blob: b5b402858a6778772495c6da9c37867a97d1b81e [file] [log] [blame]
// -*- C++ -*-
// Testing allocator for the C++ library testsuite.
//
// Copyright (C) 2002-2021 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
//
// This file provides an test instrumentation allocator that can be
// used to verify allocation functionality of standard library
// containers. 2002.11.25 smw
#ifndef _GLIBCXX_TESTSUITE_ALLOCATOR_H
#define _GLIBCXX_TESTSUITE_ALLOCATOR_H
#include <bits/move.h>
#include <ext/pointer.h>
#include <ext/alloc_traits.h>
#include <testsuite_hooks.h>
#if __cplusplus >= 201703L
# include <memory_resource>
# include <new>
#endif
#if __cplusplus >= 201103L
# include <unordered_map>
namespace unord = std;
#else
# include <tr1/unordered_map>
namespace unord = std::tr1;
#endif
namespace __gnu_test
{
// A common API for calling max_size() on an allocator in any -std mode.
template<typename A>
typename A::size_type
max_size(const A& a)
{
#if __cplusplus >= 201103L
return std::allocator_traits<A>::max_size(a);
#else
return a.max_size();
#endif
}
class tracker_allocator_counter
{
public:
typedef std::size_t size_type;
static void
allocate(size_type blocksize)
{ allocationCount_ += blocksize; }
static void
construct() { ++constructCount_; }
static void
destroy() { ++destructCount_; }
static void
deallocate(size_type blocksize)
{ deallocationCount_ += blocksize; }
static size_type
get_allocation_count() { return allocationCount_; }
static size_type
get_deallocation_count() { return deallocationCount_; }
static int
get_construct_count() { return constructCount_; }
static int
get_destruct_count() { return destructCount_; }
static void
reset()
{
allocationCount_ = 0;
deallocationCount_ = 0;
constructCount_ = 0;
destructCount_ = 0;
}
private:
static size_type allocationCount_;
static size_type deallocationCount_;
static int constructCount_;
static int destructCount_;
};
// Helper to detect inconsistency between type used to instantiate an
// allocator and the underlying allocator value_type.
template<typename T, typename Alloc,
typename = typename Alloc::value_type>
struct check_consistent_alloc_value_type;
template<typename T, typename Alloc>
struct check_consistent_alloc_value_type<T, Alloc, T>
{ typedef T value_type; };
// An allocator facade that intercepts allocate/deallocate/construct/destroy
// calls and track them through the tracker_allocator_counter class. This
// class is templated on the target object type, but tracker isn't.
template<typename T, typename Alloc = std::allocator<T> >
class tracker_allocator : public Alloc
{
private:
typedef tracker_allocator_counter counter_type;
typedef __gnu_cxx::__alloc_traits<Alloc> AllocTraits;
public:
typedef typename
check_consistent_alloc_value_type<T, Alloc>::value_type value_type;
typedef typename AllocTraits::pointer pointer;
typedef typename AllocTraits::size_type size_type;
template<class U>
struct rebind
{
typedef tracker_allocator<U,
typename AllocTraits::template rebind<U>::other> other;
};
#if __cplusplus >= 201103L
tracker_allocator() = default;
tracker_allocator(const tracker_allocator&) = default;
tracker_allocator(tracker_allocator&&) = default;
tracker_allocator& operator=(const tracker_allocator&) = default;
tracker_allocator& operator=(tracker_allocator&&) = default;
// Perfect forwarding constructor.
template<typename... _Args>
tracker_allocator(_Args&&... __args)
: Alloc(std::forward<_Args>(__args)...)
