| // go-gcc.cc -- Go frontend to gcc IR. |
| // Copyright (C) 2011-2020 Free Software Foundation, Inc. |
| // Contributed by Ian Lance Taylor, Google. |
| |
| // This file is part of GCC. |
| |
| // GCC is free software; you can redistribute it and/or modify it under |
| // the terms of the GNU General Public License as published by the Free |
| // Software Foundation; either version 3, or (at your option) any later |
| // version. |
| |
| // GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| // for more details. |
| |
| // You should have received a copy of the GNU General Public License |
| // along with GCC; see the file COPYING3. If not see |
| // <http://www.gnu.org/licenses/>. |
| |
| #include "go-system.h" |
| |
| // This has to be included outside of extern "C", so we have to |
| // include it here before tree.h includes it later. |
| #include <gmp.h> |
| |
| #include "tree.h" |
| #include "opts.h" |
| #include "fold-const.h" |
| #include "stringpool.h" |
| #include "stor-layout.h" |
| #include "varasm.h" |
| #include "tree-iterator.h" |
| #include "tm.h" |
| #include "function.h" |
| #include "cgraph.h" |
| #include "convert.h" |
| #include "gimple-expr.h" |
| #include "gimplify.h" |
| #include "langhooks.h" |
| #include "toplev.h" |
| #include "output.h" |
| #include "realmpfr.h" |
| #include "builtins.h" |
| |
| #include "go-c.h" |
| #include "go-gcc.h" |
| |
| #include "gogo.h" |
| #include "backend.h" |
| |
| // A class wrapping a tree. |
| |
| class Gcc_tree |
| { |
| public: |
| Gcc_tree(tree t) |
| : t_(t) |
| { } |
| |
| tree |
| get_tree() const |
| { return this->t_; } |
| |
| void |
| set_tree(tree t) |
| { this->t_ = t; } |
| |
| private: |
| tree t_; |
| }; |
| |
| // In gcc, types, expressions, and statements are all trees. |
| class Btype : public Gcc_tree |
| { |
| public: |
| Btype(tree t) |
| : Gcc_tree(t) |
| { } |
| }; |
| |
| class Bexpression : public Gcc_tree |
| { |
| public: |
| Bexpression(tree t) |
| : Gcc_tree(t) |
| { } |
| }; |
| |
| class Bstatement : public Gcc_tree |
| { |
| public: |
| Bstatement(tree t) |
| : Gcc_tree(t) |
| { } |
| }; |
| |
| class Bfunction : public Gcc_tree |
| { |
| public: |
| Bfunction(tree t) |
| : Gcc_tree(t) |
| { } |
| }; |
| |
| class Bblock : public Gcc_tree |
| { |
| public: |
| Bblock(tree t) |
| : Gcc_tree(t) |
| { } |
| }; |
| |
| class Blabel : public Gcc_tree |
| { |
| public: |
| Blabel(tree t) |
| : Gcc_tree(t) |
| { } |
| }; |
| |
| // Bvariable is a bit more complicated, because of zero-sized types. |
| // The GNU linker does not permit dynamic variables with zero size. |
| // When we see such a variable, we generate a version of the type with |
| // non-zero size. However, when referring to the global variable, we |
| // want an expression of zero size; otherwise, if, say, the global |
| // variable is passed to a function, we will be passing a |
| // non-zero-sized value to a zero-sized value, which can lead to a |
| // miscompilation. |
| |
| class Bvariable |
| { |
| public: |
| Bvariable(tree t) |
| : t_(t), orig_type_(NULL) |
| { } |
| |
| Bvariable(tree t, tree orig_type) |
| : t_(t), orig_type_(orig_type) |
| { } |
| |
| // Get the tree for use as an expression. |
| tree |
| get_tree(Location) const; |
| |
| // Get the actual decl; |
| tree |
| get_decl() const |
| { return this->t_; } |
| |
| private: |
| tree t_; |
| tree orig_type_; |
| }; |
| |
| // Get the tree of a variable for use as an expression. If this is a |
| // zero-sized global, create an expression that refers to the decl but |
| // has zero size. |
| tree |
| Bvariable::get_tree(Location location) const |
| { |
| if (this->orig_type_ == NULL |
| || this->t_ == error_mark_node |
| || TREE_TYPE(this->t_) == this->orig_type_) |
| return this->t_; |
| // Return *(orig_type*)&decl. */ |
| tree t = build_fold_addr_expr_loc(location.gcc_location(), this->t_); |
| t = fold_build1_loc(location.gcc_location(), NOP_EXPR, |
| build_pointer_type(this->orig_type_), t); |
| return build_fold_indirect_ref_loc(location.gcc_location(), t); |
| } |
| |
| // This file implements the interface between the Go frontend proper |
| // and the gcc IR. This implements specific instantiations of |
| // abstract classes defined by the Go frontend proper. The Go |
| // frontend proper class methods of these classes to generate the |
| // backend representation. |
| |
| class Gcc_backend : public Backend |
| { |
| public: |
| Gcc_backend(); |
| |
| // Types. |
| |
| Btype* |
| error_type() |
| { return this->make_type(error_mark_node); } |
| |
| Btype* |
| void_type() |
| { return this->make_type(void_type_node); } |
| |
| Btype* |
| bool_type() |
| { return this->make_type(boolean_type_node); } |
| |
| Btype* |
| integer_type(bool, int); |
| |
| Btype* |
| float_type(int); |
| |
| Btype* |
| complex_type(int); |
| |
| Btype* |
| pointer_type(Btype*); |
| |
| Btype* |
| function_type(const Btyped_identifier&, |
| const std::vector<Btyped_identifier>&, |
| const std::vector<Btyped_identifier>&, |
| Btype*, |
| const Location); |
| |
| Btype* |
| struct_type(const std::vector<Btyped_identifier>&); |
| |
| Btype* |
| array_type(Btype*, Bexpression*); |
| |
| Btype* |
| placeholder_pointer_type(const std::string&, Location, bool); |
| |
| bool |
| set_placeholder_pointer_type(Btype*, Btype*); |
| |
| bool |
| set_placeholder_function_type(Btype*, Btype*); |
| |
| Btype* |
| placeholder_struct_type(const std::string&, Location); |
| |
| bool |
| set_placeholder_struct_type(Btype* placeholder, |
| const std::vector<Btyped_identifier>&); |
| |
| Btype* |
| placeholder_array_type(const std::string&, Location); |
| |
| bool |
| set_placeholder_array_type(Btype*, Btype*, Bexpression*); |
| |
| Btype* |
| named_type(const std::string&, Btype*, Location); |
| |
| Btype* |
| circular_pointer_type(Btype*, bool); |
| |
| bool |
| is_circular_pointer_type(Btype*); |
| |
| int64_t |
| type_size(Btype*); |
| |
| int64_t |
| type_alignment(Btype*); |
| |
| int64_t |
| type_field_alignment(Btype*); |
| |
| int64_t |
| type_field_offset(Btype*, size_t index); |
| |
| // Expressions. |
| |
| Bexpression* |
| zero_expression(Btype*); |
| |
| Bexpression* |
| error_expression() |
| { return this->make_expression(error_mark_node); } |
| |
| Bexpression* |
| nil_pointer_expression() |
| { return this->make_expression(null_pointer_node); } |
| |
| Bexpression* |
| var_expression(Bvariable* var, Location); |
| |
| Bexpression* |
| indirect_expression(Btype*, Bexpression* expr, bool known_valid, Location); |
| |
| Bexpression* |
| named_constant_expression(Btype* btype, const std::string& name, |
| Bexpression* val, Location); |
| |
| Bexpression* |
| integer_constant_expression(Btype* btype, mpz_t val); |
| |
| Bexpression* |
| float_constant_expression(Btype* btype, mpfr_t val); |
| |
| Bexpression* |
| complex_constant_expression(Btype* btype, mpc_t val); |
| |
| Bexpression* |
| string_constant_expression(const std::string& val); |
| |
| Bexpression* |
| boolean_constant_expression(bool val); |
| |
| Bexpression* |
| real_part_expression(Bexpression* bcomplex, Location); |
| |
| Bexpression* |
| imag_part_expression(Bexpression* bcomplex, Location); |
| |
| Bexpression* |
| complex_expression(Bexpression* breal, Bexpression* bimag, Location); |
| |
| Bexpression* |
| convert_expression(Btype* type, Bexpression* expr, Location); |
| |
| Bexpression* |
| function_code_expression(Bfunction*, Location); |
| |
| Bexpression* |
| address_expression(Bexpression*, Location); |
| |
| Bexpression* |
| struct_field_expression(Bexpression*, size_t, Location); |
| |
| Bexpression* |
| compound_expression(Bstatement*, Bexpression*, Location); |
| |
| Bexpression* |
| conditional_expression(Bfunction*, Btype*, Bexpression*, Bexpression*, |
| Bexpression*, Location); |
| |
| Bexpression* |
| unary_expression(Operator, Bexpression*, Location); |
| |
| Bexpression* |
| binary_expression(Operator, Bexpression*, Bexpression*, Location); |
| |
| Bexpression* |
| constructor_expression(Btype*, const std::vector<Bexpression*>&, Location); |
| |
| Bexpression* |
| array_constructor_expression(Btype*, const std::vector<unsigned long>&, |
| const std::vector<Bexpression*>&, Location); |
| |
| Bexpression* |
| pointer_offset_expression(Bexpression* base, Bexpression* offset, Location); |
| |
| Bexpression* |
| array_index_expression(Bexpression* array, Bexpression* index, Location); |
| |
| Bexpression* |
| call_expression(Bfunction* caller, Bexpression* fn, |
| const std::vector<Bexpression*>& args, |
| Bexpression* static_chain, Location); |
| |
| // Statements. |
| |
| Bstatement* |
| error_statement() |
| { return this->make_statement(error_mark_node); } |
| |
| Bstatement* |
| expression_statement(Bfunction*, Bexpression*); |
| |
| Bstatement* |
| init_statement(Bfunction*, Bvariable* var, Bexpression* init); |
| |
| Bstatement* |
| assignment_statement(Bfunction*, Bexpression* lhs, Bexpression* rhs, |
| Location); |
| |
| Bstatement* |
| return_statement(Bfunction*, const std::vector<Bexpression*>&, |
| Location); |
| |
| Bstatement* |
| if_statement(Bfunction*, Bexpression* condition, Bblock* then_block, |
| Bblock* else_block, Location); |
| |
| Bstatement* |
| switch_statement(Bfunction* function, Bexpression* value, |
| const std::vector<std::vector<Bexpression*> >& cases, |
| const std::vector<Bstatement*>& statements, |
| Location); |
| |
| Bstatement* |
| compound_statement(Bstatement*, Bstatement*); |
| |
| Bstatement* |
| statement_list(const std::vector<Bstatement*>&); |
| |
| Bstatement* |
| exception_handler_statement(Bstatement* bstat, Bstatement* except_stmt, |
| Bstatement* finally_stmt, Location); |
| |
| // Blocks. |
| |
| Bblock* |
| block(Bfunction*, Bblock*, const std::vector<Bvariable*>&, |
| Location, Location); |
| |
| void |
| block_add_statements(Bblock*, const std::vector<Bstatement*>&); |
| |
| Bstatement* |
| block_statement(Bblock*); |
| |
| // Variables. |
| |
| Bvariable* |
| error_variable() |
| { return new Bvariable(error_mark_node); } |
| |
| Bvariable* |
| global_variable(const std::string& var_name, |
| const std::string& asm_name, |
| Btype* btype, |
| bool is_external, |
| bool is_hidden, |
| bool in_unique_section, |
| Location location); |
| |
| void |
| global_variable_set_init(Bvariable*, Bexpression*); |
| |
| Bvariable* |
| local_variable(Bfunction*, const std::string&, Btype*, Bvariable*, bool, |
| Location); |
| |
| Bvariable* |
| parameter_variable(Bfunction*, const std::string&, Btype*, bool, |
| Location); |
| |
| Bvariable* |
| static_chain_variable(Bfunction*, const std::string&, Btype*, Location); |
| |
| Bvariable* |
| temporary_variable(Bfunction*, Bblock*, Btype*, Bexpression*, bool, |
| Location, Bstatement**); |
| |
| Bvariable* |
| implicit_variable(const std::string&, const std::string&, Btype*, |
| bool, bool, bool, int64_t); |
| |
| void |
| implicit_variable_set_init(Bvariable*, const std::string&, Btype*, |
| bool, bool, bool, Bexpression*); |
| |
| Bvariable* |
| implicit_variable_reference(const std::string&, const std::string&, Btype*); |
| |
| Bvariable* |
| immutable_struct(const std::string&, const std::string&, |
| bool, bool, Btype*, Location); |
| |
| void |
| immutable_struct_set_init(Bvariable*, const std::string&, bool, bool, Btype*, |
| Location, Bexpression*); |
| |
| Bvariable* |
| immutable_struct_reference(const std::string&, const std::string&, |
| Btype*, Location); |
| |
| // Labels. |
| |
| Blabel* |
| label(Bfunction*, const std::string& name, Location); |
| |
| Bstatement* |
| label_definition_statement(Blabel*); |
| |
