blob: 8c965e6821176e76a72a95d5e6fbe2a27f8c2587 [file] [log] [blame]
/* Variable tracking routines for the GNU compiler.
Copyright (C) 2002-2020 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file contains the variable tracking pass. It computes where
variables are located (which registers or where in memory) at each position
in instruction stream and emits notes describing the locations.
Debug information (DWARF2 location lists) is finally generated from
these notes.
With this debug information, it is possible to show variables
even when debugging optimized code.
How does the variable tracking pass work?
First, it scans RTL code for uses, stores and clobbers (register/memory
references in instructions), for call insns and for stack adjustments
separately for each basic block and saves them to an array of micro
operations.
The micro operations of one instruction are ordered so that
pre-modifying stack adjustment < use < use with no var < call insn <
< clobber < set < post-modifying stack adjustment
Then, a forward dataflow analysis is performed to find out how locations
of variables change through code and to propagate the variable locations
along control flow graph.
The IN set for basic block BB is computed as a union of OUT sets of BB's
predecessors, the OUT set for BB is copied from the IN set for BB and
is changed according to micro operations in BB.
The IN and OUT sets for basic blocks consist of a current stack adjustment
(used for adjusting offset of variables addressed using stack pointer),
the table of structures describing the locations of parts of a variable
and for each physical register a linked list for each physical register.
The linked list is a list of variable parts stored in the register,
i.e. it is a list of triplets (reg, decl, offset) where decl is
REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
effective deleting appropriate variable parts when we set or clobber the
register.
There may be more than one variable part in a register. The linked lists
should be pretty short so it is a good data structure here.
For example in the following code, register allocator may assign same
register to variables A and B, and both of them are stored in the same
register in CODE:
if (cond)
set A;
else
set B;
CODE;
if (cond)
use A;
else
use B;
Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
are emitted to appropriate positions in RTL code. Each such a note describes
the location of one variable at the point in instruction stream where the
note is. There is no need to emit a note for each variable before each
instruction, we only emit these notes where the location of variable changes
(this means that we also emit notes for changes between the OUT set of the
previous block and the IN set of the current block).
The notes consist of two parts:
1. the declaration (from REG_EXPR or MEM_EXPR)
2. the location of a variable - it is either a simple register/memory
reference (for simple variables, for example int),
or a parallel of register/memory references (for a large variables
which consist of several parts, for example long long).
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "cfghooks.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic.h"
#include "varasm.h"
#include "stor-layout.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "reload.h"
#include "calls.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "cselib.h"
#include "tree-pretty-print.h"
#include "rtl-iter.h"
#include "fibonacci_heap.h"
#include "print-rtl.h"
#include "function-abi.h"
typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
/* var-tracking.c assumes that tree code with the same value as VALUE rtx code
has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
Currently the value is the same as IDENTIFIER_NODE, which has such
a property. If this compile time assertion ever fails, make sure that
the new tree code that equals (int) VALUE has the same property. */
extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
/* Type of micro operation. */
enum micro_operation_type
{
MO_USE, /* Use location (REG or MEM). */
MO_USE_NO_VAR,/* Use location which is not associated with a variable
or the variable is not trackable. */
MO_VAL_USE, /* Use location which is associated with a value. */
MO_VAL_LOC, /* Use location which appears in a debug insn. */
MO_VAL_SET, /* Set location associated with a value. */
MO_SET, /* Set location. */
MO_COPY, /* Copy the same portion of a variable from one
location to another. */
MO_CLOBBER, /* Clobber location. */
MO_CALL, /* Call insn. */
MO_ADJUST /* Adjust stack pointer. */
};
static const char * const ATTRIBUTE_UNUSED
micro_operation_type_name[] = {
"MO_USE",
"MO_USE_NO_VAR",
"MO_VAL_USE",
"MO_VAL_LOC",
"MO_VAL_SET",
"MO_SET",
"MO_COPY",
"MO_CLOBBER",
"MO_CALL",
"MO_ADJUST"
};
/* Where shall the note be emitted? BEFORE or AFTER the instruction.
Notes emitted as AFTER_CALL are to take effect during the call,
rather than after the call. */
enum emit_note_where
{
EMIT_NOTE_BEFORE_INSN,
EMIT_NOTE_AFTER_INSN,
EMIT_NOTE_AFTER_CALL_INSN
};
/* Structure holding information about micro operation. */
struct micro_operation
{
/* Type of micro operation. */
enum micro_operation_type type;
/* The instruction which the micro operation is in, for MO_USE,
MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
instruction or note in the original flow (before any var-tracking
notes are inserted, to simplify emission of notes), for MO_SET
and MO_CLOBBER. */
rtx_insn *insn;
union {
/* Location. For MO_SET and MO_COPY, this is the SET that
performs the assignment, if known, otherwise it is the target
of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
CONCAT of the VALUE and the LOC associated with it. For
MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
associated with it. */
rtx loc;
/* Stack adjustment. */
HOST_WIDE_INT adjust;
} u;
};
/* A declaration of a variable, or an RTL value being handled like a
declaration. */
typedef void *decl_or_value;
/* Return true if a decl_or_value DV is a DECL or NULL. */
static inline bool
dv_is_decl_p (decl_or_value dv)
{
return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
}
/* Return true if a decl_or_value is a VALUE rtl. */
static inline bool
dv_is_value_p (decl_or_value dv)
{
return dv && !dv_is_decl_p (dv);
}
/* Return the decl in the decl_or_value. */
static inline tree
dv_as_decl (decl_or_value dv)
{
gcc_checking_assert (dv_is_decl_p (dv));
return (tree) dv;
}
/* Return the value in the decl_or_value. */
static inline rtx
dv_as_value (decl_or_value dv)
{
gcc_checking_assert (dv_is_value_p (dv));
return (rtx)dv;
}
/* Return the opaque pointer in the decl_or_value. */
static inline void *
dv_as_opaque (decl_or_value dv)
{
return dv;
}
/* Description of location of a part of a variable. The content of a physical
register is described by a chain of these structures.