{ }
#else
tracker_allocator()
{ }
tracker_allocator(const tracker_allocator&)
{ }
~tracker_allocator()
{ }
#endif
template<class U>
tracker_allocator(const tracker_allocator<U,
typename AllocTraits::template rebind<U>::other>& alloc)
_GLIBCXX_USE_NOEXCEPT
: Alloc(alloc)
{ }
pointer
allocate(size_type n, const void* = 0)
{
pointer p = AllocTraits::allocate(*this, n);
counter_type::allocate(n * sizeof(T));
return p;
}
#if __cplusplus >= 201103L
template<typename U, typename... Args>
void
construct(U* p, Args&&... args)
{
AllocTraits::construct(*this, p, std::forward<Args>(args)...);
counter_type::construct();
}
template<typename U>
void
destroy(U* p)
{
AllocTraits::destroy(*this, p);
counter_type::destroy();
}
#else
void
construct(pointer p, const T& value)
{
AllocTraits::construct(*this, p, value);
counter_type::construct();
}
void
destroy(pointer p)
{
AllocTraits::destroy(*this, p);
counter_type::destroy();
}
#endif
void
deallocate(pointer p, size_type num)
{
counter_type::deallocate(num * sizeof(T));
AllocTraits::deallocate(*this, p, num);
}
// Implement swap for underlying allocators that might need it.
friend inline void
swap(tracker_allocator& a, tracker_allocator& b)
{
using std::swap;
Alloc& aa = a;
Alloc& ab = b;
swap(aa, ab);
}
};
template<class T1, class Alloc1, class T2, class Alloc2>
bool
operator==(const tracker_allocator<T1, Alloc1>& lhs,
const tracker_allocator<T2, Alloc2>& rhs) throw()
{
const Alloc1& alloc1 = lhs;
const Alloc2& alloc2 = rhs;
return alloc1 == alloc2;
}
template<class T1, class Alloc1, class T2, class Alloc2>
bool
operator!=(const tracker_allocator<T1, Alloc1>& lhs,
const tracker_allocator<T2, Alloc2>& rhs) throw()
{ return !(lhs == rhs); }
bool
check_construct_destroy(const char* tag, int expected_c, int expected_d);
template<typename Alloc>
bool
check_deallocate_null()
{
// Let's not core here...
Alloc a;
a.deallocate(0, 1);
a.deallocate(0, 10);
return true;
}
#if __cpp_exceptions
template<typename Alloc>
bool
check_allocate_max_size()
{
Alloc a;
try
{
(void) a.allocate(__gnu_test::max_size(a) + 1);
}
catch(std::bad_alloc&)
{
return true;
}
catch(...)
{
throw;
}
throw;
}
#endif
// A simple allocator which can be constructed endowed of a given
// "personality" (an integer), queried in operator== to simulate the
// behavior of realworld "unequal" allocators (i.e., not exploiting
// the provision in 20.1.5/4, first bullet). A global unordered_map,
// filled at allocation time with (pointer, personality) pairs, is
// then consulted to enforce the requirements in Table 32 about
// deallocation vs allocator equality. Note that this allocator is
// swappable, not copy assignable, consistently with Option 3 of DR 431
// (see N1599).
struct uneq_allocator_base
{
typedef unord::unordered_map<void*, int> map_type;
// Avoid static initialization troubles and/or bad interactions
// with tests linking testsuite_allocator.o and playing globally
// with operator new/delete.