| Bstatement* |
| goto_statement(Blabel*, Location); |
| |
| Bexpression* |
| label_address(Blabel*, Location); |
| |
| // Functions. |
| |
| Bfunction* |
| error_function() |
| { return this->make_function(error_mark_node); } |
| |
| Bfunction* |
| function(Btype* fntype, const std::string& name, const std::string& asm_name, |
| unsigned int flags, Location); |
| |
| Bstatement* |
| function_defer_statement(Bfunction* function, Bexpression* undefer, |
| Bexpression* defer, Location); |
| |
| bool |
| function_set_parameters(Bfunction* function, const std::vector<Bvariable*>&); |
| |
| bool |
| function_set_body(Bfunction* function, Bstatement* code_stmt); |
| |
| Bfunction* |
| lookup_builtin(const std::string&); |
| |
| void |
| write_global_definitions(const std::vector<Btype*>&, |
| const std::vector<Bexpression*>&, |
| const std::vector<Bfunction*>&, |
| const std::vector<Bvariable*>&); |
| |
| void |
| write_export_data(const char* bytes, unsigned int size); |
| |
| |
| private: |
| // Make a Bexpression from a tree. |
| Bexpression* |
| make_expression(tree t) |
| { return new Bexpression(t); } |
| |
| // Make a Bstatement from a tree. |
| Bstatement* |
| make_statement(tree t) |
| { return new Bstatement(t); } |
| |
| // Make a Btype from a tree. |
| Btype* |
| make_type(tree t) |
| { return new Btype(t); } |
| |
| Bfunction* |
| make_function(tree t) |
| { return new Bfunction(t); } |
| |
| Btype* |
| fill_in_struct(Btype*, const std::vector<Btyped_identifier>&); |
| |
| Btype* |
| fill_in_array(Btype*, Btype*, Bexpression*); |
| |
| tree |
| non_zero_size_type(tree); |
| |
| tree |
| convert_tree(tree, tree, Location); |
| |
| private: |
| static const int builtin_const = 1 << 0; |
| static const int builtin_noreturn = 1 << 1; |
| static const int builtin_novops = 1 << 2; |
| |
| void |
| define_builtin(built_in_function bcode, const char* name, const char* libname, |
| tree fntype, int flags); |
| |
| // A mapping of the GCC built-ins exposed to GCCGo. |
| std::map<std::string, Bfunction*> builtin_functions_; |
| }; |
| |
| // A helper function to create a GCC identifier from a C++ string. |
| |
| static inline tree |
| get_identifier_from_string(const std::string& str) |
| { |
| return get_identifier_with_length(str.data(), str.length()); |
| } |
| |
| // Define the built-in functions that are exposed to GCCGo. |
| |
| Gcc_backend::Gcc_backend() |
| { |
| /* We need to define the fetch_and_add functions, since we use them |
| for ++ and --. */ |
| tree t = this->integer_type(true, BITS_PER_UNIT)->get_tree(); |
| tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE)); |
| this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_1, "__sync_fetch_and_add_1", |
| NULL, build_function_type_list(t, p, t, NULL_TREE), 0); |
| |
| t = this->integer_type(true, BITS_PER_UNIT * 2)->get_tree(); |
| p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE)); |
| this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_2, "__sync_fetch_and_add_2", |
| NULL, build_function_type_list(t, p, t, NULL_TREE), 0); |
| |
| t = this->integer_type(true, BITS_PER_UNIT * 4)->get_tree(); |
| p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE)); |
| this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_4, "__sync_fetch_and_add_4", |
| NULL, build_function_type_list(t, p, t, NULL_TREE), 0); |
| |
| t = this->integer_type(true, BITS_PER_UNIT * 8)->get_tree(); |
| p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE)); |
| this->define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_8, "__sync_fetch_and_add_8", |
| NULL, build_function_type_list(t, p, t, NULL_TREE), 0); |
| |
| // We use __builtin_expect for magic import functions. |
| this->define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL, |
| build_function_type_list(long_integer_type_node, |
| long_integer_type_node, |
| long_integer_type_node, |
| NULL_TREE), |
| builtin_const); |
| |
| // We use __builtin_memcmp for struct comparisons. |
| this->define_builtin(BUILT_IN_MEMCMP, "__builtin_memcmp", "memcmp", |
| build_function_type_list(integer_type_node, |
| const_ptr_type_node, |
| const_ptr_type_node, |
| size_type_node, |
| NULL_TREE), |
| 0); |
| |
| // We use __builtin_memmove for copying data. |
| this->define_builtin(BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove", |
| build_function_type_list(void_type_node, |
| ptr_type_node, |
| const_ptr_type_node, |
| size_type_node, |
| NULL_TREE), |
| 0); |
| |
| // We use __builtin_memset for zeroing data. |
| this->define_builtin(BUILT_IN_MEMSET, "__builtin_memset", "memset", |
| build_function_type_list(void_type_node, |
| ptr_type_node, |
| integer_type_node, |
| size_type_node, |
| NULL_TREE), |
| 0); |
| |
| // Used by runtime/internal/sys and math/bits. |
| this->define_builtin(BUILT_IN_CTZ, "__builtin_ctz", "ctz", |
| build_function_type_list(integer_type_node, |
| unsigned_type_node, |
| NULL_TREE), |
| builtin_const); |
| this->define_builtin(BUILT_IN_CTZLL, "__builtin_ctzll", "ctzll", |
| build_function_type_list(integer_type_node, |
| long_long_unsigned_type_node, |
| NULL_TREE), |
| builtin_const); |
| this->define_builtin(BUILT_IN_CLZ, "__builtin_clz", "clz", |
| build_function_type_list(integer_type_node, |
| unsigned_type_node, |
| NULL_TREE), |
| builtin_const); |
| this->define_builtin(BUILT_IN_CLZLL, "__builtin_clzll", "clzll", |
| build_function_type_list(integer_type_node, |
| long_long_unsigned_type_node, |
| NULL_TREE), |
| builtin_const); |
| this->define_builtin(BUILT_IN_POPCOUNT, "__builtin_popcount", "popcount", |
| build_function_type_list(integer_type_node, |
| unsigned_type_node, |
| NULL_TREE), |
| builtin_const); |
| this->define_builtin(BUILT_IN_POPCOUNTLL, "__builtin_popcountll", "popcountll", |
| build_function_type_list(integer_type_node, |
| long_long_unsigned_type_node, |
| NULL_TREE), |
| builtin_const); |
| this->define_builtin(BUILT_IN_BSWAP16, "__builtin_bswap16", "bswap16", |
| build_function_type_list(uint16_type_node, |
| uint16_type_node, |
| NULL_TREE), |
| builtin_const); |
| this->define_builtin(BUILT_IN_BSWAP32, "__builtin_bswap32", "bswap32", |
| build_function_type_list(uint32_type_node, |
| uint32_type_node, |
| NULL_TREE), |
| builtin_const); |
| this->define_builtin(BUILT_IN_BSWAP64, "__builtin_bswap64", "bswap64", |
| build_function_type_list(uint64_type_node, |
| uint64_type_node, |
| NULL_TREE), |
| builtin_const); |
| |
| // We provide some functions for the math library. |
| tree math_function_type = build_function_type_list(double_type_node, |
| double_type_node, |
| NULL_TREE); |
| tree math_function_type_long = |
| build_function_type_list(long_double_type_node, long_double_type_node, |
| NULL_TREE); |
| tree math_function_type_two = build_function_type_list(double_type_node, |
| double_type_node, |
| double_type_node, |
| NULL_TREE); |
| tree math_function_type_long_two = |
| build_function_type_list(long_double_type_node, long_double_type_node, |
| long_double_type_node, NULL_TREE); |
| this->define_builtin(BUILT_IN_ACOS, "__builtin_acos", "acos", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_ACOSL, "__builtin_acosl", "acosl", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_ASIN, "__builtin_asin", "asin", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_ASINL, "__builtin_asinl", "asinl", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_ATAN, "__builtin_atan", "atan", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_ATANL, "__builtin_atanl", "atanl", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_ATAN2, "__builtin_atan2", "atan2", |
| math_function_type_two, builtin_const); |
| this->define_builtin(BUILT_IN_ATAN2L, "__builtin_atan2l", "atan2l", |
| math_function_type_long_two, builtin_const); |
| this->define_builtin(BUILT_IN_CEIL, "__builtin_ceil", "ceil", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_CEILL, "__builtin_ceill", "ceill", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_COS, "__builtin_cos", "cos", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_COSL, "__builtin_cosl", "cosl", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_EXP, "__builtin_exp", "exp", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_EXPL, "__builtin_expl", "expl", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_EXPM1, "__builtin_expm1", "expm1", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_EXPM1L, "__builtin_expm1l", "expm1l", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_FABS, "__builtin_fabs", "fabs", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_FABSL, "__builtin_fabsl", "fabsl", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_FLOOR, "__builtin_floor", "floor", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_FLOORL, "__builtin_floorl", "floorl", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_FMOD, "__builtin_fmod", "fmod", |
| math_function_type_two, builtin_const); |
| this->define_builtin(BUILT_IN_FMODL, "__builtin_fmodl", "fmodl", |
| math_function_type_long_two, builtin_const); |
| this->define_builtin(BUILT_IN_LDEXP, "__builtin_ldexp", "ldexp", |
| build_function_type_list(double_type_node, |
| double_type_node, |
| integer_type_node, |
| NULL_TREE), |
| builtin_const); |
| this->define_builtin(BUILT_IN_LDEXPL, "__builtin_ldexpl", "ldexpl", |
| build_function_type_list(long_double_type_node, |
| long_double_type_node, |
| integer_type_node, |
| NULL_TREE), |
| builtin_const); |
| this->define_builtin(BUILT_IN_LOG, "__builtin_log", "log", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_LOGL, "__builtin_logl", "logl", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_LOG1P, "__builtin_log1p", "log1p", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_LOG1PL, "__builtin_log1pl", "log1pl", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_LOG10, "__builtin_log10", "log10", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_LOG10L, "__builtin_log10l", "log10l", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_LOG2, "__builtin_log2", "log2", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_LOG2L, "__builtin_log2l", "log2l", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_SIN, "__builtin_sin", "sin", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_SINL, "__builtin_sinl", "sinl", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_TAN, "__builtin_tan", "tan", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_TANL, "__builtin_tanl", "tanl", |
| math_function_type_long, builtin_const); |
| this->define_builtin(BUILT_IN_TRUNC, "__builtin_trunc", "trunc", |
| math_function_type, builtin_const); |
| this->define_builtin(BUILT_IN_TRUNCL, "__builtin_truncl", "truncl", |
| math_function_type_long, builtin_const); |
| |
| // We use __builtin_return_address in the thunk we build for |
| // functions which call recover, and for runtime.getcallerpc. |
| t = build_function_type_list(ptr_type_node, unsigned_type_node, NULL_TREE); |
| this->define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", |
| NULL, t, 0); |
| |
| // The runtime calls __builtin_dwarf_cfa for runtime.getcallersp. |
| t = build_function_type_list(ptr_type_node, NULL_TREE); |
| this->define_builtin(BUILT_IN_DWARF_CFA, "__builtin_dwarf_cfa", |
| NULL, t, 0); |
| |
| // The runtime calls __builtin_extract_return_addr when recording |
| // the address to which a function returns. |
| this->define_builtin(BUILT_IN_EXTRACT_RETURN_ADDR, |
| "__builtin_extract_return_addr", NULL, |
| build_function_type_list(ptr_type_node, |
| ptr_type_node, |
| NULL_TREE), |
| 0); |
| |
| // The compiler uses __builtin_trap for some exception handling |
