blob: 681ec2f46f9d9c57b47ed740f6fbe78fb617216f [file] [log] [blame]
/* Integrated Register Allocator (IRA) entry point.
Copyright (C) 2006-2020 Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The integrated register allocator (IRA) is a
regional register allocator performing graph coloring on a top-down
traversal of nested regions. Graph coloring in a region is based
on Chaitin-Briggs algorithm. It is called integrated because
register coalescing, register live range splitting, and choosing a
better hard register are done on-the-fly during coloring. Register
coalescing and choosing a cheaper hard register is done by hard
register preferencing during hard register assigning. The live
range splitting is a byproduct of the regional register allocation.
Major IRA notions are:
o *Region* is a part of CFG where graph coloring based on
Chaitin-Briggs algorithm is done. IRA can work on any set of
nested CFG regions forming a tree. Currently the regions are
the entire function for the root region and natural loops for
the other regions. Therefore data structure representing a
region is called loop_tree_node.
o *Allocno class* is a register class used for allocation of
given allocno. It means that only hard register of given
register class can be assigned to given allocno. In reality,
even smaller subset of (*profitable*) hard registers can be
assigned. In rare cases, the subset can be even smaller
because our modification of Chaitin-Briggs algorithm requires
that sets of hard registers can be assigned to allocnos forms a
forest, i.e. the sets can be ordered in a way where any
previous set is not intersected with given set or is a superset
of given set.
o *Pressure class* is a register class belonging to a set of
register classes containing all of the hard-registers available
for register allocation. The set of all pressure classes for a
target is defined in the corresponding machine-description file
according some criteria. Register pressure is calculated only
for pressure classes and it affects some IRA decisions as
forming allocation regions.
o *Allocno* represents the live range of a pseudo-register in a
region. Besides the obvious attributes like the corresponding
pseudo-register number, allocno class, conflicting allocnos and
conflicting hard-registers, there are a few allocno attributes
which are important for understanding the allocation algorithm:
- *Live ranges*. This is a list of ranges of *program points*
where the allocno lives. Program points represent places
where a pseudo can be born or become dead (there are
approximately two times more program points than the insns)
and they are represented by integers starting with 0. The
live ranges are used to find conflicts between allocnos.
They also play very important role for the transformation of
the IRA internal representation of several regions into a one
region representation. The later is used during the reload
pass work because each allocno represents all of the
corresponding pseudo-registers.
- *Hard-register costs*. This is a vector of size equal to the
number of available hard-registers of the allocno class. The
cost of a callee-clobbered hard-register for an allocno is
increased by the cost of save/restore code around the calls
through the given allocno's life. If the allocno is a move
instruction operand and another operand is a hard-register of
the allocno class, the cost of the hard-register is decreased
by the move cost.
When an allocno is assigned, the hard-register with minimal
full cost is used. Initially, a hard-register's full cost is
the corresponding value from the hard-register's cost vector.
If the allocno is connected by a *copy* (see below) to
another allocno which has just received a hard-register, the
cost of the hard-register is decreased. Before choosing a
hard-register for an allocno, the allocno's current costs of
the hard-registers are modified by the conflict hard-register
costs of all of the conflicting allocnos which are not
assigned yet.
- *Conflict hard-register costs*. This is a vector of the same
size as the hard-register costs vector. To permit an
unassigned allocno to get a better hard-register, IRA uses
this vector to calculate the final full cost of the
available hard-registers. Conflict hard-register costs of an
unassigned allocno are also changed with a change of the
hard-register cost of the allocno when a copy involving the
allocno is processed as described above. This is done to
show other unassigned allocnos that a given allocno prefers
some hard-registers in order to remove the move instruction
corresponding to the copy.
o *Cap*. If a pseudo-register does not live in a region but
lives in a nested region, IRA creates a special allocno called
a cap in the outer region. A region cap is also created for a
subregion cap.
o *Copy*. Allocnos can be connected by copies. Copies are used
to modify hard-register costs for allocnos during coloring.
Such modifications reflects a preference to use the same
hard-register for the allocnos connected by copies. Usually
copies are created for move insns (in this case it results in
register coalescing). But IRA also creates copies for operands
of an insn which should be assigned to the same hard-register
due to constraints in the machine description (it usually
results in removing a move generated in reload to satisfy
the constraints) and copies referring to the allocno which is
the output operand of an instruction and the allocno which is
an input operand dying in the instruction (creation of such
copies results in less register shuffling). IRA *does not*
create copies between the same register allocnos from different
regions because we use another technique for propagating
hard-register preference on the borders of regions.
Allocnos (including caps) for the upper region in the region tree
*accumulate* information important for coloring from allocnos with
the same pseudo-register from nested regions. This includes
hard-register and memory costs, conflicts with hard-registers,
allocno conflicts, allocno copies and more. *Thus, attributes for
allocnos in a region have the same values as if the region had no
subregions*. It means that attributes for allocnos in the
outermost region corresponding to the function have the same values
as though the allocation used only one region which is the entire
function. It also means that we can look at IRA work as if the
first IRA did allocation for all function then it improved the
allocation for loops then their subloops and so on.
IRA major passes are:
o Building IRA internal representation which consists of the
following subpasses:
* First, IRA builds regions and creates allocnos (file
ira-build.c) and initializes most of their attributes.
* Then IRA finds an allocno class for each allocno and
calculates its initial (non-accumulated) cost of memory and
each hard-register of its allocno class (file ira-cost.c).
* IRA creates live ranges of each allocno, calculates register
pressure for each pressure class in each region, sets up
conflict hard registers for each allocno and info about calls
the allocno lives through (file ira-lives.c).
* IRA removes low register pressure loops from the regions
mostly to speed IRA up (file ira-build.c).
* IRA propagates accumulated allocno info from lower region
allocnos to corresponding upper region allocnos (file
ira-build.c).
* IRA creates all caps (file ira-build.c).
* Having live-ranges of allocnos and their classes, IRA creates
conflicting allocnos for each allocno. Conflicting allocnos
are stored as a bit vector or array of pointers to the
conflicting allocnos whatever is more profitable (file
ira-conflicts.c). At this point IRA creates allocno copies.
o Coloring. Now IRA has all necessary info to start graph coloring
process. It is done in each region on top-down traverse of the
region tree (file ira-color.c). There are following subpasses:
* Finding profitable hard registers of corresponding allocno
class for each allocno. For example, only callee-saved hard
registers are frequently profitable for allocnos living
through colors. If the profitable hard register set of
allocno does not form a tree based on subset relation, we use
some approximation to form the tree. This approximation is
used to figure out trivial colorability of allocnos. The
approximation is a pretty rare case.
* Putting allocnos onto the coloring stack. IRA uses Briggs
optimistic coloring which is a major improvement over
Chaitin's coloring. Therefore IRA does not spill allocnos at
this point. There is some freedom in the order of putting
allocnos on the stack which can affect the final result of
the allocation. IRA uses some heuristics to improve the
order. The major one is to form *threads* from colorable
allocnos and push them on the stack by threads. Thread is a
set of non-conflicting colorable allocnos connected by
copies. The thread contains allocnos from the colorable
bucket or colorable allocnos already pushed onto the coloring
stack. Pushing thread allocnos one after another onto the
stack increases chances of removing copies when the allocnos
get the same hard reg.
We also use a modification of Chaitin-Briggs algorithm which
works for intersected register classes of allocnos. To
figure out trivial colorability of allocnos, the mentioned
above tree of hard register sets is used. To get an idea how
the algorithm works in i386 example, let us consider an
allocno to which any general hard register can be assigned.
If the allocno conflicts with eight allocnos to which only
EAX register can be assigned, given allocno is still
trivially colorable because all conflicting allocnos might be
assigned only to EAX and all other general hard registers are
still free.
To get an idea of the used trivial colorability criterion, it
is also useful to read article "Graph-Coloring Register
Allocation for Irregular Architectures" by Michael D. Smith
and Glen Holloway. Major difference between the article
approach and approach used in IRA is that Smith's approach
takes register classes only from machine description and IRA
calculate register classes from intermediate code too
(e.g. an explicit usage of hard registers in RTL code for
parameter passing can result in creation of additional
register classes which contain or exclude the hard
registers). That makes IRA approach useful for improving
coloring even for architectures with regular register files
and in fact some benchmarking shows the improvement for
regular class architectures is even bigger than for irregular
ones. Another difference is that Smith's approach chooses
intersection of classes of all insn operands in which a given
pseudo occurs. IRA can use bigger classes if it is still
more profitable than memory usage.
* Popping the allocnos from the stack and assigning them hard
registers. If IRA cannot assign a hard register to an
allocno and the allocno is coalesced, IRA undoes the
coalescing and puts the uncoalesced allocnos onto the stack in
the hope that some such allocnos will get a hard register
separately. If IRA fails to assign hard register or memory
is more profitable for it, IRA spills the allocno. IRA
assigns the allocno the hard-register with minimal full
allocation cost which reflects the cost of usage of the
hard-register for the allocno and cost of usage of the
hard-register for allocnos conflicting with given allocno.
* Chaitin-Briggs coloring assigns as many pseudos as possible
to hard registers. After coloring we try to improve
allocation with cost point of view. We improve the
allocation by spilling some allocnos and assigning the freed
hard registers to other allocnos if it decreases the overall
allocation cost.
* After allocno assigning in the region, IRA modifies the hard
register and memory costs for the corresponding allocnos in
the subregions to reflect the cost of possible loads, stores,
or moves on the border of the region and its subregions.
When default regional allocation algorithm is used
(-fira-algorithm=mixed), IRA just propagates the assignment
for allocnos if the register pressure in the region for the
corresponding pressure class is less than number of available
hard registers for given pressure class.
o Spill/restore code moving. When IRA performs an allocation
by traversing regions in top-down order, it does not know what
happens below in the region tree. Therefore, sometimes IRA
misses opportunities to perform a better allocation. A simple
optimization tries to improve allocation in a region having
subregions and containing in another region. If the
corresponding allocnos in the subregion are spilled, it spills
the region allocno if it is profitable. The optimization
implements a simple iterative algorithm performing profitable
transformations while they are still possible. It is fast in
practice, so there is no real need for a better time complexity
algorithm.
o Code change. After coloring, two allocnos representing the
same pseudo-register outside and inside a region respectively
may be assigned to different locations (hard-registers or
memory). In this case IRA creates and uses a new
pseudo-register inside the region and adds code to move allocno
values on the region's borders. This is done during top-down
traversal of the regions (file ira-emit.c). In some
complicated cases IRA can create a new allocno to move allocno
values (e.g. when a swap of values stored in two hard-registers
is needed). At this stage, the new allocno is marked as
spilled. IRA still creates the pseudo-register and the moves
on the region borders even when both allocnos were assigned to
the same hard-register. If the reload pass spills a
pseudo-register for some reason, the effect will be smaller
because another allocno will still be in the hard-register. In
most cases, this is better then spilling both allocnos. If
reload does not change the allocation for the two
pseudo-registers, the trivial move will be removed by
post-reload optimizations. IRA does not generate moves for
allocnos assigned to the same hard register when the default
regional allocation algorithm is used and the register pressure
in the region for the corresponding pressure class is less than
number of available hard registers for given pressure class.