The chains are pretty short (usually 1 or 2 elements) and thus
chain is the best data structure. */
struct attrs
{
/* Pointer to next member of the list. */
attrs *next;
/* The rtx of register. */
rtx loc;
/* The declaration corresponding to LOC. */
decl_or_value dv;
/* Offset from start of DECL. */
HOST_WIDE_INT offset;
};
/* Structure for chaining the locations. */
struct location_chain
{
/* Next element in the chain. */
location_chain *next;
/* The location (REG, MEM or VALUE). */
rtx loc;
/* The "value" stored in this location. */
rtx set_src;
/* Initialized? */
enum var_init_status init;
};
/* A vector of loc_exp_dep holds the active dependencies of a one-part
DV on VALUEs, i.e., the VALUEs expanded so as to form the current
location of DV. Each entry is also part of VALUE' s linked-list of
backlinks back to DV. */
struct loc_exp_dep
{
/* The dependent DV. */
decl_or_value dv;
/* The dependency VALUE or DECL_DEBUG. */
rtx value;
/* The next entry in VALUE's backlinks list. */
struct loc_exp_dep *next;
/* A pointer to the pointer to this entry (head or prev's next) in
the doubly-linked list. */
struct loc_exp_dep **pprev;
};
/* This data structure holds information about the depth of a variable
expansion. */
struct expand_depth
{
/* This measures the complexity of the expanded expression. It
grows by one for each level of expansion that adds more than one
operand. */
int complexity;
/* This counts the number of ENTRY_VALUE expressions in an
expansion. We want to minimize their use. */
int entryvals;
};
/* This data structure is allocated for one-part variables at the time
of emitting notes. */
struct onepart_aux
{
/* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
computation used the expansion of this variable, and that ought
to be notified should this variable change. If the DV's cur_loc
expanded to NULL, all components of the loc list are regarded as
active, so that any changes in them give us a chance to get a
location. Otherwise, only components of the loc that expanded to
non-NULL are regarded as active dependencies. */
loc_exp_dep *backlinks;
/* This holds the LOC that was expanded into cur_loc. We need only
mark a one-part variable as changed if the FROM loc is removed,
or if it has no known location and a loc is added, or if it gets
a change notification from any of its active dependencies. */
rtx from;
/* The depth of the cur_loc expression. */
expand_depth depth;
/* Dependencies actively used when expand FROM into cur_loc. */
vec<loc_exp_dep, va_heap, vl_embed> deps;
};
/* Structure describing one part of variable. */
struct variable_part
{
/* Chain of locations of the part. */
location_chain *loc_chain;
/* Location which was last emitted to location list. */
rtx cur_loc;
union variable_aux
{
/* The offset in the variable, if !var->onepart. */
HOST_WIDE_INT offset;
/* Pointer to auxiliary data, if var->onepart and emit_notes. */
struct onepart_aux *onepaux;
} aux;
};
/* Maximum number of location parts. */
#define MAX_VAR_PARTS 16
/* Enumeration type used to discriminate various types of one-part
variables. */
enum onepart_enum
{
/* Not a one-part variable. */
NOT_ONEPART = 0,
/* A one-part DECL that is not a DEBUG_EXPR_DECL. */
ONEPART_VDECL = 1,
/* A DEBUG_EXPR_DECL. */
ONEPART_DEXPR = 2,
/* A VALUE. */
ONEPART_VALUE = 3
};
/* Structure describing where the variable is located. */
struct variable
{
/* The declaration of the variable, or an RTL value being handled
like a declaration. */
decl_or_value dv;
/* Reference count. */
int refcount;
/* Number of variable parts. */
char n_var_parts;
/* What type of DV this is, according to enum onepart_enum. */
ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
/* True if this variable_def struct is currently in the
changed_variables hash table. */
bool in_changed_variables;
/* The variable parts. */
variable_part var_part[1];
};
/* Pointer to the BB's information specific to variable tracking pass. */
#define VTI(BB) ((variable_tracking_info *) (BB)->aux)
/* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
static inline HOST_WIDE_INT
int_mem_offset (const_rtx mem)
{
HOST_WIDE_INT offset;
if (MEM_OFFSET_KNOWN_P (mem) && MEM_OFFSET (mem).is_constant (&offset))
return offset;
return 0;
}
#if CHECKING_P && (GCC_VERSION >= 2007)
/* Access VAR's Ith part's offset, checking that it's not a one-part
variable. */
#define VAR_PART_OFFSET(var, i) __extension__ \
(*({ variable *const __v = (var); \
gcc_checking_assert (!__v->onepart); \
&__v->var_part[(i)].aux.offset; }))
/* Access VAR's one-part auxiliary data, checking that it is a
one-part variable. */
#define VAR_LOC_1PAUX(var) __extension__ \
(*({ variable *const __v = (var); \
gcc_checking_assert (__v->onepart); \
&__v->var_part[0].aux.onepaux; }))
#else
#define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
#define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
#endif
/* These are accessor macros for the one-part auxiliary data. When
convenient for users, they're guarded by tests that the data was
allocated. */
#define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
? VAR_LOC_1PAUX (var)->backlinks \
: NULL)
#define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
