blob: 042facee14eae64c95f77e3bc2f25dda7a61d454 [file] [log] [blame]
; SF format is:
;
; [sign] 1.[23bits] E[8bits(n-127)]
;
; SEEEEEEE Emmmmmmm mmmmmmmm mmmmmmmm
;
; [A+0] mmmmmmmm
; [A+1] mmmmmmmm
; [A+2] Emmmmmmm
; [A+3] SEEEEEEE
;
; Special values (xxx != 0):
;
; s1111111 10000000 00000000 00000000 infinity
; s1111111 1xxxxxxx xxxxxxxx xxxxxxxx NaN
; s0000000 00000000 00000000 00000000 zero
; s0000000 0xxxxxxx xxxxxxxx xxxxxxxx denormals
;
; Note that CMPtype is "signed char" for rl78
;
#include "vregs.h"
#define Z PSW.6
START_FUNC ___negsf2
;; Negate the floating point value.
;; Input at [SP+4]..[SP+7].
;; Output to R8..R11.
movw ax, [SP+4]
movw r8, ax
movw ax, [SP+6]
xor a, #0x80
movw r10, ax
ret
END_FUNC ___negsf2
;; ------------------internal functions used by later code --------------
START_FUNC __int_isnan
;; [HL] points to value, returns Z if it's a NaN
mov a, [hl+2]
and a, #0x80
mov x, a
mov a, [hl+3]
and a, #0x7f
cmpw ax, #0x7f80
skz
ret ; return NZ if not NaN
mov a, [hl+2]
and a, #0x7f
or a, [hl+1]
or a, [hl]
bnz $1f
clr1 Z ; Z, normal
ret
1:
set1 Z ; nan
ret
END_FUNC __int_isnan
START_FUNC __int_eithernan
;; call from toplevel functions, returns Z if either number is a NaN,
;; or NZ if both are OK.
movw ax, sp
addw ax, #8
movw hl, ax
call $!__int_isnan
bz $1f
movw ax, sp
addw ax, #12
movw hl, ax
call $!__int_isnan
1:
ret
END_FUNC __int_eithernan
START_FUNC __int_iszero
;; [HL] points to value, returns Z if it's zero
mov a, [hl+3]
and a, #0x7f
or a, [hl+2]
or a, [hl+1]
or a, [hl]
ret
END_FUNC __int_iszero
START_FUNC __int_cmpsf
;; This is always called from some other function here,
;; so the stack offsets are adjusted accordingly.
;; X [SP+8] <=> Y [SP+12] : <a> <=> 0
movw ax, sp
addw ax, #8
movw hl, ax
call $!__int_iszero
bnz $1f
movw ax, sp
addw ax, #12
movw hl, ax
call $!__int_iszero
bnz $2f
;; At this point, both args are zero.
mov a, #0
ret
2:
movw ax, sp
addw ax, #8
movw hl, ax
1:
;; At least one arg is non-zero so we can just compare magnitudes.
;; Args are [HL] and [HL+4].
mov a, [HL+3]
xor a, [HL+7]
mov1 cy, a.7
bnc $1f
mov a, [HL+3]
sar a, 7
or a, #1
ret
1: ;; Signs the same, compare magnitude. It's safe to lump
;; the sign bits, exponent, and mantissa together here, since they're
;; stored in the right sequence.
movw ax, [HL+2]
cmpw ax, [HL+6]
bc $ybig_cmpsf ; branch if X < Y
bnz $xbig_cmpsf ; branch if X > Y
movw ax, [HL]
cmpw ax, [HL+4]
bc $ybig_cmpsf ; branch if X < Y
bnz $xbig_cmpsf ; branch if X > Y
mov a, #0
ret
xbig_cmpsf: ; |X| > |Y| so return A = 1 if pos, 0xff if neg
mov a, [HL+3]
sar a, 7
or a, #1
ret
ybig_cmpsf: ; |X| < |Y| so return A = 0xff if pos, 1 if neg
mov a, [HL+3]
xor a, #0x80
sar a, 7
or a, #1
ret
END_FUNC __int_cmpsf
;; ----------------------------------------------------------
START_FUNC ___cmpsf2
;; This functions calculates "A <=> B". That is, if A is less than B
;; they return -1, if A is greater than B, they return 1, and if A
;; and B are equal they return 0. If either argument is NaN the
;; behaviour is undefined.
