blob: bfe3d93a44c082d4e816150220646f1004ac7a86 [file] [log] [blame]
/* libgcc routines for C-SKY.
Copyright (C) 2018-2021 Free Software Foundation, Inc.
Contributed by C-SKY Microsystems and Mentor Graphics.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Use the right prefix for global labels. */
#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b
#define SYM(x) CONCAT1 (__, x)
#ifndef __CSKYBE__
#define xl r0
#define xh r1
#define yl r2
#define yh r3
#else
#define xh r0
#define xl r1
#define yh r2
#define yl r3
#endif
#ifdef __ELF__
#define TYPE(x) .type SYM (x),@function
#define SIZE(x) .size SYM (x), . - SYM (x)
#else
#define TYPE(x)
#define SIZE(x)
#endif
.macro FUNC_START name
.text
.align 2
.globl SYM (\name)
TYPE (\name)
SYM (\name):
.endm
.macro FUNC_END name
SIZE (\name)
.endm
/* Emulate FF1 ("fast find 1") instruction on ck801.
Result goes in rx, clobbering ry. */
#if defined(__CK801__)
.macro FF1_M rx, ry
movi \rx, 32
10:
cmphsi \ry, 1
bf 11f
subi \rx, \rx, 1
lsri \ry, \ry, 1
br 10b
11:
.endm
#else
.macro FF1_M rx, ry
ff1 \rx, \ry
.endm
#endif
/* Likewise emulate lslc instruction ("logical left shift to C") on CK801. */
#if defined(__CK801__)
.macro LSLC_M rx
cmpne \rx, \rx
addc \rx, \rx
.endm
#else
.macro LSLC_M rx
lslc \rx
.endm
#endif
/* Emulate the abs instruction. */
#if defined(__CK802__)
.macro ABS_M rx
btsti \rx, 31
bf 10f
not \rx
addi \rx, 1
10:
.endm
#elif defined(__CK801__)
.macro ABS_M rx
cmplti \rx, 1
bf 10f
not \rx
addi \rx, 1
10:
.endm
#else
.macro ABS_M rx
abs \rx
.endm
#endif
/* Emulate the ld.hs ("load signed halfword and extend") instruction
on ck801 and ck802. */
#if defined(__CK801__)
.macro LDBS_M rx, ry
ld.b \rx, (\ry, 0x0)
sextb \rx, \rx
.endm
#else
.macro LDBS_M rx, ry
ld.bs \rx, (\ry, 0x0)
.endm
#endif
#if defined(__CK801__)
.macro LDHS_M rx, ry
ld.h \rx, (\ry, 0x0)
sexth \rx, \rx
.endm
#else
.macro LDHS_M rx, ry
ld.hs \rx, (\ry, 0x0)
.endm
#endif
/* Signed and unsigned div/mod/rem functions. */
#ifdef L_udivsi3
FUNC_START udiv32
FUNC_START udivsi3
cmpnei a1, 0 // look for 0 divisor
bt 9f
trap 3 // divide by 0
9:
// control iterations, skip across high order 0 bits in dividend
cmpnei a0, 0
bt 8f
jmp lr // 0 dividend quick return
8:
push l0
movi a2, 1 // a2 is quotient (1 for a sentinel)
mov a3, a0
FF1_M l0, a3 // figure distance to skip
lsl a2, l0 // move the sentinel along (with 0's behind)
lsl a0, l0 // and the low 32 bits of numerator
// FIXME: Is this correct?
mov a3, a1 // looking at divisor
FF1_M l0, a3 // I can move 32-l0 more bits to left.
addi l0, 1 // ok, one short of that...
mov a3, a0
lsr a3, l0 // bits that came from low order...
not l0 // l0 == "32-n" == LEFT distance
addi l0, 33 // this is (32-n)
lsl a2,l0 // fixes the high 32 (quotient)
lsl a0,l0
cmpnei a2,0
bf 4f // the sentinel went away...