static map_type&
get_map()
{
static map_type alloc_map;
return alloc_map;
}
};
template<typename Tp, typename Alloc = std::allocator<Tp> >
class uneq_allocator
: private uneq_allocator_base,
public Alloc
{
typedef __gnu_cxx::__alloc_traits<Alloc> AllocTraits;
Alloc& base() { return *this; }
const Alloc& base() const { return *this; }
void swap_base(Alloc& b) { using std::swap; swap(b, this->base()); }
public:
typedef typename check_consistent_alloc_value_type<Tp, Alloc>::value_type
value_type;
typedef typename AllocTraits::size_type size_type;
typedef typename AllocTraits::pointer pointer;
#if __cplusplus >= 201103L
typedef std::true_type propagate_on_container_swap;
typedef std::false_type is_always_equal;
#endif
template<typename Tp1>
struct rebind
{
typedef uneq_allocator<Tp1,
typename AllocTraits::template rebind<Tp1>::other> other;
};
uneq_allocator() _GLIBCXX_USE_NOEXCEPT
: personality(0) { }
uneq_allocator(int person) _GLIBCXX_USE_NOEXCEPT
: personality(person) { }
#if __cplusplus >= 201103L
uneq_allocator(const uneq_allocator&) = default;
uneq_allocator(uneq_allocator&&) = default;
#endif
template<typename Tp1>
uneq_allocator(const uneq_allocator<Tp1,
typename AllocTraits::template rebind<Tp1>::other>& b)
_GLIBCXX_USE_NOEXCEPT
: personality(b.get_personality()) { }
~uneq_allocator() _GLIBCXX_USE_NOEXCEPT
{ }
int get_personality() const { return personality; }
pointer
allocate(size_type n, const void* = 0)
{
pointer p = AllocTraits::allocate(*this, n);
try
{
get_map().insert(map_type::value_type(reinterpret_cast<void*>(p),
personality));
}
catch(...)
{
AllocTraits::deallocate(*this, p, n);
__throw_exception_again;
}
return p;
}
void
deallocate(pointer p, size_type n)
{
VERIFY( p );
map_type::iterator it = get_map().find(reinterpret_cast<void*>(p));
VERIFY( it != get_map().end() );
// Enforce requirements in Table 32 about deallocation vs
// allocator equality.
VERIFY( it->second == personality );
get_map().erase(it);
AllocTraits::deallocate(*this, p, n);
}
#if __cplusplus >= 201103L
// Not copy assignable...
uneq_allocator&
operator=(const uneq_allocator&) = delete;
// ... but still moveable if base allocator is.
uneq_allocator&
operator=(uneq_allocator&&) = default;
#else
private:
// Not assignable...
uneq_allocator&
operator=(const uneq_allocator&);
#endif
private:
// ... yet swappable!
friend inline void
swap(uneq_allocator& a, uneq_allocator& b)
{
std::swap(a.personality, b.personality);
a.swap_base(b);
}
template<typename Tp1>
friend inline bool
operator==(const uneq_allocator& a,
const uneq_allocator<Tp1,
typename AllocTraits::template rebind<Tp1>::other>& b)
{ return a.personality == b.personality; }
template<typename Tp1>
friend inline bool
operator!=(const uneq_allocator& a,
const uneq_allocator<Tp1,
typename AllocTraits::template rebind<Tp1>::other>& b)
{ return !(a == b); }
int personality;
};
#if __cplusplus >= 201103L
// An uneq_allocator which can be used to test allocator propagation.
template<typename Tp, bool Propagate, typename Alloc = std::allocator<Tp>>
class propagating_allocator : public uneq_allocator<Tp, Alloc>
{
typedef __gnu_cxx::__alloc_traits<Alloc> AllocTraits;
typedef uneq_allocator<Tp, Alloc> base_alloc;
base_alloc& base() { return *this; }
const base_alloc& base() const { return *this; }
void swap_base(base_alloc& b) { swap(b, this->base()); }
typedef std::integral_constant<bool, Propagate> trait_type;
public:
// default allocator_traits::rebind_alloc would select
// uneq_allocator::rebind so we must define rebind here
template<typename Up>
struct rebind
{
typedef propagating_allocator<Up, Propagate,
typename AllocTraits::template rebind<Up>::other> other;
};
propagating_allocator(int i) noexcept
: base_alloc(i)
{ }
template<typename Up>
propagating_allocator(const propagating_allocator<Up, Propagate,
typename AllocTraits::template rebind<Up>::other>& a)
noexcept
: base_alloc(a)
{ }
propagating_allocator() noexcept = default;
propagating_allocator(const propagating_allocator&) noexcept = default;
propagating_allocator&
operator=(const propagating_allocator& a) noexcept
{
static_assert(Propagate, "assigning propagating_allocator<T, true>");
propagating_allocator(a).swap_base(*this);
return *this;
}
template<bool P2>
propagating_allocator&
operator=(const propagating_allocator<Tp, P2, Alloc>& a) noexcept
{
static_assert(P2, "assigning propagating_allocator<T, true>");
propagating_allocator(a).swap_base(*this);
return *this;
}
// postcondition: LWG2593 a.get_personality() un-changed.