IRA also does some optimizations to remove redundant stores and
to reduce code duplication on the region borders.
o Flattening internal representation. After changing code, IRA
transforms its internal representation for several regions into
one region representation (file ira-build.c). This process is
called IR flattening. Such process is more complicated than IR
rebuilding would be, but is much faster.
o After IR flattening, IRA tries to assign hard registers to all
spilled allocnos. This is implemented by a simple and fast
priority coloring algorithm (see function
ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
created during the code change pass can be assigned to hard
registers.
o At the end IRA calls the reload pass. The reload pass
communicates with IRA through several functions in file
ira-color.c to improve its decisions in
* sharing stack slots for the spilled pseudos based on IRA info
about pseudo-register conflicts.
* reassigning hard-registers to all spilled pseudos at the end
of each reload iteration.
* choosing a better hard-register to spill based on IRA info
about pseudo-register live ranges and the register pressure
in places where the pseudo-register lives.
IRA uses a lot of data representing the target processors. These
data are initialized in file ira.c.
If function has no loops (or the loops are ignored when
-fira-algorithm=CB is used), we have classic Chaitin-Briggs
coloring (only instead of separate pass of coalescing, we use hard
register preferencing). In such case, IRA works much faster
because many things are not made (like IR flattening, the
spill/restore optimization, and the code change).
Literature is worth to read for better understanding the code:
o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
Graph Coloring Register Allocation.
o David Callahan, Brian Koblenz. Register allocation via
hierarchical graph coloring.
o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
Coloring Register Allocation: A Study of the Chaitin-Briggs and
Callahan-Koblenz Algorithms.
o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
Register Allocation Based on Graph Fusion.
o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
Allocation for Irregular Architectures
o Vladimir Makarov. The Integrated Register Allocator for GCC.
o Vladimir Makarov. The top-down register allocator for irregular
register file architectures.
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "ira.h"
#include "ira-int.h"
#include "diagnostic-core.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "expr.h"
#include "tree-pass.h"
#include "output.h"
#include "reload.h"
#include "cfgloop.h"
#include "lra.h"
#include "dce.h"
#include "dbgcnt.h"
#include "rtl-iter.h"
#include "shrink-wrap.h"
#include "print-rtl.h"
struct target_ira default_target_ira;
class target_ira_int default_target_ira_int;
#if SWITCHABLE_TARGET
struct target_ira *this_target_ira = &default_target_ira;
class target_ira_int *this_target_ira_int = &default_target_ira_int;
#endif
/* A modified value of flag `-fira-verbose' used internally. */
int internal_flag_ira_verbose;
/* Dump file of the allocator if it is not NULL. */
FILE *ira_dump_file;
/* The number of elements in the following array. */
int ira_spilled_reg_stack_slots_num;
/* The following array contains info about spilled pseudo-registers
stack slots used in current function so far. */
class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
/* Correspondingly overall cost of the allocation, overall cost before
reload, cost of the allocnos assigned to hard-registers, cost of
the allocnos assigned to memory, cost of loads, stores and register
move insns generated for pseudo-register live range splitting (see
ira-emit.c). */
int64_t ira_overall_cost, overall_cost_before;
int64_t ira_reg_cost, ira_mem_cost;
int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
int ira_move_loops_num, ira_additional_jumps_num;
/* All registers that can be eliminated. */
HARD_REG_SET eliminable_regset;
/* Value of max_reg_num () before IRA work start. This value helps
us to recognize a situation when new pseudos were created during
IRA work. */
static int max_regno_before_ira;
/* Temporary hard reg set used for a different calculation. */
static HARD_REG_SET temp_hard_regset;
#define last_mode_for_init_move_cost \
(this_target_ira_int->x_last_mode_for_init_move_cost)
/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
static void
setup_reg_mode_hard_regset (void)
{
int i, m, hard_regno;
for (m = 0; m < NUM_MACHINE_MODES; m++)
for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
{
CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
i >= 0; i--)
if (hard_regno + i < FIRST_PSEUDO_REGISTER)
SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
hard_regno + i);
}
}
#define no_unit_alloc_regs \
(this_target_ira_int->x_no_unit_alloc_regs)
/* The function sets up the three arrays declared above. */
static void
setup_class_hard_regs (void)
{
int cl, i, hard_regno, n;
HARD_REG_SET processed_hard_reg_set;
ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
{
temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
CLEAR_HARD_REG_SET (processed_hard_reg_set);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
ira_non_ordered_class_hard_regs[cl][i] = -1;
ira_class_hard_reg_index[cl][i] = -1;
}
for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
#ifdef REG_ALLOC_ORDER
hard_regno = reg_alloc_order[i];
#else
hard_regno = i;
#endif
if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
continue;
SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
ira_class_hard_reg_index[cl][hard_regno] = -1;
else
{
ira_class_hard_reg_index[cl][hard_regno] = n;
ira_class_hard_regs[cl][n++] = hard_regno;
}
}
ira_class_hard_regs_num[cl] = n;
for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (temp_hard_regset, i))
ira_non_ordered_class_hard_regs[cl][n++] = i;
ira_assert (ira_class_hard_regs_num[cl] == n);
}
}
/* Set up global variables defining info about hard registers for the
allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
that we can use the hard frame pointer for the allocation. */
static void
setup_alloc_regs (bool use_hard_frame_p)
{
#ifdef ADJUST_REG_ALLOC_ORDER
ADJUST_REG_ALLOC_ORDER;
#endif
no_unit_alloc_regs = fixed_nonglobal_reg_set;
if (! use_hard_frame_p)
add_to_hard_reg_set (&no_unit_alloc_regs, Pmode,
HARD_FRAME_POINTER_REGNUM);
setup_class_hard_regs ();
}
#define alloc_reg_class_subclasses \
(this_target_ira_int->x_alloc_reg_class_subclasses)
/* Initialize the table of subclasses of each reg class. */
static void
setup_reg_subclasses (void)
{
int i, j;
HARD_REG_SET temp_hard_regset2;
for (i = 0; i < N_REG_CLASSES; i++)
for (j = 0; j < N_REG_CLASSES; j++)
alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
for (i = 0; i < N_REG_CLASSES; i++)
{
if (i == (int) NO_REGS)
continue;
temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
if (hard_reg_set_empty_p (temp_hard_regset))
continue;
for (j = 0; j < N_REG_CLASSES; j++)
if (i != j)
{
enum reg_class *p;
temp_hard_regset2 = reg_class_contents[j] & ~no_unit_alloc_regs;
if (! hard_reg_set_subset_p (temp_hard_regset,
temp_hard_regset2))
continue;
p = &alloc_reg_class_subclasses[j][0];
while (*p != LIM_REG_CLASSES) p++;
*p = (enum reg_class) i;
}
}
}
/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
static void
setup_class_subset_and_memory_move_costs (void)
{
int cl, cl2, mode, cost;
HARD_REG_SET temp_hard_regset2;
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
ira_memory_move_cost[mode][NO_REGS][0]
= ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
{
if (cl != (int) NO_REGS)
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
{
ira_max_memory_move_cost[mode][cl][0]
= ira_memory_move_cost[mode][cl][0]
= memory_move_cost ((machine_mode) mode,
(reg_class_t) cl, false);
ira_max_memory_move_cost[mode][cl][1]
= ira_memory_move_cost[mode][cl][1]
= memory_move_cost ((machine_mode) mode,
(reg_class_t) cl, true);
/* Costs for NO_REGS are used in cost calculation on the
1st pass when the preferred register classes are not
known yet. In this case we take the best scenario. */
if (ira_memory_move_cost[mode][NO_REGS][0]
> ira_memory_move_cost[mode][cl][0])
ira_max_memory_move_cost[mode][NO_REGS][0]
= ira_memory_move_cost[mode][NO_REGS][0]
= ira_memory_move_cost[mode][cl][0];
if (ira_memory_move_cost[mode][NO_REGS][1]
> ira_memory_move_cost[mode][cl][1])
ira_max_memory_move_cost[mode][NO_REGS][1]
= ira_memory_move_cost[mode][NO_REGS][1]
= ira_memory_move_cost[mode][cl][1];
}
}
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
{
temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
temp_hard_regset2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
ira_class_subset_p[cl][cl2]
= hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
if (! hard_reg_set_empty_p (temp_hard_regset2)
&& hard_reg_set_subset_p (reg_class_contents[cl2],
reg_class_contents[cl]))
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
{
cost = ira_memory_move_cost[mode][cl2][0];
if (cost > ira_max_memory_move_cost[mode][cl][0])
ira_max_memory_move_cost[mode][cl][0] = cost;
cost = ira_memory_move_cost[mode][cl2][1];
if (cost > ira_max_memory_move_cost[mode][cl][1])
ira_max_memory_move_cost[mode][cl][1] = cost;
}
}
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
{
ira_memory_move_cost[mode][cl][0]
= ira_max_memory_move_cost[mode][cl][0];
ira_memory_move_cost[mode][cl][1]
= ira_max_memory_move_cost[mode][cl][1];
}
setup_reg_subclasses ();
}
/* Define the following macro if allocation through malloc if
preferable. */
#define IRA_NO_OBSTACK
#ifndef IRA_NO_OBSTACK
/* Obstack used for storing all dynamic data (except bitmaps) of the
IRA. */
static struct obstack ira_obstack;
#endif
/* Obstack used for storing all bitmaps of the IRA. */
static struct bitmap_obstack ira_bitmap_obstack;
/* Allocate memory of size LEN for IRA data. */
void *
ira_allocate (size_t len)
{
void *res;
#ifndef IRA_NO_OBSTACK
res = obstack_alloc (&ira_obstack, len);
#else
res = xmalloc (len);
#endif
return res;
}
/* Free memory ADDR allocated for IRA data. */
void
ira_free (void *addr ATTRIBUTE_UNUSED)
{
#ifndef IRA_NO_OBSTACK
/* do nothing */
#else
free (addr);
#endif
}
/* Allocate and returns bitmap for IRA. */
bitmap
ira_allocate_bitmap (void)
{
return BITMAP_ALLOC (&ira_bitmap_obstack);
}
/* Free bitmap B allocated for IRA. */
void
ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
{
/* do nothing */
}
/* Output information about allocation of all allocnos (except for
caps) into file F. */
void
ira_print_disposition (FILE *f)
{
int i, n, max_regno;
ira_allocno_t a;
basic_block bb;
fprintf (f, "Disposition:");
max_regno = max_reg_num ();
for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
for (a = ira_regno_allocno_map[i];
a != NULL;
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
{
if (n % 4 == 0)
fprintf (f, "\n");
n++;
fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
fprintf (f, "b%-3d", bb->index);
else
fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
if (ALLOCNO_HARD_REGNO (a) >= 0)
fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
else
fprintf (f, " mem");
}
fprintf (f, "\n");
}
/* Outputs information about allocation of all allocnos into
stderr. */
void
ira_debug_disposition (void)
{
ira_print_disposition (stderr);
}
/* Set up ira_stack_reg_pressure_class which is the biggest pressure
register class containing stack registers or NO_REGS if there are
no stack registers. To find this class, we iterate through all
register pressure classes and choose the first register pressure
class containing all the stack registers and having the biggest
size. */
static void
setup_stack_reg_pressure_class (void)
{
ira_stack_reg_pressure_class = NO_REGS;
#ifdef STACK_REGS
{
int i, best, size;
enum reg_class cl;
HARD_REG_SET temp_hard_regset2;
CLEAR_HARD_REG_SET (temp_hard_regset);
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
SET_HARD_REG_BIT (temp_hard_regset, i);
best = 0;
for (i = 0; i < ira_pressure_classes_num; i++)
{
cl = ira_pressure_classes[i];
temp_hard_regset2 = temp_hard_regset & reg_class_contents[cl];
size = hard_reg_set_size (temp_hard_regset2);
if (best < size)
{
best = size;
ira_stack_reg_pressure_class = cl;
}
}
}
#endif
}
/* Find pressure classes which are register classes for which we
calculate register pressure in IRA, register pressure sensitive
insn scheduling, and register pressure sensitive loop invariant
motion.
