blob: 6166c75a9b19d341665e2a27bf867d851a5eccfe [file] [log] [blame]
/* Generate code from machine description to compute values of attributes.
Copyright (C) 1991-2020 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This program handles insn attributes and the DEFINE_DELAY and
DEFINE_INSN_RESERVATION definitions.
It produces a series of functions named `get_attr_...', one for each insn
attribute. Each of these is given the rtx for an insn and returns a member
of the enum for the attribute.
These subroutines have the form of a `switch' on the INSN_CODE (via
`recog_memoized'). Each case either returns a constant attribute value
or a value that depends on tests on other attributes, the form of
operands, or some random C expression (encoded with a SYMBOL_REF
expression).
If the attribute `alternative', or a random C expression is present,
`constrain_operands' is called. If either of these cases of a reference to
an operand is found, `extract_insn' is called.
The special attribute `length' is also recognized. For this operand,
expressions involving the address of an operand or the current insn,
(address (pc)), are valid. In this case, an initial pass is made to
set all lengths that do not depend on address. Those that do are set to
the maximum length. Then each insn that depends on an address is checked
and possibly has its length changed. The process repeats until no further
changed are made. The resulting lengths are saved for use by
`get_attr_length'.
A special form of DEFINE_ATTR, where the expression for default value is a
CONST expression, indicates an attribute that is constant for a given run
of the compiler. The subroutine generated for these attributes has no
parameters as it does not depend on any particular insn. Constant
attributes are typically used to specify which variety of processor is
used.
Internal attributes are defined to handle DEFINE_DELAY and
DEFINE_INSN_RESERVATION. Special routines are output for these cases.
This program works by keeping a list of possible values for each attribute.
These include the basic attribute choices, default values for attribute, and
all derived quantities.
As the description file is read, the definition for each insn is saved in a
`struct insn_def'. When the file reading is complete, a `struct insn_ent'
is created for each insn and chained to the corresponding attribute value,
either that specified, or the default.
An optimization phase is then run. This simplifies expressions for each
insn. EQ_ATTR tests are resolved, whenever possible, to a test that
indicates when the attribute has the specified value for the insn. This
avoids recursive calls during compilation.
The strategy used when processing DEFINE_DELAY definitions is to create
arbitrarily complex expressions and have the optimization simplify them.
Once optimization is complete, any required routines and definitions
will be written.
An optimization that is not yet implemented is to hoist the constant
expressions entirely out of the routines and definitions that are written.
A way to do this is to iterate over all possible combinations of values
for constant attributes and generate a set of functions for that given
combination. An initialization function would be written that evaluates
the attributes and installs the corresponding set of routines and
definitions (each would be accessed through a pointer).
We use the flags in an RTX as follows:
`unchanging' (ATTR_IND_SIMPLIFIED_P): This rtx is fully simplified
independent of the insn code.
`in_struct' (ATTR_CURR_SIMPLIFIED_P): This rtx is fully simplified
for the insn code currently being processed (see optimize_attrs).
`return_val' (ATTR_PERMANENT_P): This rtx is permanent and unique
(see attr_rtx). */
#define ATTR_IND_SIMPLIFIED_P(RTX) (RTX_FLAG ((RTX), unchanging))
#define ATTR_CURR_SIMPLIFIED_P(RTX) (RTX_FLAG ((RTX), in_struct))
#define ATTR_PERMANENT_P(RTX) (RTX_FLAG ((RTX), return_val))
#if 0
#define strcmp_check(S1, S2) ((S1) == (S2) \
? 0 \
: (gcc_assert (strcmp ((S1), (S2))), 1))
#else
#define strcmp_check(S1, S2) ((S1) != (S2))
#endif
#include "bconfig.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "obstack.h"
#include "errors.h"
#include "read-md.h"
#include "gensupport.h"
#include "fnmatch.h"
#define DEBUG 0
/* Flags for make_internal_attr's `special' parameter. */
#define ATTR_NONE 0
#define ATTR_SPECIAL (1 << 0)
static struct obstack obstack1, obstack2;
static struct obstack *hash_obstack = &obstack1;
static struct obstack *temp_obstack = &obstack2;
/* enough space to reserve for printing out ints */
#define MAX_DIGITS (HOST_BITS_PER_INT * 3 / 10 + 3)
/* Define structures used to record attributes and values. */
/* As each DEFINE_INSN, DEFINE_PEEPHOLE, or DEFINE_ASM_ATTRIBUTES is
encountered, we store all the relevant information into a
`struct insn_def'. This is done to allow attribute definitions to occur
anywhere in the file. */
class insn_def
{
public:
class insn_def *next; /* Next insn in chain. */
rtx def; /* The DEFINE_... */
int insn_code; /* Instruction number. */
int insn_index; /* Expression number in file, for errors. */
file_location loc; /* Where in the .md files it occurs. */
int num_alternatives; /* Number of alternatives. */
int vec_idx; /* Index of attribute vector in `def'. */
};
/* Once everything has been read in, we store in each attribute value a list
of insn codes that have that value. Here is the structure used for the
list. */
struct insn_ent
{
struct insn_ent *next; /* Next in chain. */
class insn_def *def; /* Instruction definition. */
};
/* Each value of an attribute (either constant or computed) is assigned a
structure which is used as the listhead of the insns that have that
value. */
struct attr_value
{
rtx value; /* Value of attribute. */
struct attr_value *next; /* Next attribute value in chain. */
struct insn_ent *first_insn; /* First insn with this value. */
int num_insns; /* Number of insns with this value. */
int has_asm_insn; /* True if this value used for `asm' insns */
};
/* Structure for each attribute. */
class attr_desc
{
public:
char *name; /* Name of attribute. */
const char *enum_name; /* Enum name for DEFINE_ENUM_NAME. */
class attr_desc *next; /* Next attribute. */
struct attr_value *first_value; /* First value of this attribute. */
struct attr_value *default_val; /* Default value for this attribute. */
file_location loc; /* Where in the .md files it occurs. */
unsigned is_numeric : 1; /* Values of this attribute are numeric. */
unsigned is_const : 1; /* Attribute value constant for each run. */
unsigned is_special : 1; /* Don't call `write_attr_set'. */
};
/* Structure for each DEFINE_DELAY. */
class delay_desc
{
public:
rtx def; /* DEFINE_DELAY expression. */
class delay_desc *next; /* Next DEFINE_DELAY. */
file_location loc; /* Where in the .md files it occurs. */
int num; /* Number of DEFINE_DELAY, starting at 1. */
};
struct attr_value_list
{
struct attr_value *av;
struct insn_ent *ie;
class attr_desc *attr;
struct attr_value_list *next;
};
/* Listheads of above structures. */
/* This one is indexed by the first character of the attribute name. */
#define MAX_ATTRS_INDEX 256
static class attr_desc *attrs[MAX_ATTRS_INDEX];
static class insn_def *defs;
static class delay_desc *delays;
struct attr_value_list **insn_code_values;
/* Other variables. */
static int insn_index_number;
static int got_define_asm_attributes;
static int must_extract;
static int must_constrain;
static int address_used;
static int length_used;
static int num_delays;
static int have_annul_true, have_annul_false;
static int num_insn_ents;
/* Stores, for each insn code, the number of constraint alternatives. */
static int *insn_n_alternatives;
/* Stores, for each insn code, a bitmap that has bits on for each possible
alternative. */
/* Keep this in sync with recog.h. */
typedef uint64_t alternative_mask;
static alternative_mask *insn_alternatives;
/* Used to simplify expressions. */
static rtx true_rtx, false_rtx;
/* Used to reduce calls to `strcmp' */
static const char *alternative_name;
static const char *length_str;
static const char *delay_type_str;
static const char *delay_1_0_str;
static const char *num_delay_slots_str;
/* Simplify an expression. Only call the routine if there is something to
simplify. */
#define SIMPLIFY_TEST_EXP(EXP,INSN_CODE,INSN_INDEX) \
(ATTR_IND_SIMPLIFIED_P (EXP) || ATTR_CURR_SIMPLIFIED_P (EXP) ? (EXP) \
: simplify_test_exp (EXP, INSN_CODE, INSN_INDEX))
#define DEF_ATTR_STRING(S) (attr_string ((S), strlen (S)))
/* Forward declarations of functions used before their definitions, only. */
static char *attr_string (const char *, int);
static char *attr_printf (unsigned int, const char *, ...)
ATTRIBUTE_PRINTF_2;
static rtx make_numeric_value (int);
static class attr_desc *find_attr (const char **, int);
static rtx mk_attr_alt (alternative_mask);
static char *next_comma_elt (const char **);
static rtx insert_right_side (enum rtx_code, rtx, rtx, int, int);
static rtx copy_boolean (rtx);
static int compares_alternatives_p (rtx);
static void make_internal_attr (const char *, rtx, int);
static void insert_insn_ent (struct attr_value *, struct insn_ent *);
static void walk_attr_value (rtx);
static int max_attr_value (rtx);
static int min_attr_value (rtx);
static unsigned int attr_value_alignment (rtx);
static rtx simplify_test_exp (rtx, int, int);
static rtx simplify_test_exp_in_temp (rtx, int, int);
static rtx copy_rtx_unchanging (rtx);
static bool attr_alt_subset_p (rtx, rtx);
static bool attr_alt_subset_of_compl_p (rtx, rtx);
static void clear_struct_flag (rtx);
static void write_attr_valueq (FILE *, class attr_desc *, const char *);
static struct attr_value *find_most_used (class attr_desc *);
static void write_attr_set (FILE *, class attr_desc *, int, rtx,
const char *, const char *, rtx,
int, int, unsigned int);
static void write_attr_case (FILE *, class attr_desc *,
struct attr_value *,
int, const char *, const char *, int, rtx);
static void write_attr_value (FILE *, class attr_desc *, rtx);
static void write_upcase (FILE *, const char *);
static void write_indent (FILE *, int);
static rtx identity_fn (rtx);
static rtx zero_fn (rtx);
static rtx one_fn (rtx);
static rtx max_fn (rtx);
static rtx min_fn (rtx);
#define oballoc(T) XOBNEW (hash_obstack, T)
#define oballocvec(T, N) XOBNEWVEC (hash_obstack, T, (N))
/* This gen* file is unique, in that it writes out multiple files.
Before GCC 4.8, insn-attrtab.c was written out containing many large
functions and tables. This made insn-attrtab.c _the_ bottle-neck in
a parallel build, and even made it impossible to build GCC on machines
with relatively small RAM space (PR other/29442). Therefore, the
atrribute functions/tables are now written out to three separate
files: all "*insn_default_latency" functions go to LATENCY_FILE_NAME,
all "*internal_dfa_insn_code" functions go to DFA_FILE_NAME, and the
rest goes to ATTR_FILE_NAME. */
static const char *attr_file_name = NULL;
static const char *dfa_file_name = NULL;
static const char *latency_file_name = NULL;
static FILE *attr_file, *dfa_file, *latency_file;
/* Hash table for sharing RTL and strings. */
/* Each hash table slot is a bucket containing a chain of these structures.