| // cases. |
| this->define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL, |
| build_function_type(void_type_node, void_list_node), |
| builtin_noreturn); |
| |
| // The runtime uses __builtin_prefetch. |
| this->define_builtin(BUILT_IN_PREFETCH, "__builtin_prefetch", NULL, |
| build_varargs_function_type_list(void_type_node, |
| const_ptr_type_node, |
| NULL_TREE), |
| builtin_novops); |
| |
| // The compiler uses __builtin_unreachable for cases that cannot |
| // occur. |
| this->define_builtin(BUILT_IN_UNREACHABLE, "__builtin_unreachable", NULL, |
| build_function_type(void_type_node, void_list_node), |
| builtin_const | builtin_noreturn); |
| |
| // We provide some atomic functions. |
| t = build_function_type_list(uint32_type_node, |
| ptr_type_node, |
| integer_type_node, |
| NULL_TREE); |
| this->define_builtin(BUILT_IN_ATOMIC_LOAD_4, "__atomic_load_4", NULL, |
| t, 0); |
| |
| t = build_function_type_list(uint64_type_node, |
| ptr_type_node, |
| integer_type_node, |
| NULL_TREE); |
| this->define_builtin(BUILT_IN_ATOMIC_LOAD_8, "__atomic_load_8", NULL, |
| t, 0); |
| |
| t = build_function_type_list(void_type_node, |
| ptr_type_node, |
| uint32_type_node, |
| integer_type_node, |
| NULL_TREE); |
| this->define_builtin(BUILT_IN_ATOMIC_STORE_4, "__atomic_store_4", NULL, |
| t, 0); |
| |
| t = build_function_type_list(void_type_node, |
| ptr_type_node, |
| uint64_type_node, |
| integer_type_node, |
| NULL_TREE); |
| this->define_builtin(BUILT_IN_ATOMIC_STORE_8, "__atomic_store_8", NULL, |
| t, 0); |
| |
| t = build_function_type_list(uint32_type_node, |
| ptr_type_node, |
| uint32_type_node, |
| integer_type_node, |
| NULL_TREE); |
| this->define_builtin(BUILT_IN_ATOMIC_EXCHANGE_4, "__atomic_exchange_4", NULL, |
| t, 0); |
| |
| t = build_function_type_list(uint64_type_node, |
| ptr_type_node, |
| uint64_type_node, |
| integer_type_node, |
| NULL_TREE); |
| this->define_builtin(BUILT_IN_ATOMIC_EXCHANGE_8, "__atomic_exchange_8", NULL, |
| t, 0); |
| |
| t = build_function_type_list(boolean_type_node, |
| ptr_type_node, |
| ptr_type_node, |
| uint32_type_node, |
| boolean_type_node, |
| integer_type_node, |
| integer_type_node, |
| NULL_TREE); |
| this->define_builtin(BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4, |
| "__atomic_compare_exchange_4", NULL, |
| t, 0); |
| |
| t = build_function_type_list(boolean_type_node, |
| ptr_type_node, |
| ptr_type_node, |
| uint64_type_node, |
| boolean_type_node, |
| integer_type_node, |
| integer_type_node, |
| NULL_TREE); |
| this->define_builtin(BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8, |
| "__atomic_compare_exchange_8", NULL, |
| t, 0); |
| |
| t = build_function_type_list(uint32_type_node, |
| ptr_type_node, |
| uint32_type_node, |
| integer_type_node, |
| NULL_TREE); |
| this->define_builtin(BUILT_IN_ATOMIC_ADD_FETCH_4, "__atomic_add_fetch_4", NULL, |
| t, 0); |
| |
| t = build_function_type_list(uint64_type_node, |
| ptr_type_node, |
| uint64_type_node, |
| integer_type_node, |
| NULL_TREE); |
| this->define_builtin(BUILT_IN_ATOMIC_ADD_FETCH_8, "__atomic_add_fetch_8", NULL, |
| t, 0); |
| |
| t = build_function_type_list(unsigned_char_type_node, |
| ptr_type_node, |
| unsigned_char_type_node, |
| integer_type_node, |
| NULL_TREE); |
| this->define_builtin(BUILT_IN_ATOMIC_AND_FETCH_1, "__atomic_and_fetch_1", NULL, |
| t, 0); |
| this->define_builtin(BUILT_IN_ATOMIC_FETCH_AND_1, "__atomic_fetch_and_1", NULL, |
| t, 0); |
| |
| t = build_function_type_list(unsigned_char_type_node, |
| ptr_type_node, |
| unsigned_char_type_node, |
| integer_type_node, |
| NULL_TREE); |
| this->define_builtin(BUILT_IN_ATOMIC_OR_FETCH_1, "__atomic_or_fetch_1", NULL, |
| t, 0); |
| this->define_builtin(BUILT_IN_ATOMIC_FETCH_OR_1, "__atomic_fetch_or_1", NULL, |
| t, 0); |
| } |
| |
| // Get an unnamed integer type. |
| |
| Btype* |
| Gcc_backend::integer_type(bool is_unsigned, int bits) |
| { |
| tree type; |
| if (is_unsigned) |
| { |
| if (bits == INT_TYPE_SIZE) |
| type = unsigned_type_node; |
| else if (bits == CHAR_TYPE_SIZE) |
| type = unsigned_char_type_node; |
| else if (bits == SHORT_TYPE_SIZE) |
| type = short_unsigned_type_node; |
| else if (bits == LONG_TYPE_SIZE) |
| type = long_unsigned_type_node; |
| else if (bits == LONG_LONG_TYPE_SIZE) |
| type = long_long_unsigned_type_node; |
| else |
| type = make_unsigned_type(bits); |
| } |
| else |
| { |
| if (bits == INT_TYPE_SIZE) |
| type = integer_type_node; |
| else if (bits == CHAR_TYPE_SIZE) |
| type = signed_char_type_node; |
| else if (bits == SHORT_TYPE_SIZE) |
| type = short_integer_type_node; |
| else if (bits == LONG_TYPE_SIZE) |
| type = long_integer_type_node; |
| else if (bits == LONG_LONG_TYPE_SIZE) |
| type = long_long_integer_type_node; |
| else |
| type = make_signed_type(bits); |
| } |
| return this->make_type(type); |
| } |
| |
| // Get an unnamed float type. |
| |
| Btype* |
| Gcc_backend::float_type(int bits) |
| { |
| tree type; |
| if (bits == FLOAT_TYPE_SIZE) |
| type = float_type_node; |
| else if (bits == DOUBLE_TYPE_SIZE) |
| type = double_type_node; |
| else if (bits == LONG_DOUBLE_TYPE_SIZE) |
| type = long_double_type_node; |
| else |
| { |
| type = make_node(REAL_TYPE); |
| TYPE_PRECISION(type) = bits; |
| layout_type(type); |
| } |
| return this->make_type(type); |
| } |
| |
| // Get an unnamed complex type. |
| |
| Btype* |
| Gcc_backend::complex_type(int bits) |
| { |
| tree type; |
| if (bits == FLOAT_TYPE_SIZE * 2) |
| type = complex_float_type_node; |
| else if (bits == DOUBLE_TYPE_SIZE * 2) |
| type = complex_double_type_node; |
| else if (bits == LONG_DOUBLE_TYPE_SIZE * 2) |
| type = complex_long_double_type_node; |
| else |
| { |
| type = make_node(REAL_TYPE); |
| TYPE_PRECISION(type) = bits / 2; |
| layout_type(type); |
| type = build_complex_type(type); |
| } |
| return this->make_type(type); |
| } |
| |
| // Get a pointer type. |
| |
| Btype* |
| Gcc_backend::pointer_type(Btype* to_type) |
| { |
| tree to_type_tree = to_type->get_tree(); |
| if (to_type_tree == error_mark_node) |
| return this->error_type(); |
| tree type = build_pointer_type(to_type_tree); |
| return this->make_type(type); |
| } |
| |
| // Make a function type. |
| |
| Btype* |
| Gcc_backend::function_type(const Btyped_identifier& receiver, |
| const std::vector<Btyped_identifier>& parameters, |
| const std::vector<Btyped_identifier>& results, |
| Btype* result_struct, |
| Location) |
| { |
| tree args = NULL_TREE; |
| tree* pp = &args; |
| if (receiver.btype != NULL) |
| { |
| tree t = receiver.btype->get_tree(); |
| if (t == error_mark_node) |
| return this->error_type(); |
| *pp = tree_cons(NULL_TREE, t, NULL_TREE); |
| pp = &TREE_CHAIN(*pp); |
| } |
| |
| for (std::vector<Btyped_identifier>::const_iterator p = parameters.begin(); |
| p != parameters.end(); |
| ++p) |
| { |
| tree t = p->btype->get_tree(); |
| if (t == error_mark_node) |
| return this->error_type(); |
| *pp = tree_cons(NULL_TREE, t, NULL_TREE); |
| pp = &TREE_CHAIN(*pp); |
| } |
| |
| // Varargs is handled entirely at the Go level. When converted to |
| // GENERIC functions are not varargs. |
| *pp = void_list_node; |
| |
| tree result; |
| if (results.empty()) |
| result = void_type_node; |
| else if (results.size() == 1) |
| result = results.front().btype->get_tree(); |
| else |
| { |
| gcc_assert(result_struct != NULL); |
| result = result_struct->get_tree(); |
| } |
| if (result == error_mark_node) |
| return this->error_type(); |
| |
| // The libffi library cannot represent a zero-sized object. To |
| // avoid causing confusion on 32-bit SPARC, we treat a function that |
| // returns a zero-sized value as returning void. That should do no |
| // harm since there is no actual value to be returned. See |
| // https://gcc.gnu.org/PR72814 for details. |
| if (result != void_type_node && int_size_in_bytes(result) == 0) |
| result = void_type_node; |
| |
| tree fntype = build_function_type(result, args); |
| if (fntype == error_mark_node) |
| return this->error_type(); |
| |
| return this->make_type(build_pointer_type(fntype)); |
| } |
| |
| // Make a struct type. |
| |
| Btype* |
| Gcc_backend::struct_type(const std::vector<Btyped_identifier>& fields) |
| { |
| return this->fill_in_struct(this->make_type(make_node(RECORD_TYPE)), fields); |
| } |
| |
| // Fill in the fields of a struct type. |
| |
| Btype* |
| Gcc_backend::fill_in_struct(Btype* fill, |
| const std::vector<Btyped_identifier>& fields) |
| { |
| tree fill_tree = fill->get_tree(); |
| tree field_trees = NULL_TREE; |
| tree* pp = &field_trees; |
| for (std::vector<Btyped_identifier>::const_iterator p = fields.begin(); |
| p != fields.end(); |
| ++p) |
| { |
| tree name_tree = get_identifier_from_string(p->name); |
| tree type_tree = p->btype->get_tree(); |
| if (type_tree == error_mark_node) |
| return this->error_type(); |
| tree field = build_decl(p->location.gcc_location(), FIELD_DECL, name_tree, |
| type_tree); |
| DECL_CONTEXT(field) = fill_tree; |
| *pp = field; |
| pp = &DECL_CHAIN(field); |
| } |
| TYPE_FIELDS(fill_tree) = field_trees; |
| layout_type(fill_tree); |
| |
| // Because Go permits converting between named struct types and |
| // equivalent struct types, for which we use VIEW_CONVERT_EXPR, and |
| // because we don't try to maintain TYPE_CANONICAL for struct types, |
| // we need to tell the middle-end to use structural equality. |
| SET_TYPE_STRUCTURAL_EQUALITY(fill_tree); |
| |
| return fill; |
| } |
| |
| // Make an array type. |
| |
| Btype* |
| Gcc_backend::array_type(Btype* element_btype, Bexpression* length) |
| { |
| return this->fill_in_array(this->make_type(make_node(ARRAY_TYPE)), |
| element_btype, length); |
| } |
| |
| // Fill in an array type. |
| |
| Btype* |
| Gcc_backend::fill_in_array(Btype* fill, Btype* element_type, |
| Bexpression* length) |
| { |
| tree element_type_tree = element_type->get_tree(); |
| tree length_tree = length->get_tree(); |
| if (element_type_tree == error_mark_node || length_tree == error_mark_node) |
| return this->error_type(); |
| |
| gcc_assert(TYPE_SIZE(element_type_tree) != NULL_TREE); |
| |
| length_tree = fold_convert(sizetype, length_tree); |
| |
| // build_index_type takes the maximum index, which is one less than |
| // the length. |
| tree index_type_tree = build_index_type(fold_build2(MINUS_EXPR, sizetype, |
| length_tree, |
| size_one_node)); |
| |
| tree fill_tree = fill->get_tree(); |
| TREE_TYPE(fill_tree) = element_type_tree; |
| TYPE_DOMAIN(fill_tree) = index_type_tree; |
| TYPE_ADDR_SPACE(fill_tree) = TYPE_ADDR_SPACE(element_type_tree); |
| layout_type(fill_tree); |
| |
| if (TYPE_STRUCTURAL_EQUALITY_P(element_type_tree)) |
| SET_TYPE_STRUCTURAL_EQUALITY(fill_tree); |
| else if (TYPE_CANONICAL(element_type_tree) != element_type_tree |
| || TYPE_CANONICAL(index_type_tree) != index_type_tree) |
| TYPE_CANONICAL(fill_tree) = |
| build_array_type(TYPE_CANONICAL(element_type_tree), |
| TYPE_CANONICAL(index_type_tree)); |
| |
| return fill; |
| } |
| |
| // Create a placeholder for a pointer type. |
| |
| Btype* |
| Gcc_backend::placeholder_pointer_type(const std::string& name, |
| Location location, bool) |
| { |
| tree ret = build_distinct_type_copy(ptr_type_node); |
| if (!name.empty()) |
| { |
| tree decl = build_decl(location.gcc_location(), TYPE_DECL, |
| get_identifier_from_string(name), |
| ret); |
| TYPE_NAME(ret) = decl; |
| } |
| return this->make_type(ret); |
| } |
| |
| // Set the real target type for a placeholder pointer type. |
| |
| bool |
| Gcc_backend::set_placeholder_pointer_type(Btype* placeholder, |
| Btype* to_type) |
| { |