To make register pressure calculation easy, we always use
non-intersected register pressure classes. A move of hard
registers from one register pressure class is not more expensive
than load and store of the hard registers. Most likely an allocno
class will be a subset of a register pressure class and in many
cases a register pressure class. That makes usage of register
pressure classes a good approximation to find a high register
pressure. */
static void
setup_pressure_classes (void)
{
int cost, i, n, curr;
int cl, cl2;
enum reg_class pressure_classes[N_REG_CLASSES];
int m;
HARD_REG_SET temp_hard_regset2;
bool insert_p;
if (targetm.compute_pressure_classes)
n = targetm.compute_pressure_classes (pressure_classes);
else
{
n = 0;
for (cl = 0; cl < N_REG_CLASSES; cl++)
{
if (ira_class_hard_regs_num[cl] == 0)
continue;
if (ira_class_hard_regs_num[cl] != 1
/* A register class without subclasses may contain a few
hard registers and movement between them is costly
(e.g. SPARC FPCC registers). We still should consider it
as a candidate for a pressure class. */
&& alloc_reg_class_subclasses[cl][0] < cl)
{
/* Check that the moves between any hard registers of the
current class are not more expensive for a legal mode
than load/store of the hard registers of the current
class. Such class is a potential candidate to be a
register pressure class. */
for (m = 0; m < NUM_MACHINE_MODES; m++)
{
temp_hard_regset
= (reg_class_contents[cl]
& ~(no_unit_alloc_regs
| ira_prohibited_class_mode_regs[cl][m]));
if (hard_reg_set_empty_p (temp_hard_regset))
continue;
ira_init_register_move_cost_if_necessary ((machine_mode) m);
cost = ira_register_move_cost[m][cl][cl];
if (cost <= ira_max_memory_move_cost[m][cl][1]
|| cost <= ira_max_memory_move_cost[m][cl][0])
break;
}
if (m >= NUM_MACHINE_MODES)
continue;
}
curr = 0;
insert_p = true;
temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
/* Remove so far added pressure classes which are subset of the
current candidate class. Prefer GENERAL_REGS as a pressure
register class to another class containing the same
allocatable hard registers. We do this because machine
dependent cost hooks might give wrong costs for the latter
class but always give the right cost for the former class
(GENERAL_REGS). */
for (i = 0; i < n; i++)
{
cl2 = pressure_classes[i];
temp_hard_regset2 = (reg_class_contents[cl2]
& ~no_unit_alloc_regs);
if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
&& (temp_hard_regset != temp_hard_regset2
|| cl2 == (int) GENERAL_REGS))
{
pressure_classes[curr++] = (enum reg_class) cl2;
insert_p = false;
continue;
}
if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
&& (temp_hard_regset2 != temp_hard_regset
|| cl == (int) GENERAL_REGS))
continue;
if (temp_hard_regset2 == temp_hard_regset)
insert_p = false;
pressure_classes[curr++] = (enum reg_class) cl2;
}
/* If the current candidate is a subset of a so far added
pressure class, don't add it to the list of the pressure
classes. */
if (insert_p)
pressure_classes[curr++] = (enum reg_class) cl;
n = curr;
}
}
#ifdef ENABLE_IRA_CHECKING
{
HARD_REG_SET ignore_hard_regs;
/* Check pressure classes correctness: here we check that hard
registers from all register pressure classes contains all hard
registers available for the allocation. */
CLEAR_HARD_REG_SET (temp_hard_regset);
CLEAR_HARD_REG_SET (temp_hard_regset2);
ignore_hard_regs = no_unit_alloc_regs;
for (cl = 0; cl < LIM_REG_CLASSES; cl++)
{
/* For some targets (like MIPS with MD_REGS), there are some
classes with hard registers available for allocation but
not able to hold value of any mode. */
for (m = 0; m < NUM_MACHINE_MODES; m++)
if (contains_reg_of_mode[cl][m])
break;
if (m >= NUM_MACHINE_MODES)
{
ignore_hard_regs |= reg_class_contents[cl];
continue;
}
for (i = 0; i < n; i++)
if ((int) pressure_classes[i] == cl)
break;
temp_hard_regset2 |= reg_class_contents[cl];
if (i < n)
temp_hard_regset |= reg_class_contents[cl];
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
/* Some targets (like SPARC with ICC reg) have allocatable regs
for which no reg class is defined. */
if (REGNO_REG_CLASS (i) == NO_REGS)
SET_HARD_REG_BIT (ignore_hard_regs, i);
temp_hard_regset &= ~ignore_hard_regs;
temp_hard_regset2 &= ~ignore_hard_regs;
ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
}
#endif
ira_pressure_classes_num = 0;
for (i = 0; i < n; i++)
{
cl = (int) pressure_classes[i];
ira_reg_pressure_class_p[cl] = true;
ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
}
setup_stack_reg_pressure_class ();
}
/* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
whose register move cost between any registers of the class is the
same as for all its subclasses. We use the data to speed up the
2nd pass of calculations of allocno costs. */
static void
setup_uniform_class_p (void)
{
int i, cl, cl2, m;
for (cl = 0; cl < N_REG_CLASSES; cl++)
{
ira_uniform_class_p[cl] = false;
if (ira_class_hard_regs_num[cl] == 0)
continue;
/* We cannot use alloc_reg_class_subclasses here because move
cost hooks does not take into account that some registers are
unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
is element of alloc_reg_class_subclasses for GENERAL_REGS
because SSE regs are unavailable. */
for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
{
if (ira_class_hard_regs_num[cl2] == 0)
continue;
for (m = 0; m < NUM_MACHINE_MODES; m++)
if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
{
ira_init_register_move_cost_if_necessary ((machine_mode) m);
if (ira_register_move_cost[m][cl][cl]
!= ira_register_move_cost[m][cl2][cl2])
break;
}
if (m < NUM_MACHINE_MODES)
break;
}
if (cl2 == LIM_REG_CLASSES)
ira_uniform_class_p[cl] = true;
}
}
/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
Target may have many subtargets and not all target hard registers can
be used for allocation, e.g. x86 port in 32-bit mode cannot use
hard registers introduced in x86-64 like r8-r15). Some classes
might have the same allocatable hard registers, e.g. INDEX_REGS
and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
calculations efforts we introduce allocno classes which contain
unique non-empty sets of allocatable hard-registers.
Pseudo class cost calculation in ira-costs.c is very expensive.
Therefore we are trying to decrease number of classes involved in
such calculation. Register classes used in the cost calculation
are called important classes. They are allocno classes and other
non-empty classes whose allocatable hard register sets are inside
of an allocno class hard register set. From the first sight, it
looks like that they are just allocno classes. It is not true. In
example of x86-port in 32-bit mode, allocno classes will contain
GENERAL_REGS but not LEGACY_REGS (because allocatable hard
registers are the same for the both classes). The important
classes will contain GENERAL_REGS and LEGACY_REGS. It is done
because a machine description insn constraint may refers for
LEGACY_REGS and code in ira-costs.c is mostly base on investigation
of the insn constraints. */
static void
setup_allocno_and_important_classes (void)
{
int i, j, n, cl;
bool set_p;
HARD_REG_SET temp_hard_regset2;
static enum reg_class classes[LIM_REG_CLASSES + 1];
n = 0;
/* Collect classes which contain unique sets of allocatable hard
registers. Prefer GENERAL_REGS to other classes containing the
same set of hard registers. */
for (i = 0; i < LIM_REG_CLASSES; i++)
{
temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
for (j = 0; j < n; j++)
{
cl = classes[j];
temp_hard_regset2 = reg_class_contents[cl] & ~no_unit_alloc_regs;
if (temp_hard_regset == temp_hard_regset2)
break;
}
if (j >= n || targetm.additional_allocno_class_p (i))
classes[n++] = (enum reg_class) i;
else if (i == GENERAL_REGS)
/* Prefer general regs. For i386 example, it means that
we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
(all of them consists of the same available hard
registers). */
classes[j] = (enum reg_class) i;
}
classes[n] = LIM_REG_CLASSES;
/* Set up classes which can be used for allocnos as classes
containing non-empty unique sets of allocatable hard
registers. */
ira_allocno_classes_num = 0;
for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
if (ira_class_hard_regs_num[cl] > 0)
ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
ira_important_classes_num = 0;
/* Add non-allocno classes containing to non-empty set of
allocatable hard regs. */
for (cl = 0; cl < N_REG_CLASSES; cl++)
if (ira_class_hard_regs_num[cl] > 0)
{
temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
set_p = false;
for (j = 0; j < ira_allocno_classes_num; j++)
{
temp_hard_regset2 = (reg_class_contents[ira_allocno_classes[j]]
& ~no_unit_alloc_regs);
if ((enum reg_class) cl == ira_allocno_classes[j])
break;
else if (hard_reg_set_subset_p (temp_hard_regset,
temp_hard_regset2))
set_p = true;
}
if (set_p && j >= ira_allocno_classes_num)
ira_important_classes[ira_important_classes_num++]
= (enum reg_class) cl;
}
/* Now add allocno classes to the important classes. */
for (j = 0; j < ira_allocno_classes_num; j++)
ira_important_classes[ira_important_classes_num++]
= ira_allocno_classes[j];
for (cl = 0; cl < N_REG_CLASSES; cl++)
{
ira_reg_allocno_class_p[cl] = false;
ira_reg_pressure_class_p[cl] = false;
}
for (j = 0; j < ira_allocno_classes_num; j++)
ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
setup_pressure_classes ();
setup_uniform_class_p ();
}
/* Setup translation in CLASS_TRANSLATE of all classes into a class
given by array CLASSES of length CLASSES_NUM. The function is used
make translation any reg class to an allocno class or to an
pressure class. This translation is necessary for some
calculations when we can use only allocno or pressure classes and
such translation represents an approximate representation of all
classes.
