blob: 2b76559cf54d8c05876f2e887203ec8f94d2bebc [file] [log] [blame]
// Splay tree utilities -*- C++ -*-
// Copyright (C) 2020-2021 Free Software Foundation, Inc.
//
// This file is part of GCC.
//
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
//
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
// Implement splay tree node accessors for a class that stores its
// two child nodes in a member variable of the form:
//
// Node m_children[2];
template<typename Node>
class default_splay_tree_accessors
{
public:
using node_type = Node;
static auto
child (node_type node, unsigned int index)
-> decltype (node->m_children[index]) &
{
return node->m_children[index];
}
};
// Implement splay tree node accessors for a class that stores its
// two child nodes in a member variable of the form:
//
// Node m_children[2];
//
// and also stores its parent node in a member variable of the form:
//
// Node m_parent;
template<typename Node>
class default_splay_tree_accessors_with_parent
: public default_splay_tree_accessors<Node>
{
public:
using node_type = Node;
static auto
parent (node_type node) -> decltype (node->m_parent) &
{
return node->m_parent;
}
};
// Base is a splay tree accessor class for nodes that have no parent field.
// Base therefore provides a Base::child method but does not provide a
// Base::parent method. Extend Base with dummy routines for setting the
// parent, which is a no-op when the parent is not stored.
template<typename Base>
class splay_tree_accessors_without_parent : public Base
{
public:
using typename Base::node_type;
static void set_parent (node_type, node_type) {}
};
// Base is splay tree accessor class for nodes that have a parent field.
// Base therefore provides both Base::child and Base::parent methods.
// Extend Base with routines for setting the parent.
template<typename Base>
class splay_tree_accessors_with_parent : public Base
{
public:
using typename Base::node_type;
// Record that NODE's parent is now NEW_PARENT.
static void
set_parent (node_type node, node_type new_parent)
{
Base::parent (node) = new_parent;
}
};
// A base class that provides some splay tree operations that are common
// to both rooted_splay_tree and rootless_splay_tree.
//
// Nodes in the splay tree have type Accessors::node_type; this is
// usually a pointer type. The Accessors class provides the following
// static member functions for accessing nodes:
//
// - Accessors::child (NODE, INDEX)
// INDEX is guaranteed to be 0 or 1. If INDEX is 0, return a reference
// to where NODE's left child is stored, otherwise return a reference
// to where NODE's right child is stored.
//
// - Accessors::set_parent (NODE, PARENT)
// Record that NODE's parent node is now PARENT.
template<typename Accessors>
class base_splay_tree : protected Accessors
{
public:
using typename Accessors::node_type;
// INDEX is either 0 or 1. If INDEX is 0, insert CHILD immediately
// before NODE, otherwise insert CHILD immediately after NODE.
//
// Complexity: O(1).
static void insert_child (node_type node, unsigned int index,
node_type child);
// Print NODE and its child nodes to PP for debugging purposes,
// using PRINTER (PP, N) to print the data for node N.
template<typename Printer>
static void print (pretty_printer *pp, node_type node, Printer printer);
protected:
using Accessors::set_parent;
static node_type get_child (node_type, unsigned int);
static void set_child (node_type, unsigned int, node_type);
static node_type promote_child (node_type, unsigned int);
static void promote_child (node_type, unsigned int, node_type);
template<unsigned int N>
static node_type splay_limit (node_type);
static node_type remove_node_internal (node_type);
template<typename Printer>
static void print (pretty_printer *pp, node_type node, Printer printer,
char, vec<char> &);
};
// This class provides splay tree routines for cases in which the root
// of the splay tree is known. It works with both nodes that store
// their parent node and nodes that don't.
//
// The class is lightweight: it only contains a single root node.
template<typename Accessors>
class rooted_splay_tree : public base_splay_tree<Accessors>
{
using parent = base_splay_tree<Accessors>;
public:
using typename Accessors::node_type;
protected:
// The root of the splay tree, or node_type () if the tree is empty.
node_type m_root;
public:
rooted_splay_tree () : m_root () {}
// Construct a tree with the specified root node.
rooted_splay_tree (node_type root) : m_root (root) {}
// Return the root of the tree.
node_type root () const { return m_root; }
// Return true if the tree contains any nodes.
explicit operator bool () const { return m_root; }
// Dereference the root node.
node_type operator-> () { return m_root; }
// Insert NEW_NODE into the splay tree, if no equivalent node already
// exists. For a given node N, COMPARE (N) should return:
//
// - a negative value if NEW_NODE should come before N
// - zero if NEW_NODE and N are the same
// - a positive value if NEW_NODE should come after N
//
// Return true if NEW_NODE was inserted.
//
// On return, NEW_NODE or its equivalent is the root of the tree.
//
// Complexity: amortized O(C log N), worst-cast O(C N), where C is
// the complexity of the comparison.
template<typename Comparator>
bool insert (node_type new_node, Comparator compare);
// Insert NEW_NODE into the splay tree, given that NEW_NODE is the
// maximum node of the new tree. On return, NEW_NODE is also the
// root of the tree.