| tree pt = placeholder->get_tree(); |
| if (pt == error_mark_node) |
| return false; |
| gcc_assert(TREE_CODE(pt) == POINTER_TYPE); |
| tree tt = to_type->get_tree(); |
| if (tt == error_mark_node) |
| { |
| placeholder->set_tree(error_mark_node); |
| return false; |
| } |
| gcc_assert(TREE_CODE(tt) == POINTER_TYPE); |
| TREE_TYPE(pt) = TREE_TYPE(tt); |
| TYPE_CANONICAL(pt) = TYPE_CANONICAL(tt); |
| if (TYPE_NAME(pt) != NULL_TREE) |
| { |
| // Build the data structure gcc wants to see for a typedef. |
| tree copy = build_variant_type_copy(pt); |
| TYPE_NAME(copy) = NULL_TREE; |
| DECL_ORIGINAL_TYPE(TYPE_NAME(pt)) = copy; |
| } |
| return true; |
| } |
| |
| // Set the real values for a placeholder function type. |
| |
| bool |
| Gcc_backend::set_placeholder_function_type(Btype* placeholder, Btype* ft) |
| { |
| return this->set_placeholder_pointer_type(placeholder, ft); |
| } |
| |
| // Create a placeholder for a struct type. |
| |
| Btype* |
| Gcc_backend::placeholder_struct_type(const std::string& name, |
| Location location) |
| { |
| tree ret = make_node(RECORD_TYPE); |
| if (!name.empty()) |
| { |
| tree decl = build_decl(location.gcc_location(), TYPE_DECL, |
| get_identifier_from_string(name), |
| ret); |
| TYPE_NAME(ret) = decl; |
| |
| // The struct type that eventually replaces this placeholder will require |
| // structural equality. The placeholder must too, so that the requirement |
| // for structural equality propagates to references that are constructed |
| // before the replacement occurs. |
| SET_TYPE_STRUCTURAL_EQUALITY(ret); |
| } |
| return this->make_type(ret); |
| } |
| |
| // Fill in the fields of a placeholder struct type. |
| |
| bool |
| Gcc_backend::set_placeholder_struct_type( |
| Btype* placeholder, |
| const std::vector<Btyped_identifier>& fields) |
| { |
| tree t = placeholder->get_tree(); |
| gcc_assert(TREE_CODE(t) == RECORD_TYPE && TYPE_FIELDS(t) == NULL_TREE); |
| Btype* r = this->fill_in_struct(placeholder, fields); |
| |
| if (TYPE_NAME(t) != NULL_TREE) |
| { |
| // Build the data structure gcc wants to see for a typedef. |
| tree copy = build_distinct_type_copy(t); |
| TYPE_NAME(copy) = NULL_TREE; |
| DECL_ORIGINAL_TYPE(TYPE_NAME(t)) = copy; |
| TYPE_SIZE(copy) = NULL_TREE; |
| Btype* bc = this->make_type(copy); |
| this->fill_in_struct(bc, fields); |
| delete bc; |
| } |
| |
| return r->get_tree() != error_mark_node; |
| } |
| |
| // Create a placeholder for an array type. |
| |
| Btype* |
| Gcc_backend::placeholder_array_type(const std::string& name, |
| Location location) |
| { |
| tree ret = make_node(ARRAY_TYPE); |
| tree decl = build_decl(location.gcc_location(), TYPE_DECL, |
| get_identifier_from_string(name), |
| ret); |
| TYPE_NAME(ret) = decl; |
| return this->make_type(ret); |
| } |
| |
| // Fill in the fields of a placeholder array type. |
| |
| bool |
| Gcc_backend::set_placeholder_array_type(Btype* placeholder, |
| Btype* element_btype, |
| Bexpression* length) |
| { |
| tree t = placeholder->get_tree(); |
| gcc_assert(TREE_CODE(t) == ARRAY_TYPE && TREE_TYPE(t) == NULL_TREE); |
| Btype* r = this->fill_in_array(placeholder, element_btype, length); |
| |
| // Build the data structure gcc wants to see for a typedef. |
| tree copy = build_distinct_type_copy(t); |
| TYPE_NAME(copy) = NULL_TREE; |
| DECL_ORIGINAL_TYPE(TYPE_NAME(t)) = copy; |
| |
| return r->get_tree() != error_mark_node; |
| } |
| |
| // Return a named version of a type. |
| |
| Btype* |
| Gcc_backend::named_type(const std::string& name, Btype* btype, |
| Location location) |
| { |
| tree type = btype->get_tree(); |
| if (type == error_mark_node) |
| return this->error_type(); |
| |
| // The middle-end expects a basic type to have a name. In Go every |
| // basic type will have a name. The first time we see a basic type, |
| // give it whatever Go name we have at this point. |
| if (TYPE_NAME(type) == NULL_TREE |
| && location.gcc_location() == BUILTINS_LOCATION |
| && (TREE_CODE(type) == INTEGER_TYPE |
| || TREE_CODE(type) == REAL_TYPE |
| || TREE_CODE(type) == COMPLEX_TYPE |
| || TREE_CODE(type) == BOOLEAN_TYPE)) |
| { |
| tree decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, |
| get_identifier_from_string(name), |
| type); |
| TYPE_NAME(type) = decl; |
| return this->make_type(type); |
| } |
| |
| tree copy = build_variant_type_copy(type); |
| tree decl = build_decl(location.gcc_location(), TYPE_DECL, |
| get_identifier_from_string(name), |
| copy); |
| DECL_ORIGINAL_TYPE(decl) = type; |
| TYPE_NAME(copy) = decl; |
| return this->make_type(copy); |
| } |
| |
| // Return a pointer type used as a marker for a circular type. |
| |
| Btype* |
| Gcc_backend::circular_pointer_type(Btype*, bool) |
| { |
| return this->make_type(ptr_type_node); |
| } |
| |
| // Return whether we might be looking at a circular type. |
| |
| bool |
| Gcc_backend::is_circular_pointer_type(Btype* btype) |
| { |
| return btype->get_tree() == ptr_type_node; |
| } |
| |
| // Return the size of a type. |
| |
| int64_t |
| Gcc_backend::type_size(Btype* btype) |
| { |
| tree t = btype->get_tree(); |
| if (t == error_mark_node) |
| return 1; |
| if (t == void_type_node) |
| return 0; |
| t = TYPE_SIZE_UNIT(t); |
| gcc_assert(tree_fits_uhwi_p (t)); |
| unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(t); |
| int64_t ret = static_cast<int64_t>(val_wide); |
| if (ret < 0 || static_cast<unsigned HOST_WIDE_INT>(ret) != val_wide) |
| return -1; |
| return ret; |
| } |
| |
| // Return the alignment of a type. |
| |
| int64_t |
| Gcc_backend::type_alignment(Btype* btype) |
| { |
| tree t = btype->get_tree(); |
| if (t == error_mark_node) |
| return 1; |
| return TYPE_ALIGN_UNIT(t); |
| } |
| |
| // Return the alignment of a struct field of type BTYPE. |
| |
| int64_t |
| Gcc_backend::type_field_alignment(Btype* btype) |
| { |
| tree t = btype->get_tree(); |
| if (t == error_mark_node) |
| return 1; |
| return go_field_alignment(t); |
| } |
| |
| // Return the offset of a field in a struct. |
| |
| int64_t |
| Gcc_backend::type_field_offset(Btype* btype, size_t index) |
| { |
| tree struct_tree = btype->get_tree(); |
| if (struct_tree == error_mark_node) |
| return 0; |
| gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE); |
| tree field = TYPE_FIELDS(struct_tree); |
| for (; index > 0; --index) |
| { |
| field = DECL_CHAIN(field); |
| gcc_assert(field != NULL_TREE); |
| } |
| HOST_WIDE_INT offset_wide = int_byte_position(field); |
| int64_t ret = static_cast<int64_t>(offset_wide); |
| gcc_assert(ret == offset_wide); |
| return ret; |
| } |
| |
| // Return the zero value for a type. |
| |
| Bexpression* |
| Gcc_backend::zero_expression(Btype* btype) |
| { |
| tree t = btype->get_tree(); |
| tree ret; |
| if (t == error_mark_node) |
| ret = error_mark_node; |
| else |
| ret = build_zero_cst(t); |
| return this->make_expression(ret); |
| } |
| |
| // An expression that references a variable. |
| |
| Bexpression* |
| Gcc_backend::var_expression(Bvariable* var, Location location) |
| { |
| tree ret = var->get_tree(location); |
| if (ret == error_mark_node) |
| return this->error_expression(); |
| return this->make_expression(ret); |
| } |
| |
| // An expression that indirectly references an expression. |
| |
| Bexpression* |
| Gcc_backend::indirect_expression(Btype* btype, Bexpression* expr, |
| bool known_valid, Location location) |
| { |
| tree expr_tree = expr->get_tree(); |
| tree type_tree = btype->get_tree(); |
| if (expr_tree == error_mark_node || type_tree == error_mark_node) |
| return this->error_expression(); |
| |
| // If the type of EXPR is a recursive pointer type, then we |
| // need to insert a cast before indirecting. |
| tree target_type_tree = TREE_TYPE(TREE_TYPE(expr_tree)); |
| if (VOID_TYPE_P(target_type_tree)) |
| expr_tree = fold_convert_loc(location.gcc_location(), |
| build_pointer_type(type_tree), expr_tree); |
| |
| tree ret = build_fold_indirect_ref_loc(location.gcc_location(), |
| expr_tree); |
| if (known_valid) |
| TREE_THIS_NOTRAP(ret) = 1; |
| return this->make_expression(ret); |
| } |
| |
| // Return an expression that declares a constant named NAME with the |
| // constant value VAL in BTYPE. |
| |
| Bexpression* |
| Gcc_backend::named_constant_expression(Btype* btype, const std::string& name, |
| Bexpression* val, Location location) |
| { |
| tree type_tree = btype->get_tree(); |
| tree const_val = val->get_tree(); |
| if (type_tree == error_mark_node || const_val == error_mark_node) |
| return this->error_expression(); |
| |
| tree name_tree = get_identifier_from_string(name); |
| tree decl = build_decl(location.gcc_location(), CONST_DECL, name_tree, |
| type_tree); |
| DECL_INITIAL(decl) = const_val; |
| TREE_CONSTANT(decl) = 1; |
| TREE_READONLY(decl) = 1; |
| |
| go_preserve_from_gc(decl); |
| return this->make_expression(decl); |
| } |
| |
| // Return a typed value as a constant integer. |
| |
| Bexpression* |
| Gcc_backend::integer_constant_expression(Btype* btype, mpz_t val) |
| { |
| tree t = btype->get_tree(); |
| if (t == error_mark_node) |
| return this->error_expression(); |
| |
| tree ret = double_int_to_tree(t, mpz_get_double_int(t, val, true)); |
| return this->make_expression(ret); |
| } |
| |
| // Return a typed value as a constant floating-point number. |
| |
| Bexpression* |
| Gcc_backend::float_constant_expression(Btype* btype, mpfr_t val) |
| { |
| tree t = btype->get_tree(); |
| tree ret; |
| if (t == error_mark_node) |
| return this->error_expression(); |
| |
| REAL_VALUE_TYPE r1; |
| real_from_mpfr(&r1, val, t, GMP_RNDN); |
| REAL_VALUE_TYPE r2; |
| real_convert(&r2, TYPE_MODE(t), &r1); |
| ret = build_real(t, r2); |
| return this->make_expression(ret); |
| } |
| |
| // Return a typed real and imaginary value as a constant complex number. |
| |
| Bexpression* |
| Gcc_backend::complex_constant_expression(Btype* btype, mpc_t val) |
| { |
| tree t = btype->get_tree(); |
| tree ret; |
| if (t == error_mark_node) |
| return this->error_expression(); |
| |
| REAL_VALUE_TYPE r1; |
| real_from_mpfr(&r1, mpc_realref(val), TREE_TYPE(t), GMP_RNDN); |
| REAL_VALUE_TYPE r2; |
| real_convert(&r2, TYPE_MODE(TREE_TYPE(t)), &r1); |
| |
| REAL_VALUE_TYPE r3; |
| real_from_mpfr(&r3, mpc_imagref(val), TREE_TYPE(t), GMP_RNDN); |
| REAL_VALUE_TYPE r4; |
| real_convert(&r4, TYPE_MODE(TREE_TYPE(t)), &r3); |
| |
| ret = build_complex(t, build_real(TREE_TYPE(t), r2), |
| build_real(TREE_TYPE(t), r4)); |
| return this->make_expression(ret); |
| } |
| |
| // Make a constant string expression. |
| |
| Bexpression* |
| Gcc_backend::string_constant_expression(const std::string& val) |
| { |
| tree index_type = build_index_type(size_int(val.length())); |
| tree const_char_type = build_qualified_type(unsigned_char_type_node, |
| TYPE_QUAL_CONST); |
| tree string_type = build_array_type(const_char_type, index_type); |
| TYPE_STRING_FLAG(string_type) = 1; |
| tree string_val = build_string(val.length(), val.data()); |
| TREE_TYPE(string_val) = string_type; |
| |
| return this->make_expression(string_val); |
| } |
| |
| // Make a constant boolean expression. |
| |
| Bexpression* |
| Gcc_backend::boolean_constant_expression(bool val) |
| { |
| tree bool_cst = val ? boolean_true_node : boolean_false_node; |
| return this->make_expression(bool_cst); |
| } |
| |
| // Return the real part of a complex expression. |
| |
| Bexpression* |
| Gcc_backend::real_part_expression(Bexpression* bcomplex, Location location) |
| { |
| tree complex_tree = bcomplex->get_tree(); |
| if (complex_tree == error_mark_node) |
| return this->error_expression(); |
| gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(complex_tree))); |