Strings are given negative hash codes; RTL expressions are given positive
hash codes. */
struct attr_hash
{
struct attr_hash *next; /* Next structure in the bucket. */
unsigned int hashcode; /* Hash code of this rtx or string. */
union
{
char *str; /* The string (negative hash codes) */
rtx rtl; /* or the RTL recorded here. */
} u;
};
/* Now here is the hash table. When recording an RTL, it is added to
the slot whose index is the hash code mod the table size. Note
that the hash table is used for several kinds of RTL (see attr_rtx)
and for strings. While all these live in the same table, they are
completely independent, and the hash code is computed differently
for each. */
#define RTL_HASH_SIZE 4093
static struct attr_hash *attr_hash_table[RTL_HASH_SIZE];
/* Here is how primitive or already-shared RTL's hash
codes are made. */
#define RTL_HASH(RTL) ((intptr_t) (RTL) & 0777777)
/* Add an entry to the hash table for RTL with hash code HASHCODE. */
static void
attr_hash_add_rtx (unsigned int hashcode, rtx rtl)
{
struct attr_hash *h;
h = XOBNEW (hash_obstack, struct attr_hash);
h->hashcode = hashcode;
h->u.rtl = rtl;
h->next = attr_hash_table[hashcode % RTL_HASH_SIZE];
attr_hash_table[hashcode % RTL_HASH_SIZE] = h;
}
/* Add an entry to the hash table for STRING with hash code HASHCODE. */
static void
attr_hash_add_string (unsigned int hashcode, char *str)
{
struct attr_hash *h;
h = XOBNEW (hash_obstack, struct attr_hash);
h->hashcode = -hashcode;
h->u.str = str;
h->next = attr_hash_table[hashcode % RTL_HASH_SIZE];
attr_hash_table[hashcode % RTL_HASH_SIZE] = h;
}
/* Generate an RTL expression, but avoid duplicates.
Set the ATTR_PERMANENT_P flag for these permanent objects.
In some cases we cannot uniquify; then we return an ordinary
impermanent rtx with ATTR_PERMANENT_P clear.
Args are as follows:
rtx attr_rtx (code, [element1, ..., elementn]) */
static rtx
attr_rtx_1 (enum rtx_code code, va_list p)
{
rtx rt_val = NULL_RTX;/* RTX to return to caller... */
unsigned int hashcode;
struct attr_hash *h;
struct obstack *old_obstack = rtl_obstack;
int permanent_p = 1;
/* For each of several cases, search the hash table for an existing entry.
Use that entry if one is found; otherwise create a new RTL and add it
to the table. */
if (GET_RTX_CLASS (code) == RTX_UNARY)
{
rtx arg0 = va_arg (p, rtx);
if (! ATTR_PERMANENT_P (arg0))
permanent_p = 0;
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0));
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
if (h->hashcode == hashcode
&& GET_CODE (h->u.rtl) == code
&& XEXP (h->u.rtl, 0) == arg0)
return h->u.rtl;
if (h == 0)
{
rtl_obstack = hash_obstack;
rt_val = rtx_alloc (code);
XEXP (rt_val, 0) = arg0;
}
}
else if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
|| GET_RTX_CLASS (code) == RTX_COMM_ARITH
|| GET_RTX_CLASS (code) == RTX_COMPARE
|| GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
{
rtx arg0 = va_arg (p, rtx);
rtx arg1 = va_arg (p, rtx);
if (! ATTR_PERMANENT_P (arg0) || ! ATTR_PERMANENT_P (arg1))
permanent_p = 0;
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0) + RTL_HASH (arg1));
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
if (h->hashcode == hashcode
&& GET_CODE (h->u.rtl) == code
&& XEXP (h->u.rtl, 0) == arg0
&& XEXP (h->u.rtl, 1) == arg1)
{
ATTR_CURR_SIMPLIFIED_P (h->u.rtl) = 0;
return h->u.rtl;
}
if (h == 0)
{
rtl_obstack = hash_obstack;
rt_val = rtx_alloc (code);
XEXP (rt_val, 0) = arg0;
XEXP (rt_val, 1) = arg1;
}
}
else if (code == SYMBOL_REF
|| (GET_RTX_LENGTH (code) == 1
&& GET_RTX_FORMAT (code)[0] == 's'))
{
char *arg0 = va_arg (p, char *);
arg0 = DEF_ATTR_STRING (arg0);
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0));
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
if (h->hashcode == hashcode
&& GET_CODE (h->u.rtl) == code
&& XSTR (h->u.rtl, 0) == arg0)
return h->u.rtl;
if (h == 0)
{
rtl_obstack = hash_obstack;
rt_val = rtx_alloc (code);
XSTR (rt_val, 0) = arg0;
if (code == SYMBOL_REF)
X0EXP (rt_val, 1) = NULL_RTX;
}
}
else if (GET_RTX_LENGTH (code) == 2
&& GET_RTX_FORMAT (code)[0] == 's'
&& GET_RTX_FORMAT (code)[1] == 's')
{
char *arg0 = va_arg (p, char *);
char *arg1 = va_arg (p, char *);
arg0 = DEF_ATTR_STRING (arg0);
arg1 = DEF_ATTR_STRING (arg1);
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0) + RTL_HASH (arg1));
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
if (h->hashcode == hashcode
&& GET_CODE (h->u.rtl) == code
&& XSTR (h->u.rtl, 0) == arg0
&& XSTR (h->u.rtl, 1) == arg1)
return h->u.rtl;
if (h == 0)
{
rtl_obstack = hash_obstack;
rt_val = rtx_alloc (code);
XSTR (rt_val, 0) = arg0;
XSTR (rt_val, 1) = arg1;
}
}
else if (GET_RTX_LENGTH (code) == 2
&& GET_RTX_FORMAT (code)[0] == 'w'
&& GET_RTX_FORMAT (code)[1] == 'w')
{
HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0) + RTL_HASH (arg1));
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
if (h->hashcode == hashcode
&& GET_CODE (h->u.rtl) == code
&& XWINT (h->u.rtl, 0) == arg0
&& XWINT (h->u.rtl, 1) == arg1)
return h->u.rtl;
if (h == 0)
{
rtl_obstack = hash_obstack;
rt_val = rtx_alloc (code);
XWINT (rt_val, 0) = arg0;
XWINT (rt_val, 1) = arg1;
}
}
else if (code == CONST_INT)
{
HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
if (arg0 == 0)
return false_rtx;
else if (arg0 == 1)
return true_rtx;
else
goto nohash;
}
else
{
int i; /* Array indices... */
const char *fmt; /* Current rtx's format... */
nohash:
rt_val = rtx_alloc (code); /* Allocate the storage space. */
fmt = GET_RTX_FORMAT (code); /* Find the right format... */
for (i = 0; i < GET_RTX_LENGTH (code); i++)
{
switch (*fmt++)
{
case '0': /* Unused field. */
break;
case 'i': /* An integer? */
XINT (rt_val, i) = va_arg (p, int);
break;
case 'w': /* A wide integer? */
XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
break;
case 's': /* A string? */
XSTR (rt_val, i) = va_arg (p, char *);
break;
case 'e': /* An expression? */
case 'u': /* An insn? Same except when printing. */
XEXP (rt_val, i) = va_arg (p, rtx);
break;
case 'E': /* An RTX vector? */
XVEC (rt_val, i) = va_arg (p, rtvec);
break;
default:
/* Don't need to handle 'p' for attributes. */
gcc_unreachable ();
}
}
return rt_val;
}
rtl_obstack = old_obstack;
attr_hash_add_rtx (hashcode, rt_val);
ATTR_PERMANENT_P (rt_val) = permanent_p;
return rt_val;
}
static rtx
attr_rtx (enum rtx_code code, ...)
{
rtx result;
va_list p;
va_start (p, code);
result = attr_rtx_1 (code, p);
va_end (p);
return result;
}
/* Create a new string printed with the printf line arguments into a space
of at most LEN bytes:
rtx attr_printf (len, format, [arg1, ..., argn]) */
static char *
attr_printf (unsigned int len, const char *fmt, ...)
{
char str[256];
va_list p;
va_start (p, fmt);
gcc_assert (len < sizeof str); /* Leave room for \0. */
vsprintf (str, fmt, p);
va_end (p);
return DEF_ATTR_STRING (str);
}
static rtx
attr_eq (const char *name, const char *value)
{
return attr_rtx (EQ_ATTR, name, value);
}
static const char *
attr_numeral (int n)
{
return XSTR (make_numeric_value (n), 0);
}
/* Return a permanent (possibly shared) copy of a string STR (not assumed
to be null terminated) with LEN bytes. */
static char *
attr_string (const char *str, int len)
{
struct attr_hash *h;
unsigned int hashcode;
int i;
char *new_str;
/* Compute the hash code. */
hashcode = (len + 1) * 613U + (unsigned) str[0];
for (i = 1; i < len; i += 2)
hashcode = ((hashcode * 613) + (unsigned) str[i]);
if ((int) hashcode < 0)
hashcode = -hashcode;
/* Search the table for the string. */
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
if (h->hashcode == -hashcode && h->u.str[0] == str[0]
&& !strncmp (h->u.str, str, len))
return h->u.str; /* <-- return if found. */
/* Not found; create a permanent copy and add it to the hash table. */
new_str = XOBNEWVAR (hash_obstack, char, len + 1);
memcpy (new_str, str, len);
new_str[len] = '\0';
attr_hash_add_string (hashcode, new_str);
rtx_reader_ptr->copy_md_ptr_loc (new_str, str);
return new_str; /* Return the new string. */
}
/* Check two rtx's for equality of contents,
taking advantage of the fact that if both are hashed
then they can't be equal unless they are the same object. */
static int
attr_equal_p (rtx x, rtx y)
{
return (x == y || (! (ATTR_PERMANENT_P (x) && ATTR_PERMANENT_P (y))
&& rtx_equal_p (x, y)));
}
/* Given a test expression EXP for attribute ATTR, ensure it is validly
formed. LOC is the location of the .md construct that contains EXP.
Convert (eq_attr "att" "a1,a2") to (ior (eq_attr ... ) (eq_attrq ..))
and (eq_attr "att" "!a1") to (not (eq_attr "att" "a1")). Do the latter
test first so that (eq_attr "att" "!a1,a2,a3") works as expected.
Update the string address in EQ_ATTR expression to be the same used
in the attribute (or `alternative_name') to speed up subsequent
`find_attr' calls and eliminate most `strcmp' calls.