propagating_allocator(propagating_allocator&& a) noexcept
: base_alloc(std::move(a.base()))
{ }
// postcondition: LWG2593 a.get_personality() un-changed
propagating_allocator&
operator=(propagating_allocator&& a) noexcept
{
propagating_allocator(std::move(a)).swap_base(*this);
return *this;
}
typedef trait_type propagate_on_container_copy_assignment;
typedef trait_type propagate_on_container_move_assignment;
typedef trait_type propagate_on_container_swap;
propagating_allocator select_on_container_copy_construction() const
{ return Propagate ? *this : propagating_allocator(); }
};
// Class template supporting the minimal interface that satisfies the
// Allocator requirements, from example in [allocator.requirements]
template <class Tp>
struct SimpleAllocator
{
typedef Tp value_type;
constexpr SimpleAllocator() noexcept { }
template <class T>
SimpleAllocator(const SimpleAllocator<T>&) { }
Tp *allocate(std::size_t n)
{ return std::allocator<Tp>().allocate(n); }
void deallocate(Tp *p, std::size_t n)
{ std::allocator<Tp>().deallocate(p, n); }
};
template <class T, class U>
bool operator==(const SimpleAllocator<T>&, const SimpleAllocator<U>&)
{ return true; }
template <class T, class U>
bool operator!=(const SimpleAllocator<T>&, const SimpleAllocator<U>&)
{ return false; }
template<typename T>
struct default_init_allocator
{
using value_type = T;
default_init_allocator() = default;
template<typename U>
default_init_allocator(const default_init_allocator<U>& a)
: state(a.state)
{ }
T*
allocate(std::size_t n)
{ return std::allocator<T>().allocate(n); }
void
deallocate(T* p, std::size_t n)
{ std::allocator<T>().deallocate(p, n); }
int state;
};
template<typename T, typename U>
bool operator==(const default_init_allocator<T>& t,
const default_init_allocator<U>& u)
{ return t.state == u.state; }
template<typename T, typename U>
bool operator!=(const default_init_allocator<T>& t,
const default_init_allocator<U>& u)
{ return !(t == u); }
#endif
template<typename Tp>
struct ExplicitConsAlloc : std::allocator<Tp>
{
ExplicitConsAlloc() { }
template<typename Up>
explicit
ExplicitConsAlloc(const ExplicitConsAlloc<Up>&) { }
template<typename Up>
struct rebind
{ typedef ExplicitConsAlloc<Up> other; };
};
#if __cplusplus >= 201103L
template<typename Tp>
class CustomPointerAlloc : public std::allocator<Tp>
{
template<typename Up, typename Sp = __gnu_cxx::_Std_pointer_impl<Up>>
using Ptr = __gnu_cxx::_Pointer_adapter<Sp>;
public:
CustomPointerAlloc() = default;
template<typename Up>
CustomPointerAlloc(const CustomPointerAlloc<Up>&) { }
template<typename Up>
struct rebind
{ typedef CustomPointerAlloc<Up> other; };
typedef Ptr<Tp> pointer;
typedef Ptr<const Tp> const_pointer;
typedef Ptr<void> void_pointer;
typedef Ptr<const void> const_void_pointer;
pointer allocate(std::size_t n, const_void_pointer = {})
{ return pointer(std::allocator<Tp>::allocate(n)); }
void deallocate(pointer p, std::size_t n)
{ std::allocator<Tp>::deallocate(std::addressof(*p), n); }
};
// A class type meeting *only* the Cpp17NullablePointer requirements.