The translation in case when allocatable hard register set of a
given class is subset of allocatable hard register set of a class
in CLASSES is pretty simple. We use smallest classes from CLASSES
containing a given class. If allocatable hard register set of a
given class is not a subset of any corresponding set of a class
from CLASSES, we use the cheapest (with load/store point of view)
class from CLASSES whose set intersects with given class set. */
static void
setup_class_translate_array (enum reg_class *class_translate,
int classes_num, enum reg_class *classes)
{
int cl, mode;
enum reg_class aclass, best_class, *cl_ptr;
int i, cost, min_cost, best_cost;
for (cl = 0; cl < N_REG_CLASSES; cl++)
class_translate[cl] = NO_REGS;
for (i = 0; i < classes_num; i++)
{
aclass = classes[i];
for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
(cl = *cl_ptr) != LIM_REG_CLASSES;
cl_ptr++)
if (class_translate[cl] == NO_REGS)
class_translate[cl] = aclass;
class_translate[aclass] = aclass;
}
/* For classes which are not fully covered by one of given classes
(in other words covered by more one given class), use the
cheapest class. */
for (cl = 0; cl < N_REG_CLASSES; cl++)
{
if (cl == NO_REGS || class_translate[cl] != NO_REGS)
continue;
best_class = NO_REGS;
best_cost = INT_MAX;
for (i = 0; i < classes_num; i++)
{
aclass = classes[i];
temp_hard_regset = (reg_class_contents[aclass]
& reg_class_contents[cl]
& ~no_unit_alloc_regs);
if (! hard_reg_set_empty_p (temp_hard_regset))
{
min_cost = INT_MAX;
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
{
cost = (ira_memory_move_cost[mode][aclass][0]
+ ira_memory_move_cost[mode][aclass][1]);
if (min_cost > cost)
min_cost = cost;
}
if (best_class == NO_REGS || best_cost > min_cost)
{
best_class = aclass;
best_cost = min_cost;
}
}
}
class_translate[cl] = best_class;
}
}
/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
IRA_PRESSURE_CLASS_TRANSLATE. */
static void
setup_class_translate (void)
{
setup_class_translate_array (ira_allocno_class_translate,
ira_allocno_classes_num, ira_allocno_classes);
setup_class_translate_array (ira_pressure_class_translate,
ira_pressure_classes_num, ira_pressure_classes);
}
/* Order numbers of allocno classes in original target allocno class
array, -1 for non-allocno classes. */
static int allocno_class_order[N_REG_CLASSES];
/* The function used to sort the important classes. */
static int
comp_reg_classes_func (const void *v1p, const void *v2p)
{
enum reg_class cl1 = *(const enum reg_class *) v1p;
enum reg_class cl2 = *(const enum reg_class *) v2p;
enum reg_class tcl1, tcl2;
int diff;
tcl1 = ira_allocno_class_translate[cl1];
tcl2 = ira_allocno_class_translate[cl2];
if (tcl1 != NO_REGS && tcl2 != NO_REGS
&& (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
return diff;
return (int) cl1 - (int) cl2;
}
/* For correct work of function setup_reg_class_relation we need to
reorder important classes according to the order of their allocno
classes. It places important classes containing the same
allocatable hard register set adjacent to each other and allocno
class with the allocatable hard register set right after the other
important classes with the same set.
In example from comments of function
setup_allocno_and_important_classes, it places LEGACY_REGS and
GENERAL_REGS close to each other and GENERAL_REGS is after
LEGACY_REGS. */
static void
reorder_important_classes (void)
{
int i;
for (i = 0; i < N_REG_CLASSES; i++)
allocno_class_order[i] = -1;
for (i = 0; i < ira_allocno_classes_num; i++)
allocno_class_order[ira_allocno_classes[i]] = i;
qsort (ira_important_classes, ira_important_classes_num,
sizeof (enum reg_class), comp_reg_classes_func);
for (i = 0; i < ira_important_classes_num; i++)
ira_important_class_nums[ira_important_classes[i]] = i;
}
/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
please see corresponding comments in ira-int.h. */
static void
setup_reg_class_relations (void)
{
int i, cl1, cl2, cl3;
HARD_REG_SET intersection_set, union_set, temp_set2;
bool important_class_p[N_REG_CLASSES];
memset (important_class_p, 0, sizeof (important_class_p));
for (i = 0; i < ira_important_classes_num; i++)
important_class_p[ira_important_classes[i]] = true;
for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
{
ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
{
ira_reg_classes_intersect_p[cl1][cl2] = false;
ira_reg_class_intersect[cl1][cl2] = NO_REGS;
ira_reg_class_subset[cl1][cl2] = NO_REGS;
temp_hard_regset = reg_class_contents[cl1] & ~no_unit_alloc_regs;
temp_set2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
if (hard_reg_set_empty_p (temp_hard_regset)
&& hard_reg_set_empty_p (temp_set2))
{
/* The both classes have no allocatable hard registers
-- take all class hard registers into account and use
reg_class_subunion and reg_class_superunion. */
for (i = 0;; i++)
{
cl3 = reg_class_subclasses[cl1][i];
if (cl3 == LIM_REG_CLASSES)
break;
if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
(enum reg_class) cl3))
ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
}
ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
continue;
}
ira_reg_classes_intersect_p[cl1][cl2]
= hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
if (important_class_p[cl1] && important_class_p[cl2]
&& hard_reg_set_subset_p (temp_hard_regset, temp_set2))
{
/* CL1 and CL2 are important classes and CL1 allocatable
hard register set is inside of CL2 allocatable hard
registers -- make CL1 a superset of CL2. */
enum reg_class *p;
p = &ira_reg_class_super_classes[cl1][0];
while (*p != LIM_REG_CLASSES)
p++;
*p++ = (enum reg_class) cl2;
*p = LIM_REG_CLASSES;
}
ira_reg_class_subunion[cl1][cl2] = NO_REGS;
ira_reg_class_superunion[cl1][cl2] = NO_REGS;
intersection_set = (reg_class_contents[cl1]
& reg_class_contents[cl2]
& ~no_unit_alloc_regs);
union_set = ((reg_class_contents[cl1] | reg_class_contents[cl2])
& ~no_unit_alloc_regs);
for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
{
temp_hard_regset = reg_class_contents[cl3] & ~no_unit_alloc_regs;
if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
{
/* CL3 allocatable hard register set is inside of
intersection of allocatable hard register sets
of CL1 and CL2. */
if (important_class_p[cl3])
{
temp_set2
= (reg_class_contents
[ira_reg_class_intersect[cl1][cl2]]);
temp_set2 &= ~no_unit_alloc_regs;
if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
/* If the allocatable hard register sets are
the same, prefer GENERAL_REGS or the
smallest class for debugging
purposes. */
|| (temp_hard_regset == temp_set2
&& (cl3 == GENERAL_REGS
|| ((ira_reg_class_intersect[cl1][cl2]
!= GENERAL_REGS)
&& hard_reg_set_subset_p
(reg_class_contents[cl3],
reg_class_contents
[(int)
ira_reg_class_intersect[cl1][cl2]])))))
ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
}
temp_set2
= (reg_class_contents[ira_reg_class_subset[cl1][cl2]]
& ~no_unit_alloc_regs);
if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
/* Ignore unavailable hard registers and prefer
smallest class for debugging purposes. */
|| (temp_hard_regset == temp_set2
&& hard_reg_set_subset_p
(reg_class_contents[cl3],
reg_class_contents
[(int) ira_reg_class_subset[cl1][cl2]])))
ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
}
if (important_class_p[cl3]
&& hard_reg_set_subset_p (temp_hard_regset, union_set))
{
/* CL3 allocatable hard register set is inside of
union of allocatable hard register sets of CL1
and CL2. */
temp_set2
= (reg_class_contents[ira_reg_class_subunion[cl1][cl2]]
& ~no_unit_alloc_regs);
if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
|| (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
&& (temp_set2 != temp_hard_regset
|| cl3 == GENERAL_REGS
/* If the allocatable hard register sets are the
same, prefer GENERAL_REGS or the smallest
class for debugging purposes. */
|| (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
&& hard_reg_set_subset_p
(reg_class_contents[cl3],
reg_class_contents
[(int) ira_reg_class_subunion[cl1][cl2]])))))
ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
}
if (hard_reg_set_subset_p (union_set, temp_hard_regset))
{
/* CL3 allocatable hard register set contains union
of allocatable hard register sets of CL1 and
CL2. */
temp_set2
= (reg_class_contents[ira_reg_class_superunion[cl1][cl2]]
& ~no_unit_alloc_regs);
if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
|| (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
&& (temp_set2 != temp_hard_regset
|| cl3 == GENERAL_REGS
/* If the allocatable hard register sets are the
same, prefer GENERAL_REGS or the smallest
class for debugging purposes. */
|| (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
&& hard_reg_set_subset_p
(reg_class_contents[cl3],
reg_class_contents
[(int) ira_reg_class_superunion[cl1][cl2]])))))
ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
}
}
}
}
}
/* Output all uniform and important classes into file F. */
static void
print_uniform_and_important_classes (FILE *f)
{
int i, cl;
fprintf (f, "Uniform classes:\n");
for (cl = 0; cl < N_REG_CLASSES; cl++)
if (ira_uniform_class_p[cl])
fprintf (f, " %s", reg_class_names[cl]);
fprintf (f, "\nImportant classes:\n");
for (i = 0; i < ira_important_classes_num; i++)
fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
fprintf (f, "\n");
}
/* Output all possible allocno or pressure classes and their
translation map into file F. */
static void
print_translated_classes (FILE *f, bool pressure_p)
{
int classes_num = (pressure_p
? ira_pressure_classes_num : ira_allocno_classes_num);
enum reg_class *classes = (pressure_p