// run the remaining bits
1:
LSLC_M a0 // 1 bit left shift of a3-a0
addc a3, a3
cmphs a3, a1 // upper 32 of dividend >= divisor?
bf 2f
subu a3, a1 // if yes, subtract divisor
2:
addc a2, a2 // shift by 1 and count subtracts
bf 1b // if sentinel falls out of quotient, stop
4:
mov a0, a2 // return quotient
mov a1, a3 // and piggyback the remainder
pop l0
FUNC_END udiv32
FUNC_END udivsi3
#endif
#ifdef L_umodsi3
FUNC_START urem32
FUNC_START umodsi3
cmpnei a1, 0 // look for 0 divisor
bt 9f
trap 3 // divide by 0
9:
// control iterations, skip across high order 0 bits in dividend
cmpnei a0, 0
bt 8f
jmp lr // 0 dividend quick return
8:
mov a2, a0
FF1_M a3, a2 // figure distance to skip
movi a2, 1 // a2 is quotient (1 for a sentinel)
lsl a2, a3 // move the sentinel along (with 0's behind)
lsl a0, a3 // and the low 32 bits of numerator
movi a3, 0
1:
LSLC_M a0 // 1 bit left shift of a3-a0
addc a3, a3
cmphs a3, a1 // upper 32 of dividend >= divisor?
bf 2f
subu a3, a1 // if yes, subtract divisor
2:
addc a2, a2 // shift by 1 and count subtracts
bf 1b // if sentinel falls out of quotient, stop
4:
mov a0, a3 // and piggyback the remainder
jmp lr
FUNC_END urem32
FUNC_END umodsi3
#endif
#ifdef L_divsi3
FUNC_START div32
FUNC_START divsi3
cmpnei a1, 0 // look for 0 divisor
bt 9f
trap 3 // divide by 0
9:
// control iterations, skip across high order 0 bits in dividend
cmpnei a0, 0
bt 8f
jmp lr // 0 dividend quick return
8:
push l0, l1
mov l1, a0
xor l1, a1 // calc sign of quotient
ABS_M a0
ABS_M a1
movi a2, 1 // a2 is quotient (1 for a sentinel)
mov a3, a0
FF1_M l0, a3 // figure distance to skip
lsl a2, l0 // move the sentinel along (with 0's behind)
lsl a0, l0 // and the low 32 bits of numerator
// FIXME: is this correct?
mov a3, a1 // looking at divisor
FF1_M l0, a3 // I can move 32-l0 more bits to left.
addi l0, 1 // ok, one short of that...
mov a3, a0
lsr a3, l0 // bits that came from low order...
not l0 // l0 == "32-n" == LEFT distance
addi l0, 33 // this is (32-n)
lsl a2,l0 // fixes the high 32 (quotient)
lsl a0,l0
cmpnei a2,0
bf 4f // the sentinel went away...
// run the remaining bits
1:
LSLC_M a0 // 1 bit left shift of a3-a0
addc a3, a3
cmphs a3, a1 // upper 32 of dividend >= divisor?
bf 2f
subu a3, a1 // if yes, subtract divisor
2:
addc a2, a2 // shift by 1 and count subtracts
bf 1b // if sentinel falls out of quotient, stop
4:
mov a0, a2 // return quotient
mov a1, a3 // and piggyback the remainder
LSLC_M l1 // after adjusting for sign
bf 3f
not a0
addi a0, 1
not a1
addi a1, 1
3:
pop l0, l1
FUNC_END div32
FUNC_END divsi3
#endif
#ifdef L_modsi3
FUNC_START rem32
FUNC_START modsi3
push l0
cmpnei a1, 0 // look for 0 divisor
bt 9f
trap 3 // divide by 0
9:
// control iterations, skip across high order 0 bits in dividend
cmpnei a0, 0
bt 8f
pop l0 // 0 dividend quick return
8:
mov l0, a0
ABS_M a0
ABS_M a1
mov a2, a0
FF1_M a3, a2 // figure distance to skip
movi a2, 1 // a2 is quotient (1 for a sentinel)
lsl a2, a3 // move the sentinel along (with 0's behind)
lsl a0, a3 // and the low 32 bits of numerator
movi a3, 0
// run the remaining bits
1:
LSLC_M a0 // 1 bit left shift of a3-a0
addc a3, a3
cmphs a3, a1 // upper 32 of dividend >= divisor?