Return the new expression, if any. */
static rtx
check_attr_test (file_location loc, rtx exp, attr_desc *attr)
{
struct attr_value *av;
const char *name_ptr, *p;
rtx orexp, newexp;
switch (GET_CODE (exp))
{
case EQ_ATTR:
/* Handle negation test. */
if (XSTR (exp, 1)[0] == '!')
return check_attr_test (loc,
attr_rtx (NOT,
attr_eq (XSTR (exp, 0),
&XSTR (exp, 1)[1])),
attr);
else if (n_comma_elts (XSTR (exp, 1)) == 1)
{
attr_desc *attr2 = find_attr (&XSTR (exp, 0), 0);
if (attr2 == NULL)
{
if (! strcmp (XSTR (exp, 0), "alternative"))
return mk_attr_alt (((alternative_mask) 1)
<< atoi (XSTR (exp, 1)));
else
fatal_at (loc, "unknown attribute `%s' in definition of"
" attribute `%s'", XSTR (exp, 0), attr->name);
}
if (attr->is_const && ! attr2->is_const)
fatal_at (loc, "constant attribute `%s' cannot test non-constant"
" attribute `%s'", attr->name, attr2->name);
/* Copy this just to make it permanent,
so expressions using it can be permanent too. */
exp = attr_eq (XSTR (exp, 0), XSTR (exp, 1));
/* It shouldn't be possible to simplify the value given to a
constant attribute, so don't expand this until it's time to
write the test expression. */
if (attr2->is_const)
ATTR_IND_SIMPLIFIED_P (exp) = 1;
if (attr2->is_numeric)
{
for (p = XSTR (exp, 1); *p; p++)
if (! ISDIGIT (*p))
fatal_at (loc, "attribute `%s' takes only numeric values",
attr2->name);
}
else
{
for (av = attr2->first_value; av; av = av->next)
if (GET_CODE (av->value) == CONST_STRING
&& ! strcmp (XSTR (exp, 1), XSTR (av->value, 0)))
break;
if (av == NULL)
fatal_at (loc, "unknown value `%s' for attribute `%s'",
XSTR (exp, 1), attr2->name);
}
}
else
{
if (! strcmp (XSTR (exp, 0), "alternative"))
{
int set = 0;
name_ptr = XSTR (exp, 1);
while ((p = next_comma_elt (&name_ptr)) != NULL)
set |= ((alternative_mask) 1) << atoi (p);
return mk_attr_alt (set);
}
else
{
/* Make an IOR tree of the possible values. */
orexp = false_rtx;
name_ptr = XSTR (exp, 1);
while ((p = next_comma_elt (&name_ptr)) != NULL)
{
newexp = attr_eq (XSTR (exp, 0), p);
orexp = insert_right_side (IOR, orexp, newexp, -2, -2);
}
return check_attr_test (loc, orexp, attr);
}
}
break;
case ATTR_FLAG:
break;
case CONST_INT:
/* Either TRUE or FALSE. */
if (XWINT (exp, 0))
return true_rtx;
else
return false_rtx;
case IOR:
case AND:
XEXP (exp, 0) = check_attr_test (loc, XEXP (exp, 0), attr);
XEXP (exp, 1) = check_attr_test (loc, XEXP (exp, 1), attr);
break;
case NOT:
XEXP (exp, 0) = check_attr_test (loc, XEXP (exp, 0), attr);
break;
case MATCH_TEST:
exp = attr_rtx (MATCH_TEST, XSTR (exp, 0));
ATTR_IND_SIMPLIFIED_P (exp) = 1;
break;
case MATCH_OPERAND:
if (attr->is_const)
fatal_at (loc, "invalid operator `%s' in definition of constant"
" attribute `%s'", GET_RTX_NAME (GET_CODE (exp)),
attr->name);
/* These cases can't be simplified. */
ATTR_IND_SIMPLIFIED_P (exp) = 1;
break;
case LE: case LT: case GT: case GE:
case LEU: case LTU: case GTU: case GEU:
case NE: case EQ:
if (GET_CODE (XEXP (exp, 0)) == SYMBOL_REF
&& GET_CODE (XEXP (exp, 1)) == SYMBOL_REF)
exp = attr_rtx (GET_CODE (exp),
attr_rtx (SYMBOL_REF, XSTR (XEXP (exp, 0), 0)),
attr_rtx (SYMBOL_REF, XSTR (XEXP (exp, 1), 0)));
/* These cases can't be simplified. */
ATTR_IND_SIMPLIFIED_P (exp) = 1;
break;
case SYMBOL_REF:
if (attr->is_const)
{
/* These cases are valid for constant attributes, but can't be
simplified. */
exp = attr_rtx (SYMBOL_REF, XSTR (exp, 0));
ATTR_IND_SIMPLIFIED_P (exp) = 1;
break;
}
/* FALLTHRU */
default:
fatal_at (loc, "invalid operator `%s' in definition of attribute"
" `%s'", GET_RTX_NAME (GET_CODE (exp)), attr->name);
}
return exp;
}
/* Given an expression EXP, ensure that it is validly formed and that
all named attribute values are valid for ATTR. Issue an error if not.
LOC is the location of the .md construct that contains EXP.
Return a perhaps modified replacement expression for the value. */
static rtx
check_attr_value (file_location loc, rtx exp, class attr_desc *attr)
{
struct attr_value *av;
const char *p;
int i;
switch (GET_CODE (exp))
{
case CONST_INT:
if (!attr->is_numeric)
{
error_at (loc,
"CONST_INT not valid for non-numeric attribute `%s'",
attr->name);
break;
}
if (INTVAL (exp) < 0)
{
error_at (loc,
"negative numeric value specified for attribute `%s'",
attr->name);
break;
}
break;
case CONST_STRING:
if (! strcmp (XSTR (exp, 0), "*"))
break;
if (attr->is_numeric)
{
p = XSTR (exp, 0);
for (; *p; p++)
if (! ISDIGIT (*p))
{
error_at (loc,
"non-numeric value specified for numeric"
" attribute `%s'", attr->name);
break;
}
break;
}
for (av = attr->first_value; av; av = av->next)
if (GET_CODE (av->value) == CONST_STRING
&& ! strcmp (XSTR (av->value, 0), XSTR (exp, 0)))
break;
if (av == NULL)
error_at (loc, "unknown value `%s' for attribute `%s'",
XSTR (exp, 0), attr->name);
break;
case IF_THEN_ELSE:
XEXP (exp, 0) = check_attr_test (loc, XEXP (exp, 0), attr);
XEXP (exp, 1) = check_attr_value (loc, XEXP (exp, 1), attr);
XEXP (exp, 2) = check_attr_value (loc, XEXP (exp, 2), attr);
break;
case PLUS:
case MINUS:
case MULT:
case DIV:
case MOD:
if (!attr->is_numeric)
{
error_at (loc, "invalid operation `%s' for non-numeric"
" attribute `%s'", GET_RTX_NAME (GET_CODE (exp)),
attr->name);
break;
}
/* Fall through. */
case IOR:
case AND:
XEXP (exp, 0) = check_attr_value (loc, XEXP (exp, 0), attr);
XEXP (exp, 1) = check_attr_value (loc, XEXP (exp, 1), attr);
break;
case FFS:
case CLZ:
case CTZ:
case POPCOUNT:
case PARITY:
case BSWAP:
XEXP (exp, 0) = check_attr_value (loc, XEXP (exp, 0), attr);
break;
case COND:
if (XVECLEN (exp, 0) % 2 != 0)
{
error_at (loc, "first operand of COND must have even length");
break;
}
for (i = 0; i < XVECLEN (exp, 0); i += 2)
{
XVECEXP (exp, 0, i) = check_attr_test (attr->loc,
XVECEXP (exp, 0, i),
attr);
XVECEXP (exp, 0, i + 1)
= check_attr_value (loc, XVECEXP (exp, 0, i + 1), attr);
}
XEXP (exp, 1) = check_attr_value (loc, XEXP (exp, 1), attr);
break;
case ATTR:
{
class attr_desc *attr2 = find_attr (&XSTR (exp, 0), 0);
if (attr2 == NULL)
error_at (loc, "unknown attribute `%s' in ATTR",
XSTR (exp, 0));
else if (attr->is_const && ! attr2->is_const)
error_at (attr->loc,
"constant attribute `%s' cannot refer to non-constant"
" attribute `%s'", attr->name, attr2->name);
else if (attr->is_numeric != attr2->is_numeric)
error_at (loc,
"numeric attribute mismatch calling `%s' from `%s'",
attr2->name, attr->name);
}
break;
case SYMBOL_REF:
/* A constant SYMBOL_REF is valid as a constant attribute test and
is expanded later by make_canonical into a COND. In a non-constant
attribute test, it is left be. */
return attr_rtx (SYMBOL_REF, XSTR (exp, 0));
default:
error_at (loc, "invalid operator `%s' in definition of attribute `%s'",
GET_RTX_NAME (GET_CODE (exp)), attr->name);
break;
}
return exp;
}
/* Given an SET_ATTR_ALTERNATIVE expression, convert to the canonical SET.