? ira_pressure_classes : ira_allocno_classes);
enum reg_class *class_translate = (pressure_p
? ira_pressure_class_translate
: ira_allocno_class_translate);
int i;
fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
for (i = 0; i < classes_num; i++)
fprintf (f, " %s", reg_class_names[classes[i]]);
fprintf (f, "\nClass translation:\n");
for (i = 0; i < N_REG_CLASSES; i++)
fprintf (f, " %s -> %s\n", reg_class_names[i],
reg_class_names[class_translate[i]]);
}
/* Output all possible allocno and translation classes and the
translation maps into stderr. */
void
ira_debug_allocno_classes (void)
{
print_uniform_and_important_classes (stderr);
print_translated_classes (stderr, false);
print_translated_classes (stderr, true);
}
/* Set up different arrays concerning class subsets, allocno and
important classes. */
static void
find_reg_classes (void)
{
setup_allocno_and_important_classes ();
setup_class_translate ();
reorder_important_classes ();
setup_reg_class_relations ();
}
/* Set up the array above. */
static void
setup_hard_regno_aclass (void)
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
#if 1
ira_hard_regno_allocno_class[i]
= (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
? NO_REGS
: ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
#else
int j;
enum reg_class cl;
ira_hard_regno_allocno_class[i] = NO_REGS;
for (j = 0; j < ira_allocno_classes_num; j++)
{
cl = ira_allocno_classes[j];
if (ira_class_hard_reg_index[cl][i] >= 0)
{
ira_hard_regno_allocno_class[i] = cl;
break;
}
}
#endif
}
}
/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
static void
setup_reg_class_nregs (void)
{
int i, cl, cl2, m;
for (m = 0; m < MAX_MACHINE_MODE; m++)
{
for (cl = 0; cl < N_REG_CLASSES; cl++)
ira_reg_class_max_nregs[cl][m]
= ira_reg_class_min_nregs[cl][m]
= targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
for (cl = 0; cl < N_REG_CLASSES; cl++)
for (i = 0;
(cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
i++)
if (ira_reg_class_min_nregs[cl2][m]
< ira_reg_class_min_nregs[cl][m])
ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
}
}
/* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
This function is called once IRA_CLASS_HARD_REGS has been initialized. */
static void
setup_prohibited_class_mode_regs (void)
{
int j, k, hard_regno, cl, last_hard_regno, count;
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
{
temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
for (j = 0; j < NUM_MACHINE_MODES; j++)
{
count = 0;
last_hard_regno = -1;
CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
{
hard_regno = ira_class_hard_regs[cl][k];
if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
hard_regno);
else if (in_hard_reg_set_p (temp_hard_regset,
(machine_mode) j, hard_regno))
{
last_hard_regno = hard_regno;
count++;
}
}
ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
}
}
}
/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
spanning from one register pressure class to another one. It is
called after defining the pressure classes. */
static void
clarify_prohibited_class_mode_regs (void)
{
int j, k, hard_regno, cl, pclass, nregs;
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
for (j = 0; j < NUM_MACHINE_MODES; j++)
{
CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
{
hard_regno = ira_class_hard_regs[cl][k];
if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
continue;
nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
{
SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
hard_regno);
continue;
}
pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
for (nregs-- ;nregs >= 0; nregs--)
if (((enum reg_class) pclass
!= ira_pressure_class_translate[REGNO_REG_CLASS
(hard_regno + nregs)]))
{
SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
hard_regno);
break;
}
if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
hard_regno))
add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
(machine_mode) j, hard_regno);
}
}
}
/* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
and IRA_MAY_MOVE_OUT_COST for MODE. */
void
ira_init_register_move_cost (machine_mode mode)
{
static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
bool all_match = true;
unsigned int i, cl1, cl2;
HARD_REG_SET ok_regs;
ira_assert (ira_register_move_cost[mode] == NULL
&& ira_may_move_in_cost[mode] == NULL
&& ira_may_move_out_cost[mode] == NULL);
CLEAR_HARD_REG_SET (ok_regs);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (targetm.hard_regno_mode_ok (i, mode))
SET_HARD_REG_BIT (ok_regs, i);
/* Note that we might be asked about the move costs of modes that
cannot be stored in any hard register, for example if an inline
asm tries to create a register operand with an impossible mode.
We therefore can't assert have_regs_of_mode[mode] here. */
for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
{
int cost;
if (!hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl1])
|| !hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl2]))
{
if ((ira_reg_class_max_nregs[cl1][mode]
> ira_class_hard_regs_num[cl1])
|| (ira_reg_class_max_nregs[cl2][mode]
> ira_class_hard_regs_num[cl2]))
cost = 65535;
else
cost = (ira_memory_move_cost[mode][cl1][0]
+ ira_memory_move_cost[mode][cl2][1]) * 2;
}
else
{
cost = register_move_cost (mode, (enum reg_class) cl1,
(enum reg_class) cl2);
ira_assert (cost < 65535);
}
all_match &= (last_move_cost[cl1][cl2] == cost);
last_move_cost[cl1][cl2] = cost;
}
if (all_match && last_mode_for_init_move_cost != -1)
{
ira_register_move_cost[mode]
= ira_register_move_cost[last_mode_for_init_move_cost];
ira_may_move_in_cost[mode]
= ira_may_move_in_cost[last_mode_for_init_move_cost];
ira_may_move_out_cost[mode]
= ira_may_move_out_cost[last_mode_for_init_move_cost];
return;
}
last_mode_for_init_move_cost = mode;
ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
{
int cost;
enum reg_class *p1, *p2;
if (last_move_cost[cl1][cl2] == 65535)
{
ira_register_move_cost[mode][cl1][cl2] = 65535;
ira_may_move_in_cost[mode][cl1][cl2] = 65535;
ira_may_move_out_cost[mode][cl1][cl2] = 65535;
}
else
{
cost = last_move_cost[cl1][cl2];
for (p2 = &reg_class_subclasses[cl2][0];
*p2 != LIM_REG_CLASSES; p2++)
if (ira_class_hard_regs_num[*p2] > 0
&& (ira_reg_class_max_nregs[*p2][mode]
<= ira_class_hard_regs_num[*p2]))
cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
for (p1 = &reg_class_subclasses[cl1][0];
*p1 != LIM_REG_CLASSES; p1++)
if (ira_class_hard_regs_num[*p1] > 0
&& (ira_reg_class_max_nregs[*p1][mode]
<= ira_class_hard_regs_num[*p1]))
cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
ira_assert (cost <= 65535);
ira_register_move_cost[mode][cl1][cl2] = cost;
if (ira_class_subset_p[cl1][cl2])
ira_may_move_in_cost[mode][cl1][cl2] = 0;
else
ira_may_move_in_cost[mode][cl1][cl2] = cost;
if (ira_class_subset_p[cl2][cl1])
ira_may_move_out_cost[mode][cl1][cl2] = 0;
else
ira_may_move_out_cost[mode][cl1][cl2] = cost;
}
}
}
/* This is called once during compiler work. It sets up
different arrays whose values don't depend on the compiled
function. */
void
ira_init_once (void)
{
ira_init_costs_once ();
lra_init_once ();
ira_use_lra_p = targetm.lra_p ();
}
/* Free ira_max_register_move_cost, ira_may_move_in_cost and
ira_may_move_out_cost for each mode. */
void
target_ira_int::free_register_move_costs (void)
{
int mode, i;
/* Reset move_cost and friends, making sure we only free shared
table entries once. */
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
if (x_ira_register_move_cost[mode])
{
for (i = 0;
i < mode && (x_ira_register_move_cost[i]
!= x_ira_register_move_cost[mode]);
i++)
;
if (i == mode)
{
free (x_ira_register_move_cost[mode]);
free (x_ira_may_move_in_cost[mode]);
free (x_ira_may_move_out_cost[mode]);
}
}
memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
last_mode_for_init_move_cost = -1;
}
target_ira_int::~target_ira_int ()
{
free_ira_costs ();
free_register_move_costs ();
}
/* This is called every time when register related information is
changed. */
void
ira_init (void)
{
this_target_ira_int->free_register_move_costs ();
setup_reg_mode_hard_regset ();
setup_alloc_regs (flag_omit_frame_pointer != 0);
setup_class_subset_and_memory_move_costs ();
setup_reg_class_nregs ();
setup_prohibited_class_mode_regs ();
find_reg_classes ();
clarify_prohibited_class_mode_regs ();
setup_hard_regno_aclass ();
ira_init_costs ();
}
#define ira_prohibited_mode_move_regs_initialized_p \
(this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
static void
setup_prohibited_mode_move_regs (void)
{
int i, j;
rtx test_reg1, test_reg2, move_pat;
rtx_insn *move_insn;
if (ira_prohibited_mode_move_regs_initialized_p)
return;
ira_prohibited_mode_move_regs_initialized_p = true;
test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
move_pat = gen_rtx_SET (test_reg1, test_reg2);
move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
for (i = 0; i < NUM_MACHINE_MODES; i++)
{
SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
{
if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
continue;
set_mode_and_regno (test_reg1, (machine_mode) i, j);
set_mode_and_regno (test_reg2, (machine_mode) i, j);
INSN_CODE (move_insn) = -1;
recog_memoized (move_insn);
if (INSN_CODE (move_insn) < 0)
continue;
extract_insn (move_insn);
/* We don't know whether the move will be in code that is optimized
for size or speed, so consider all enabled alternatives. */
if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
continue;
CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
}
}
}
/* Extract INSN and return the set of alternatives that we should consider.