| tree ret = fold_build1_loc(location.gcc_location(), REALPART_EXPR, |
| TREE_TYPE(TREE_TYPE(complex_tree)), |
| complex_tree); |
| return this->make_expression(ret); |
| } |
| |
| // Return the imaginary part of a complex expression. |
| |
| Bexpression* |
| Gcc_backend::imag_part_expression(Bexpression* bcomplex, Location location) |
| { |
| tree complex_tree = bcomplex->get_tree(); |
| if (complex_tree == error_mark_node) |
| return this->error_expression(); |
| gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(complex_tree))); |
| tree ret = fold_build1_loc(location.gcc_location(), IMAGPART_EXPR, |
| TREE_TYPE(TREE_TYPE(complex_tree)), |
| complex_tree); |
| return this->make_expression(ret); |
| } |
| |
| // Make a complex expression given its real and imaginary parts. |
| |
| Bexpression* |
| Gcc_backend::complex_expression(Bexpression* breal, Bexpression* bimag, |
| Location location) |
| { |
| tree real_tree = breal->get_tree(); |
| tree imag_tree = bimag->get_tree(); |
| if (real_tree == error_mark_node || imag_tree == error_mark_node) |
| return this->error_expression(); |
| gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(real_tree)) |
| == TYPE_MAIN_VARIANT(TREE_TYPE(imag_tree))); |
| gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(real_tree))); |
| tree ret = fold_build2_loc(location.gcc_location(), COMPLEX_EXPR, |
| build_complex_type(TREE_TYPE(real_tree)), |
| real_tree, imag_tree); |
| return this->make_expression(ret); |
| } |
| |
| // An expression that converts an expression to a different type. |
| |
| Bexpression* |
| Gcc_backend::convert_expression(Btype* type, Bexpression* expr, |
| Location location) |
| { |
| tree type_tree = type->get_tree(); |
| tree expr_tree = expr->get_tree(); |
| if (type_tree == error_mark_node |
| || expr_tree == error_mark_node |
| || TREE_TYPE(expr_tree) == error_mark_node) |
| return this->error_expression(); |
| |
| tree ret; |
| if (this->type_size(type) == 0 |
| || TREE_TYPE(expr_tree) == void_type_node) |
| { |
| // Do not convert zero-sized types. |
| ret = expr_tree; |
| } |
| else if (TREE_CODE(type_tree) == INTEGER_TYPE) |
| ret = fold(convert_to_integer(type_tree, expr_tree)); |
| else if (TREE_CODE(type_tree) == REAL_TYPE) |
| ret = fold(convert_to_real(type_tree, expr_tree)); |
| else if (TREE_CODE(type_tree) == COMPLEX_TYPE) |
| ret = fold(convert_to_complex(type_tree, expr_tree)); |
| else if (TREE_CODE(type_tree) == POINTER_TYPE |
| && TREE_CODE(TREE_TYPE(expr_tree)) == INTEGER_TYPE) |
| ret = fold(convert_to_pointer(type_tree, expr_tree)); |
| else if (TREE_CODE(type_tree) == RECORD_TYPE |
| || TREE_CODE(type_tree) == ARRAY_TYPE) |
| ret = fold_build1_loc(location.gcc_location(), VIEW_CONVERT_EXPR, |
| type_tree, expr_tree); |
| else |
| ret = fold_convert_loc(location.gcc_location(), type_tree, expr_tree); |
| |
| return this->make_expression(ret); |
| } |
| |
| // Get the address of a function. |
| |
| Bexpression* |
| Gcc_backend::function_code_expression(Bfunction* bfunc, Location location) |
| { |
| tree func = bfunc->get_tree(); |
| if (func == error_mark_node) |
| return this->error_expression(); |
| |
| tree ret = build_fold_addr_expr_loc(location.gcc_location(), func); |
| return this->make_expression(ret); |
| } |
| |
| // Get the address of an expression. |
| |
| Bexpression* |
| Gcc_backend::address_expression(Bexpression* bexpr, Location location) |
| { |
| tree expr = bexpr->get_tree(); |
| if (expr == error_mark_node) |
| return this->error_expression(); |
| |
| tree ret = build_fold_addr_expr_loc(location.gcc_location(), expr); |
| return this->make_expression(ret); |
| } |
| |
| // Return an expression for the field at INDEX in BSTRUCT. |
| |
| Bexpression* |
| Gcc_backend::struct_field_expression(Bexpression* bstruct, size_t index, |
| Location location) |
| { |
| tree struct_tree = bstruct->get_tree(); |
| if (struct_tree == error_mark_node |
| || TREE_TYPE(struct_tree) == error_mark_node) |
| return this->error_expression(); |
| gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE); |
| tree field = TYPE_FIELDS(TREE_TYPE(struct_tree)); |
| if (field == NULL_TREE) |
| { |
| // This can happen for a type which refers to itself indirectly |
| // and then turns out to be erroneous. |
| return this->error_expression(); |
| } |
| for (unsigned int i = index; i > 0; --i) |
| { |
| field = DECL_CHAIN(field); |
| gcc_assert(field != NULL_TREE); |
| } |
| if (TREE_TYPE(field) == error_mark_node) |
| return this->error_expression(); |
| tree ret = fold_build3_loc(location.gcc_location(), COMPONENT_REF, |
| TREE_TYPE(field), struct_tree, field, |
| NULL_TREE); |
| if (TREE_CONSTANT(struct_tree)) |
| TREE_CONSTANT(ret) = 1; |
| return this->make_expression(ret); |
| } |
| |
| // Return an expression that executes BSTAT before BEXPR. |
| |
| Bexpression* |
| Gcc_backend::compound_expression(Bstatement* bstat, Bexpression* bexpr, |
| Location location) |
| { |
| tree stat = bstat->get_tree(); |
| tree expr = bexpr->get_tree(); |
| if (stat == error_mark_node || expr == error_mark_node) |
| return this->error_expression(); |
| tree ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR, |
| TREE_TYPE(expr), stat, expr); |
| return this->make_expression(ret); |
| } |
| |
| // Return an expression that executes THEN_EXPR if CONDITION is true, or |
| // ELSE_EXPR otherwise. |
| |
| Bexpression* |
| Gcc_backend::conditional_expression(Bfunction*, Btype* btype, |
| Bexpression* condition, |
| Bexpression* then_expr, |
| Bexpression* else_expr, Location location) |
| { |
| tree type_tree = btype == NULL ? void_type_node : btype->get_tree(); |
| tree cond_tree = condition->get_tree(); |
| tree then_tree = then_expr->get_tree(); |
| tree else_tree = else_expr == NULL ? NULL_TREE : else_expr->get_tree(); |
| if (type_tree == error_mark_node |
| || cond_tree == error_mark_node |
| || then_tree == error_mark_node |
| || else_tree == error_mark_node) |
| return this->error_expression(); |
| tree ret = build3_loc(location.gcc_location(), COND_EXPR, type_tree, |
| cond_tree, then_tree, else_tree); |
| return this->make_expression(ret); |
| } |
| |
| // Return an expression for the unary operation OP EXPR. |
| |
| Bexpression* |
| Gcc_backend::unary_expression(Operator op, Bexpression* expr, Location location) |
| { |
| tree expr_tree = expr->get_tree(); |
| if (expr_tree == error_mark_node |
| || TREE_TYPE(expr_tree) == error_mark_node) |
| return this->error_expression(); |
| |
| tree type_tree = TREE_TYPE(expr_tree); |
| enum tree_code code; |
| switch (op) |
| { |
| case OPERATOR_MINUS: |
| { |
| tree computed_type = excess_precision_type(type_tree); |
| if (computed_type != NULL_TREE) |
| { |
| expr_tree = convert(computed_type, expr_tree); |
| type_tree = computed_type; |
| } |
| code = NEGATE_EXPR; |
| break; |
| } |
| case OPERATOR_NOT: |
| code = TRUTH_NOT_EXPR; |
| break; |
| case OPERATOR_XOR: |
| code = BIT_NOT_EXPR; |
| break; |
| default: |
| gcc_unreachable(); |
| break; |
| } |
| |
| tree ret = fold_build1_loc(location.gcc_location(), code, type_tree, |
| expr_tree); |
| return this->make_expression(ret); |
| } |
| |
| // Convert a gofrontend operator to an equivalent tree_code. |
| |
| static enum tree_code |
| operator_to_tree_code(Operator op, tree type) |
| { |
| enum tree_code code; |
| switch (op) |
| { |
| case OPERATOR_EQEQ: |
| code = EQ_EXPR; |
| break; |
| case OPERATOR_NOTEQ: |
| code = NE_EXPR; |
| break; |
| case OPERATOR_LT: |
| code = LT_EXPR; |
| break; |
| case OPERATOR_LE: |
| code = LE_EXPR; |
| break; |
| case OPERATOR_GT: |
| code = GT_EXPR; |
| break; |
| case OPERATOR_GE: |
| code = GE_EXPR; |
| break; |
| case OPERATOR_OROR: |
| code = TRUTH_ORIF_EXPR; |
| break; |
| case OPERATOR_ANDAND: |
| code = TRUTH_ANDIF_EXPR; |
| break; |
| case OPERATOR_PLUS: |
| code = PLUS_EXPR; |
| break; |
| case OPERATOR_MINUS: |
| code = MINUS_EXPR; |
| break; |
| case OPERATOR_OR: |
| code = BIT_IOR_EXPR; |
| break; |
| case OPERATOR_XOR: |
| code = BIT_XOR_EXPR; |
| break; |
| case OPERATOR_MULT: |
| code = MULT_EXPR; |
| break; |
| case OPERATOR_DIV: |
| if (TREE_CODE(type) == REAL_TYPE || TREE_CODE(type) == COMPLEX_TYPE) |
| code = RDIV_EXPR; |
| else |
| code = TRUNC_DIV_EXPR; |
| break; |
| case OPERATOR_MOD: |
| code = TRUNC_MOD_EXPR; |
| break; |
| case OPERATOR_LSHIFT: |
| code = LSHIFT_EXPR; |
| break; |
| case OPERATOR_RSHIFT: |
| code = RSHIFT_EXPR; |
| break; |
| case OPERATOR_AND: |
| code = BIT_AND_EXPR; |
| break; |
| case OPERATOR_BITCLEAR: |
| code = BIT_AND_EXPR; |
| break; |
| default: |
| gcc_unreachable(); |
| } |
| |
| return code; |
| } |
| |
| // Return an expression for the binary operation LEFT OP RIGHT. |
| |
| Bexpression* |
| Gcc_backend::binary_expression(Operator op, Bexpression* left, |
| Bexpression* right, Location location) |
| { |
| tree left_tree = left->get_tree(); |
| tree right_tree = right->get_tree(); |
| if (left_tree == error_mark_node |
| || right_tree == error_mark_node) |
| return this->error_expression(); |
| enum tree_code code = operator_to_tree_code(op, TREE_TYPE(left_tree)); |
| |
| bool use_left_type = op != OPERATOR_OROR && op != OPERATOR_ANDAND; |
| tree type_tree = use_left_type ? TREE_TYPE(left_tree) : TREE_TYPE(right_tree); |
| tree computed_type = excess_precision_type(type_tree); |
| if (computed_type != NULL_TREE) |
| { |
| left_tree = convert(computed_type, left_tree); |
| right_tree = convert(computed_type, right_tree); |
| type_tree = computed_type; |
| } |
| |
| // For comparison operators, the resulting type should be boolean. |
| switch (op) |
| { |
| case OPERATOR_EQEQ: |
| case OPERATOR_NOTEQ: |
| case OPERATOR_LT: |
| case OPERATOR_LE: |
| case OPERATOR_GT: |
| case OPERATOR_GE: |
| type_tree = boolean_type_node; |
| break; |
| default: |
| break; |
| } |
| |
| tree ret = fold_build2_loc(location.gcc_location(), code, type_tree, |
| left_tree, right_tree); |
| return this->make_expression(ret); |
| } |
| |
| // Return an expression that constructs BTYPE with VALS. |
| |
| Bexpression* |
| Gcc_backend::constructor_expression(Btype* btype, |
| const std::vector<Bexpression*>& vals, |
| Location location) |
| { |
| tree type_tree = btype->get_tree(); |
| if (type_tree == error_mark_node) |
| return this->error_expression(); |
| |
| vec<constructor_elt, va_gc> *init; |
| vec_alloc(init, vals.size()); |
| |
| tree sink = NULL_TREE; |
| bool is_constant = true; |
| tree field = TYPE_FIELDS(type_tree); |
| for (std::vector<Bexpression*>::const_iterator p = vals.begin(); |
| p != vals.end(); |
| ++p, field = DECL_CHAIN(field)) |
| { |
| gcc_assert(field != NULL_TREE); |
| tree val = (*p)->get_tree(); |
| if (TREE_TYPE(field) == error_mark_node |
| || val == error_mark_node |
| || TREE_TYPE(val) == error_mark_node) |
| return this->error_expression(); |
| |
| if (int_size_in_bytes(TREE_TYPE(field)) == 0) |
| { |
| // GIMPLE cannot represent indices of zero-sized types so |
| // trying to construct a map with zero-sized keys might lead |
| // to errors. Instead, we evaluate each expression that |
| // would have been added as a map element for its |
| // side-effects and construct an empty map. |
| append_to_statement_list(val, &sink); |
| continue; |
| } |
| |
| constructor_elt empty = {NULL, NULL}; |
| constructor_elt* elt = init->quick_push(empty); |
| elt->index = field; |
| elt->value = this->convert_tree(TREE_TYPE(field), val, location); |
| if (!TREE_CONSTANT(elt->value)) |
| is_constant = false; |
| } |
| gcc_assert(field == NULL_TREE); |
| tree ret = build_constructor(type_tree, init); |
| if (is_constant) |