It becomes a COND with each test being (eq_attr "alternative" "n") */
static rtx
convert_set_attr_alternative (rtx exp, class insn_def *id)
{
int num_alt = id->num_alternatives;
rtx condexp;
int i;
if (XVECLEN (exp, 1) != num_alt)
{
error_at (id->loc, "bad number of entries in SET_ATTR_ALTERNATIVE,"
" was %d expected %d", XVECLEN (exp, 1), num_alt);
return NULL_RTX;
}
/* Make a COND with all tests but the last. Select the last value via the
default. */
condexp = rtx_alloc (COND);
XVEC (condexp, 0) = rtvec_alloc ((num_alt - 1) * 2);
for (i = 0; i < num_alt - 1; i++)
{
const char *p;
p = attr_numeral (i);
XVECEXP (condexp, 0, 2 * i) = attr_eq (alternative_name, p);
XVECEXP (condexp, 0, 2 * i + 1) = XVECEXP (exp, 1, i);
}
XEXP (condexp, 1) = XVECEXP (exp, 1, i);
return attr_rtx (SET, attr_rtx (ATTR, XSTR (exp, 0)), condexp);
}
/* Given a SET_ATTR, convert to the appropriate SET. If a comma-separated
list of values is given, convert to SET_ATTR_ALTERNATIVE first. */
static rtx
convert_set_attr (rtx exp, class insn_def *id)
{
rtx newexp;
const char *name_ptr;
char *p;
int n;
/* See how many alternative specified. */
n = n_comma_elts (XSTR (exp, 1));
if (n == 1)
return attr_rtx (SET,
attr_rtx (ATTR, XSTR (exp, 0)),
attr_rtx (CONST_STRING, XSTR (exp, 1)));
newexp = rtx_alloc (SET_ATTR_ALTERNATIVE);
XSTR (newexp, 0) = XSTR (exp, 0);
XVEC (newexp, 1) = rtvec_alloc (n);
/* Process each comma-separated name. */
name_ptr = XSTR (exp, 1);
n = 0;
while ((p = next_comma_elt (&name_ptr)) != NULL)
XVECEXP (newexp, 1, n++) = attr_rtx (CONST_STRING, p);
return convert_set_attr_alternative (newexp, id);
}
/* Scan all definitions, checking for validity. Also, convert any SET_ATTR
and SET_ATTR_ALTERNATIVE expressions to the corresponding SET
expressions. */
static void
check_defs (void)
{
class insn_def *id;
class attr_desc *attr;
int i;
rtx value;
for (id = defs; id; id = id->next)
{
if (XVEC (id->def, id->vec_idx) == NULL)
continue;
for (i = 0; i < XVECLEN (id->def, id->vec_idx); i++)
{
value = XVECEXP (id->def, id->vec_idx, i);
switch (GET_CODE (value))
{
case SET:
if (GET_CODE (XEXP (value, 0)) != ATTR)
{
error_at (id->loc, "bad attribute set");
value = NULL_RTX;
}
break;
case SET_ATTR_ALTERNATIVE:
value = convert_set_attr_alternative (value, id);
break;
case SET_ATTR:
value = convert_set_attr (value, id);
break;
default:
error_at (id->loc, "invalid attribute code %s",
GET_RTX_NAME (GET_CODE (value)));
value = NULL_RTX;
}
if (value == NULL_RTX)
continue;
if ((attr = find_attr (&XSTR (XEXP (value, 0), 0), 0)) == NULL)
{
error_at (id->loc, "unknown attribute %s",
XSTR (XEXP (value, 0), 0));
continue;
}
XVECEXP (id->def, id->vec_idx, i) = value;
XEXP (value, 1) = check_attr_value (id->loc, XEXP (value, 1), attr);
}
}
}
/* Given a valid expression for an attribute value, remove any IF_THEN_ELSE
expressions by converting them into a COND. This removes cases from this
program. Also, replace an attribute value of "*" with the default attribute
value. LOC is the location to use for error reporting. */
static rtx
make_canonical (file_location loc, class attr_desc *attr, rtx exp)
{
int i;
rtx newexp;
switch (GET_CODE (exp))
{
case CONST_INT:
exp = make_numeric_value (INTVAL (exp));
break;
case CONST_STRING:
if (! strcmp (XSTR (exp, 0), "*"))
{
if (attr->default_val == 0)
fatal_at (loc, "(attr_value \"*\") used in invalid context");
exp = attr->default_val->value;
}
else
XSTR (exp, 0) = DEF_ATTR_STRING (XSTR (exp, 0));
break;
case SYMBOL_REF:
if (!attr->is_const || ATTR_IND_SIMPLIFIED_P (exp))
break;
/* The SYMBOL_REF is constant for a given run, so mark it as unchanging.
This makes the COND something that won't be considered an arbitrary
expression by walk_attr_value. */
ATTR_IND_SIMPLIFIED_P (exp) = 1;
exp = check_attr_value (loc, exp, attr);
break;
case IF_THEN_ELSE:
newexp = rtx_alloc (COND);
XVEC (newexp, 0) = rtvec_alloc (2);
XVECEXP (newexp, 0, 0) = XEXP (exp, 0);
XVECEXP (newexp, 0, 1) = XEXP (exp, 1);
XEXP (newexp, 1) = XEXP (exp, 2);
exp = newexp;
/* Fall through to COND case since this is now a COND. */
gcc_fallthrough ();
case COND:
{
int allsame = 1;
rtx defval;
/* First, check for degenerate COND. */
if (XVECLEN (exp, 0) == 0)
return make_canonical (loc, attr, XEXP (exp, 1));
defval = XEXP (exp, 1) = make_canonical (loc, attr, XEXP (exp, 1));
for (i = 0; i < XVECLEN (exp, 0); i += 2)
{
XVECEXP (exp, 0, i) = copy_boolean (XVECEXP (exp, 0, i));
XVECEXP (exp, 0, i + 1)
= make_canonical (loc, attr, XVECEXP (exp, 0, i + 1));
if (! attr_equal_p (XVECEXP (exp, 0, i + 1), defval))
allsame = 0;
}
if (allsame)
return defval;
}
break;
default:
break;
}
return exp;
}
static rtx
copy_boolean (rtx exp)
{
if (GET_CODE (exp) == AND || GET_CODE (exp) == IOR)
return attr_rtx (GET_CODE (exp), copy_boolean (XEXP (exp, 0)),
copy_boolean (XEXP (exp, 1)));
else if (GET_CODE (exp) == NOT)
return attr_rtx (NOT, copy_boolean (XEXP (exp, 0)));
if (GET_CODE (exp) == MATCH_OPERAND)
{
XSTR (exp, 1) = DEF_ATTR_STRING (XSTR (exp, 1));
XSTR (exp, 2) = DEF_ATTR_STRING (XSTR (exp, 2));
}
else if (GET_CODE (exp) == EQ_ATTR)
{
XSTR (exp, 0) = DEF_ATTR_STRING (XSTR (exp, 0));
XSTR (exp, 1) = DEF_ATTR_STRING (XSTR (exp, 1));
}
return exp;
}
/* Given a value and an attribute description, return a `struct attr_value *'
that represents that value. This is either an existing structure, if the
value has been previously encountered, or a newly-created structure.
`insn_code' is the code of an insn whose attribute has the specified
value (-2 if not processing an insn). We ensure that all insns for
a given value have the same number of alternatives if the value checks
alternatives. LOC is the location to use for error reporting. */
static struct attr_value *
get_attr_value (file_location loc, rtx value, class attr_desc *attr,
int insn_code)
{
struct attr_value *av;
alternative_mask num_alt = 0;
value = make_canonical (loc, attr, value);
if (compares_alternatives_p (value))
{
if (insn_code < 0 || insn_alternatives == NULL)
fatal_at (loc, "(eq_attr \"alternatives\" ...) used in non-insn"
" context");
else
num_alt = insn_alternatives[insn_code];
}
for (av = attr->first_value; av; av = av->next)
if (attr_equal_p (value, av->value)
&& (num_alt == 0 || av->first_insn == NULL
|| insn_alternatives[av->first_insn->def->insn_code]))
return av;
av = oballoc (struct attr_value);
av->value = value;
av->next = attr->first_value;
attr->first_value = av;
av->first_insn = NULL;
av->num_insns = 0;
av->has_asm_insn = 0;
return av;
}
/* After all DEFINE_DELAYs have been read in, create internal attributes
to generate the required routines.
First, we compute the number of delay slots for each insn (as a COND of
each of the test expressions in DEFINE_DELAYs). Then, if more than one
delay type is specified, we compute a similar function giving the
DEFINE_DELAY ordinal for each insn.
Finally, for each [DEFINE_DELAY, slot #] pair, we compute an attribute that
tells whether a given insn can be in that delay slot.
Normal attribute filling and optimization expands these to contain the
information needed to handle delay slots. */
static void
expand_delays (void)
{
class delay_desc *delay;
rtx condexp;
rtx newexp;
int i;
char *p;
/* First, generate data for `num_delay_slots' function. */
condexp = rtx_alloc (COND);
XVEC (condexp, 0) = rtvec_alloc (num_delays * 2);
XEXP (condexp, 1) = make_numeric_value (0);
for (i = 0, delay = delays; delay; i += 2, delay = delay->next)
{
XVECEXP (condexp, 0, i) = XEXP (delay->def, 0);
XVECEXP (condexp, 0, i + 1)
= make_numeric_value (XVECLEN (delay->def, 1) / 3);
}
make_internal_attr (num_delay_slots_str, condexp, ATTR_NONE);
/* If more than one delay type, do the same for computing the delay type. */
if (num_delays > 1)
{
condexp = rtx_alloc (COND);
XVEC (condexp, 0) = rtvec_alloc (num_delays * 2);
XEXP (condexp, 1) = make_numeric_value (0);
for (i = 0, delay = delays; delay; i += 2, delay = delay->next)
{
XVECEXP (condexp, 0, i) = XEXP (delay->def, 0);
XVECEXP (condexp, 0, i + 1) = make_numeric_value (delay->num);
}
make_internal_attr (delay_type_str, condexp, ATTR_SPECIAL);
}
/* For each delay possibility and delay slot, compute an eligibility
attribute for non-annulled insns and for each type of annulled (annul
if true and annul if false). */
for (delay = delays; delay; delay = delay->next)
{
for (i = 0; i < XVECLEN (delay->def, 1); i += 3)
{
condexp = XVECEXP (delay->def, 1, i);
if (condexp == 0)
condexp = false_rtx;
newexp = attr_rtx (IF_THEN_ELSE, condexp,
make_numeric_value (1), make_numeric_value (0));
p = attr_printf (sizeof "*delay__" + MAX_DIGITS * 2,
"*delay_%d_%d", delay->num, i / 3);
make_internal_attr (p, newexp, ATTR_SPECIAL);
if (have_annul_true)
{
condexp = XVECEXP (delay->def, 1, i + 1);
if (condexp == 0) condexp = false_rtx;
newexp = attr_rtx (IF_THEN_ELSE, condexp,
make_numeric_value (1),
make_numeric_value (0));
p = attr_printf (sizeof "*annul_true__" + MAX_DIGITS * 2,
"*annul_true_%d_%d", delay->num, i / 3);
make_internal_attr (p, newexp, ATTR_SPECIAL);
}
if (have_annul_false)
{
condexp = XVECEXP (delay->def, 1, i + 2);
if (condexp == 0) condexp = false_rtx;
newexp = attr_rtx (IF_THEN_ELSE, condexp,
make_numeric_value (1),
make_numeric_value (0));
p = attr_printf (sizeof "*annul_false__" + MAX_DIGITS * 2,
"*annul_false_%d_%d", delay->num, i / 3);
make_internal_attr (p, newexp, ATTR_SPECIAL);
}
}
}
}
/* Once all attributes and insns have been read and checked, we construct for
each attribute value a list of all the insns that have that value for
the attribute. */
static void
fill_attr (class attr_desc *attr)
{
struct attr_value *av;
struct insn_ent *ie;
class insn_def *id;
int i;
rtx value;
/* Don't fill constant attributes. The value is independent of
any particular insn. */
if (attr->is_const)
return;
for (id = defs; id; id = id->next)
{
/* If no value is specified for this insn for this attribute, use the
default. */
value = NULL;
if (XVEC (id->def, id->vec_idx))
for (i = 0; i < XVECLEN (id->def, id->vec_idx); i++)
if (! strcmp_check (XSTR (XEXP (XVECEXP (id->def, id->vec_idx, i), 0), 0),
attr->name))
value = XEXP (XVECEXP (id->def, id->vec_idx, i), 1);
if (value == NULL)
av = attr->default_val;
else
av = get_attr_value (id->loc, value, attr, id->insn_code);
ie = oballoc (struct insn_ent);
ie->def = id;
insert_insn_ent (av, ie);
}
}
/* Given an expression EXP, see if it is a COND or IF_THEN_ELSE that has a
test that checks relative positions of insns (uses MATCH_DUP or PC).