? &VAR_LOC_1PAUX (var)->backlinks \
: NULL)
#define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
#define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
#define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
? &VAR_LOC_1PAUX (var)->deps \
: NULL)
typedef unsigned int dvuid;
/* Return the uid of DV. */
static inline dvuid
dv_uid (decl_or_value dv)
{
if (dv_is_value_p (dv))
return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
else
return DECL_UID (dv_as_decl (dv));
}
/* Compute the hash from the uid. */
static inline hashval_t
dv_uid2hash (dvuid uid)
{
return uid;
}
/* The hash function for a mask table in a shared_htab chain. */
static inline hashval_t
dv_htab_hash (decl_or_value dv)
{
return dv_uid2hash (dv_uid (dv));
}
static void variable_htab_free (void *);
/* Variable hashtable helpers. */
struct variable_hasher : pointer_hash <variable>
{
typedef void *compare_type;
static inline hashval_t hash (const variable *);
static inline bool equal (const variable *, const void *);
static inline void remove (variable *);
};
/* The hash function for variable_htab, computes the hash value
from the declaration of variable X. */
inline hashval_t
variable_hasher::hash (const variable *v)
{
return dv_htab_hash (v->dv);
}
/* Compare the declaration of variable X with declaration Y. */
inline bool
variable_hasher::equal (const variable *v, const void *y)
{
decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
}
/* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
inline void
variable_hasher::remove (variable *var)
{
variable_htab_free (var);
}
typedef hash_table<variable_hasher> variable_table_type;
typedef variable_table_type::iterator variable_iterator_type;
/* Structure for passing some other parameters to function
emit_note_insn_var_location. */
struct emit_note_data
{
/* The instruction which the note will be emitted before/after. */
rtx_insn *insn;
/* Where the note will be emitted (before/after insn)? */
enum emit_note_where where;
/* The variables and values active at this point. */
variable_table_type *vars;
};
/* Structure holding a refcounted hash table. If refcount > 1,
it must be first unshared before modified. */
struct shared_hash
{
/* Reference count. */
int refcount;
/* Actual hash table. */
variable_table_type *htab;
};
/* Structure holding the IN or OUT set for a basic block. */
struct dataflow_set
{
/* Adjustment of stack offset. */
HOST_WIDE_INT stack_adjust;
/* Attributes for registers (lists of attrs). */
attrs *regs[FIRST_PSEUDO_REGISTER];
/* Variable locations. */
shared_hash *vars;
/* Vars that is being traversed. */
shared_hash *traversed_vars;
};
/* The structure (one for each basic block) containing the information
needed for variable tracking. */
struct variable_tracking_info
{
/* The vector of micro operations. */
vec<micro_operation> mos;
/* The IN and OUT set for dataflow analysis. */
dataflow_set in;
dataflow_set out;
/* The permanent-in dataflow set for this block. This is used to
hold values for which we had to compute entry values. ??? This
should probably be dynamically allocated, to avoid using more
memory in non-debug builds. */
dataflow_set *permp;
/* Has the block been visited in DFS? */
bool visited;
/* Has the block been flooded in VTA? */
bool flooded;
};
/* Alloc pool for struct attrs_def. */
object_allocator<attrs> attrs_pool ("attrs pool");
/* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
static pool_allocator var_pool
("variable_def pool", sizeof (variable) +
(MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
/* Alloc pool for struct variable_def with a single var_part entry. */
static pool_allocator valvar_pool
("small variable_def pool", sizeof (variable));
/* Alloc pool for struct location_chain. */
static object_allocator<location_chain> location_chain_pool
("location_chain pool");
/* Alloc pool for struct shared_hash. */
static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
/* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
/* Changed variables, notes will be emitted for them. */
static variable_table_type *changed_variables;
/* Shall notes be emitted? */
static bool emit_notes;
/* Values whose dynamic location lists have gone empty, but whose
cselib location lists are still usable. Use this to hold the
current location, the backlinks, etc, during emit_notes. */
static variable_table_type *dropped_values;
/* Empty shared hashtable. */
static shared_hash *empty_shared_hash;
/* Scratch register bitmap used by cselib_expand_value_rtx. */
static bitmap scratch_regs = NULL;
#ifdef HAVE_window_save
struct GTY(()) parm_reg {
rtx outgoing;
rtx incoming;
};
/* Vector of windowed parameter registers, if any. */
static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
#endif
/* Variable used to tell whether cselib_process_insn called our hook. */
static bool cselib_hook_called;
/* Local function prototypes. */
static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
HOST_WIDE_INT *);
static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
HOST_WIDE_INT *);
static bool vt_stack_adjustments (void);
static void init_attrs_list_set (attrs **);
static void attrs_list_clear (attrs **);