This excludes any alternatives whose constraints are obviously impossible
to meet (e.g. because the constraint requires a constant and the operand
is nonconstant). It also excludes alternatives that are bound to need
a spill or reload, as long as we have other alternatives that match
exactly. */
alternative_mask
ira_setup_alts (rtx_insn *insn)
{
int nop, nalt;
bool curr_swapped;
const char *p;
int commutative = -1;
extract_insn (insn);
preprocess_constraints (insn);
alternative_mask preferred = get_preferred_alternatives (insn);
alternative_mask alts = 0;
alternative_mask exact_alts = 0;
/* Check that the hard reg set is enough for holding all
alternatives. It is hard to imagine the situation when the
assertion is wrong. */
ira_assert (recog_data.n_alternatives
<= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
FIRST_PSEUDO_REGISTER));
for (nop = 0; nop < recog_data.n_operands; nop++)
if (recog_data.constraints[nop][0] == '%')
{
commutative = nop;
break;
}
for (curr_swapped = false;; curr_swapped = true)
{
for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
{
if (!TEST_BIT (preferred, nalt) || TEST_BIT (exact_alts, nalt))
continue;
const operand_alternative *op_alt
= &recog_op_alt[nalt * recog_data.n_operands];
int this_reject = 0;
for (nop = 0; nop < recog_data.n_operands; nop++)
{
int c, len;
this_reject += op_alt[nop].reject;
rtx op = recog_data.operand[nop];
p = op_alt[nop].constraint;
if (*p == 0 || *p == ',')
continue;
bool win_p = false;
do
switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
{
case '#':
case ',':
c = '\0';
/* FALLTHRU */
case '\0':
len = 0;
break;
case '%':
/* The commutative modifier is handled above. */
break;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{
rtx other = recog_data.operand[c - '0'];
if (MEM_P (other)
? rtx_equal_p (other, op)
: REG_P (op) || SUBREG_P (op))
goto op_success;
win_p = true;
}
break;
case 'g':
goto op_success;
break;
default:
{
enum constraint_num cn = lookup_constraint (p);
switch (get_constraint_type (cn))
{
case CT_REGISTER:
if (reg_class_for_constraint (cn) != NO_REGS)
{
if (REG_P (op) || SUBREG_P (op))
goto op_success;
win_p = true;
}
break;
case CT_CONST_INT:
if (CONST_INT_P (op)
&& (insn_const_int_ok_for_constraint
(INTVAL (op), cn)))
goto op_success;
break;
case CT_ADDRESS:
goto op_success;
case CT_MEMORY:
case CT_SPECIAL_MEMORY:
if (MEM_P (op))
goto op_success;
win_p = true;
break;
case CT_FIXED_FORM:
if (constraint_satisfied_p (op, cn))
goto op_success;
break;
}
break;
}
}
while (p += len, c);
if (!win_p)
break;
/* We can make the alternative match by spilling a register
to memory or loading something into a register. Count a
cost of one reload (the equivalent of the '?' constraint). */
this_reject += 6;
op_success:
;
}
if (nop >= recog_data.n_operands)
{
alts |= ALTERNATIVE_BIT (nalt);
if (this_reject == 0)
exact_alts |= ALTERNATIVE_BIT (nalt);
}
}
if (commutative < 0)
break;
/* Swap forth and back to avoid changing recog_data. */
std::swap (recog_data.operand[commutative],
recog_data.operand[commutative + 1]);
if (curr_swapped)
break;
}
return exact_alts ? exact_alts : alts;
}
/* Return the number of the output non-early clobber operand which
should be the same in any case as operand with number OP_NUM (or
negative value if there is no such operand). ALTS is the mask
of alternatives that we should consider. */
int
ira_get_dup_out_num (int op_num, alternative_mask alts)
{
int curr_alt, c, original, dup;
bool ignore_p, use_commut_op_p;
const char *str;
if (op_num < 0 || recog_data.n_alternatives == 0)
return -1;
/* We should find duplications only for input operands. */
if (recog_data.operand_type[op_num] != OP_IN)
return -1;
str = recog_data.constraints[op_num];
use_commut_op_p = false;
for (;;)
{
rtx op = recog_data.operand[op_num];
for (curr_alt = 0, ignore_p = !TEST_BIT (alts, curr_alt),
original = -1;;)
{
c = *str;
if (c == '\0')
break;
if (c == '#')
ignore_p = true;
else if (c == ',')
{
curr_alt++;
ignore_p = !TEST_BIT (alts, curr_alt);
}
else if (! ignore_p)
switch (c)
{
case 'g':
goto fail;
default:
{
enum constraint_num cn = lookup_constraint (str);
enum reg_class cl = reg_class_for_constraint (cn);
if (cl != NO_REGS
&& !targetm.class_likely_spilled_p (cl))
goto fail;
if (constraint_satisfied_p (op, cn))
goto fail;
break;
}
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
if (original != -1 && original != c)
goto fail;
original = c;
break;
}
str += CONSTRAINT_LEN (c, str);
}
if (original == -1)
goto fail;
dup = original - '0';
if (recog_data.operand_type[dup] == OP_OUT)
return dup;
fail:
if (use_commut_op_p)
break;
use_commut_op_p = true;
if (recog_data.constraints[op_num][0] == '%')
str = recog_data.constraints[op_num + 1];
else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
str = recog_data.constraints[op_num - 1];
else
break;
}
return -1;
}
/* Search forward to see if the source register of a copy insn dies
before either it or the destination register is modified, but don't
scan past the end of the basic block. If so, we can replace the
source with the destination and let the source die in the copy
insn.
This will reduce the number of registers live in that range and may
enable the destination and the source coalescing, thus often saving
one register in addition to a register-register copy. */
static void
decrease_live_ranges_number (void)
{
basic_block bb;
rtx_insn *insn;
rtx set, src, dest, dest_death, note;
rtx_insn *p, *q;
int sregno, dregno;
if (! flag_expensive_optimizations)
return;
if (ira_dump_file)
fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
FOR_EACH_BB_FN (bb, cfun)
FOR_BB_INSNS (bb, insn)
{
set = single_set (insn);
if (! set)
continue;
src = SET_SRC (set);
dest = SET_DEST (set);
if (! REG_P (src) || ! REG_P (dest)
|| find_reg_note (insn, REG_DEAD, src))
continue;
sregno = REGNO (src);
dregno = REGNO (dest);
/* We don't want to mess with hard regs if register classes
are small. */
if (sregno == dregno
|| (targetm.small_register_classes_for_mode_p (GET_MODE (src))
&& (sregno < FIRST_PSEUDO_REGISTER
|| dregno < FIRST_PSEUDO_REGISTER))
/* We don't see all updates to SP if they are in an
auto-inc memory reference, so we must disallow this
optimization on them. */
|| sregno == STACK_POINTER_REGNUM
|| dregno == STACK_POINTER_REGNUM)
continue;
dest_death = NULL_RTX;
for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
{
if (! INSN_P (p))
continue;
if (BLOCK_FOR_INSN (p) != bb)
break;
if (reg_set_p (src, p) || reg_set_p (dest, p)
/* If SRC is an asm-declared register, it must not be
replaced in any asm. Unfortunately, the REG_EXPR
tree for the asm variable may be absent in the SRC
rtx, so we can't check the actual register
declaration easily (the asm operand will have it,
though). To avoid complicating the test for a rare
case, we just don't perform register replacement
for a hard reg mentioned in an asm. */
|| (sregno < FIRST_PSEUDO_REGISTER
&& asm_noperands (PATTERN (p)) >= 0
&& reg_overlap_mentioned_p (src, PATTERN (p)))
/* Don't change hard registers used by a call. */
|| (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
&& find_reg_fusage (p, USE, src))
/* Don't change a USE of a register. */
|| (GET_CODE (PATTERN (p)) == USE
&& reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
break;
/* See if all of SRC dies in P. This test is slightly
more conservative than it needs to be. */
if ((note = find_regno_note (p, REG_DEAD, sregno))
&& GET_MODE (XEXP (note, 0)) == GET_MODE (src))
{
int failed = 0;
/* We can do the optimization. Scan forward from INSN
again, replacing regs as we go. Set FAILED if a
replacement can't be done. In that case, we can't
move the death note for SRC. This should be
rare. */
/* Set to stop at next insn. */
for (q = next_real_insn (insn);
q != next_real_insn (p);
q = next_real_insn (q))
{
if (reg_overlap_mentioned_p (src, PATTERN (q)))
{
/* If SRC is a hard register, we might miss
some overlapping registers with
validate_replace_rtx, so we would have to
undo it. We can't if DEST is present in
the insn, so fail in that combination of
cases. */
if (sregno < FIRST_PSEUDO_REGISTER
&& reg_mentioned_p (dest, PATTERN (q)))
failed = 1;
/* Attempt to replace all uses. */
else if (!validate_replace_rtx (src, dest, q))
failed = 1;
/* If this succeeded, but some part of the
register is still present, undo the
replacement. */
else if (sregno < FIRST_PSEUDO_REGISTER
&& reg_overlap_mentioned_p (src, PATTERN (q)))
{
validate_replace_rtx (dest, src, q);
failed = 1;
}
}
/* If DEST dies here, remove the death note and
save it for later. Make sure ALL of DEST dies
here; again, this is overly conservative. */
if (! dest_death
&& (dest_death = find_regno_note (q, REG_DEAD, dregno)))
{
if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
remove_note (q, dest_death);
else
{
failed = 1;
dest_death = 0;
}
}
}
if (! failed)
{
/* Move death note of SRC from P to INSN. */
remove_note (p, note);
XEXP (note, 1) = REG_NOTES (insn);
REG_NOTES (insn) = note;
}
/* DEST is also dead if INSN has a REG_UNUSED note for
DEST. */
if (! dest_death
&& (dest_death
= find_regno_note (insn, REG_UNUSED, dregno)))
{
PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
remove_note (insn, dest_death);
}
/* Put death note of DEST on P if we saw it die. */
if (dest_death)
{
XEXP (dest_death, 1) = REG_NOTES (p);
REG_NOTES (p) = dest_death;
}
break;
}
/* If SRC is a hard register which is set or killed in
some other way, we can't do this optimization. */
else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
break;
}
}
}
/* Return nonzero if REGNO is a particularly bad choice for reloading X. */
static bool
ira_bad_reload_regno_1 (int regno, rtx x)
{
int x_regno, n, i;
ira_allocno_t a;
enum reg_class pref;
/* We only deal with pseudo regs. */
if (! x || GET_CODE (x) != REG)
return false;
x_regno = REGNO (x);
if (x_regno < FIRST_PSEUDO_REGISTER)
return false;
/* If the pseudo prefers REGNO explicitly, then do not consider
REGNO a bad spill choice. */
pref = reg_preferred_class (x_regno);
if (reg_class_size[pref] == 1)
return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
/* If the pseudo conflicts with REGNO, then we consider REGNO a
poor choice for a reload regno. */
a = ira_regno_allocno_map[x_regno];
n = ALLOCNO_NUM_OBJECTS (a);
for (i = 0; i < n; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
return true;
}
return false;
}
/* Return nonzero if REGNO is a particularly bad choice for reloading
IN or OUT. */
bool
ira_bad_reload_regno (int regno, rtx in, rtx out)
{
return (ira_bad_reload_regno_1 (regno, in)
|| ira_bad_reload_regno_1 (regno, out));
}
/* Add register clobbers from asm statements. */
static void
compute_regs_asm_clobbered (void)
{
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
rtx_insn *insn;
FOR_BB_INSNS_REVERSE (bb, insn)
{
df_ref def;
if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
FOR_EACH_INSN_DEF (def, insn)
{
unsigned int dregno = DF_REF_REGNO (def);
if (HARD_REGISTER_NUM_P (dregno))
add_to_hard_reg_set (&crtl->asm_clobbers,
GET_MODE (DF_REF_REAL_REG (def)),
dregno);
}
}
}
}
/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
REGS_EVER_LIVE. */
void
ira_setup_eliminable_regset (void)
{
int i;
static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
int fp_reg_count = hard_regno_nregs (HARD_FRAME_POINTER_REGNUM, Pmode);
/* Setup is_leaf as frame_pointer_required may use it. This function
is called by sched_init before ira if scheduling is enabled. */
crtl->is_leaf = leaf_function_p ();
/* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
sp for alloca. So we can't eliminate the frame pointer in that
case. At some point, we should improve this by emitting the
sp-adjusting insns for this case. */
frame_pointer_needed
= (! flag_omit_frame_pointer
|| (cfun->calls_alloca && EXIT_IGNORE_STACK)
/* We need the frame pointer to catch stack overflow exceptions if
the stack pointer is moving (as for the alloca case just above). */
|| (STACK_CHECK_MOVING_SP
&& flag_stack_check
&& flag_exceptions
&& cfun->can_throw_non_call_exceptions)
|| crtl->accesses_prior_frames
|| (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
|| targetm.frame_pointer_required ());
/* The chance that FRAME_POINTER_NEEDED is changed from inspecting
RTL is very small. So if we use frame pointer for RA and RTL
actually prevents this, we will spill pseudos assigned to the
frame pointer in LRA. */
if (frame_pointer_needed)
for (i = 0; i < fp_reg_count; i++)
df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
ira_no_alloc_regs = no_unit_alloc_regs;
CLEAR_HARD_REG_SET (eliminable_regset);
compute_regs_asm_clobbered ();
/* Build the regset of all eliminable registers and show we can't
use those that we already know won't be eliminated. */
for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
{
bool cannot_elim
= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
|| (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
{
SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
if (cannot_elim)
SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
}
else if (cannot_elim)
error ("%s cannot be used in %<asm%> here",
reg_names[eliminables[i].from]);
else
df_set_regs_ever_live (eliminables[i].from, true);
}
if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
{
for (i = 0; i < fp_reg_count; i++)
if (global_regs[HARD_FRAME_POINTER_REGNUM + i])
/* Nothing to do: the register is already treated as live
where appropriate, and cannot be eliminated. */
;
else if (!TEST_HARD_REG_BIT (crtl->asm_clobbers,
HARD_FRAME_POINTER_REGNUM + i))
{
SET_HARD_REG_BIT (eliminable_regset,
HARD_FRAME_POINTER_REGNUM + i);
if (frame_pointer_needed)
SET_HARD_REG_BIT (ira_no_alloc_regs,
HARD_FRAME_POINTER_REGNUM + i);
}
else if (frame_pointer_needed)
error ("%s cannot be used in %<asm%> here",
reg_names[HARD_FRAME_POINTER_REGNUM + i]);
else
df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
}
}
/* Vector of substitutions of register numbers,
used to map pseudo regs into hardware regs.
