
| } |
| |
| void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) { |
| DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid); |
| CHECK_GT(thr->ignore_sync, 0); |
| thr->ignore_sync--; |
| #if !SANITIZER_GO |
| if (thr->ignore_sync == 0) |
| thr->sync_ignore_set.Reset(); |
| #endif |
| } |
| |
| bool MD5Hash::operator==(const MD5Hash &other) const { |
| return hash[0] == other.hash[0] && hash[1] == other.hash[1]; |
| } |
| |
| #if SANITIZER_DEBUG |
| void build_consistency_debug() {} |
| #else |
| void build_consistency_release() {} |
| #endif |
| |
| #if TSAN_COLLECT_STATS |
| void build_consistency_stats() {} |
| #else |
| void build_consistency_nostats() {} |
| #endif |
| |
| } // namespace __tsan |
| |
| #if !SANITIZER_GO |
| // Must be included in this file to make sure everything is inlined. |
| #include "tsan_interface_inl.h" |
| #endif |