// Can be used as a base class for fancy pointers (like PointerBase, below)
// or to wrap a built-in pointer type to remove operations not required
// by the Cpp17NullablePointer requirements (dereference, increment etc.)
template<typename Ptr>
struct NullablePointer
{
// N.B. default constructor does not initialize value
NullablePointer() = default;
NullablePointer(std::nullptr_t) noexcept : value() { }
explicit operator bool() const noexcept { return value != nullptr; }
friend inline bool
operator==(NullablePointer lhs, NullablePointer rhs) noexcept
{ return lhs.value == rhs.value; }
friend inline bool
operator!=(NullablePointer lhs, NullablePointer rhs) noexcept
{ return lhs.value != rhs.value; }
protected:
explicit NullablePointer(Ptr p) noexcept : value(p) { }
Ptr value;
};
// NullablePointer<void> is an empty type that models Cpp17NullablePointer.
template<>
struct NullablePointer<void>
{
NullablePointer() = default;
NullablePointer(std::nullptr_t) noexcept { }
explicit NullablePointer(const volatile void*) noexcept { }
explicit operator bool() const noexcept { return false; }
friend inline bool
operator==(NullablePointer, NullablePointer) noexcept
{ return true; }
friend inline bool
operator!=(NullablePointer, NullablePointer) noexcept
{ return false; }
};
// Utility for use as CRTP base class of custom pointer types
template<typename Derived, typename T>
struct PointerBase : NullablePointer<T*>
{
typedef T element_type;
// typedefs for iterator_traits
typedef T value_type;
typedef std::ptrdiff_t difference_type;
typedef std::random_access_iterator_tag iterator_category;
typedef Derived pointer;
typedef T& reference;
using NullablePointer<T*>::NullablePointer;
// Public (but explicit) constructor from raw pointer:
explicit PointerBase(T* p) noexcept : NullablePointer<T*>(p) { }
template<typename D, typename U,
typename = decltype(static_cast<T*>(std::declval<U*>()))>
PointerBase(const PointerBase<D, U>& p)
: NullablePointer<T*>(p.operator->()) { }
T& operator*() const { return *this->value; }
T* operator->() const { return this->value; }
T& operator[](difference_type n) const { return this->value[n]; }
Derived& operator++() { ++this->value; return derived(); }
Derived& operator--() { --this->value; return derived(); }
Derived operator++(int) { return Derived(this->value++); }
Derived operator--(int) { return Derived(this->value--); }
Derived& operator+=(difference_type n)
{
this->value += n;
return derived();
}
Derived& operator-=(difference_type n)
{
this->value -= n;
return derived();
}
Derived
operator+(difference_type n) const
{
Derived p(derived());
return p += n;
}
Derived
operator-(difference_type n) const
{
Derived p(derived());
return p -= n;
}
private:
friend std::ptrdiff_t operator-(PointerBase l, PointerBase r)
{ return l.value - r.value; }
Derived&
derived() { return static_cast<Derived&>(*this); }
const Derived&
derived() const { return static_cast<const Derived&>(*this); }
};
// implementation for pointer-to-void specializations
template<typename T>
struct PointerBase_void : NullablePointer<T*>
{
typedef T element_type;
// typedefs for iterator_traits
typedef T value_type;
typedef std::ptrdiff_t difference_type;
typedef std::random_access_iterator_tag iterator_category;
using NullablePointer<T*>::NullablePointer;
T* operator->() const { return this->value; }
template<typename D, typename U,
typename = decltype(static_cast<T*>(std::declval<U*>()))>
PointerBase_void(const PointerBase<D, U>& p)
: NullablePointer<T*>(p.operator->()) { }
};
template<typename Derived>
struct PointerBase<Derived, void> : PointerBase_void<void>
{
using PointerBase_void::PointerBase_void;
typedef Derived pointer;
};
template<typename Derived>
struct PointerBase<Derived, const void> : PointerBase_void<const void>
{
using PointerBase_void::PointerBase_void;
typedef Derived pointer;
};
#endif // C++11
#if __cplusplus >= 201703L
#if __cpp_aligned_new
// A concrete memory_resource, with error checking.