bf 2f
subu a3, a1 // if yes, subtract divisor
2:
addc a2, a2 // shift by 1 and count subtracts
bf 1b // if sentinel falls out of quotient, stop
4:
mov a0, a3 // and piggyback the remainder
LSLC_M l0 // after adjusting for sign
bf 3f
not a0
addi a0, 1
3:
pop l0
FUNC_END rem32
FUNC_END modsi3
#endif
/* Unordered comparisons for single and double float. */
#ifdef L_unordsf2
FUNC_START unordsf2
#if defined(__CK801__)
subi sp, 4
st.w r4, (sp, 0x0)
lsli r2, r0, 1
lsli r3, r1, 1
asri r4, r2, 24
not r4
cmpnei r4, 0
bt 1f
lsli r4, r0, 9
cmpnei r4, 0
bt 3f
1:
asri r4, r3, 24
not r4
cmpnei r4, 0
bt 2f
lsli r4, r1, 9
cmpnei r4, 0
bt 3f
2:
ld.w r4, (sp, 0x0)
addi sp, 4
movi r0, 0
rts
3:
ld.w r4, (sp, 0x0)
addi sp, 4
movi r0, 1
rts
#elif defined(__CK802__)
lsli r2, r0, 1
lsli r3, r1, 1
asri r2, r2, 24
not r13, r2
cmpnei r13, 0
bt 1f
lsli r13, r0, 9
cmpnei r13, 0
bt 3f
1:
asri r3, r3, 24
not r13, r3
cmpnei r13, 0
bt 2f
lsli r13, r1, 9
cmpnei r13, 0
bt 3f
2:
movi r0, 0
rts
3:
movi r0, 1
rts
#else
lsli r2, r0, 1
lsli r3, r1, 1
asri r2, r2, 24
not r13, r2
bnez r13, 1f
lsli r13, r0, 9
bnez r13, 3f
1:
asri r3, r3, 24
not r13, r3
bnez r13, 2f
lsli r13, r1, 9
bnez r13, 3f
2:
movi r0, 0
rts
3:
movi r0, 1
rts
#endif
FUNC_END unordsf2
#endif
#ifdef L_unorddf2
FUNC_START unorddf2
#if defined(__CK801__)
subi sp, 8
st.w r4, (sp, 0x0)
st.w r5, (sp, 0x4)
lsli r4, xh, 1
asri r4, r4, 21
not r4
cmpnei r4, 0
bt 1f
mov r4, xl
lsli r5, xh, 12
or r4, r5
cmpnei r4, 0
bt 3f
1:
lsli r4, yh, 1
asri r4, r4, 21
not r4
cmpnei r4, 0
bt 2f
mov r4,yl
lsli r5, yh, 12
or r4, r5
cmpnei r4, 0
bt 3f
2:
ld.w r4, (sp, 0x0)
ld.w r5, (sp, 0x4)
addi sp, 8
movi r0, 0
rts
3:
ld.w r4, (sp, 0x0)
ld.w r5, (sp, 0x4)
addi sp, 8
movi r0, 1
rts
#elif defined(__CK802__)
lsli r13, xh, 1
asri r13, r13, 21
not r13
cmpnei r13, 0
bt 1f
lsli xh, xh, 12
or r13, xl, xh
cmpnei r13, 0
bt 3f
1:
lsli r13, yh, 1
asri r13, r13, 21
not r13
cmpnei r13, 0
bt 2f
lsli yh, yh, 12
or r13, yl, yh
cmpnei r13, 0
bt 3f
2:
movi r0, 0
rts
3:
movi r0, 1
rts
#else
lsli r13, xh, 1
asri r13, r13, 21
not r13
bnez r13, 1f
lsli xh, xh, 12
or r13, xl, xh
bnez r13, 3f
1:
lsli r13, yh, 1
asri r13, r13, 21
not r13
bnez r13, 2f
lsli yh, yh, 12
or r13, yl, yh
bnez r13, 3f
2:
movi r0, 0
rts
3:
movi r0, 1
rts
#endif
FUNC_END unorddf2
#endif
/* When optimizing for size on ck801 and ck802, GCC emits calls to the
following helper functions when expanding casesi, instead of emitting
the table lookup and jump inline. Note that in these functions the
jump is handled by tweaking the value of lr before rts. */