If so, replace it with what is obtained by passing the expression to
ADDRESS_FN. If not but it is a COND or IF_THEN_ELSE, call this routine
recursively on each value (including the default value). Otherwise,
return the value returned by NO_ADDRESS_FN applied to EXP. */
static rtx
substitute_address (rtx exp, rtx (*no_address_fn) (rtx),
rtx (*address_fn) (rtx))
{
int i;
rtx newexp;
if (GET_CODE (exp) == COND)
{
/* See if any tests use addresses. */
address_used = 0;
for (i = 0; i < XVECLEN (exp, 0); i += 2)
walk_attr_value (XVECEXP (exp, 0, i));
if (address_used)
return (*address_fn) (exp);
/* Make a new copy of this COND, replacing each element. */
newexp = rtx_alloc (COND);
XVEC (newexp, 0) = rtvec_alloc (XVECLEN (exp, 0));
for (i = 0; i < XVECLEN (exp, 0); i += 2)
{
XVECEXP (newexp, 0, i) = XVECEXP (exp, 0, i);
XVECEXP (newexp, 0, i + 1)
= substitute_address (XVECEXP (exp, 0, i + 1),
no_address_fn, address_fn);
}
XEXP (newexp, 1) = substitute_address (XEXP (exp, 1),
no_address_fn, address_fn);
return newexp;
}
else if (GET_CODE (exp) == IF_THEN_ELSE)
{
address_used = 0;
walk_attr_value (XEXP (exp, 0));
if (address_used)
return (*address_fn) (exp);
return attr_rtx (IF_THEN_ELSE,
substitute_address (XEXP (exp, 0),
no_address_fn, address_fn),
substitute_address (XEXP (exp, 1),
no_address_fn, address_fn),
substitute_address (XEXP (exp, 2),
no_address_fn, address_fn));
}
return (*no_address_fn) (exp);
}
/* Make new attributes from the `length' attribute. The following are made,
each corresponding to a function called from `shorten_branches' or
`get_attr_length':
*insn_default_length This is the length of the insn to be returned
by `get_attr_length' before `shorten_branches'
has been called. In each case where the length
depends on relative addresses, the largest
possible is used. This routine is also used
to compute the initial size of the insn.
*insn_variable_length_p This returns 1 if the insn's length depends
on relative addresses, zero otherwise.
*insn_current_length This is only called when it is known that the
insn has a variable length and returns the
current length, based on relative addresses.
*/
static void
make_length_attrs (void)
{
static const char *new_names[] =
{
"*insn_default_length",
"*insn_min_length",
"*insn_variable_length_p",
"*insn_current_length"
};
static rtx (*const no_address_fn[]) (rtx)
= {identity_fn,identity_fn, zero_fn, zero_fn};
static rtx (*const address_fn[]) (rtx)
= {max_fn, min_fn, one_fn, identity_fn};
size_t i;
class attr_desc *length_attr, *new_attr;
struct attr_value *av, *new_av;
struct insn_ent *ie, *new_ie;
/* See if length attribute is defined. If so, it must be numeric. Make
it special so we don't output anything for it. */
length_attr = find_attr (&length_str, 0);
if (length_attr == 0)
return;
if (! length_attr->is_numeric)
fatal_at (length_attr->loc, "length attribute must be numeric");
length_attr->is_const = 0;
length_attr->is_special = 1;
/* Make each new attribute, in turn. */
for (i = 0; i < ARRAY_SIZE (new_names); i++)
{
make_internal_attr (new_names[i],
substitute_address (length_attr->default_val->value,
no_address_fn[i], address_fn[i]),
ATTR_NONE);
new_attr = find_attr (&new_names[i], 0);
for (av = length_attr->first_value; av; av = av->next)
for (ie = av->first_insn; ie; ie = ie->next)
{
new_av = get_attr_value (ie->def->loc,
substitute_address (av->value,
no_address_fn[i],
address_fn[i]),
new_attr, ie->def->insn_code);
new_ie = oballoc (struct insn_ent);
new_ie->def = ie->def;
insert_insn_ent (new_av, new_ie);
}
}
}
/* Utility functions called from above routine. */
static rtx
identity_fn (rtx exp)
{
return exp;
}
static rtx
zero_fn (rtx exp ATTRIBUTE_UNUSED)
{
return make_numeric_value (0);
}
static rtx
one_fn (rtx exp ATTRIBUTE_UNUSED)
{
return make_numeric_value (1);
}
static rtx
max_fn (rtx exp)
{
return make_numeric_value (max_attr_value (exp));
}
static rtx
min_fn (rtx exp)
{
return make_numeric_value (min_attr_value (exp));
}
static void
write_length_unit_log (FILE *outf)
{
class attr_desc *length_attr = find_attr (&length_str, 0);
struct attr_value *av;
struct insn_ent *ie;
unsigned int length_unit_log, length_or;
if (length_attr)
{
length_or = attr_value_alignment (length_attr->default_val->value);
for (av = length_attr->first_value; av; av = av->next)
for (ie = av->first_insn; ie; ie = ie->next)
length_or |= attr_value_alignment (av->value);
length_or = ~length_or;
for (length_unit_log = 0; length_or & 1; length_or >>= 1)
length_unit_log++;
}
else
length_unit_log = 0;
fprintf (outf, "EXPORTED_CONST int length_unit_log = %u;\n", length_unit_log);
}
/* Compute approximate cost of the expression. Used to decide whether
expression is cheap enough for inline. */
static int
attr_rtx_cost (rtx x)
{
int cost = 1;
enum rtx_code code;
if (!x)
return 0;
code = GET_CODE (x);
switch (code)
{
case MATCH_OPERAND:
if (XSTR (x, 1)[0])
return 10;
else
return 1;
case EQ_ATTR_ALT:
return 1;
case EQ_ATTR:
/* Alternatives don't result into function call. */
if (!strcmp_check (XSTR (x, 0), alternative_name))
return 1;
else
return 5;
default:
{
int i, j;
const char *fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'V':
case 'E':
for (j = 0; j < XVECLEN (x, i); j++)
cost += attr_rtx_cost (XVECEXP (x, i, j));
break;
case 'e':
cost += attr_rtx_cost (XEXP (x, i));
break;
}
}
}
break;
}
return cost;
}
/* Take a COND expression and see if any of the conditions in it can be
simplified. If any are known true or known false for the particular insn
code, the COND can be further simplified.
Also call ourselves on any COND operations that are values of this COND.
We do not modify EXP; rather, we make and return a new rtx. */
static rtx
simplify_cond (rtx exp, int insn_code, int insn_index)
{
int i, j;
/* We store the desired contents here,
then build a new expression if they don't match EXP. */
rtx defval = XEXP (exp, 1);
rtx new_defval = XEXP (exp, 1);
int len = XVECLEN (exp, 0);
rtx *tests = XNEWVEC (rtx, len);
int allsame = 1;
rtx ret;
/* This lets us free all storage allocated below, if appropriate. */
obstack_finish (rtl_obstack);
memcpy (tests, XVEC (exp, 0)->elem, len * sizeof (rtx));
/* See if default value needs simplification. */
if (GET_CODE (defval) == COND)
new_defval = simplify_cond (defval, insn_code, insn_index);
/* Simplify the subexpressions, and see what tests we can get rid of. */
for (i = 0; i < len; i += 2)
{
rtx newtest, newval;
/* Simplify this test. */
newtest = simplify_test_exp_in_temp (tests[i], insn_code, insn_index);
tests[i] = newtest;
newval = tests[i + 1];
/* See if this value may need simplification. */
if (GET_CODE (newval) == COND)
newval = simplify_cond (newval, insn_code, insn_index);
/* Look for ways to delete or combine this test. */
if (newtest == true_rtx)
{
/* If test is true, make this value the default
and discard this + any following tests. */
len = i;
defval = tests[i + 1];
new_defval = newval;
}
else if (newtest == false_rtx)
{
/* If test is false, discard it and its value. */
for (j = i; j < len - 2; j++)
tests[j] = tests[j + 2];
i -= 2;
len -= 2;
}
else if (i > 0 && attr_equal_p (newval, tests[i - 1]))
{
/* If this value and the value for the prev test are the same,
merge the tests. */
tests[i - 2]
= insert_right_side (IOR, tests[i - 2], newtest,
insn_code, insn_index);
/* Delete this test/value. */
for (j = i; j < len - 2; j++)
tests[j] = tests[j + 2];
len -= 2;
i -= 2;
}
else
tests[i + 1] = newval;
}
/* If the last test in a COND has the same value
as the default value, that test isn't needed. */
while (len > 0 && attr_equal_p (tests[len - 1], new_defval))
len -= 2;
/* See if we changed anything. */
if (len != XVECLEN (exp, 0) || new_defval != XEXP (exp, 1))
allsame = 0;
else
for (i = 0; i < len; i++)
if (! attr_equal_p (tests[i], XVECEXP (exp, 0, i)))
{
allsame = 0;
break;
}
if (len == 0)
{
if (GET_CODE (defval) == COND)
ret = simplify_cond (defval, insn_code, insn_index);
else
ret = defval;
}
else if (allsame)
ret = exp;
else
{
rtx newexp = rtx_alloc (COND);
XVEC (newexp, 0) = rtvec_alloc (len);
memcpy (XVEC (newexp, 0)->elem, tests, len * sizeof (rtx));
XEXP (newexp, 1) = new_defval;
ret = newexp;
}
free (tests);
return ret;
}
/* Remove an insn entry from an attribute value. */
static void
remove_insn_ent (struct attr_value *av, struct insn_ent *ie)
{
struct insn_ent *previe;
if (av->first_insn == ie)
av->first_insn = ie->next;
else
{
for (previe = av->first_insn; previe->next != ie; previe = previe->next)
;
previe->next = ie->next;
}
av->num_insns--;
if (ie->def->insn_code == -1)
av->has_asm_insn = 0;
num_insn_ents--;
}
/* Insert an insn entry in an attribute value list. */
static void
insert_insn_ent (struct attr_value *av, struct insn_ent *ie)
{
ie->next = av->first_insn;
av->first_insn = ie;
av->num_insns++;
if (ie->def->insn_code == -1)
av->has_asm_insn = 1;
num_insn_ents++;
}
/* This is a utility routine to take an expression that is a tree of either
AND or IOR expressions and insert a new term. The new term will be
inserted at the right side of the first node whose code does not match
the root. A new node will be created with the root's code. Its left
side will be the old right side and its right side will be the new
term.