static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
static void attrs_list_copy (attrs **, attrs *);
static void attrs_list_union (attrs **, attrs *);
static variable **unshare_variable (dataflow_set *set, variable **slot,
variable *var, enum var_init_status);
static void vars_copy (variable_table_type *, variable_table_type *);
static tree var_debug_decl (tree);
static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
enum var_init_status, rtx);
static void var_reg_delete (dataflow_set *, rtx, bool);
static void var_regno_delete (dataflow_set *, int);
static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
enum var_init_status, rtx);
static void var_mem_delete (dataflow_set *, rtx, bool);
static void dataflow_set_init (dataflow_set *);
static void dataflow_set_clear (dataflow_set *);
static void dataflow_set_copy (dataflow_set *, dataflow_set *);
static int variable_union_info_cmp_pos (const void *, const void *);
static void dataflow_set_union (dataflow_set *, dataflow_set *);
static location_chain *find_loc_in_1pdv (rtx, variable *,
variable_table_type *);
static bool canon_value_cmp (rtx, rtx);
static int loc_cmp (rtx, rtx);
static bool variable_part_different_p (variable_part *, variable_part *);
static bool onepart_variable_different_p (variable *, variable *);
static bool variable_different_p (variable *, variable *);
static bool dataflow_set_different (dataflow_set *, dataflow_set *);
static void dataflow_set_destroy (dataflow_set *);
static bool track_expr_p (tree, bool);
static void add_uses_1 (rtx *, void *);
static void add_stores (rtx, const_rtx, void *);
static bool compute_bb_dataflow (basic_block);
static bool vt_find_locations (void);
static void dump_attrs_list (attrs *);
static void dump_var (variable *);
static void dump_vars (variable_table_type *);
static void dump_dataflow_set (dataflow_set *);
static void dump_dataflow_sets (void);
static void set_dv_changed (decl_or_value, bool);
static void variable_was_changed (variable *, dataflow_set *);
static variable **set_slot_part (dataflow_set *, rtx, variable **,
decl_or_value, HOST_WIDE_INT,
enum var_init_status, rtx);
static void set_variable_part (dataflow_set *, rtx,
decl_or_value, HOST_WIDE_INT,
enum var_init_status, rtx, enum insert_option);
static variable **clobber_slot_part (dataflow_set *, rtx,
variable **, HOST_WIDE_INT, rtx);
static void clobber_variable_part (dataflow_set *, rtx,
decl_or_value, HOST_WIDE_INT, rtx);
static variable **delete_slot_part (dataflow_set *, rtx, variable **,
HOST_WIDE_INT);
static void delete_variable_part (dataflow_set *, rtx,
decl_or_value, HOST_WIDE_INT);
static void emit_notes_in_bb (basic_block, dataflow_set *);
static void vt_emit_notes (void);
static void vt_add_function_parameters (void);
static bool vt_initialize (void);
static void vt_finalize (void);
/* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
static int
stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
void *arg)
{
if (dest != stack_pointer_rtx)
return 0;
switch (GET_CODE (op))
{
case PRE_INC:
case PRE_DEC:
((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
return 0;
case POST_INC:
case POST_DEC:
((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
return 0;
case PRE_MODIFY:
case POST_MODIFY:
/* We handle only adjustments by constant amount. */
gcc_assert (GET_CODE (src) == PLUS
&& CONST_INT_P (XEXP (src, 1))
&& XEXP (src, 0) == stack_pointer_rtx);
((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
-= INTVAL (XEXP (src, 1));
return 0;
default:
gcc_unreachable ();
}
}
/* Given a SET, calculate the amount of stack adjustment it contains
PRE- and POST-modifying stack pointer.
This function is similar to stack_adjust_offset. */
static void
stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
HOST_WIDE_INT *post)
{
rtx src = SET_SRC (pattern);
rtx dest = SET_DEST (pattern);
enum rtx_code code;
if (dest == stack_pointer_rtx)
{
/* (set (reg sp) (plus (reg sp) (const_int))) */
code = GET_CODE (src);
if (! (code == PLUS || code == MINUS)
|| XEXP (src, 0) != stack_pointer_rtx
|| !CONST_INT_P (XEXP (src, 1)))
return;
if (code == MINUS)
*post += INTVAL (XEXP (src, 1));
else
*post -= INTVAL (XEXP (src, 1));
return;
}
HOST_WIDE_INT res[2] = { 0, 0 };
for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
*pre += res[0];
*post += res[1];
}
/* Given an INSN, calculate the amount of stack adjustment it contains
PRE- and POST-modifying stack pointer. */
static void
insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
HOST_WIDE_INT *post)
{
rtx pattern;
*pre = 0;
*post = 0;
pattern = PATTERN (insn);
if (RTX_FRAME_RELATED_P (insn))
{
rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
if (expr)
pattern = XEXP (expr, 0);
}
if (GET_CODE (pattern) == SET)
stack_adjust_offset_pre_post (pattern, pre, post);
else if (GET_CODE (pattern) == PARALLEL
|| GET_CODE (pattern) == SEQUENCE)
{
int i;
/* There may be stack adjustments inside compound insns. Search
for them. */
for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
}
}
/* Compute stack adjustments for all blocks by traversing DFS tree.
Return true when the adjustments on all incoming edges are consistent.