#ifdef L_csky_case_sqi
FUNC_START _gnu_csky_case_sqi
subi sp, 4
st.w a1, (sp, 0x0)
mov a1, lr
add a1, a1, a0
LDBS_M a1, a1
lsli a1, a1, 1
add lr, lr, a1
ld.w a1, (sp, 0x0)
addi sp, 4
rts
FUNC_END _gnu_csky_case_sqi
#endif
#ifdef L_csky_case_uqi
FUNC_START _gnu_csky_case_uqi
subi sp, 4
st.w a1, (sp, 0x0)
mov a1, lr
add a1, a1, a0
ld.b a1, (a1, 0x0)
lsli a1, a1, 1
add lr, lr, a1
ld.w a1, (sp, 0x0)
addi sp, 4
rts
FUNC_END _gnu_csky_case_uqi
#endif
#ifdef L_csky_case_shi
FUNC_START _gnu_csky_case_shi
subi sp, 8
st.w a0, (sp, 0x4)
st.w a1, (sp, 0x0)
mov a1, lr
lsli a0, a0, 1
add a1, a1, a0
LDHS_M a1, a1
lsli a1, a1, 1
add lr, lr, a1
ld.w a0, (sp, 0x4)
ld.w a1, (sp, 0x0)
addi sp, 8
rts
FUNC_END _gnu_csky_case_shi
#endif
#ifdef L_csky_case_uhi
FUNC_START _gnu_csky_case_uhi
subi sp, 8
st.w a0, (sp, 0x4)
st.w a1, (sp, 0x0)
mov a1, lr
lsli a0, a0, 1
add a1, a1, a0
ld.h a1, (a1, 0x0)
lsli a1, a1, 1
add lr, lr, a1
ld.w a0, (sp, 0x4)
ld.w a1, (sp, 0x0)
addi sp, 8
rts
FUNC_END _gnu_csky_case_uhi
#endif
#ifdef L_csky_case_si
FUNC_START _gnu_csky_case_si
subi sp, 8
st.w a0, (sp, 0x4)
st.w a1, (sp, 0x0)
mov a1, lr
addi a1, a1, 2 // Align to word.
bclri a1, a1, 1
mov lr, a1
lsli a0, a0, 2
add a1, a1, a0
ld.w a0, (a1, 0x0)
add lr, lr, a0
ld.w a0, (sp, 0x4)
ld.w a1, (sp, 0x0)
addi sp, 8
rts
FUNC_END _gnu_csky_case_si
#endif
/* GCC expects that {__eq,__ne,__gt,__ge,__le,__lt}{df2,sf2}
will behave as __cmpdf2. So, we stub the implementations to
jump on to __cmpdf2 and __cmpsf2.
All of these short-circuit the return path so that __cmp{sd}f2
will go directly back to the caller. */
.macro COMPARE_DF_JUMP name
.import SYM (cmpdf2)
FUNC_START \name
jmpi SYM (cmpdf2)
FUNC_END \name
.endm
#ifdef L_eqdf2
COMPARE_DF_JUMP eqdf2
#endif /* L_eqdf2 */
#ifdef L_nedf2
COMPARE_DF_JUMP nedf2
#endif /* L_nedf2 */
#ifdef L_gtdf2
COMPARE_DF_JUMP gtdf2
#endif /* L_gtdf2 */
#ifdef L_gedf2
COMPARE_DF_JUMP gedf2
#endif /* L_gedf2 */
#ifdef L_ltdf2
COMPARE_DF_JUMP ltdf2
#endif /* L_ltdf2 */
#ifdef L_ledf2
COMPARE_DF_JUMP ledf2
#endif /* L_ledf2 */
/* Single-precision floating point stubs. */
.macro COMPARE_SF_JUMP name
.import SYM (cmpsf2)
FUNC_START \name
jmpi SYM (cmpsf2)
FUNC_END \name
.endm
#ifdef L_eqsf2
COMPARE_SF_JUMP eqsf2
#endif /* L_eqsf2 */
#ifdef L_nesf2
COMPARE_SF_JUMP nesf2
#endif /* L_nesf2 */
#ifdef L_gtsf2
COMPARE_SF_JUMP gtsf2
#endif /* L_gtsf2 */
#ifdef L_gesf2
COMPARE_SF_JUMP __gesf2
#endif /* L_gesf2 */
#ifdef L_ltsf2
COMPARE_SF_JUMP __ltsf2
#endif /* L_ltsf2 */
#ifdef L_lesf2
COMPARE_SF_JUMP lesf2
#endif /* L_lesf2 */