If the `term' is itself a tree, all its leaves will be inserted. */
static rtx
insert_right_side (enum rtx_code code, rtx exp, rtx term, int insn_code, int insn_index)
{
rtx newexp;
/* Avoid consing in some special cases. */
if (code == AND && term == true_rtx)
return exp;
if (code == AND && term == false_rtx)
return false_rtx;
if (code == AND && exp == true_rtx)
return term;
if (code == AND && exp == false_rtx)
return false_rtx;
if (code == IOR && term == true_rtx)
return true_rtx;
if (code == IOR && term == false_rtx)
return exp;
if (code == IOR && exp == true_rtx)
return true_rtx;
if (code == IOR && exp == false_rtx)
return term;
if (attr_equal_p (exp, term))
return exp;
if (GET_CODE (term) == code)
{
exp = insert_right_side (code, exp, XEXP (term, 0),
insn_code, insn_index);
exp = insert_right_side (code, exp, XEXP (term, 1),
insn_code, insn_index);
return exp;
}
if (GET_CODE (exp) == code)
{
rtx new_rtx = insert_right_side (code, XEXP (exp, 1),
term, insn_code, insn_index);
if (new_rtx != XEXP (exp, 1))
/* Make a copy of this expression and call recursively. */
newexp = attr_rtx (code, XEXP (exp, 0), new_rtx);
else
newexp = exp;
}
else
{
/* Insert the new term. */
newexp = attr_rtx (code, exp, term);
}
return simplify_test_exp_in_temp (newexp, insn_code, insn_index);
}
/* If we have an expression which AND's a bunch of
(not (eq_attrq "alternative" "n"))
terms, we may have covered all or all but one of the possible alternatives.
If so, we can optimize. Similarly for IOR's of EQ_ATTR.
This routine is passed an expression and either AND or IOR. It returns a
bitmask indicating which alternatives are mentioned within EXP. */
static alternative_mask
compute_alternative_mask (rtx exp, enum rtx_code code)
{
const char *string;
if (GET_CODE (exp) == code)
return compute_alternative_mask (XEXP (exp, 0), code)
| compute_alternative_mask (XEXP (exp, 1), code);
else if (code == AND && GET_CODE (exp) == NOT
&& GET_CODE (XEXP (exp, 0)) == EQ_ATTR
&& XSTR (XEXP (exp, 0), 0) == alternative_name)
string = XSTR (XEXP (exp, 0), 1);
else if (code == IOR && GET_CODE (exp) == EQ_ATTR
&& XSTR (exp, 0) == alternative_name)
string = XSTR (exp, 1);
else if (GET_CODE (exp) == EQ_ATTR_ALT)
{
if (code == AND && XWINT (exp, 1))
return XWINT (exp, 0);
if (code == IOR && !XWINT (exp, 1))
return XWINT (exp, 0);
return 0;
}
else
return 0;
if (string[1] == 0)
return ((alternative_mask) 1) << (string[0] - '0');
return ((alternative_mask) 1) << atoi (string);
}
/* Given I, a single-bit mask, return RTX to compare the `alternative'
attribute with the value represented by that bit. */
static rtx
make_alternative_compare (alternative_mask mask)
{
return mk_attr_alt (mask);
}
/* If we are processing an (eq_attr "attr" "value") test, we find the value
of "attr" for this insn code. From that value, we can compute a test
showing when the EQ_ATTR will be true. This routine performs that
computation. If a test condition involves an address, we leave the EQ_ATTR
intact because addresses are only valid for the `length' attribute.
EXP is the EQ_ATTR expression and ATTR is the attribute to which
it refers. VALUE is the value of that attribute for the insn
corresponding to INSN_CODE and INSN_INDEX. */
static rtx
evaluate_eq_attr (rtx exp, class attr_desc *attr, rtx value,
int insn_code, int insn_index)
{
rtx orexp, andexp;
rtx right;
rtx newexp;
int i;
while (GET_CODE (value) == ATTR)
{
struct attr_value *av = NULL;
attr = find_attr (&XSTR (value, 0), 0);
if (insn_code_values)
{
struct attr_value_list *iv;
for (iv = insn_code_values[insn_code]; iv; iv = iv->next)
if (iv->attr == attr)
{
av = iv->av;
break;
}
}
else
{
struct insn_ent *ie;
for (av = attr->first_value; av; av = av->next)
for (ie = av->first_insn; ie; ie = ie->next)
if (ie->def->insn_code == insn_code)
goto got_av;
}
if (av)
{
got_av:
value = av->value;
}
}
switch (GET_CODE (value))
{
case CONST_STRING:
if (! strcmp_check (XSTR (value, 0), XSTR (exp, 1)))
newexp = true_rtx;
else
newexp = false_rtx;
break;
case SYMBOL_REF:
{
const char *prefix;
char *string, *p;
gcc_assert (GET_CODE (exp) == EQ_ATTR);
prefix = attr->enum_name ? attr->enum_name : attr->name;
string = ACONCAT ((prefix, "_", XSTR (exp, 1), NULL));
for (p = string; *p; p++)
*p = TOUPPER (*p);
newexp = attr_rtx (EQ, value,
attr_rtx (SYMBOL_REF,
DEF_ATTR_STRING (string)));
break;
}
case COND:
/* We construct an IOR of all the cases for which the
requested attribute value is present. Since we start with
FALSE, if it is not present, FALSE will be returned.
Each case is the AND of the NOT's of the previous conditions with the
current condition; in the default case the current condition is TRUE.
For each possible COND value, call ourselves recursively.
The extra TRUE and FALSE expressions will be eliminated by another
call to the simplification routine. */
orexp = false_rtx;
andexp = true_rtx;
for (i = 0; i < XVECLEN (value, 0); i += 2)
{
rtx this_cond = simplify_test_exp_in_temp (XVECEXP (value, 0, i),
insn_code, insn_index);
right = insert_right_side (AND, andexp, this_cond,
insn_code, insn_index);
right = insert_right_side (AND, right,
evaluate_eq_attr (exp, attr,
XVECEXP (value, 0,
i + 1),
insn_code, insn_index),
insn_code, insn_index);
orexp = insert_right_side (IOR, orexp, right,
insn_code, insn_index);
/* Add this condition into the AND expression. */
newexp = attr_rtx (NOT, this_cond);
andexp = insert_right_side (AND, andexp, newexp,
insn_code, insn_index);
}
/* Handle the default case. */
right = insert_right_side (AND, andexp,
evaluate_eq_attr (exp, attr, XEXP (value, 1),
insn_code, insn_index),
insn_code, insn_index);
newexp = insert_right_side (IOR, orexp, right, insn_code, insn_index);
break;
default:
gcc_unreachable ();
}
/* If uses an address, must return original expression. But set the
ATTR_IND_SIMPLIFIED_P bit so we don't try to simplify it again. */
address_used = 0;
walk_attr_value (newexp);
if (address_used)
{
if (! ATTR_IND_SIMPLIFIED_P (exp))
return copy_rtx_unchanging (exp);
return exp;
}
else
return newexp;
}
/* This routine is called when an AND of a term with a tree of AND's is
encountered. If the term or its complement is present in the tree, it
can be replaced with TRUE or FALSE, respectively.
Note that (eq_attr "att" "v1") and (eq_attr "att" "v2") cannot both
be true and hence are complementary.
There is one special case: If we see
(and (not (eq_attr "att" "v1"))
(eq_attr "att" "v2"))
this can be replaced by (eq_attr "att" "v2"). To do this we need to
replace the term, not anything in the AND tree. So we pass a pointer to
the term. */
static rtx
simplify_and_tree (rtx exp, rtx *pterm, int insn_code, int insn_index)
{
rtx left, right;
rtx newexp;
rtx temp;
int left_eliminates_term, right_eliminates_term;
if (GET_CODE (exp) == AND)
{
left = simplify_and_tree (XEXP (exp, 0), pterm, insn_code, insn_index);
right = simplify_and_tree (XEXP (exp, 1), pterm, insn_code, insn_index);
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
{
newexp = attr_rtx (AND, left, right);
exp = simplify_test_exp_in_temp (newexp, insn_code, insn_index);
}
}
else if (GET_CODE (exp) == IOR)
{
/* For the IOR case, we do the same as above, except that we can
only eliminate `term' if both sides of the IOR would do so. */
temp = *pterm;
left = simplify_and_tree (XEXP (exp, 0), &temp, insn_code, insn_index);
left_eliminates_term = (temp == true_rtx);
temp = *pterm;
right = simplify_and_tree (XEXP (exp, 1), &temp, insn_code, insn_index);
right_eliminates_term = (temp == true_rtx);
if (left_eliminates_term && right_eliminates_term)
*pterm = true_rtx;
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
{
newexp = attr_rtx (IOR, left, right);
exp = simplify_test_exp_in_temp (newexp, insn_code, insn_index);
}
}
/* Check for simplifications. Do some extra checking here since this
routine is called so many times. */
if (exp == *pterm)
return true_rtx;
else if (GET_CODE (exp) == NOT && XEXP (exp, 0) == *pterm)
return false_rtx;
else if (GET_CODE (*pterm) == NOT && exp == XEXP (*pterm, 0))
return false_rtx;
else if (GET_CODE (exp) == EQ_ATTR_ALT && GET_CODE (*pterm) == EQ_ATTR_ALT)
{
if (attr_alt_subset_p (*pterm, exp))
return true_rtx;
if (attr_alt_subset_of_compl_p (*pterm, exp))
return false_rtx;
if (attr_alt_subset_p (exp, *pterm))
*pterm = true_rtx;
return exp;
}
else if (GET_CODE (exp) == EQ_ATTR && GET_CODE (*pterm) == EQ_ATTR)
{
if (XSTR (exp, 0) != XSTR (*pterm, 0))
return exp;
if (! strcmp_check (XSTR (exp, 1), XSTR (*pterm, 1)))
return true_rtx;
else
return false_rtx;
}
else if (GET_CODE (*pterm) == EQ_ATTR && GET_CODE (exp) == NOT
&& GET_CODE (XEXP (exp, 0)) == EQ_ATTR)
{
if (XSTR (*pterm, 0) != XSTR (XEXP (exp, 0), 0))
return exp;
if (! strcmp_check (XSTR (*pterm, 1), XSTR (XEXP (exp, 0), 1)))
return false_rtx;
else
return true_rtx;
}
else if (GET_CODE (exp) == EQ_ATTR && GET_CODE (*pterm) == NOT
&& GET_CODE (XEXP (*pterm, 0)) == EQ_ATTR)
{
if (XSTR (exp, 0) != XSTR (XEXP (*pterm, 0), 0))
return exp;
if (! strcmp_check (XSTR (exp, 1), XSTR (XEXP (*pterm, 0), 1)))
return false_rtx;
else
*pterm = true_rtx;
}
else if (GET_CODE (exp) == NOT && GET_CODE (*pterm) == NOT)
{
if (attr_equal_p (XEXP (exp, 0), XEXP (*pterm, 0)))
return true_rtx;
}
else if (GET_CODE (exp) == NOT)
{
if (attr_equal_p (XEXP (exp, 0), *pterm))
return false_rtx;
}
else if (GET_CODE (*pterm) == NOT)
{
if (attr_equal_p (XEXP (*pterm, 0), exp))
return false_rtx;
}
else if (attr_equal_p (exp, *pterm))
return true_rtx;
return exp;
}
/* Similar to `simplify_and_tree', but for IOR trees. */