This is set up as a result of register allocation.
Element N is the hard reg assigned to pseudo reg N,
or is -1 if no hard reg was assigned.
If N is a hard reg number, element N is N. */
short *reg_renumber;
/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
the allocation found by IRA. */
static void
setup_reg_renumber (void)
{
int regno, hard_regno;
ira_allocno_t a;
ira_allocno_iterator ai;
caller_save_needed = 0;
FOR_EACH_ALLOCNO (a, ai)
{
if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
continue;
/* There are no caps at this point. */
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
if (! ALLOCNO_ASSIGNED_P (a))
/* It can happen if A is not referenced but partially anticipated
somewhere in a region. */
ALLOCNO_ASSIGNED_P (a) = true;
ira_free_allocno_updated_costs (a);
hard_regno = ALLOCNO_HARD_REGNO (a);
regno = ALLOCNO_REGNO (a);
reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
if (hard_regno >= 0)
{
int i, nwords;
enum reg_class pclass;
ira_object_t obj;
pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
nwords = ALLOCNO_NUM_OBJECTS (a);
for (i = 0; i < nwords; i++)
{
obj = ALLOCNO_OBJECT (a, i);
OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
|= ~reg_class_contents[pclass];
}
if (ira_need_caller_save_p (a, hard_regno))
{
ira_assert (!optimize || flag_caller_saves
|| (ALLOCNO_CALLS_CROSSED_NUM (a)
== ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
|| regno >= ira_reg_equiv_len
|| ira_equiv_no_lvalue_p (regno));
caller_save_needed = 1;
}
}
}
}
/* Set up allocno assignment flags for further allocation
improvements. */
static void
setup_allocno_assignment_flags (void)
{
int hard_regno;
ira_allocno_t a;
ira_allocno_iterator ai;
FOR_EACH_ALLOCNO (a, ai)
{
if (! ALLOCNO_ASSIGNED_P (a))
/* It can happen if A is not referenced but partially anticipated
somewhere in a region. */
ira_free_allocno_updated_costs (a);
hard_regno = ALLOCNO_HARD_REGNO (a);
/* Don't assign hard registers to allocnos which are destination
of removed store at the end of loop. It has no sense to keep
the same value in different hard registers. It is also
impossible to assign hard registers correctly to such
allocnos because the cost info and info about intersected
calls are incorrect for them. */
ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
|| ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
|| (ALLOCNO_MEMORY_COST (a)
- ALLOCNO_CLASS_COST (a)) < 0);
ira_assert
(hard_regno < 0
|| ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
reg_class_contents[ALLOCNO_CLASS (a)]));
}
}
/* Evaluate overall allocation cost and the costs for using hard
registers and memory for allocnos. */
static void
calculate_allocation_cost (void)
{
int hard_regno, cost;
ira_allocno_t a;
ira_allocno_iterator ai;
ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
FOR_EACH_ALLOCNO (a, ai)
{
hard_regno = ALLOCNO_HARD_REGNO (a);
ira_assert (hard_regno < 0
|| (ira_hard_reg_in_set_p
(hard_regno, ALLOCNO_MODE (a),
reg_class_contents[ALLOCNO_CLASS (a)])));
if (hard_regno < 0)
{
cost = ALLOCNO_MEMORY_COST (a);
ira_mem_cost += cost;
}
else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
{
cost = (ALLOCNO_HARD_REG_COSTS (a)
[ira_class_hard_reg_index
[ALLOCNO_CLASS (a)][hard_regno]]);
ira_reg_cost += cost;
}
else
{
cost = ALLOCNO_CLASS_COST (a);
ira_reg_cost += cost;
}
ira_overall_cost += cost;
}
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
{
fprintf (ira_dump_file,
"+++Costs: overall %" PRId64
", reg %" PRId64
", mem %" PRId64
", ld %" PRId64
", st %" PRId64
", move %" PRId64,
ira_overall_cost, ira_reg_cost, ira_mem_cost,
ira_load_cost, ira_store_cost, ira_shuffle_cost);
fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
ira_move_loops_num, ira_additional_jumps_num);
}
}
#ifdef ENABLE_IRA_CHECKING
/* Check the correctness of the allocation. We do need this because
of complicated code to transform more one region internal
representation into one region representation. */
static void
check_allocation (void)
{
ira_allocno_t a;
int hard_regno, nregs, conflict_nregs;
ira_allocno_iterator ai;
FOR_EACH_ALLOCNO (a, ai)
{
int n = ALLOCNO_NUM_OBJECTS (a);
int i;
if (ALLOCNO_CAP_MEMBER (a) != NULL
|| (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
continue;
nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
if (nregs == 1)
/* We allocated a single hard register. */
n = 1;
else if (n > 1)
/* We allocated multiple hard registers, and we will test
conflicts in a granularity of single hard regs. */
nregs = 1;
for (i = 0; i < n; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
ira_object_t conflict_obj;
ira_object_conflict_iterator oci;
int this_regno = hard_regno;
if (n > 1)
{
if (REG_WORDS_BIG_ENDIAN)
this_regno += n - i - 1;
else
this_regno += i;
}
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
{
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
if (conflict_hard_regno < 0)
continue;
conflict_nregs = hard_regno_nregs (conflict_hard_regno,
ALLOCNO_MODE (conflict_a));
if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
&& conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
{
if (REG_WORDS_BIG_ENDIAN)
conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
- OBJECT_SUBWORD (conflict_obj) - 1);
else
conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
conflict_nregs = 1;
}
if ((conflict_hard_regno <= this_regno
&& this_regno < conflict_hard_regno + conflict_nregs)
|| (this_regno <= conflict_hard_regno
&& conflict_hard_regno < this_regno + nregs))
{
fprintf (stderr, "bad allocation for %d and %d\n",
ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
gcc_unreachable ();
}
}
}
}
}
#endif
/* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
be already calculated. */
static void
setup_reg_equiv_init (void)
{
int i;
int max_regno = max_reg_num ();
for (i = 0; i < max_regno; i++)
reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
}
/* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
are insns which were generated for such movement. It is assumed
that FROM_REGNO and TO_REGNO always have the same value at the
point of any move containing such registers. This function is used
to update equiv info for register shuffles on the region borders
and for caller save/restore insns. */
void
ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
{
rtx_insn *insn;
rtx x, note;
if (! ira_reg_equiv[from_regno].defined_p
&& (! ira_reg_equiv[to_regno].defined_p
|| ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
&& ! MEM_READONLY_P (x))))
return;
insn = insns;
if (NEXT_INSN (insn) != NULL_RTX)
{
if (! ira_reg_equiv[to_regno].defined_p)
{
ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
return;
}
ira_reg_equiv[to_regno].defined_p = false;
ira_reg_equiv[to_regno].memory
= ira_reg_equiv[to_regno].constant
= ira_reg_equiv[to_regno].invariant
= ira_reg_equiv[to_regno].init_insns = NULL;
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file,
" Invalidating equiv info for reg %d\n", to_regno);
return;
}
/* It is possible that FROM_REGNO still has no equivalence because
in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
insn was not processed yet. */
if (ira_reg_equiv[from_regno].defined_p)
{
ira_reg_equiv[to_regno].defined_p = true;
if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
{
ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
&& ira_reg_equiv[from_regno].constant == NULL_RTX);
ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
|| rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
ira_reg_equiv[to_regno].memory = x;
if (! MEM_READONLY_P (x))
/* We don't add the insn to insn init list because memory
equivalence is just to say what memory is better to use
when the pseudo is spilled. */
return;
}
else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
{
ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
|| rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
ira_reg_equiv[to_regno].constant = x;
}
else
{
x = ira_reg_equiv[from_regno].invariant;
ira_assert (x != NULL_RTX);
ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
|| rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
ira_reg_equiv[to_regno].invariant = x;
}
if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
{
note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
gcc_assert (note != NULL_RTX);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
{
fprintf (ira_dump_file,
" Adding equiv note to insn %u for reg %d ",
INSN_UID (insn), to_regno);
dump_value_slim (ira_dump_file, x, 1);
fprintf (ira_dump_file, "\n");
}
}
}
ira_reg_equiv[to_regno].init_insns
= gen_rtx_INSN_LIST (VOIDmode, insn,
ira_reg_equiv[to_regno].init_insns);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file,
" Adding equiv init move insn %u to reg %d\n",
INSN_UID (insn), to_regno);
}
/* Fix values of array REG_EQUIV_INIT after live range splitting done
by IRA. */
static void
fix_reg_equiv_init (void)
{
int max_regno = max_reg_num ();
int i, new_regno, max;
rtx set;
rtx_insn_list *x, *next, *prev;
rtx_insn *insn;
if (max_regno_before_ira < max_regno)
{
max = vec_safe_length (reg_equivs);
grow_reg_equivs ();
for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
for (prev = NULL, x = reg_equiv_init (i);
x != NULL_RTX;
x = next)
{
next = x->next ();
insn = x->insn ();
set = single_set (insn);
ira_assert (set != NULL_RTX
&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
if (REG_P (SET_DEST (set))
&& ((int) REGNO (SET_DEST (set)) == i
|| (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
new_regno = REGNO (SET_DEST (set));
else if (REG_P (SET_SRC (set))
&& ((int) REGNO (SET_SRC (set)) == i
|| (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
new_regno = REGNO (SET_SRC (set));
else
gcc_unreachable ();
if (new_regno == i)
prev = x;
else
{
/* Remove the wrong list element. */
if (prev == NULL_RTX)
reg_equiv_init (i) = next;
else
XEXP (prev, 1) = next;
XEXP (x, 1) = reg_equiv_init (new_regno);
reg_equiv_init (new_regno) = x;
}
}
}
}
#ifdef ENABLE_IRA_CHECKING
/* Print redundant memory-memory copies. */
static void
print_redundant_copies (void)
{
int hard_regno;
ira_allocno_t a;
ira_copy_t cp, next_cp;
ira_allocno_iterator ai;
FOR_EACH_ALLOCNO (a, ai)
{
if (ALLOCNO_CAP_MEMBER (a) != NULL)
/* It is a cap. */
continue;
hard_regno = ALLOCNO_HARD_REGNO (a);
if (hard_regno >= 0)
continue;
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
if (cp->first == a)
next_cp = cp->next_first_allocno_copy;
else
{
next_cp = cp->next_second_allocno_copy;
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
&& cp->insn != NULL_RTX
&& ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
fprintf (ira_dump_file,
" Redundant move from %d(freq %d):%d\n",
INSN_UID (cp->insn), cp->freq, hard_regno);
}
}
}
#endif
/* Setup preferred and alternative classes for new pseudo-registers
created by IRA starting with START. */
static void
setup_preferred_alternate_classes_for_new_pseudos (int start)
{
int i, old_regno;
int max_regno = max_reg_num ();
for (i = start; i < max_regno; i++)
{
old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
ira_assert (i != old_regno);
setup_reg_classes (i, reg_preferred_class (old_regno),
reg_alternate_class (old_regno),
reg_allocno_class (old_regno));
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
fprintf (ira_dump_file,
" New r%d: setting preferred %s, alternative %s\n",
i, reg_class_names[reg_preferred_class (old_regno)],
reg_class_names[reg_alternate_class (old_regno)]);
}
}
/* The number of entries allocated in reg_info. */
static int allocated_reg_info_size;
/* Regional allocation can create new pseudo-registers. This function
expands some arrays for pseudo-registers. */
static void
expand_reg_info (void)
{
int i;
int size = max_reg_num ();
resize_reg_info ();
for (i = allocated_reg_info_size; i < size; i++)
setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
allocated_reg_info_size = size;
}
/* Return TRUE if there is too high register pressure in the function.