//
// Complexity: O(1).
void insert_max_node (node_type new_node);
// Splice NEXT_TREE onto this one, given that all nodes in NEXT_TREE
// are greater than the maximum node in this tree. NEXT_TREE should
// not be used afterwards.
//
// Complexity: O(1) if the root of the splay tree is already the maximum
// node. Otherwise amortized O(log N), worst-cast O(N).
void splice_next_tree (rooted_splay_tree next_tree);
// The root of the tree is currently the maximum node. Replace it
// with NEW_NODE.
//
// Complexity: O(1).
void replace_max_node_at_root (node_type new_node);
// Remove the root node of the splay tree.
//
// Complexity: O(1) if removing the maximum or minimum node.
// Otherwise amortized O(log N), worst-cast O(N).
void remove_root ();
// Split the left child of the current root out into a separate tree
// and return the new tree.
rooted_splay_tree split_before_root ();
// Split the right child of the current root out into a separate tree
// and return the new tree.
rooted_splay_tree split_after_root ();
// If the root is not the minimum node of the splay tree, bring the previous
// node to the root and return true, otherwise return false.
//
// Complexity: amortized O(log N), worst-cast O(N).
bool splay_prev_node ();
// If the root is not the maximum node of the splay tree, bring the next
// node to the root and return true, otherwise return false.
//
// Complexity: amortized O(log N), worst-cast O(N).
bool splay_next_node ();
// Bring the minimum node of the splay tree to the root.
//
// Complexity: amortized O(log N), worst-cast O(N).
void splay_min_node ();
// Bring the maximum node of the splay tree to the root.
//
// Complexity: amortized O(log N), worst-cast O(N).
void splay_max_node ();
// Return the minimum node of the splay tree, or node_type () if the
// tree is empty. On return, the minimum node (if any) is also the
// root of the tree.
//
// Complexity: amortized O(log N), worst-cast O(N).
node_type min_node ();
// Return the maximum node of the splay tree, or node_type () if the
// tree is empty. On return, the maximum node (if any) is also the
// root of the tree.
//
// Complexity: amortized O(log N), worst-cast O(N).
node_type max_node ();
// Search the splay tree. For a given node N, COMPARE (N) should return:
//
// - a negative value if N is bigger than the node being searched for
// - zero if N is the node being searched for
// - a positive value if N is smaller than the node being searched for
//
// If the node that COMPARE is looking for exists, install it as the root
// node of the splay tree. Otherwise, arbitrarily pick either:
//
// - the maximum node that is smaller than the node being searched for or
// - the minimum node that is bigger than the node being searched for
//
// and install that node as the root instead.
//
// Return the result of COMPARE for the new root.
//
// This form of lookup is intended for cases in which both the following
// are true:
//
// (a) The work that COMPARE needs to do to detect if a node is too big
// is the same as the work that COMPARE needs to do to detect if a
// node is too small. (This is not true of range comparisons,
// for example.)
//
// (b) COMPARE is (or might be) relatively complex.
//
// This form of lookup is also useful if the items being compared naturally
// provide a <=>-style comparison result, without the result having to be
// forced by the equivalent of a ?: expression.
//
// The implementation only invokes COMPARE once per node.
//
// Complexity: amortized O(C log N), worst-cast O(C N), where C is
// the complexity of the comparison.
template<typename Comparator>
auto lookup (Comparator compare) -> decltype (compare (m_root));
// Search the splay tree. For a given node N, WANT_SOMETHING_SMALLER (N)
// is true if N is too big and WANT_SOMETHING_BIGGER (N) is true if N
// is too small. Both functions return false if N is the node being
// searched for.
//
// If the node that is being searched for exists, install it as the root
// node of the splay tree and return 0. Otherwise, arbitrarily choose
// between these two options:
//
// - Install the maximum node that is smaller than the node being
// searched for as the root of the splay tree and return 1.
//
// - Install the minimum node that is bigger than the node being
// searched for and return -1.
//
// This form of lookup is intended for cases in which either of the
// following are true:
//
// (a) WANT_SOMETHING_SMALLER and WANT_SOMETHING_BIGGER test different
// parts of the node's data. For example, when comparing ranges,
// WANT_SOMETHING_SMALLER would test the lower limit of the given
// node's range while WANT_SOMETHING_BIGGER would test the upper
// limit of the given node's range.
//
// (b) There is no significant overhead to calling both
// WANT_SOMETHING_SMALLER and WANT_SOMETHING_BIGGER for the same node.