static rtx
simplify_or_tree (rtx exp, rtx *pterm, int insn_code, int insn_index)
{
rtx left, right;
rtx newexp;
rtx temp;
int left_eliminates_term, right_eliminates_term;
if (GET_CODE (exp) == IOR)
{
left = simplify_or_tree (XEXP (exp, 0), pterm, insn_code, insn_index);
right = simplify_or_tree (XEXP (exp, 1), pterm, insn_code, insn_index);
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
{
newexp = attr_rtx (GET_CODE (exp), left, right);
exp = simplify_test_exp_in_temp (newexp, insn_code, insn_index);
}
}
else if (GET_CODE (exp) == AND)
{
/* For the AND case, we do the same as above, except that we can
only eliminate `term' if both sides of the AND would do so. */
temp = *pterm;
left = simplify_or_tree (XEXP (exp, 0), &temp, insn_code, insn_index);
left_eliminates_term = (temp == false_rtx);
temp = *pterm;
right = simplify_or_tree (XEXP (exp, 1), &temp, insn_code, insn_index);
right_eliminates_term = (temp == false_rtx);
if (left_eliminates_term && right_eliminates_term)
*pterm = false_rtx;
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
{
newexp = attr_rtx (GET_CODE (exp), left, right);
exp = simplify_test_exp_in_temp (newexp, insn_code, insn_index);
}
}
if (attr_equal_p (exp, *pterm))
return false_rtx;
else if (GET_CODE (exp) == NOT && attr_equal_p (XEXP (exp, 0), *pterm))
return true_rtx;
else if (GET_CODE (*pterm) == NOT && attr_equal_p (XEXP (*pterm, 0), exp))
return true_rtx;
else if (GET_CODE (*pterm) == EQ_ATTR && GET_CODE (exp) == NOT
&& GET_CODE (XEXP (exp, 0)) == EQ_ATTR
&& XSTR (*pterm, 0) == XSTR (XEXP (exp, 0), 0))
*pterm = false_rtx;
else if (GET_CODE (exp) == EQ_ATTR && GET_CODE (*pterm) == NOT
&& GET_CODE (XEXP (*pterm, 0)) == EQ_ATTR
&& XSTR (exp, 0) == XSTR (XEXP (*pterm, 0), 0))
return false_rtx;
return exp;
}
/* Simplify test expression and use temporary obstack in order to avoid
memory bloat. Use ATTR_IND_SIMPLIFIED to avoid unnecessary simplifications
and avoid unnecessary copying if possible. */
static rtx
simplify_test_exp_in_temp (rtx exp, int insn_code, int insn_index)
{
rtx x;
struct obstack *old;
if (ATTR_IND_SIMPLIFIED_P (exp))
return exp;
old = rtl_obstack;
rtl_obstack = temp_obstack;
x = simplify_test_exp (exp, insn_code, insn_index);
rtl_obstack = old;
return x;
}
/* Returns true if S1 is a subset of S2. */
static bool
attr_alt_subset_p (rtx s1, rtx s2)
{
switch ((XWINT (s1, 1) << 1) | XWINT (s2, 1))
{
case (0 << 1) | 0:
return !(XWINT (s1, 0) &~ XWINT (s2, 0));
case (0 << 1) | 1:
return !(XWINT (s1, 0) & XWINT (s2, 0));
case (1 << 1) | 0:
return false;
case (1 << 1) | 1:
return !(XWINT (s2, 0) &~ XWINT (s1, 0));
default:
gcc_unreachable ();
}
}
/* Returns true if S1 is a subset of complement of S2. */
static bool
attr_alt_subset_of_compl_p (rtx s1, rtx s2)
{
switch ((XWINT (s1, 1) << 1) | XWINT (s2, 1))
{
case (0 << 1) | 0:
return !(XWINT (s1, 0) & XWINT (s2, 0));
case (0 << 1) | 1:
return !(XWINT (s1, 0) & ~XWINT (s2, 0));
case (1 << 1) | 0:
return !(XWINT (s2, 0) &~ XWINT (s1, 0));
case (1 << 1) | 1:
return false;
default:
gcc_unreachable ();
}
}
/* Return EQ_ATTR_ALT expression representing intersection of S1 and S2. */
static rtx
attr_alt_intersection (rtx s1, rtx s2)
{
alternative_mask result;
switch ((XWINT (s1, 1) << 1) | XWINT (s2, 1))
{
case (0 << 1) | 0:
result = XWINT (s1, 0) & XWINT (s2, 0);
break;
case (0 << 1) | 1:
result = XWINT (s1, 0) & ~XWINT (s2, 0);
break;
case (1 << 1) | 0:
result = XWINT (s2, 0) & ~XWINT (s1, 0);
break;
case (1 << 1) | 1:
result = XWINT (s1, 0) | XWINT (s2, 0);
break;
default:
gcc_unreachable ();
}
return attr_rtx (EQ_ATTR_ALT, result, XWINT (s1, 1) & XWINT (s2, 1));
}
/* Return EQ_ATTR_ALT expression representing union of S1 and S2. */
static rtx
attr_alt_union (rtx s1, rtx s2)
{
alternative_mask result;
switch ((XWINT (s1, 1) << 1) | XWINT (s2, 1))
{
case (0 << 1) | 0:
result = XWINT (s1, 0) | XWINT (s2, 0);
break;
case (0 << 1) | 1:
result = XWINT (s2, 0) & ~XWINT (s1, 0);
break;
case (1 << 1) | 0:
result = XWINT (s1, 0) & ~XWINT (s2, 0);
break;
case (1 << 1) | 1:
result = XWINT (s1, 0) & XWINT (s2, 0);
break;
default:
gcc_unreachable ();
}
return attr_rtx (EQ_ATTR_ALT, result, XWINT (s1, 1) | XWINT (s2, 1));
}
/* Return EQ_ATTR_ALT expression representing complement of S. */
static rtx
attr_alt_complement (rtx s)
{
return attr_rtx (EQ_ATTR_ALT, XWINT (s, 0),
((HOST_WIDE_INT) 1) - XWINT (s, 1));
}
/* Return EQ_ATTR_ALT expression representing set containing elements set
in E. */
static rtx
mk_attr_alt (alternative_mask e)
{
return attr_rtx (EQ_ATTR_ALT, (HOST_WIDE_INT) e, (HOST_WIDE_INT) 0);
}
/* Given an expression, see if it can be simplified for a particular insn
code based on the values of other attributes being tested. This can
eliminate nested get_attr_... calls.
Note that if an endless recursion is specified in the patterns, the
optimization will loop. However, it will do so in precisely the cases where
an infinite recursion loop could occur during compilation. It's better that
it occurs here! */
static rtx
simplify_test_exp (rtx exp, int insn_code, int insn_index)
{
rtx left, right;
class attr_desc *attr;
struct attr_value *av;
struct insn_ent *ie;
struct attr_value_list *iv;
alternative_mask i;
rtx newexp = exp;
bool left_alt, right_alt;
/* Don't re-simplify something we already simplified. */
if (ATTR_IND_SIMPLIFIED_P (exp) || ATTR_CURR_SIMPLIFIED_P (exp))
return exp;
switch (GET_CODE (exp))
{
case AND:
left = SIMPLIFY_TEST_EXP (XEXP (exp, 0), insn_code, insn_index);
if (left == false_rtx)
return false_rtx;
right = SIMPLIFY_TEST_EXP (XEXP (exp, 1), insn_code, insn_index);
if (right == false_rtx)
return false_rtx;
if (GET_CODE (left) == EQ_ATTR_ALT
&& GET_CODE (right) == EQ_ATTR_ALT)
{
exp = attr_alt_intersection (left, right);
return simplify_test_exp (exp, insn_code, insn_index);
}
/* If either side is an IOR and we have (eq_attr "alternative" ..")
present on both sides, apply the distributive law since this will
yield simplifications. */
if ((GET_CODE (left) == IOR || GET_CODE (right) == IOR)
&& compute_alternative_mask (left, IOR)
&& compute_alternative_mask (right, IOR))
{
if (GET_CODE (left) == IOR)
std::swap (left, right);
newexp = attr_rtx (IOR,
attr_rtx (AND, left, XEXP (right, 0)),
attr_rtx (AND, left, XEXP (right, 1)));
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
/* Try with the term on both sides. */
right = simplify_and_tree (right, &left, insn_code, insn_index);
if (left == XEXP (exp, 0) && right == XEXP (exp, 1))
left = simplify_and_tree (left, &right, insn_code, insn_index);
if (left == false_rtx || right == false_rtx)
return false_rtx;
else if (left == true_rtx)
{
return right;
}
else if (right == true_rtx)
{
return left;
}
/* See if all or all but one of the insn's alternatives are specified
in this tree. Optimize if so. */
if (GET_CODE (left) == NOT)
left_alt = (GET_CODE (XEXP (left, 0)) == EQ_ATTR
&& XSTR (XEXP (left, 0), 0) == alternative_name);
else
left_alt = (GET_CODE (left) == EQ_ATTR_ALT
&& XWINT (left, 1));
if (GET_CODE (right) == NOT)
right_alt = (GET_CODE (XEXP (right, 0)) == EQ_ATTR
&& XSTR (XEXP (right, 0), 0) == alternative_name);
else
right_alt = (GET_CODE (right) == EQ_ATTR_ALT
&& XWINT (right, 1));
if (insn_code >= 0
&& (GET_CODE (left) == AND
|| left_alt
|| GET_CODE (right) == AND
|| right_alt))
{
i = compute_alternative_mask (exp, AND);
if (i & ~insn_alternatives[insn_code])
fatal ("invalid alternative specified for pattern number %d",
insn_index);
/* If all alternatives are excluded, this is false. */
i ^= insn_alternatives[insn_code];
if (i == 0)
return false_rtx;
else if ((i & (i - 1)) == 0 && insn_alternatives[insn_code] > 1)
{
/* If just one excluded, AND a comparison with that one to the
front of the tree. The others will be eliminated by
optimization. We do not want to do this if the insn has one
alternative and we have tested none of them! */
left = make_alternative_compare (i);
right = simplify_and_tree (exp, &left, insn_code, insn_index);
newexp = attr_rtx (AND, left, right);
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
}
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
{
newexp = attr_rtx (AND, left, right);
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
break;
case IOR:
left = SIMPLIFY_TEST_EXP (XEXP (exp, 0), insn_code, insn_index);
if (left == true_rtx)
return true_rtx;
right = SIMPLIFY_TEST_EXP (XEXP (exp, 1), insn_code, insn_index);
if (right == true_rtx)
return true_rtx;
if (GET_CODE (left) == EQ_ATTR_ALT
&& GET_CODE (right) == EQ_ATTR_ALT)
{
exp = attr_alt_union (left, right);
return simplify_test_exp (exp, insn_code, insn_index);
}
right = simplify_or_tree (right, &left, insn_code, insn_index);
if (left == XEXP (exp, 0) && right == XEXP (exp, 1))
left = simplify_or_tree (left, &right, insn_code, insn_index);
if (right == true_rtx || left == true_rtx)
return true_rtx;
else if (left == false_rtx)
{
return right;
}
else if (right == false_rtx)
{
return left;
}
/* Test for simple cases where the distributive law is useful. I.e.,
convert (ior (and (x) (y))
(and (x) (z)))
to (and (x)
(ior (y) (z)))
*/
else if (GET_CODE (left) == AND && GET_CODE (right) == AND
&& attr_equal_p (XEXP (left, 0), XEXP (right, 0)))
{
newexp = attr_rtx (IOR, XEXP (left, 1), XEXP (right, 1));
left = XEXP (left, 0);
right = newexp;
newexp = attr_rtx (AND, left, right);
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
/* Similarly,
convert (ior (and (y) (x))
(and (z) (x)))
to (and (ior (y) (z))
(x))
Note that we want the common term to stay at the end.