| TREE_CONSTANT(ret) = 1; |
| if (sink != NULL_TREE) |
| ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR, |
| type_tree, sink, ret); |
| return this->make_expression(ret); |
| } |
| |
| Bexpression* |
| Gcc_backend::array_constructor_expression( |
| Btype* array_btype, const std::vector<unsigned long>& indexes, |
| const std::vector<Bexpression*>& vals, Location location) |
| { |
| tree type_tree = array_btype->get_tree(); |
| if (type_tree == error_mark_node) |
| return this->error_expression(); |
| |
| gcc_assert(indexes.size() == vals.size()); |
| |
| tree element_type = TREE_TYPE(type_tree); |
| HOST_WIDE_INT element_size = int_size_in_bytes(element_type); |
| vec<constructor_elt, va_gc> *init; |
| vec_alloc(init, element_size == 0 ? 0 : vals.size()); |
| |
| tree sink = NULL_TREE; |
| bool is_constant = true; |
| for (size_t i = 0; i < vals.size(); ++i) |
| { |
| tree index = size_int(indexes[i]); |
| tree val = (vals[i])->get_tree(); |
| |
| if (index == error_mark_node |
| || val == error_mark_node) |
| return this->error_expression(); |
| |
| if (element_size == 0) |
| { |
| // GIMPLE cannot represent arrays of zero-sized types so trying |
| // to construct an array of zero-sized values might lead to errors. |
| // Instead, we evaluate each expression that would have been added as |
| // an array value for its side-effects and construct an empty array. |
| append_to_statement_list(val, &sink); |
| continue; |
| } |
| |
| if (!TREE_CONSTANT(val)) |
| is_constant = false; |
| |
| constructor_elt empty = {NULL, NULL}; |
| constructor_elt* elt = init->quick_push(empty); |
| elt->index = index; |
| elt->value = val; |
| } |
| |
| tree ret = build_constructor(type_tree, init); |
| if (is_constant) |
| TREE_CONSTANT(ret) = 1; |
| if (sink != NULL_TREE) |
| ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR, |
| type_tree, sink, ret); |
| return this->make_expression(ret); |
| } |
| |
| // Return an expression for the address of BASE[INDEX]. |
| |
| Bexpression* |
| Gcc_backend::pointer_offset_expression(Bexpression* base, Bexpression* index, |
| Location location) |
| { |
| tree base_tree = base->get_tree(); |
| tree index_tree = index->get_tree(); |
| tree element_type_tree = TREE_TYPE(TREE_TYPE(base_tree)); |
| if (base_tree == error_mark_node |
| || TREE_TYPE(base_tree) == error_mark_node |
| || index_tree == error_mark_node |
| || element_type_tree == error_mark_node) |
| return this->error_expression(); |
| |
| tree element_size = TYPE_SIZE_UNIT(element_type_tree); |
| index_tree = fold_convert_loc(location.gcc_location(), sizetype, index_tree); |
| tree offset = fold_build2_loc(location.gcc_location(), MULT_EXPR, sizetype, |
| index_tree, element_size); |
| tree ptr = fold_build2_loc(location.gcc_location(), POINTER_PLUS_EXPR, |
| TREE_TYPE(base_tree), base_tree, offset); |
| return this->make_expression(ptr); |
| } |
| |
| // Return an expression representing ARRAY[INDEX] |
| |
| Bexpression* |
| Gcc_backend::array_index_expression(Bexpression* array, Bexpression* index, |
| Location location) |
| { |
| tree array_tree = array->get_tree(); |
| tree index_tree = index->get_tree(); |
| if (array_tree == error_mark_node |
| || TREE_TYPE(array_tree) == error_mark_node |
| || index_tree == error_mark_node) |
| return this->error_expression(); |
| |
| // A function call that returns a zero sized object will have been |
| // changed to return void. If we see void here, assume we are |
| // dealing with a zero sized type and just evaluate the operands. |
| tree ret; |
| if (TREE_TYPE(array_tree) != void_type_node) |
| ret = build4_loc(location.gcc_location(), ARRAY_REF, |
| TREE_TYPE(TREE_TYPE(array_tree)), array_tree, |
| index_tree, NULL_TREE, NULL_TREE); |
| else |
| ret = fold_build2_loc(location.gcc_location(), COMPOUND_EXPR, |
| void_type_node, array_tree, index_tree); |
| |
| return this->make_expression(ret); |
| } |
| |
| // Create an expression for a call to FN_EXPR with FN_ARGS. |
| Bexpression* |
| Gcc_backend::call_expression(Bfunction*, // containing fcn for call |
| Bexpression* fn_expr, |
| const std::vector<Bexpression*>& fn_args, |
| Bexpression* chain_expr, |
| Location location) |
| { |
| tree fn = fn_expr->get_tree(); |
| if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node) |
| return this->error_expression(); |
| |
| gcc_assert(FUNCTION_POINTER_TYPE_P(TREE_TYPE(fn))); |
| tree rettype = TREE_TYPE(TREE_TYPE(TREE_TYPE(fn))); |
| |
| size_t nargs = fn_args.size(); |
| tree* args = nargs == 0 ? NULL : new tree[nargs]; |
| for (size_t i = 0; i < nargs; ++i) |
| { |
| args[i] = fn_args.at(i)->get_tree(); |
| if (args[i] == error_mark_node) |
| return this->error_expression(); |
| } |
| |
| tree fndecl = fn; |
| if (TREE_CODE(fndecl) == ADDR_EXPR) |
| fndecl = TREE_OPERAND(fndecl, 0); |
| |
| // This is to support builtin math functions when using 80387 math. |
| tree excess_type = NULL_TREE; |
| if (optimize |
| && TREE_CODE(fndecl) == FUNCTION_DECL |
| && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL) |
| && DECL_IS_BUILTIN (fndecl) |
| && nargs > 0 |
| && ((SCALAR_FLOAT_TYPE_P(rettype) |
| && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0]))) |
| || (COMPLEX_FLOAT_TYPE_P(rettype) |
| && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0]))))) |
| { |
| excess_type = excess_precision_type(TREE_TYPE(args[0])); |
| if (excess_type != NULL_TREE) |
| { |
| tree excess_fndecl = mathfn_built_in(excess_type, |
| DECL_FUNCTION_CODE(fndecl)); |
| if (excess_fndecl == NULL_TREE) |
| excess_type = NULL_TREE; |
| else |
| { |
| fn = build_fold_addr_expr_loc(location.gcc_location(), |
| excess_fndecl); |
| for (size_t i = 0; i < nargs; ++i) |
| { |
| if (SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[i])) |
| || COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[i]))) |
| args[i] = ::convert(excess_type, args[i]); |
| } |
| } |
| } |
| } |
| |
| tree ret = |
| build_call_array_loc(location.gcc_location(), |
| excess_type != NULL_TREE ? excess_type : rettype, |
| fn, nargs, args); |
| |
| if (chain_expr) |
| CALL_EXPR_STATIC_CHAIN (ret) = chain_expr->get_tree(); |
| |
| if (excess_type != NULL_TREE) |
| { |
| // Calling convert here can undo our excess precision change. |
| // That may or may not be a bug in convert_to_real. |
| ret = build1_loc(location.gcc_location(), NOP_EXPR, rettype, ret); |
| } |
| |
| delete[] args; |
| return this->make_expression(ret); |
| } |
| |
| // An expression as a statement. |
| |
| Bstatement* |
| Gcc_backend::expression_statement(Bfunction*, Bexpression* expr) |
| { |
| return this->make_statement(expr->get_tree()); |
| } |
| |
| // Variable initialization. |
| |
| Bstatement* |
| Gcc_backend::init_statement(Bfunction*, Bvariable* var, Bexpression* init) |
| { |
| tree var_tree = var->get_decl(); |
| tree init_tree = init->get_tree(); |
| if (var_tree == error_mark_node || init_tree == error_mark_node) |
| return this->error_statement(); |
| gcc_assert(TREE_CODE(var_tree) == VAR_DECL); |
| |
| // To avoid problems with GNU ld, we don't make zero-sized |
| // externally visible variables. That might lead us to doing an |
| // initialization of a zero-sized expression to a non-zero sized |
| // variable, or vice-versa. Avoid crashes by omitting the |
| // initializer. Such initializations don't mean anything anyhow. |
| if (int_size_in_bytes(TREE_TYPE(var_tree)) != 0 |
| && init_tree != NULL_TREE |
| && TREE_TYPE(init_tree) != void_type_node |
| && int_size_in_bytes(TREE_TYPE(init_tree)) != 0) |
| { |
| DECL_INITIAL(var_tree) = init_tree; |
| init_tree = NULL_TREE; |
| } |
| |
| tree ret = build1_loc(DECL_SOURCE_LOCATION(var_tree), DECL_EXPR, |
| void_type_node, var_tree); |
| if (init_tree != NULL_TREE) |
| ret = build2_loc(DECL_SOURCE_LOCATION(var_tree), COMPOUND_EXPR, |
| void_type_node, init_tree, ret); |
| |
| return this->make_statement(ret); |
| } |
| |
| // Assignment. |
| |
| Bstatement* |
| Gcc_backend::assignment_statement(Bfunction* bfn, Bexpression* lhs, |
| Bexpression* rhs, Location location) |
| { |
| tree lhs_tree = lhs->get_tree(); |
| tree rhs_tree = rhs->get_tree(); |
| if (lhs_tree == error_mark_node || rhs_tree == error_mark_node) |
| return this->error_statement(); |
| |
| // To avoid problems with GNU ld, we don't make zero-sized |
| // externally visible variables. That might lead us to doing an |
| // assignment of a zero-sized expression to a non-zero sized |
| // expression; avoid crashes here by avoiding assignments of |
| // zero-sized expressions. Such assignments don't really mean |
| // anything anyhow. |
| if (TREE_TYPE(lhs_tree) == void_type_node |
| || int_size_in_bytes(TREE_TYPE(lhs_tree)) == 0 |
| || TREE_TYPE(rhs_tree) == void_type_node |
| || int_size_in_bytes(TREE_TYPE(rhs_tree)) == 0) |
| return this->compound_statement(this->expression_statement(bfn, lhs), |
| this->expression_statement(bfn, rhs)); |
| |
| rhs_tree = this->convert_tree(TREE_TYPE(lhs_tree), rhs_tree, location); |
| |
| return this->make_statement(fold_build2_loc(location.gcc_location(), |
| MODIFY_EXPR, |
| void_type_node, |
| lhs_tree, rhs_tree)); |
| } |
| |
| // Return. |
| |
| Bstatement* |
| Gcc_backend::return_statement(Bfunction* bfunction, |
| const std::vector<Bexpression*>& vals, |
| Location location) |
| { |
| tree fntree = bfunction->get_tree(); |
| if (fntree == error_mark_node) |
| return this->error_statement(); |
| tree result = DECL_RESULT(fntree); |
| if (result == error_mark_node) |
| return this->error_statement(); |
| |
| // If the result size is zero bytes, we have set the function type |
| // to have a result type of void, so don't return anything. |
| // See the function_type method. |
| tree res_type = TREE_TYPE(result); |
| if (res_type == void_type_node || int_size_in_bytes(res_type) == 0) |
| { |
| tree stmt_list = NULL_TREE; |
| for (std::vector<Bexpression*>::const_iterator p = vals.begin(); |
| p != vals.end(); |
| p++) |
| { |
| tree val = (*p)->get_tree(); |
| if (val == error_mark_node) |
| return this->error_statement(); |
| append_to_statement_list(val, &stmt_list); |
| } |
| tree ret = fold_build1_loc(location.gcc_location(), RETURN_EXPR, |
| void_type_node, NULL_TREE); |
| append_to_statement_list(ret, &stmt_list); |
| return this->make_statement(stmt_list); |
| } |
| |
| tree ret; |
| if (vals.empty()) |
| ret = fold_build1_loc(location.gcc_location(), RETURN_EXPR, void_type_node, |
| NULL_TREE); |
| else if (vals.size() == 1) |
| { |
| tree val = vals.front()->get_tree(); |
| if (val == error_mark_node) |
| return this->error_statement(); |
| tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR, |
| void_type_node, result, |
| vals.front()->get_tree()); |
| ret = fold_build1_loc(location.gcc_location(), RETURN_EXPR, |
| void_type_node, set); |
| } |
| else |
| { |
| // To return multiple values, copy the values into a temporary |
| // variable of the right structure type, and then assign the |
| // temporary variable to the DECL_RESULT in the return |
| // statement. |
| tree stmt_list = NULL_TREE; |
| tree rettype = TREE_TYPE(result); |
| |
| if (DECL_STRUCT_FUNCTION(fntree) == NULL) |
| push_struct_function(fntree); |
| else |
| push_cfun(DECL_STRUCT_FUNCTION(fntree)); |
| tree rettmp = create_tmp_var(rettype, "RESULT"); |
| pop_cfun(); |
| |
| tree field = TYPE_FIELDS(rettype); |
| for (std::vector<Bexpression*>::const_iterator p = vals.begin(); |
| p != vals.end(); |
| p++, field = DECL_CHAIN(field)) |
| { |
| gcc_assert(field != NULL_TREE); |
| tree ref = fold_build3_loc(location.gcc_location(), COMPONENT_REF, |
| TREE_TYPE(field), rettmp, field, |