It is used to decide when stack slot sharing is worth to do. */
static bool
too_high_register_pressure_p (void)
{
int i;
enum reg_class pclass;
for (i = 0; i < ira_pressure_classes_num; i++)
{
pclass = ira_pressure_classes[i];
if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
return true;
}
return false;
}
/* Indicate that hard register number FROM was eliminated and replaced with
an offset from hard register number TO. The status of hard registers live
at the start of a basic block is updated by replacing a use of FROM with
a use of TO. */
void
mark_elimination (int from, int to)
{
basic_block bb;
bitmap r;
FOR_EACH_BB_FN (bb, cfun)
{
r = DF_LR_IN (bb);
if (bitmap_bit_p (r, from))
{
bitmap_clear_bit (r, from);
bitmap_set_bit (r, to);
}
if (! df_live)
continue;
r = DF_LIVE_IN (bb);
if (bitmap_bit_p (r, from))
{
bitmap_clear_bit (r, from);
bitmap_set_bit (r, to);
}
}
}
/* The length of the following array. */
int ira_reg_equiv_len;
/* Info about equiv. info for each register. */
struct ira_reg_equiv_s *ira_reg_equiv;
/* Expand ira_reg_equiv if necessary. */
void
ira_expand_reg_equiv (void)
{
int old = ira_reg_equiv_len;
if (ira_reg_equiv_len > max_reg_num ())
return;
ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
ira_reg_equiv
= (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
ira_reg_equiv_len
* sizeof (struct ira_reg_equiv_s));
gcc_assert (old < ira_reg_equiv_len);
memset (ira_reg_equiv + old, 0,
sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
}
static void
init_reg_equiv (void)
{
ira_reg_equiv_len = 0;
ira_reg_equiv = NULL;
ira_expand_reg_equiv ();
}
static void
finish_reg_equiv (void)
{
free (ira_reg_equiv);
}
struct equivalence
{
/* Set when a REG_EQUIV note is found or created. Use to
keep track of what memory accesses might be created later,
e.g. by reload. */
rtx replacement;
rtx *src_p;
/* The list of each instruction which initializes this register.
NULL indicates we know nothing about this register's equivalence
properties.
An INSN_LIST with a NULL insn indicates this pseudo is already
known to not have a valid equivalence. */
rtx_insn_list *init_insns;
/* Loop depth is used to recognize equivalences which appear
to be present within the same loop (or in an inner loop). */
short loop_depth;
/* Nonzero if this had a preexisting REG_EQUIV note. */
unsigned char is_arg_equivalence : 1;
/* Set when an attempt should be made to replace a register
with the associated src_p entry. */
unsigned char replace : 1;
/* Set if this register has no known equivalence. */
unsigned char no_equiv : 1;
/* Set if this register is mentioned in a paradoxical subreg. */
unsigned char pdx_subregs : 1;
};
/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
structure for that register. */
static struct equivalence *reg_equiv;
/* Used for communication between the following two functions. */
struct equiv_mem_data
{
/* A MEM that we wish to ensure remains unchanged. */
rtx equiv_mem;
/* Set true if EQUIV_MEM is modified. */
bool equiv_mem_modified;
};
/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
Called via note_stores. */
static void
validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
void *data)
{
struct equiv_mem_data *info = (struct equiv_mem_data *) data;
if ((REG_P (dest)
&& reg_overlap_mentioned_p (dest, info->equiv_mem))
|| (MEM_P (dest)
&& anti_dependence (info->equiv_mem, dest)))
info->equiv_mem_modified = true;
}
enum valid_equiv { valid_none, valid_combine, valid_reload };
/* Verify that no store between START and the death of REG invalidates
MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
by storing into an overlapping memory location, or with a non-const
CALL_INSN.
Return VALID_RELOAD if MEMREF remains valid for both reload and
combine_and_move insns, VALID_COMBINE if only valid for
combine_and_move_insns, and VALID_NONE otherwise. */
static enum valid_equiv
validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
{
rtx_insn *insn;
rtx note;
struct equiv_mem_data info = { memref, false };
enum valid_equiv ret = valid_reload;
/* If the memory reference has side effects or is volatile, it isn't a
valid equivalence. */
if (side_effects_p (memref))
return valid_none;
for (insn = start; insn; insn = NEXT_INSN (insn))
{
if (!INSN_P (insn))
continue;
if (find_reg_note (insn, REG_DEAD, reg))
return ret;
if (CALL_P (insn))
{
/* We can combine a reg def from one insn into a reg use in
another over a call if the memory is readonly or the call
const/pure. However, we can't set reg_equiv notes up for
reload over any call. The problem is the equivalent form
may reference a pseudo which gets assigned a call
clobbered hard reg. When we later replace REG with its
equivalent form, the value in the call-clobbered reg has
been changed and all hell breaks loose. */
ret = valid_combine;
if (!MEM_READONLY_P (memref)
&& !RTL_CONST_OR_PURE_CALL_P (insn))
return valid_none;
}
note_stores (insn, validate_equiv_mem_from_store, &info);
if (info.equiv_mem_modified)
return valid_none;
/* If a register mentioned in MEMREF is modified via an
auto-increment, we lose the equivalence. Do the same if one
dies; although we could extend the life, it doesn't seem worth
the trouble. */
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
if ((REG_NOTE_KIND (note) == REG_INC
|| REG_NOTE_KIND (note) == REG_DEAD)
&& REG_P (XEXP (note, 0))
&& reg_overlap_mentioned_p (XEXP (note, 0), memref))
return valid_none;
}
return valid_none;
}
/* Returns zero if X is known to be invariant. */
static int
equiv_init_varies_p (rtx x)
{
RTX_CODE code = GET_CODE (x);
int i;
const char *fmt;
switch (code)
{
case MEM:
return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
case CONST:
CASE_CONST_ANY:
case SYMBOL_REF:
case LABEL_REF:
return 0;
case REG:
return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
/* Fall through. */
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (equiv_init_varies_p (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (equiv_init_varies_p (XVECEXP (x, i, j)))
return 1;
}
return 0;
}
/* Returns nonzero if X (used to initialize register REGNO) is movable.
X is only movable if the registers it uses have equivalent initializations
which appear to be within the same loop (or in an inner loop) and movable
or if they are not candidates for local_alloc and don't vary. */
static int
equiv_init_movable_p (rtx x, int regno)
{
int i, j;
const char *fmt;
enum rtx_code code = GET_CODE (x);
switch (code)
{
case SET:
return equiv_init_movable_p (SET_SRC (x), regno);
case CC0:
case CLOBBER:
return 0;
case PRE_INC:
case PRE_DEC:
case POST_INC:
case POST_DEC:
case PRE_MODIFY:
case POST_MODIFY:
return 0;
case REG:
return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
&& reg_equiv[REGNO (x)].replace)
|| (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
&& ! rtx_varies_p (x, 0)));
case UNSPEC_VOLATILE:
return 0;
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 0;
/* Fall through. */
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
switch (fmt[i])
{
case 'e':
if (! equiv_init_movable_p (XEXP (x, i), regno))
return 0;
break;
case 'E':
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
return 0;
break;
}
return 1;
}
static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
/* Auxiliary function for memref_referenced_p. Process setting X for
MEMREF store. */
static bool
process_set_for_memref_referenced_p (rtx memref, rtx x)
{
/* If we are setting a MEM, it doesn't count (its address does), but any
other SET_DEST that has a MEM in it is referencing the MEM. */
if (MEM_P (x))
{
if (memref_referenced_p (memref, XEXP (x, 0), true))
return true;
}
else if (memref_referenced_p (memref, x, false))
return true;
return false;
}
/* TRUE if X references a memory location (as a read if READ_P) that
would be affected by a store to MEMREF. */
static bool
memref_referenced_p (rtx memref, rtx x, bool read_p)
{
int i, j;
const char *fmt;
enum rtx_code code = GET_CODE (x);
switch (code)
{
case CONST:
case LABEL_REF:
case SYMBOL_REF:
CASE_CONST_ANY:
case PC:
case CC0:
c