Heavily borrowed from pre_and_rev_post_order_compute. */
static bool
vt_stack_adjustments (void)
{
edge_iterator *stack;
int sp;
/* Initialize entry block. */
VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
= INCOMING_FRAME_SP_OFFSET;
VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
= INCOMING_FRAME_SP_OFFSET;
/* Allocate stack for back-tracking up CFG. */
stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
sp = 0;
/* Push the first edge on to the stack. */
stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
while (sp)
{
edge_iterator ei;
basic_block src;
basic_block dest;
/* Look at the edge on the top of the stack. */
ei = stack[sp - 1];
src = ei_edge (ei)->src;
dest = ei_edge (ei)->dest;
/* Check if the edge destination has been visited yet. */
if (!VTI (dest)->visited)
{
rtx_insn *insn;
HOST_WIDE_INT pre, post, offset;
VTI (dest)->visited = true;
VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
for (insn = BB_HEAD (dest);
insn != NEXT_INSN (BB_END (dest));
insn = NEXT_INSN (insn))
if (INSN_P (insn))
{
insn_stack_adjust_offset_pre_post (insn, &pre, &post);
offset += pre + post;
}
VTI (dest)->out.stack_adjust = offset;
if (EDGE_COUNT (dest->succs) > 0)
/* Since the DEST node has been visited for the first
time, check its successors. */
stack[sp++] = ei_start (dest->succs);
}
else
{
/* We can end up with different stack adjustments for the exit block
of a shrink-wrapped function if stack_adjust_offset_pre_post
doesn't understand the rtx pattern used to restore the stack
pointer in the epilogue. For example, on s390(x), the stack
pointer is often restored via a load-multiple instruction
and so no stack_adjust offset is recorded for it. This means
that the stack offset at the end of the epilogue block is the
same as the offset before the epilogue, whereas other paths
to the exit block will have the correct stack_adjust.
It is safe to ignore these differences because (a) we never
use the stack_adjust for the exit block in this pass and
(b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
function are correct.
We must check whether the adjustments on other edges are
the same though. */
if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
&& VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
{
free (stack);
return false;
}
if (! ei_one_before_end_p (ei))
/* Go to the next edge. */
ei_next (&stack[sp - 1]);
else
/* Return to previous level if there are no more edges. */
sp--;
}
}
free (stack);
return true;
}
/* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
hard_frame_pointer_rtx is being mapped to it and offset for it. */
static rtx cfa_base_rtx;
static HOST_WIDE_INT cfa_base_offset;
/* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
or hard_frame_pointer_rtx. */
static inline rtx
compute_cfa_pointer (poly_int64 adjustment)
{
return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
}
/* Adjustment for hard_frame_pointer_rtx to cfa base reg,
or -1 if the replacement shouldn't be done. */
static poly_int64 hard_frame_pointer_adjustment = -1;
/* Data for adjust_mems callback. */
class adjust_mem_data
{
public:
bool store;
machine_mode mem_mode;
HOST_WIDE_INT stack_adjust;
auto_vec<rtx> side_effects;
};
/* Helper for adjust_mems. Return true if X is suitable for
transformation of wider mode arithmetics to narrower mode. */
static bool
use_narrower_mode_test (rtx x, const_rtx subreg)
{
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
{
rtx x = *iter;
if (CONSTANT_P (x))
iter.skip_subrtxes ();
else
switch (GET_CODE (x))
{
case REG:
if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
return false;
if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
subreg_lowpart_offset (GET_MODE (subreg),
GET_MODE (x))))
return false;
break;
case PLUS:
case MINUS:
case MULT:
break;
case ASHIFT:
if (GET_MODE (XEXP (x, 1)) != VOIDmode)
{
enum machine_mode mode = GET_MODE (subreg);
rtx op1 = XEXP (x, 1);
enum machine_mode op1_mode = GET_MODE (op1);
if (GET_MODE_PRECISION (as_a <scalar_int_mode> (mode))
< GET_MODE_PRECISION (as_a <scalar_int_mode> (op1_mode)))
{
poly_uint64 byte = subreg_lowpart_offset (mode, op1_mode);
if (GET_CODE (op1) == SUBREG || GET_CODE (op1) == CONCAT)
{
if (!simplify_subreg (mode, op1, op1_mode, byte))
return false;
}
else if (!validate_subreg (mode, op1_mode, op1, byte))
return false;
}
}
iter.substitute (XEXP (x, 0));
break;
default:
return false;
}
}
return true;
}
/* Transform X into narrower mode MODE from wider mode WMODE. */
static rtx
use_narrower_mode (rtx x, scalar_int_mode mode, scalar_int_mode wmode)
{
rtx op0, op1;
if (CONSTANT_P (x))