| NULL_TREE); |
| tree val = (*p)->get_tree(); |
| if (val == error_mark_node) |
| return this->error_statement(); |
| tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR, |
| void_type_node, |
| ref, (*p)->get_tree()); |
| append_to_statement_list(set, &stmt_list); |
| } |
| gcc_assert(field == NULL_TREE); |
| tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR, |
| void_type_node, |
| result, rettmp); |
| tree ret_expr = fold_build1_loc(location.gcc_location(), RETURN_EXPR, |
| void_type_node, set); |
| append_to_statement_list(ret_expr, &stmt_list); |
| ret = stmt_list; |
| } |
| return this->make_statement(ret); |
| } |
| |
| // Create a statement that attempts to execute BSTAT and calls EXCEPT_STMT if an |
| // error occurs. EXCEPT_STMT may be NULL. FINALLY_STMT may be NULL and if not |
| // NULL, it will always be executed. This is used for handling defers in Go |
| // functions. In C++, the resulting code is of this form: |
| // try { BSTAT; } catch { EXCEPT_STMT; } finally { FINALLY_STMT; } |
| |
| Bstatement* |
| Gcc_backend::exception_handler_statement(Bstatement* bstat, |
| Bstatement* except_stmt, |
| Bstatement* finally_stmt, |
| Location location) |
| { |
| tree stat_tree = bstat->get_tree(); |
| tree except_tree = except_stmt == NULL ? NULL_TREE : except_stmt->get_tree(); |
| tree finally_tree = finally_stmt == NULL |
| ? NULL_TREE |
| : finally_stmt->get_tree(); |
| |
| if (stat_tree == error_mark_node |
| || except_tree == error_mark_node |
| || finally_tree == error_mark_node) |
| return this->error_statement(); |
| |
| if (except_tree != NULL_TREE) |
| stat_tree = build2_loc(location.gcc_location(), TRY_CATCH_EXPR, |
| void_type_node, stat_tree, |
| build2_loc(location.gcc_location(), CATCH_EXPR, |
| void_type_node, NULL, except_tree)); |
| if (finally_tree != NULL_TREE) |
| stat_tree = build2_loc(location.gcc_location(), TRY_FINALLY_EXPR, |
| void_type_node, stat_tree, finally_tree); |
| return this->make_statement(stat_tree); |
| } |
| |
| // If. |
| |
| Bstatement* |
| Gcc_backend::if_statement(Bfunction*, Bexpression* condition, |
| Bblock* then_block, Bblock* else_block, |
| Location location) |
| { |
| tree cond_tree = condition->get_tree(); |
| tree then_tree = then_block->get_tree(); |
| tree else_tree = else_block == NULL ? NULL_TREE : else_block->get_tree(); |
| if (cond_tree == error_mark_node |
| || then_tree == error_mark_node |
| || else_tree == error_mark_node) |
| return this->error_statement(); |
| tree ret = build3_loc(location.gcc_location(), COND_EXPR, void_type_node, |
| cond_tree, then_tree, else_tree); |
| return this->make_statement(ret); |
| } |
| |
| // Switch. |
| |
| Bstatement* |
| Gcc_backend::switch_statement( |
| Bfunction* function, |
| Bexpression* value, |
| const std::vector<std::vector<Bexpression*> >& cases, |
| const std::vector<Bstatement*>& statements, |
| Location switch_location) |
| { |
| gcc_assert(cases.size() == statements.size()); |
| |
| tree decl = function->get_tree(); |
| if (DECL_STRUCT_FUNCTION(decl) == NULL) |
| push_struct_function(decl); |
| else |
| push_cfun(DECL_STRUCT_FUNCTION(decl)); |
| |
| tree stmt_list = NULL_TREE; |
| std::vector<std::vector<Bexpression*> >::const_iterator pc = cases.begin(); |
| for (std::vector<Bstatement*>::const_iterator ps = statements.begin(); |
| ps != statements.end(); |
| ++ps, ++pc) |
| { |
| if (pc->empty()) |
| { |
| location_t loc = (*ps != NULL |
| ? EXPR_LOCATION((*ps)->get_tree()) |
| : UNKNOWN_LOCATION); |
| tree label = create_artificial_label(loc); |
| tree c = build_case_label(NULL_TREE, NULL_TREE, label); |
| append_to_statement_list(c, &stmt_list); |
| } |
| else |
| { |
| for (std::vector<Bexpression*>::const_iterator pcv = pc->begin(); |
| pcv != pc->end(); |
| ++pcv) |
| { |
| tree t = (*pcv)->get_tree(); |
| if (t == error_mark_node) |
| return this->error_statement(); |
| location_t loc = EXPR_LOCATION(t); |
| tree label = create_artificial_label(loc); |
| tree c = build_case_label((*pcv)->get_tree(), NULL_TREE, label); |
| append_to_statement_list(c, &stmt_list); |
| } |
| } |
| |
| if (*ps != NULL) |
| { |
| tree t = (*ps)->get_tree(); |
| if (t == error_mark_node) |
| return this->error_statement(); |
| append_to_statement_list(t, &stmt_list); |
| } |
| } |
| pop_cfun(); |
| |
| tree tv = value->get_tree(); |
| if (tv == error_mark_node) |
| return this->error_statement(); |
| tree t = build2_loc(switch_location.gcc_location(), SWITCH_EXPR, |
| NULL_TREE, tv, stmt_list); |
| return this->make_statement(t); |
| } |
| |
| // Pair of statements. |
| |
| Bstatement* |
| Gcc_backend::compound_statement(Bstatement* s1, Bstatement* s2) |
| { |
| tree stmt_list = NULL_TREE; |
| tree t = s1->get_tree(); |
| if (t == error_mark_node) |
| return this->error_statement(); |
| append_to_statement_list(t, &stmt_list); |
| t = s2->get_tree(); |
| if (t == error_mark_node) |
| return this->error_statement(); |
| append_to_statement_list(t, &stmt_list); |
| |
| // If neither statement has any side effects, stmt_list can be NULL |
| // at this point. |
| if (stmt_list == NULL_TREE) |
| stmt_list = integer_zero_node; |
| |
| return this->make_statement(stmt_list); |
| } |
| |
| // List of statements. |
| |
| Bstatement* |
| Gcc_backend::statement_list(const std::vector<Bstatement*>& statements) |
| { |
| tree stmt_list = NULL_TREE; |
| for (std::vector<Bstatement*>::const_iterator p = statements.begin(); |
| p != statements.end(); |
| ++p) |
| { |
| tree t = (*p)->get_tree(); |
| if (t == error_mark_node) |
| return this->error_statement(); |
| append_to_statement_list(t, &stmt_list); |
| } |
| return this->make_statement(stmt_list); |
| } |
| |
| // Make a block. For some reason gcc uses a dual structure for |
| // blocks: BLOCK tree nodes and BIND_EXPR tree nodes. Since the |
| // BIND_EXPR node points to the BLOCK node, we store the BIND_EXPR in |
| // the Bblock. |
| |
| Bblock* |
| Gcc_backend::block(Bfunction* function, Bblock* enclosing, |
| const std::vector<Bvariable*>& vars, |
| Location start_location, |
| Location) |
| { |
| tree block_tree = make_node(BLOCK); |
| if (enclosing == NULL) |
| { |
| tree fndecl = function->get_tree(); |
| gcc_assert(fndecl != NULL_TREE); |
| |
| // We may have already created a block for local variables when |
| // we take the address of a parameter. |
| if (DECL_INITIAL(fndecl) == NULL_TREE) |
| { |
| BLOCK_SUPERCONTEXT(block_tree) = fndecl; |
| DECL_INITIAL(fndecl) = block_tree; |
| } |
| else |
| { |
| tree superblock_tree = DECL_INITIAL(fndecl); |
| BLOCK_SUPERCONTEXT(block_tree) = superblock_tree; |
| tree* pp; |
| for (pp = &BLOCK_SUBBLOCKS(superblock_tree); |
| *pp != NULL_TREE; |
| pp = &BLOCK_CHAIN(*pp)) |
| ; |
| *pp = block_tree; |
| } |
| } |
| else |
| { |
| tree superbind_tree = enclosing->get_tree(); |
| tree superblock_tree = BIND_EXPR_BLOCK(superbind_tree); |
| gcc_assert(TREE_CODE(superblock_tree) == BLOCK); |
| |
| BLOCK_SUPERCONTEXT(block_tree) = superblock_tree; |
| tree* pp; |
| for (pp = &BLOCK_SUBBLOCKS(superblock_tree); |
| *pp != NULL_TREE; |
| pp = &BLOCK_CHAIN(*pp)) |
| ; |
| *pp = block_tree; |
| } |
| |
| tree* pp = &BLOCK_VARS(block_tree); |
| for (std::vector<Bvariable*>::const_iterator pv = vars.begin(); |
| pv != vars.end(); |
| ++pv) |
| { |
| *pp = (*pv)->get_decl(); |
| if (*pp != error_mark_node) |
| pp = &DECL_CHAIN(*pp); |
| } |
| *pp = NULL_TREE; |
| |
| TREE_USED(block_tree) = 1; |
| |
| tree bind_tree = build3_loc(start_location.gcc_location(), BIND_EXPR, |
| void_type_node, BLOCK_VARS(block_tree), |
| NULL_TREE, block_tree); |
| TREE_SIDE_EFFECTS(bind_tree) = 1; |
| return new Bblock(bind_tree); |
| } |
| |
| // Add statements to a block. |
| |
| void |
| Gcc_backend::block_add_statements(Bblock* bblock, |
| const std::vector<Bstatement*>& statements) |
| { |
| tree stmt_list = NULL_TREE; |
| for (std::vector<Bstatement*>::const_iterator p = statements.begin(); |
| p != statements.end(); |
| ++p) |
| { |
| tree s = (*p)->get_tree(); |
| if (s != error_mark_node) |
| append_to_statement_list(s, &stmt_list); |
| } |
| |
| tree bind_tree = bblock->get_tree(); |
| gcc_assert(TREE_CODE(bind_tree) == BIND_EXPR); |
| BIND_EXPR_BODY(bind_tree) = stmt_list; |
| } |
| |
| // Return a block as a statement. |
| |
| Bstatement* |
| Gcc_backend::block_statement(Bblock* bblock) |
| { |
| tree bind_tree = bblock->get_tree(); |
| gcc_assert(TREE_CODE(bind_tree) == BIND_EXPR); |
| return this->make_statement(bind_tree); |
| } |
| |
| // This is not static because we declare it with GTY(()) in go-c.h. |
| tree go_non_zero_struct; |
| |
| // Return a type corresponding to TYPE with non-zero size. |
| |
| tree |
| Gcc_backend::non_zero_size_type(tree type) |
| { |
| if (int_size_in_bytes(type) != 0) |
| return type; |
| |
| switch (TREE_CODE(type)) |
| { |
| case RECORD_TYPE: |
| if (TYPE_FIELDS(type) != NULL_TREE) |
| { |
| tree ns = make_node(RECORD_TYPE); |
| tree field_trees = NULL_TREE; |
| tree *pp = &field_trees; |
| for (tree field = TYPE_FIELDS(type); |
| field != NULL_TREE; |
| field = DECL_CHAIN(field)) |
| { |
| tree ft = TREE_TYPE(field); |
| if (field == TYPE_FIELDS(type)) |
| ft = non_zero_size_type(ft); |
| tree f = build_decl(DECL_SOURCE_LOCATION(field), FIELD_DECL, |
| DECL_NAME(field), ft); |
| DECL_CONTEXT(f) = ns; |
| *pp = f; |
| pp = &DECL_CHAIN(f); |
| } |
| TYPE_FIELDS(ns) = field_trees; |
| layout_type(ns); |
| return ns; |
| } |
| |
| if (go_non_zero_struct == NULL_TREE) |
| { |
| type = make_node(RECORD_TYPE); |
| tree field = build_decl(UNKNOWN_LOCATION, FIELD_DECL, |
| get_identifier("dummy"), |
| boolean_type_node); |
| DECL_CONTEXT(field) = type; |
| TYPE_FIELDS(type) = field; |
| layout_type(type); |
| go_non_zero_struct = type; |
| } |
| return go_non_zero_struct; |
| |
| case ARRAY_TYPE: |
| { |
| tree element_type = non_zero_size_type(TREE_TYPE(type)); |
| return build_array_type_nelts(element_type, 1); |
| } |
| |
| default: |
| gcc_unreachable(); |
| } |
| |
| gcc_unreachable(); |
| } |
| |
| // Convert EXPR_TREE to TYPE_TREE. Sometimes the same unnamed Go type |
| // can be created multiple times and thus have multiple tree |
| // representations. Make sure this does not confuse the middle-end. |
| |
| tree |
| Gcc_backend::convert_tree(tree type_tree, tree expr_tree, Location location) |
| { |
| if (type_tree == TREE_TYPE(expr_tree)) |
| return expr_tree; |
| |
| if (type_tree == error_mark_node |
| || expr_tree == error_mark_node |
| || TREE_TYPE(expr_tree) == error_mark_node) |
| return error_mark_node; |
| |
| gcc_assert(TREE_CODE(type_tree) == TREE_CODE(TREE_TYPE(expr_tree))); |
| if (POINTER_TYPE_P(type_tree) |
| || INTEGRAL_TYPE_P(type_tree) |
| || SCALAR_FLOAT_TYPE_P(type_tree) |
| || COMPLEX_FLOAT_TYPE_P(type_tree)) |
| return fold_convert_loc(location.gcc_location(), type_tree, expr_tree); |
| else if (TREE_CODE(type_tree) == RECORD_TYPE |
| || TREE_CODE(type_tree) == ARRAY_TYPE) |
| { |
| gcc_assert(int_size_in_bytes(type_tree) |
| == int_size_in_bytes(TREE_TYPE(expr_tree))); |
| if (TYPE_MAIN_VARIANT(type_tree) |
| == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree))) |
| return fold_build1_loc(location.gcc_location(), NOP_EXPR, |
| type_tree, expr_tree); |
| return fold_build1_loc(location.gcc_location(), VIEW_CONVERT_EXPR, |
| type_tree, expr_tree); |
| } |
| |
| gcc_unreachable(); |
| } |
| |
| // Make a global variable. |
| |
| Bvariable* |
| Gcc_backend::global_variable(const std::string& var_name, |
| const std::string& asm_name, |
| Btype* btype, |
| bool is_external, |
| bool is_hidden, |
| bool in_unique_section, |
| Location location) |