;; Input at [SP+4]..[SP+7].
;; Output to R8..R9.
call $!__int_eithernan
bnz $1f
movw r8, #1
ret
1:
call $!__int_cmpsf
mov r8, a
sar a, 7
mov r9, a
ret
END_FUNC ___cmpsf2
;; ----------------------------------------------------------
;; These functions are all basically the same as ___cmpsf2
;; except that they define how they handle NaNs.
START_FUNC ___eqsf2
;; Returns zero iff neither argument is NaN
;; and both arguments are equal.
START_ANOTHER_FUNC ___nesf2
;; Returns non-zero iff either argument is NaN or the arguments are
;; unequal. Effectively __nesf2 is the same as __eqsf2
START_ANOTHER_FUNC ___lesf2
;; Returns a value less than or equal to zero if neither
;; argument is NaN, and the first is less than or equal to the second.
START_ANOTHER_FUNC ___ltsf2
;; Returns a value less than zero if neither argument is
;; NaN, and the first is strictly less than the second.
;; Input at [SP+4]..[SP+7].
;; Output to R8.
mov r8, #1
;;; Fall through
START_ANOTHER_FUNC __int_cmp_common
call $!__int_eithernan
sknz
;; return value (pre-filled-in below) for "either is nan"
ret
call $!__int_cmpsf
mov r8, a
ret
END_ANOTHER_FUNC __int_cmp_common
END_ANOTHER_FUNC ___ltsf2
END_ANOTHER_FUNC ___lesf2
END_ANOTHER_FUNC ___nesf2
END_FUNC ___eqsf2
START_FUNC ___gesf2
;; Returns a value greater than or equal to zero if neither argument
;; is a NaN and the first is greater than or equal to the second.
START_ANOTHER_FUNC ___gtsf2
;; Returns a value greater than zero if neither argument
;; is NaN, and the first is strictly greater than the second.
mov r8, #0xffff
br $__int_cmp_common
END_ANOTHER_FUNC ___gtsf2
END_FUNC ___gesf2
;; ----------------------------------------------------------
START_FUNC ___unordsf2
;; Returns a nonzero value if either argument is NaN, otherwise 0.
call $!__int_eithernan
movw r8, #0
sknz ; this is from the call, not the movw
movw r8, #1
ret
END_FUNC ___unordsf2
;; ----------------------------------------------------------
START_FUNC ___fixsfsi
;; Converts its floating point argument into a signed long,
;; rounding toward zero.
;; The behaviour with NaNs and Infinities is not well defined.
;; We choose to return 0 for NaNs, -INTMAX for -inf and INTMAX for +inf.
;; This matches the behaviour of the C function in libgcc2.c.
;; Input at [SP+4]..[SP+7], result is in (lsb) R8..R11 (msb).
;; Special case handling for infinities as __fixunssfsi
;; will not give us the values that we want.
movw ax, sp
addw ax, #4
movw hl, ax
call !!__int_isinf
bnz $1f
mov a, [SP+7]
bt a.7, $2f
;; +inf
movw r8, #-1
movw r10, #0x7fff
ret
;; -inf
2: mov r8, #0
mov r10, #0x8000
ret
;; Load the value into r10:r11:X:A
1: movw ax, [SP+4]
movw r10, ax
movw ax, [SP+6]
;; If the value is positive we can just use __fixunssfsi
bf a.7, $__int_fixunssfsi
;; Otherwise we negate the value, call __fixunssfsi and
;; then negate its result.