//
// Complexity: amortized O(C log N), worst-cast O(C N), where C is
// the complexity of the comparisons.
template<typename LeftPredicate, typename RightPredicate>
int lookup (LeftPredicate want_something_smaller,
RightPredicate want_something_bigger);
// Keep the ability to print subtrees.
using parent::print;
// Print the tree to PP for debugging purposes, using PRINTER (PP, N)
// to print the data for node N.
template<typename Printer>
void print (pretty_printer *pp, Printer printer) const;
protected:
using parent::get_child;
using parent::set_child;
using parent::promote_child;
using parent::set_parent;
template<unsigned int N>
bool splay_neighbor ();
};
// Provide splay tree routines for nodes of type Accessors::node_type,
// which doesn't have a parent field. Use Accessors::child to access
// the children of a node.
template<typename Accessors>
using splay_tree_without_parent
= rooted_splay_tree<splay_tree_accessors_without_parent<Accessors>>;
// A splay tree for nodes of type Node, which is usually a pointer type.
// The child nodes are stored in a member variable:
//
// Node m_children[2];
//
// Node does not have a parent field.
template<typename Node>
using default_splay_tree
= splay_tree_without_parent<default_splay_tree_accessors<Node>>;
// A simple splay tree node that stores a value of type T.
template<typename T>
class splay_tree_node
{
friend class default_splay_tree_accessors<splay_tree_node *>;
public:
splay_tree_node () = default;
splay_tree_node (T value) : m_value (value), m_children () {}
T &value () { return m_value; }
const T &value () const { return m_value; }
private:
T m_value;
splay_tree_node *m_children[2];
};
// A splay tree whose nodes hold values of type T.
template<typename T>
using splay_tree = default_splay_tree<splay_tree_node<T> *>;
// Provide splay tree routines for cases in which the root of the tree
// is not explicitly stored.
//
// The nodes of the tree have type Accessors::node_type, which is usually
// a pointer type. The nodes have a link back to their parent.
//
// The Accessors class provides the following static member functions:
//
// - Accessors::child (NODE, INDEX)
// INDEX is guaranteed to be 0 or 1. If INDEX is 0, return a reference
// to where NODE's left child is stored, otherwise return a reference
// to where NODE's right child is stored.
//
// - Accessors::parent (NODE)
// Return a reference to where NODE's parent is stored.
template<typename Accessors>
class rootless_splay_tree
: public base_splay_tree<splay_tree_accessors_with_parent<Accessors>>
{
using full_accessors = splay_tree_accessors_with_parent<Accessors>;
using parent = base_splay_tree<full_accessors>;
public:
using rooted = rooted_splay_tree<full_accessors>;
using typename Accessors::node_type;
// Remove NODE from the splay tree. Return the node that replaces it,
// or null if NODE had no children.
//
// Complexity: O(1) if removing the maximum or minimum node.
// Otherwise amortized O(log N), worst-cast O(N).
static node_type remove_node (node_type node);
// Splay NODE so that it becomes the root of the splay tree.
//
// Complexity: amortized O(log N), worst-cast O(N).
static void splay (node_type node);
// Like splay, but take advantage of the fact that NODE is known to be
// the minimum node in the tree.
//
// Complexity: amortized O(log N), worst-cast O(N).
static void splay_known_min_node (node_type node);
// Like splay, but take advantage of the fact that NODE is known to be
// the maximum node in the tree.
//
// Complexity: amortized O(log N), worst-cast O(N).
static void splay_known_max_node (node_type node);
// Splay NODE while looking for an ancestor node N for which PREDICATE (N)
// is true. If such an ancestor node exists, stop the splay operation
// early and return PREDICATE (N). Otherwise, complete the splay operation
// and return DEFAULT_RESULT. In the latter case, NODE is now the root of
// the splay tree.
//
// Note that this routine only examines nodes that happen to be ancestors
// of NODE. It does not search the full tree.
//
// Complexity: amortized O(P log N), worst-cast O(P N), where P is the
// complexity of the predicate.
template<typename DefaultResult, typename Predicate>
static auto splay_and_search (node_type node, DefaultResult default_result,
Predicate predicate)
-> decltype (predicate (node, 0));
// NODE1 and NODE2 are known to belong to the same splay tree. Return:
//
// -1 if NODE1 < NODE2
// 0 if NODE1 == NODE2
// 1 if NODE1 > NODE2
//
// Complexity: amortized O(log N), worst-cast O(N).
static int compare_nodes (node_type node1, node_type node2);
protected:
using parent::get_child;
using parent::set_child;
using parent::promote_child;
static node_type get_parent (node_type);
using parent::set_parent;
static unsigned int child_index (node_type, node_type);
static int compare_nodes_one_way (node_type, node_type);
template<unsigned int N>
static void splay_known_limit (node_type);
};
// Provide rootless splay tree routines for nodes of type Node.
// The child nodes are stored in a member variable:
//
// Node m_children[2];
//
// and the parent node is stored in a member variable:
//
// Node m_parent;
template<typename Node>
using default_rootless_splay_tree
= rootless_splay_tree<default_splay_tree_accessors_with_parent<Node>>;
#include "splay-tree-utils.tcc"