return lowpart_subreg (mode, x, wmode);
switch (GET_CODE (x))
{
case REG:
return lowpart_subreg (mode, x, wmode);
case PLUS:
case MINUS:
case MULT:
op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
case ASHIFT:
op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
op1 = XEXP (x, 1);
/* Ensure shift amount is not wider than mode. */
if (GET_MODE (op1) == VOIDmode)
op1 = lowpart_subreg (mode, op1, wmode);
else if (GET_MODE_PRECISION (mode)
< GET_MODE_PRECISION (as_a <scalar_int_mode> (GET_MODE (op1))))
op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
return simplify_gen_binary (ASHIFT, mode, op0, op1);
default:
gcc_unreachable ();
}
}
/* Helper function for adjusting used MEMs. */
static rtx
adjust_mems (rtx loc, const_rtx old_rtx, void *data)
{
class adjust_mem_data *amd = (class adjust_mem_data *) data;
rtx mem, addr = loc, tem;
machine_mode mem_mode_save;
bool store_save;
scalar_int_mode tem_mode, tem_subreg_mode;
poly_int64 size;
switch (GET_CODE (loc))
{
case REG:
/* Don't do any sp or fp replacements outside of MEM addresses
on the LHS. */
if (amd->mem_mode == VOIDmode && amd->store)
return loc;
if (loc == stack_pointer_rtx
&& !frame_pointer_needed
&& cfa_base_rtx)
return compute_cfa_pointer (amd->stack_adjust);
else if (loc == hard_frame_pointer_rtx
&& frame_pointer_needed
&& maybe_ne (hard_frame_pointer_adjustment, -1)
&& cfa_base_rtx)
return compute_cfa_pointer (hard_frame_pointer_adjustment);
gcc_checking_assert (loc != virtual_incoming_args_rtx);
return loc;
case MEM:
mem = loc;
if (!amd->store)
{
mem = targetm.delegitimize_address (mem);
if (mem != loc && !MEM_P (mem))
return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
}
addr = XEXP (mem, 0);
mem_mode_save = amd->mem_mode;
amd->mem_mode = GET_MODE (mem);
store_save = amd->store;
amd->store = false;
addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
amd->store = store_save;
amd->mem_mode = mem_mode_save;
if (mem == loc)
addr = targetm.delegitimize_address (addr);
if (addr != XEXP (mem, 0))
mem = replace_equiv_address_nv (mem, addr);
if (!amd->store)
mem = avoid_constant_pool_reference (mem);
return mem;
case PRE_INC:
case PRE_DEC:
size = GET_MODE_SIZE (amd->mem_mode);
addr = plus_constant (GET_MODE (loc), XEXP (loc, 0),
GET_CODE (loc) == PRE_INC ? size : -size);
/* FALLTHRU */
case POST_INC:
case POST_DEC:
if (addr == loc)
addr = XEXP (loc, 0);
gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
size = GET_MODE_SIZE (amd->mem_mode);
tem = plus_constant (GET_MODE (loc), XEXP (loc, 0),
(GET_CODE (loc) == PRE_INC
|| GET_CODE (loc) == POST_INC) ? size : -size);
store_save = amd->store;
amd->store = false;
tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
amd->store = store_save;
amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
return addr;
case PRE_MODIFY:
addr = XEXP (loc, 1);
/* FALLTHRU */
case POST_MODIFY:
if (addr == loc)
addr = XEXP (loc, 0);
gcc_assert (amd->mem_mode != VOIDmode);
addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
store_save = amd->store;
amd->store = false;
tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
adjust_mems, data);
amd->store = store_save;
amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
return addr;
case SUBREG:
/* First try without delegitimization of whole MEMs and
avoid_constant_pool_reference, which is more likely to succeed. */
store_save = amd->store;
amd->store = true;
addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
data);
amd->store = store_save;
mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
if (mem == SUBREG_REG (loc))
{
tem = loc;
goto finish_subreg;
}
tem = simplify_gen_subreg (GET_MODE (loc), mem,
GET_MODE (SUBREG_REG (loc)),
SUBREG_BYTE (loc));
if (tem)
goto finish_subreg;
tem = simplify_gen_subreg (GET_MODE (loc), addr,
GET_MODE (SUBREG_REG (loc)),
SUBREG_BYTE (loc));
if (tem == NULL_RTX)
tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
finish_subreg:
if (MAY_HAVE_DEBUG_BIND_INSNS
&& GET_CODE (tem) == SUBREG
&& (GET_CODE (SUBREG_REG (tem)) == PLUS
|| GET_CODE (SUBREG_REG (tem)) == MINUS
|| GET_CODE (SUBREG_REG (tem)) == MULT
|| GET_CODE (SUBREG_REG (tem)) == ASHIFT)
&& is_a <scalar_int_mode> (GET_MODE (tem), &tem_mode)
&& is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (tem)),
&tem_subreg_mode)
&& (GET_MODE_PRECISION (tem_mode)
< GET_MODE_PRECISION (tem_subreg_mode))
&& subreg_lowpart_p (tem)
&& use_narrower_mode_test (SUBREG_REG (tem), tem))
return use_narrower_mode (SUBREG_REG (tem), tem_mode, tem_subreg_mode);
return tem;
case ASM_OPERANDS:
/* Don't do any replacements in second and following
ASM_OPERANDS of inline-asm with multiple sets.
ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
and ASM_OPERANDS_LABEL_VEC need to be equal between
all the ASM_OPERANDs in the insn and adjust_insn will
fix this up. */
if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
return loc;
break;
default:
break;
}
return NULL_RTX;
}
/* Helper function for replacement of uses. */
static void
adjust_mem_uses (rtx *x, void *data)
{
rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
if (new_x != *x)
validate_change (NULL_RTX, x, new_x, true);
}
/* Helper function for replacement of stores. */
static void
adjust_mem_stores (rtx loc, const_rtx expr, void *data)
{
if (MEM_P (loc))
{
rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
adjust_mems, data);
if (new_dest != SET_DEST (expr))
{
rtx xexpr = CONST_CAST_RTX (expr);
validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
}
}
}
/* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
replace them with their value in the insn and add the side-effects
as other sets to the insn. */
static void
adjust_insn (basic_block bb, rtx_insn *insn)
{
rtx set;
#ifdef HAVE_window_save
/* If the target machine has an explicit window save instruction, the
transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
if (RTX_FRAME_RELATED_P (insn)
&& find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
{
unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
parm_reg *p;
FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
{
XVECEXP (rtl, 0, i * 2)
= gen_rtx_SET (p->incoming, p->outgoing);
/* Do not clobber the attached DECL, but only the REG. */
XVECEXP (rtl, 0, i * 2 + 1)
= gen_rtx_CLOBBER (GET_MODE (p->outgoing),
gen_raw_REG (GET_MODE (p->outgoing),
REGNO (p->outgoing)));
}
validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
return;
}
#endif
adjust_mem_data amd;
amd.mem_mode = VOIDmode;
amd.stack_adjust = -VTI (bb)->out.stack_adjust;
amd.store = true;
note_stores (insn, adjust_mem_stores, &amd);
amd.store = false;
if (GET_CODE (PATTERN (insn)) == PARALLEL
&& asm_noperands (PATTERN (insn)) > 0
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
{
rtx body, set0;
int i;
/* inline-asm with multiple sets is tiny bit more complicated,
because the 3 vectors in ASM_OPERANDS need to be shared between
all ASM_OPERANDS in the instruction. adjust_mems will
not touch ASM_OPERANDS other than the first one, asm_noperands
test above needs to be called before that (otherwise it would fail)
and afterwards this code fixes it up. */
note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
body = PATTERN (insn);
set0 = XVECEXP (body, 0, 0);
gcc_checking_assert (GET_CODE (set0) == SET
&& GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
&& ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
for (i = 1; i < XVECLEN (body, 0); i++)
if (GET_CODE (XVECEXP (body, 0, i)) != SET)
break;
else
{
set = XVECEXP (body, 0, i);
gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
&& ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
== i);
if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
!= ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
|| ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
!= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
|| ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
!= ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
{
rtx newsrc = shallow_copy_rtx (SET_SRC (set));
ASM_OPERANDS_INPUT_VEC (newsrc)
= ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
ASM_OPERANDS_LABEL_VEC (newsrc)
= ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
}
}
}
else
note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
/* For read-only MEMs containing some constant, prefer those
constants. */
set = single_set (insn);
if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
{
rtx note = find_reg_equal_equiv_note (insn);
if (note && CONSTANT_P (XEXP (note, 0)))
validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
}
if (!amd.side_effects.is_empty ())
{
rtx *pat, new_pat;
int i, oldn;
pat = &PATTERN (insn);
if (GET_CODE (*pat) == COND_EXEC)
pat = &COND_EXEC_CODE (*pat);
if (GET_CODE (*pat) == PARALLEL)
oldn = XVECLEN (*pat, 0);
else
oldn = 1;
unsigned int newn = amd.side_effects.length ();
new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
if (GET_CODE (*pat) == PARALLEL)
for (i = 0; i < oldn; i++)
XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
else
XVECEXP (new_pat, 0, 0) = *pat;
rtx effect;
unsigned int j;
FOR_EACH_VEC_ELT_REVERSE (amd.side_effects, j, effect)
XVECEXP (new_pat, 0, j + oldn) = effect;
validate_change (NULL_RTX, pat, new_pat, true);
}
}
/* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
static inline rtx
dv_as_rtx (decl_or_value dv)
{
tree decl;
if (dv_is_value_p (dv))
return dv_as_value (dv);
decl = dv_as_decl (dv);
gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
return DECL_RTL_KNOWN_SET (decl);
}
/* Return nonzero if a decl_or_value must not have more than one
variable part. The returned value discriminates among various
kinds of one-part DVs ccording to enum onepart_enum. */
static inline onepart_enum
dv_onepart_p (decl_or_value dv)
{
tree decl;
if (!MAY_HAVE_DEBUG_BIND_INSNS)
return NOT_ONEPART;
if (dv_is_value_p (dv))
return ONEPART_VALUE;
decl = dv_as_decl (dv);
if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
return ONEPART_DEXPR;
if (target_for_debug_bind (decl) != NULL_TREE)
return ONEPART_VDECL;
return NOT_ONEPART;
}
/* Return the variable pool to be used for a dv of type ONEPART. */
static inline pool_allocator &