| { |
| tree type_tree = btype->get_tree(); |
| if (type_tree == error_mark_node) |
| return this->error_variable(); |
| |
| // The GNU linker does not like dynamic variables with zero size. |
| tree orig_type_tree = type_tree; |
| if ((is_external || !is_hidden) && int_size_in_bytes(type_tree) == 0) |
| type_tree = this->non_zero_size_type(type_tree); |
| |
| tree decl = build_decl(location.gcc_location(), VAR_DECL, |
| get_identifier_from_string(var_name), |
| type_tree); |
| if (is_external) |
| DECL_EXTERNAL(decl) = 1; |
| else |
| TREE_STATIC(decl) = 1; |
| if (!is_hidden) |
| { |
| TREE_PUBLIC(decl) = 1; |
| SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name)); |
| } |
| else |
| { |
| SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name)); |
| } |
| |
| TREE_USED(decl) = 1; |
| |
| if (in_unique_section) |
| resolve_unique_section (decl, 0, 1); |
| |
| go_preserve_from_gc(decl); |
| |
| return new Bvariable(decl, orig_type_tree); |
| } |
| |
| // Set the initial value of a global variable. |
| |
| void |
| Gcc_backend::global_variable_set_init(Bvariable* var, Bexpression* expr) |
| { |
| tree expr_tree = expr->get_tree(); |
| if (expr_tree == error_mark_node) |
| return; |
| gcc_assert(TREE_CONSTANT(expr_tree)); |
| tree var_decl = var->get_decl(); |
| if (var_decl == error_mark_node) |
| return; |
| DECL_INITIAL(var_decl) = expr_tree; |
| |
| // If this variable goes in a unique section, it may need to go into |
| // a different one now that DECL_INITIAL is set. |
| if (symtab_node::get(var_decl) |
| && symtab_node::get(var_decl)->implicit_section) |
| { |
| set_decl_section_name (var_decl, NULL); |
| resolve_unique_section (var_decl, |
| compute_reloc_for_constant (expr_tree), |
| 1); |
| } |
| } |
| |
| // Make a local variable. |
| |
| Bvariable* |
| Gcc_backend::local_variable(Bfunction* function, const std::string& name, |
| Btype* btype, Bvariable* decl_var, |
| bool is_address_taken, Location location) |
| { |
| tree type_tree = btype->get_tree(); |
| if (type_tree == error_mark_node) |
| return this->error_variable(); |
| tree decl = build_decl(location.gcc_location(), VAR_DECL, |
| get_identifier_from_string(name), |
| type_tree); |
| DECL_CONTEXT(decl) = function->get_tree(); |
| TREE_USED(decl) = 1; |
| if (is_address_taken) |
| TREE_ADDRESSABLE(decl) = 1; |
| if (decl_var != NULL) |
| { |
| DECL_HAS_VALUE_EXPR_P(decl) = 1; |
| SET_DECL_VALUE_EXPR(decl, decl_var->get_decl()); |
| } |
| go_preserve_from_gc(decl); |
| return new Bvariable(decl); |
| } |
| |
| // Make a function parameter variable. |
| |
| Bvariable* |
| Gcc_backend::parameter_variable(Bfunction* function, const std::string& name, |
| Btype* btype, bool is_address_taken, |
| Location location) |
| { |
| tree type_tree = btype->get_tree(); |
| if (type_tree == error_mark_node) |
| return this->error_variable(); |
| tree decl = build_decl(location.gcc_location(), PARM_DECL, |
| get_identifier_from_string(name), |
| type_tree); |
| DECL_CONTEXT(decl) = function->get_tree(); |
| DECL_ARG_TYPE(decl) = type_tree; |
| TREE_USED(decl) = 1; |
| if (is_address_taken) |
| TREE_ADDRESSABLE(decl) = 1; |
| go_preserve_from_gc(decl); |
| return new Bvariable(decl); |
| } |
| |
| // Make a static chain variable. |
| |
| Bvariable* |
| Gcc_backend::static_chain_variable(Bfunction* function, const std::string& name, |
| Btype* btype, Location location) |
| { |
| tree type_tree = btype->get_tree(); |
| if (type_tree == error_mark_node) |
| return this->error_variable(); |
| tree decl = build_decl(location.gcc_location(), PARM_DECL, |
| get_identifier_from_string(name), type_tree); |
| tree fndecl = function->get_tree(); |
| DECL_CONTEXT(decl) = fndecl; |
| DECL_ARG_TYPE(decl) = type_tree; |
| TREE_USED(decl) = 1; |
| DECL_ARTIFICIAL(decl) = 1; |
| DECL_IGNORED_P(decl) = 1; |
| TREE_READONLY(decl) = 1; |
| |
| struct function *f = DECL_STRUCT_FUNCTION(fndecl); |
| if (f == NULL) |
| { |
| push_struct_function(fndecl); |
| pop_cfun(); |
| f = DECL_STRUCT_FUNCTION(fndecl); |
| } |
| gcc_assert(f->static_chain_decl == NULL); |
| f->static_chain_decl = decl; |
| DECL_STATIC_CHAIN(fndecl) = 1; |
| |
| go_preserve_from_gc(decl); |
| return new Bvariable(decl); |
| } |
| |
| // Make a temporary variable. |
| |
| Bvariable* |
| Gcc_backend::temporary_variable(Bfunction* function, Bblock* bblock, |
| Btype* btype, Bexpression* binit, |
| bool is_address_taken, |
| Location location, |
| Bstatement** pstatement) |
| { |
| gcc_assert(function != NULL); |
| tree decl = function->get_tree(); |
| tree type_tree = btype->get_tree(); |
| tree init_tree = binit == NULL ? NULL_TREE : binit->get_tree(); |
| if (type_tree == error_mark_node |
| || init_tree == error_mark_node |
| || decl == error_mark_node) |
| { |
| *pstatement = this->error_statement(); |
| return this->error_variable(); |
| } |
| |
| tree var; |
| // We can only use create_tmp_var if the type is not addressable. |
| if (!TREE_ADDRESSABLE(type_tree)) |
| { |
| if (DECL_STRUCT_FUNCTION(decl) == NULL) |
| push_struct_function(decl); |
| else |
| push_cfun(DECL_STRUCT_FUNCTION(decl)); |
| |
| var = create_tmp_var(type_tree, "GOTMP"); |
| pop_cfun(); |
| } |
| else |
| { |
| gcc_assert(bblock != NULL); |
| var = build_decl(location.gcc_location(), VAR_DECL, |
| create_tmp_var_name("GOTMP"), |
| type_tree); |
| DECL_ARTIFICIAL(var) = 1; |
| DECL_IGNORED_P(var) = 1; |
| TREE_USED(var) = 1; |
| DECL_CONTEXT(var) = decl; |
| |
| // We have to add this variable to the BLOCK and the BIND_EXPR. |
| tree bind_tree = bblock->get_tree(); |
| gcc_assert(TREE_CODE(bind_tree) == BIND_EXPR); |
| tree block_tree = BIND_EXPR_BLOCK(bind_tree); |
| gcc_assert(TREE_CODE(block_tree) == BLOCK); |
| DECL_CHAIN(var) = BLOCK_VARS(block_tree); |
| BLOCK_VARS(block_tree) = var; |
| BIND_EXPR_VARS(bind_tree) = BLOCK_VARS(block_tree); |
| } |
| |
| if (this->type_size(btype) != 0 |
| && init_tree != NULL_TREE |
| && TREE_TYPE(init_tree) != void_type_node) |
| DECL_INITIAL(var) = this->convert_tree(type_tree, init_tree, location); |
| |
| if (is_address_taken) |
| TREE_ADDRESSABLE(var) = 1; |
| |
| *pstatement = this->make_statement(build1_loc(location.gcc_location(), |
| DECL_EXPR, |
| void_type_node, var)); |
| |
| // For a zero sized type, don't initialize VAR with BINIT, but still |
| // evaluate BINIT for its side effects. |
| if (init_tree != NULL_TREE |
| && (this->type_size(btype) == 0 |
| || TREE_TYPE(init_tree) == void_type_node)) |
| *pstatement = |
| this->compound_statement(this->expression_statement(function, binit), |
| *pstatement); |
| |
| return new Bvariable(var); |
| } |
| |
| // Create an implicit variable that is compiler-defined. This is used when |
| // generating GC root variables and storing the values of a slice initializer. |
| |
| Bvariable* |
| Gcc_backend::implicit_variable(const std::string& name, |
| const std::string& asm_name, |
| Btype* type, bool is_hidden, bool is_constant, |
| bool is_common, int64_t alignment) |
| { |
| tree type_tree = type->get_tree(); |
| if (type_tree == error_mark_node) |
| return this->error_variable(); |
| |
| tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, |
| get_identifier_from_string(name), type_tree); |
| DECL_EXTERNAL(decl) = 0; |
| TREE_PUBLIC(decl) = !is_hidden; |
| TREE_STATIC(decl) = 1; |
| TREE_USED(decl) = 1; |
| DECL_ARTIFICIAL(decl) = 1; |
| if (is_common) |
| { |
| DECL_COMMON(decl) = 1; |
| |
| // When the initializer for one implicit_variable refers to another, |
| // it needs to know the visibility of the referenced struct so that |
| // compute_reloc_for_constant will return the right value. On many |
| // systems calling make_decl_one_only will mark the decl as weak, |
| // which will change the return value of compute_reloc_for_constant. |
| // We can't reliably call make_decl_one_only yet, because we don't |
| // yet know the initializer. This issue doesn't arise in C because |
| // Go initializers, unlike C initializers, can be indirectly |
| // recursive. To ensure that compute_reloc_for_constant computes |
| // the right value if some other initializer refers to this one, we |
| // mark this symbol as weak here. We undo that below in |
| // immutable_struct_set_init before calling mark_decl_one_only. |
| DECL_WEAK(decl) = 1; |
| } |
| if (is_constant) |
| { |
| TREE_READONLY(decl) = 1; |
| TREE_CONSTANT(decl) = 1; |
| } |
| if (alignment != 0) |
| { |
| SET_DECL_ALIGN(decl, alignment * BITS_PER_UNIT); |
| DECL_USER_ALIGN(decl) = 1; |
| } |
| if (! asm_name.empty()) |
| SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name)); |
| |
| go_preserve_from_gc(decl); |
| return new Bvariable(decl); |
| } |
| |
| // Set the initalizer for a variable created by implicit_variable. |
| // This is where we finish compiling the variable. |
| |
| void |
| Gcc_backend::implicit_variable_set_init(Bvariable* var, const std::string&, |
| Btype*, bool, bool, bool is_common, |
| Bexpression* init) |
| { |
| tree decl = var->get_decl(); |
| tree init_tree; |
| if (init == NULL) |
| init_tree = NULL_TREE; |
| else |
| init_tree = init->get_tree(); |
| if (decl == error_mark_node || init_tree == error_mark_node) |
| return; |
| |
| DECL_INITIAL(decl) = init_tree; |
| |
| // Now that DECL_INITIAL is set, we can't call make_decl_one_only. |
| // See the comment where DECL_WEAK is set in implicit_variable. |
| if (is_common) |
| { |
| DECL_WEAK(decl) = 0; |
| make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl)); |
| } |
| |
| resolve_unique_section(decl, 2, 1); |
| |
| rest_of_decl_compilation(decl, 1, 0); |
| } |
| |
| // Return a reference to an implicit variable defined in another package. |
| |
| Bvariable* |
| Gcc_backend::implicit_variable_reference(const std::string& name, |
| const std::string& asm_name, |
| Btype* btype) |
| { |
| tree type_tree = btype->get_tree(); |
| if (type_tree == error_mark_node) |
| return this->error_variable(); |
| |
| tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, |
| get_identifier_from_string(name), type_tree); |
| DECL_EXTERNAL(decl) = 1; |
| TREE_PUBLIC(decl) = 1; |
| TREE_STATIC(decl) = 0; |
| DECL_ARTIFICIAL(decl) = 1; |
| if (! asm_name.empty()) |
| SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name)); |
| go_preserve_from_gc(decl); |
| return new Bvariable(decl); |
| } |
| |
| // Create a named immutable initialized data structure. |
| |
| Bvariable* |
| Gcc_backend::immutable_struct(const std::string& name, |
| const std::string& asm_name, |
| bool is_hidden, |
| bool is_common, Btype* btype, Location location) |
| { |
| tree type_tree = btype->get_tree(); |
| if (type_tree == error_mark_node) |
| return this->error_variable(); |
| gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE); |
| tree decl = build_decl(location.gcc_location(), VAR_DECL, |
| get_identifier_from_string(name), |
| build_qualified_type(type_tree, TYPE_QUAL_CONST)); |
| TREE_STATIC(decl) = 1; |
| TREE_USED(decl) = 1; |
| TREE_READONLY(decl) = 1; |
| TREE_CONSTANT(decl) = 1; |
| DECL_ARTIFICIAL(decl) = 1; |
| if (!is_hidden) |
| TREE_PUBLIC(decl) = 1; |
| if (! asm_name.empty()) |
| SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(asm_name)); |
| |
| // When the initializer for one immutable_struct refers to another, |
| // it needs to know the visibility of the referenced struct so that |
| // compute_reloc_for_constant will return the right value. On many |
| // systems calling make_decl_one_only will mark the decl as weak, |
| // which will change the return value of compute_reloc_for_constant. |
| // We can't reliably call make_decl_one_only yet, because we don't |
| |