clr1 a.7
call $!__int_fixunssfsi
movw ax, #0
subw ax, r8
movw r8, ax
movw ax, #0
sknc
decw ax
subw ax, r10
movw r10, ax
;; Check for a positive result (which should only happen when
;; __fixunssfsi returns UINTMAX or 0). In such cases just return 0.
mov a, r11
bt a.7, $1f
movw r10,#0x0
movw r8, #0x0
1: ret
END_FUNC ___fixsfsi
START_FUNC ___fixunssfsi
;; Converts its floating point argument into an unsigned long
;; rounding towards zero. Negative arguments all become zero.
;; We choose to return 0 for NaNs and -inf, but UINTMAX for +inf.
;; This matches the behaviour of the C function in libgcc2.c.
;; Input at [SP+4]..[SP+7], result is in (lsb) R8..R11 (msb)
;; Get the input value.
movw ax, [SP+4]
movw r10, ax
movw ax, [SP+6]
;; Fall through into the internal function.
.global __int_fixunssfsi
__int_fixunssfsi:
;; Input in (lsb) r10.r11.x.a (msb).
;; Test for a negative input. We shift the other bits at the
;; same time so that A ends up holding the whole exponent:
;;
;; before:
;; SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
;; A X R11 R10
;;
;; after:
;; EEEEEEEE MMMMMMM0 MMMMMMMM MMMMMMMM
;; A X R11 R10
shlw ax, 1
bnc $1f
;; Return zero.
2: movw r8, #0
movw r10, #0
ret
;; An exponent of -1 is either a NaN or infinity.
1: cmp a, #-1
bnz $3f
;; For NaN we return 0. For infinity we return UINTMAX.
mov a, x
or a, r10
or a, r11
cmp0 a
bnz $2b
6: movw r8, #-1 ; -1 => UINT_MAX
movw r10, #-1
ret
;; If the exponent is negative the value is < 1 and so the
;; converted value is 0. Note we must allow for the bias
;; applied to the exponent. Thus a value of 127 in the
;; EEEEEEEE bits actually represents an exponent of 0, whilst
;; a value less than 127 actually represents a negative exponent.
;; Also if the EEEEEEEE bits are all zero then this represents
;; either a denormal value or 0.0. Either way for these values
;; we return 0.
3: sub a, #127
bc $2b
;; A now holds the bias adjusted exponent, which is known to be >= 0.
;; If the exponent is > 31 then the conversion will overflow.
cmp a, #32
bnc $6b
4:
;; Save the exponent in H. We increment it by one because we want
;; to be sure that the loop below will always execute at least once.
inc a
mov h, a
;; Get the top 24 bits of the mantissa into A:X:R10
;; Include the implicit 1-bit that is inherent in the IEEE fp format.
;;
;; before:
;; EEEEEEEE MMMMMMM0 MMMMMMMM MMMMMMMM
;; H X R11 R10
;; after:
;; EEEEEEEE 1MMMMMMM MMMMMMMM MMMMMMMM
;; H A X R10
mov a, r11
xch a, x
shr a, 1
set1 a.7
;; Clear B:C:R12:R13
movw bc, #0
movw r12, #0
;; Shift bits from the mantissa (A:X:R10) into (B:C:R12:R13),
;; decrementing the exponent as we go.
;; before:
;; MMMMMMMM MMMMMMMM MMMMMMMM xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
;; A X R10 B C R12 R13
;; first iter:
;; MMMMMMMM MMMMMMMM MMMMMMM0 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxM
;; A X R10 B C R12 R13
;; second iter:
;; MMMMMMMM MMMMMMMM MMMMMM00 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxMM
;; A X R10 B C R12 R13
;; etc.