class memory_resource : public std::pmr::memory_resource
{
public:
memory_resource()
: lists(new allocation_lists)
{ }
memory_resource(const memory_resource& r) noexcept
: lists(r.lists)
{ lists->refcount++; }
memory_resource& operator=(const memory_resource&) = delete;
~memory_resource()
{
if (lists->refcount-- == 1)
delete lists; // last one out turns out the lights
}
struct bad_size { };
struct bad_alignment { };
struct bad_address { };
// Deallocate everything (moving the tracking info to the freed list)
void
deallocate_everything()
{
while (lists->active)
{
auto a = lists->active;
// Intentionally virtual dispatch, to inform derived classes:
this->do_deallocate(a->p, a->bytes, a->alignment);
}
}
// Clear the freed list
void
forget_freed_allocations()
{ lists->forget_allocations(lists->freed); }
// Count how many allocations have been done and not freed.
std::size_t
number_of_active_allocations() const noexcept
{
std::size_t n = 0;
for (auto a = lists->active; a != nullptr; a = a->next)
++n;
return n;
}
protected:
void*
do_allocate(std::size_t bytes, std::size_t alignment) override
{
// TODO perform a single allocation and put the allocation struct
// in the buffer using placement new? It means deallocation won't
// actually return memory to the OS, as it will stay in lists->freed.
//
// TODO adjust the returned pointer to be minimally aligned?
// e.g. if alignment==1 don't return something aligned to 2 bytes.
// Maybe not worth it, at least monotonic_buffer_resource will
// never ask upstream for anything with small alignment.
void* p = ::operator new(bytes, std::align_val_t(alignment));
lists->active = new allocation{p, bytes, alignment, lists->active};
return p;
}
void
do_deallocate(void* p, std::size_t bytes, std::size_t alignment) override
{
allocation** aptr = &lists->active;
while (*aptr)
{
allocation* a = *aptr;
if (p == a->p)
{
if (bytes != a->bytes)
_S_throw<bad_size>();
if (alignment != a->alignment)
_S_throw<bad_alignment>();
#if __cpp_sized_deallocation
::operator delete(p, bytes, std::align_val_t(alignment));
#else
::operator delete(p, std::align_val_t(alignment));
#endif
*aptr = a->next;
a->next = lists->freed;
lists->freed = a;
return;
}
aptr = &a->next;
}
_S_throw<bad_address>();
}
bool
do_is_equal(const std::pmr::memory_resource& r) const noexcept override
{
#if __cpp_rtti
// Equality is determined by sharing the same allocation_lists object.
if (auto p = dynamic_cast<const memory_resource*>(&r))
return p->lists == lists;
#else
if (this == &r) // Is this the best we can do without RTTI?
return true;
#endif
return false;
}
private:
template<typename E>
static void
_S_throw()
{
#if __cpp_exceptions
throw E();
#else
__builtin_abort();
#endif
}
struct allocation
{
void* p;
std::size_t bytes;
std::size_t alignment;
allocation* next;
};
// Maintain list of allocated blocks and list of freed blocks.
// Copies of this memory_resource share the same ref-counted lists.
struct allocation_lists
{
unsigned refcount = 1;
allocation* active = nullptr;
allocation* freed = nullptr;
void forget_allocations(allocation*& list)
{
while (list)
{
auto p = list;
list = list->next;
delete p;
}
}
~allocation_lists()
{
forget_allocations(active); // Anything in this list is a leak!
forget_allocations(freed);
}
};
allocation_lists* lists;
};
#endif // aligned-new
// Set the default resource, and restore the previous one on destruction.
struct default_resource_mgr
{
explicit default_resource_mgr(std::pmr::memory_resource* r)
: prev(std::pmr::set_default_resource(r))
{ }
~default_resource_mgr()
{ std::pmr::set_default_resource(prev); }
std::pmr::memory_resource* prev;
};
#endif // C++17
} // namespace __gnu_test
#endif // _GLIBCXX_TESTSUITE_ALLOCATOR_H