*/
else if (GET_CODE (left) == AND && GET_CODE (right) == AND
&& attr_equal_p (XEXP (left, 1), XEXP (right, 1)))
{
newexp = attr_rtx (IOR, XEXP (left, 0), XEXP (right, 0));
left = newexp;
right = XEXP (right, 1);
newexp = attr_rtx (AND, left, right);
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
/* See if all or all but one of the insn's alternatives are specified
in this tree. Optimize if so. */
else if (insn_code >= 0
&& (GET_CODE (left) == IOR
|| (GET_CODE (left) == EQ_ATTR_ALT
&& !XWINT (left, 1))
|| (GET_CODE (left) == EQ_ATTR
&& XSTR (left, 0) == alternative_name)
|| GET_CODE (right) == IOR
|| (GET_CODE (right) == EQ_ATTR_ALT
&& !XWINT (right, 1))
|| (GET_CODE (right) == EQ_ATTR
&& XSTR (right, 0) == alternative_name)))
{
i = compute_alternative_mask (exp, IOR);
if (i & ~insn_alternatives[insn_code])
fatal ("invalid alternative specified for pattern number %d",
insn_index);
/* If all alternatives are included, this is true. */
i ^= insn_alternatives[insn_code];
if (i == 0)
return true_rtx;
else if ((i & (i - 1)) == 0 && insn_alternatives[insn_code] > 1)
{
/* If just one excluded, IOR a comparison with that one to the
front of the tree. The others will be eliminated by
optimization. We do not want to do this if the insn has one
alternative and we have tested none of them! */
left = make_alternative_compare (i);
right = simplify_and_tree (exp, &left, insn_code, insn_index);
newexp = attr_rtx (IOR, attr_rtx (NOT, left), right);
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
}
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
{
newexp = attr_rtx (IOR, left, right);
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
break;
case NOT:
if (GET_CODE (XEXP (exp, 0)) == NOT)
{
left = SIMPLIFY_TEST_EXP (XEXP (XEXP (exp, 0), 0),
insn_code, insn_index);
return left;
}
left = SIMPLIFY_TEST_EXP (XEXP (exp, 0), insn_code, insn_index);
if (GET_CODE (left) == NOT)
return XEXP (left, 0);
if (left == false_rtx)
return true_rtx;
if (left == true_rtx)
return false_rtx;
if (GET_CODE (left) == EQ_ATTR_ALT)
{
exp = attr_alt_complement (left);
return simplify_test_exp (exp, insn_code, insn_index);
}
/* Try to apply De`Morgan's laws. */
if (GET_CODE (left) == IOR)
{
newexp = attr_rtx (AND,
attr_rtx (NOT, XEXP (left, 0)),
attr_rtx (NOT, XEXP (left, 1)));
newexp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
else if (GET_CODE (left) == AND)
{
newexp = attr_rtx (IOR,
attr_rtx (NOT, XEXP (left, 0)),
attr_rtx (NOT, XEXP (left, 1)));
newexp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
}
else if (left != XEXP (exp, 0))
{
newexp = attr_rtx (NOT, left);
}
break;
case EQ_ATTR_ALT:
if (!XWINT (exp, 0))
return XWINT (exp, 1) ? true_rtx : false_rtx;
break;
case EQ_ATTR:
if (XSTR (exp, 0) == alternative_name)
{
newexp = mk_attr_alt (((alternative_mask) 1)
<< atoi (XSTR (exp, 1)));
break;
}
/* Look at the value for this insn code in the specified attribute.
We normally can replace this comparison with the condition that
would give this insn the values being tested for. */
if (insn_code >= 0
&& (attr = find_attr (&XSTR (exp, 0), 0)) != NULL)
{
rtx x;
av = NULL;
if (insn_code_values)
{
for (iv = insn_code_values[insn_code]; iv; iv = iv->next)
if (iv->attr == attr)
{
av = iv->av;
break;
}
}
else
{
for (av = attr->first_value; av; av = av->next)
for (ie = av->first_insn; ie; ie = ie->next)
if (ie->def->insn_code == insn_code)
goto got_av;
}
if (av)
{
got_av:
x = evaluate_eq_attr (exp, attr, av->value,
insn_code, insn_index);
x = SIMPLIFY_TEST_EXP (x, insn_code, insn_index);
if (attr_rtx_cost (x) < 7)
return x;
}
}
break;
default:
break;
}
/* We have already simplified this expression. Simplifying it again
won't buy anything unless we weren't given a valid insn code
to process (i.e., we are canonicalizing something.). */
if (insn_code != -2
&& ! ATTR_IND_SIMPLIFIED_P (newexp))
return copy_rtx_unchanging (newexp);
return newexp;
}
/* Return 1 if any EQ_ATTR subexpression of P refers to ATTR,
otherwise return 0. */
static int
tests_attr_p (rtx p, class attr_desc *attr)
{
const char *fmt;
int i, ie, j, je;
if (GET_CODE (p) == EQ_ATTR)
{
if (XSTR (p, 0) != attr->name)
return 0;
return 1;
}
fmt = GET_RTX_FORMAT (GET_CODE (p));
ie = GET_RTX_LENGTH (GET_CODE (p));
for (i = 0; i < ie; i++)
{
switch (*fmt++)
{
case 'e':
if (tests_attr_p (XEXP (p, i), attr))
return 1;
break;
case 'E':
je = XVECLEN (p, i);
for (j = 0; j < je; ++j)
if (tests_attr_p (XVECEXP (p, i, j), attr))
return 1;
break;
}
}
return 0;
}
/* Calculate a topological sorting of all attributes so that
all attributes only depend on attributes in front of it.
Place the result in *RET (which is a pointer to an array of
attr_desc pointers), and return the size of that array. */
static int
get_attr_order (class attr_desc ***ret)
{
int i, j;
int num = 0;
class attr_desc *attr;
class attr_desc **all, **sorted;
char *handled;
for (i = 0; i < MAX_ATTRS_INDEX; i++)
for (attr = attrs[i]; attr; attr = attr->next)
num++;
all = XNEWVEC (class attr_desc *, num);
sorted = XNEWVEC (class attr_desc *, num);
handled = XCNEWVEC (char, num);
num = 0;
for (i = 0; i < MAX_ATTRS_INDEX; i++)
for (attr = attrs[i]; attr; attr = attr->next)
all[num++] = attr;
j = 0;
for (i = 0; i < num; i++)
if (all[i]->is_const)
handled[i] = 1, sorted[j++] = all[i];
/* We have only few attributes hence we can live with the inner
loop being O(n^2), unlike the normal fast variants of topological
sorting. */
while (j < num)
{
for (i = 0; i < num; i++)
if (!handled[i])
{
/* Let's see if I depends on anything interesting. */
int k;
for (k = 0; k < num; k++)
if (!handled[k])
{
struct attr_value *av;
for (av = all[i]->first_value; av; av = av->next)
if (av->num_insns != 0)
if (tests_attr_p (av->value, all[k]))
break;
if (av)
/* Something in I depends on K. */
break;
}
if (k == num)
{
/* Nothing in I depended on anything intersting, so
it's done. */
handled[i] = 1;
sorted[j++] = all[i];
}
}
}
if (DEBUG)
for (j = 0; j < num; j++)
{
class attr_desc *attr2;
struct attr_value *av;
attr = sorted[j];
fprintf (stderr, "%s depends on: ", attr->name);
for (i = 0; i < MAX_ATTRS_INDEX; ++i)
for (attr2 = attrs[i]; attr2; attr2 = attr2->next)
if (!attr2->is_const)
for (av = attr->first_value; av; av = av->next)
if (av->num_insns != 0)
if (tests_attr_p (av->value, attr2))
{
fprintf (stderr, "%s, ", attr2->name);
break;
}
fprintf (stderr, "\n");
}
free (all);
*ret = sorted;
return num;
}
/* Optimize the attribute lists by seeing if we can determine conditional
values from the known values of other attributes. This will save subroutine
calls during the compilation. NUM_INSN_CODES is the number of unique
instruction codes. */
static void
optimize_attrs (int num_insn_codes)
{
class attr_desc *attr;
struct attr_value *av;
struct insn_ent *ie;
rtx newexp;
int i;
struct attr_value_list *ivbuf;
struct attr_value_list *iv;
class attr_desc **topsort;
int topnum;
/* For each insn code, make a list of all the insn_ent's for it,
for all values for all attributes. */
if (num_insn_ents == 0)
return;
/* Make 2 extra elements, for "code" values -2 and -1. */
insn_code_values = XCNEWVEC (struct attr_value_list *, num_insn_codes + 2);
/* Offset the table address so we can index by -2 or -1. */
insn_code_values += 2;
iv = ivbuf = XNEWVEC (struct attr_value_list, num_insn_ents);
/* Create the chain of insn*attr values such that we see dependend
attributes after their dependencies. As we use a stack via the
next pointers start from the end of the topological order. */
topnum = get_attr_order (&topsort);
for (i = topnum - 1; i >= 0; i--)
for (av = topsort[i]->first_value; av; av = av->next)
for (ie = av->first_insn; ie; ie = ie->next)
{
iv->attr = topsort[i];
iv->av = av;
iv->ie = ie;
iv->next = insn_code_values[ie->def->insn_code];
insn_code_values[ie->def->insn_code] = iv;
iv++;
}
free (topsort);
/* Sanity check on num_insn_ents. */
gcc_assert (iv == ivbuf + num_insn_ents);
/* Process one insn code at a time. */
for (i = -2; i < num_insn_codes; i++)
{
/* Clear the ATTR_CURR_SIMPLIFIED_P flag everywhere relevant.
We use it to mean "already simplified for this insn". */
for (iv = insn_code_values[i]; iv; iv = iv->next)
clear_struct_flag (iv->av->value);
for (iv = insn_code_values[i]; iv; iv = iv->next)
{
struct obstack *old = rtl_obstack;
attr = iv->attr;
av = iv->av;
ie = iv->ie;
if (GET_CODE (av->value) != COND)
continue;
rtl_obstack = temp_obstack;
newexp = av->value;
while (GET_CODE (newexp) == COND)
{
rtx newexp2 = simplify_cond (newexp, ie->def->insn_code