5:
xch a, r10
shl a, 1
xch a, r10
rolwc ax, 1
xch a, r13
rolc a, 1
xch a, r13
xch a, r12
rolc a, 1
xch a, r12
rolwc bc, 1
dec h
bnz $5b
;; Result is currently in (lsb) r13.r12. c. b. (msb),
;; Move it into (lsb) r8. r9. r10. r11 (msb).
mov a, r13
mov r8, a
mov a, r12
mov r9, a
mov a, c
mov r10, a
mov a, b
mov r11, a
ret
END_FUNC ___fixunssfsi
;; ------------------------------------------------------------------------
START_FUNC ___floatsisf
;; Converts its signed long argument into a floating point.
;; Argument in [SP+4]..[SP+7]. Result in R8..R11.
;; Get the argument.
movw ax, [SP+4]
movw bc, ax
movw ax, [SP+6]
;; Test the sign bit. If the value is positive then drop into
;; the unsigned conversion routine.
bf a.7, $2f
;; If negative convert to positive ...
movw hl, ax
movw ax, #0
subw ax, bc
movw bc, ax
movw ax, #0
sknc
decw ax
subw ax, hl
;; If the result is negative then the input was 0x80000000 and
;; we want to return -0.0, which will not happen if we call
;; __int_floatunsisf.
bt a.7, $1f
;; Call the unsigned conversion routine.
call $!__int_floatunsisf
;; Negate the result.
set1 r11.7
;; Done.
ret
1: ;; Return -0.0 aka 0xcf000000
clrb a
mov r8, a
mov r9, a
mov r10, a
mov a, #0xcf
mov r11, a
ret
START_ANOTHER_FUNC ___floatunsisf
;; Converts its unsigned long argument into a floating point.
;; Argument in [SP+4]..[SP+7]. Result in R8..R11.
;; Get the argument.
movw ax, [SP+4]
movw bc, ax
movw ax, [SP+6]
2: ;; Internal entry point from __floatsisf
;; Input in AX (high) and BC (low)
.global __int_floatunsisf
__int_floatunsisf:
;; Special case handling for zero.
cmpw ax, #0
bnz $1f
movw ax, bc
cmpw ax, #0
movw ax, #0
bnz $1f
;; Return 0.0
movw r8, ax
movw r10, ax
ret
1: ;; Pre-load the loop count/exponent.
;; Exponents are biased by 0x80 and we start the loop knowing that
;; we are going to skip the highest set bit. Hence the highest value
;; that we can get for the exponent is 0x1e (bits from input) + 0x80 = 0x9e.
mov h, #0x9e
;; Move bits off the top of AX:BC until we hit a 1 bit.
;; Decrement the count of remaining bits as we go.
2: shlw bc, 1
rolwc ax, 1
bc $3f
dec h
br $2b
;; Ignore the first one bit - it is implicit in the IEEE format.
;; The count of remaining bits is the exponent.
;; Assemble the final floating point value. We have...
;; before:
;; EEEEEEEE MMMMMMMM MMMMMMMM MMMMMMMM xxxxxxxx
;; H A X B C
;; after:
;; 0EEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
;; R11 R10 R9 R8
3: shrw ax, 1
mov r10, a
mov a, x
mov r9, a
mov a, b
rorc a, 1
;; If the bottom bit of B was set before we shifted it out then we
;; need to round the result up. Unless none of the bits in C are set.
;; In this case we are exactly half-way between two values, and we
;; round towards an even value. We round up by increasing the
;; mantissa by 1. If this results in a zero mantissa we have to
;; increment the exponent. We round down by ignoring the dropped bits.
bnc $4f
cmp0 c
sknz
bf a.0, $4f
5: ;; Round the mantissa up by 1.
add a, #1
addc r9, #0
addc r10, #0
bf r10.7, $4f
inc h
clr1 r10.7
4: mov r8, a
mov a, h
shr a, 1
mov r11, a
sknc
set1 r10.7
ret
END_ANOTHER_FUNC ___floatunsisf
END_FUNC ___floatsisf