onepart_pool (onepart_enum onepart)
{
return onepart ? valvar_pool : var_pool;
}
/* Allocate a variable_def from the corresponding variable pool. */
static inline variable *
onepart_pool_allocate (onepart_enum onepart)
{
return (variable*) onepart_pool (onepart).allocate ();
}
/* Build a decl_or_value out of a decl. */
static inline decl_or_value
dv_from_decl (tree decl)
{
decl_or_value dv;
dv = decl;
gcc_checking_assert (dv_is_decl_p (dv));
return dv;
}
/* Build a decl_or_value out of a value. */
static inline decl_or_value
dv_from_value (rtx value)
{
decl_or_value dv;
dv = value;
gcc_checking_assert (dv_is_value_p (dv));
return dv;
}
/* Return a value or the decl of a debug_expr as a decl_or_value. */
static inline decl_or_value
dv_from_rtx (rtx x)
{
decl_or_value dv;
switch (GET_CODE (x))
{
case DEBUG_EXPR:
dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
break;
case VALUE:
dv = dv_from_value (x);
break;
default:
gcc_unreachable ();
}
return dv;
}
extern void debug_dv (decl_or_value dv);
DEBUG_FUNCTION void
debug_dv (decl_or_value dv)
{
if (dv_is_value_p (dv))
debug_rtx (dv_as_value (dv));
else
debug_generic_stmt (dv_as_decl (dv));
}
static void loc_exp_dep_clear (variable *var);
/* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
static void
variable_htab_free (void *elem)
{
int i;
variable *var = (variable *) elem;
location_chain *node, *next;
gcc_checking_assert (var->refcount > 0);
var->refcount--;
if (var->refcount > 0)
return;
for (i = 0; i < var->n_var_parts; i++)
{
for (node = var->var_part[i].loc_chain; node; node = next)
{
next = node->next;
delete node;
}
var->var_part[i].loc_chain = NULL;
}
if (var->onepart && VAR_LOC_1PAUX (var))
{
loc_exp_dep_clear (var);
if (VAR_LOC_DEP_LST (var))
VAR_LOC_DEP_LST (var)->pprev = NULL;
XDELETE (VAR_LOC_1PAUX (var));
/* These may be reused across functions, so reset
e.g. NO_LOC_P. */
if (var->onepart == ONEPART_DEXPR)
set_dv_changed (var->dv, true);
}
onepart_pool (var->onepart).remove (var);
}
/* Initialize the set (array) SET of attrs to empty lists. */
static void
init_attrs_list_set (attrs **set)
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
set[i] = NULL;
}
/* Make the list *LISTP empty. */
static void
attrs_list_clear (attrs **listp)
{
attrs *list, *next;
for (list = *listp; list; list = next)
{
next = list->next;
delete list;
}
*listp = NULL;
}
/* Return true if the pair of DECL and OFFSET is the member of the LIST. */
static attrs *
attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
{
for (; list; list = list->next)
if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
return list;
return NULL;
}
/* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
static void
attrs_list_insert (attrs **listp, decl_or_value dv,
HOST_WIDE_INT offset, rtx loc)
{
attrs *list = new attrs;
list->loc = loc;
list->dv = dv;
list->offset = offset;
list->next = *listp;
*listp = list;
}
/* Copy all nodes from SRC and create a list *DSTP of the copies. */
static void
attrs_list_copy (attrs **dstp, attrs *src)
{
attrs_list_clear (dstp);
for (; src; src = src->next)
{
attrs *n = new attrs;
n->loc = src->loc;
n->dv = src->dv;
n->offset = src->offset;
n->next = *dstp;
*dstp = n;
}
}
/* Add all nodes from SRC which are not in *DSTP to *DSTP. */
static void
attrs_list_union (attrs **dstp, attrs *src)
{
for (; src; src = src->next)
{
if (!attrs_list_member (*dstp, src->dv, src->offset))
attrs_list_insert (dstp, src->dv, src->offset, src->loc);
}
}
/* Combine nodes that are not onepart nodes from SRC and SRC2 into
*DSTP. */
static void
attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
{
gcc_assert (!*dstp);
for (; src; src = src->next)
{
if (!dv_onepart_p (src->dv))
attrs_list_insert (dstp, src->dv, src->offset, src->loc);
}
for (src = src2; src; src = src->next)
{
if (!dv_onepart_p (src->dv)
&& !attrs_list_member (*dstp, src->dv, src->offset))
attrs_list_insert (dstp, src->dv, src->offset, src->loc);
}
}
/* Shared hashtable support. */
/* Return true if VARS is shared. */
static inline bool
shared_hash_shared (shared_hash *vars)
{
return vars->refcount > 1;
}
/* Return the hash table for VARS. */
static inline variable_table_type *
shared_hash_htab (shared_hash *vars)
{
return vars->htab;
}
/* Return true if VAR is shared, or maybe because VARS is shared. */
static inline bool
shared_var_p (variable *var, shared_hash *vars)
{
/* Don't count an entry in the changed_variables table as a duplicate. */
return ((var->refcount > 1 + (int) var->in_changed_variables)
|| shared_hash_shared (vars));
}
/* Copy variables into a new hash table. */
static shared_hash *
shared_hash_unshare (shared_hash *vars)
{
shared_hash *new_vars = new shared_hash;
gcc_assert (vars->refcount > 1);
new_vars->refcount = 1;
new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
vars_copy (new_vars->htab, vars->htab);
vars->refcount--;
return new_vars;
}
/* Increment reference counter on VARS and return it. */
static inline shared_hash *
shared_hash_copy (shared_hash *vars)
{
vars->refcount++;
return vars;
}
/* Decrement reference counter and destroy hash table if not shared
anymore. */
static void
shared_hash_destroy (shared_hash *vars)
{
gcc_checking_assert (vars->refcount > 0);
if (--vars->refcount == 0)
{
delete vars->htab;
delete vars;
}
}
/* Unshare *PVARS if shared and return slot for DV. If INS is
INSERT, insert it if not already present. */
static inline variable **
shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
hashval_t dvhash, enum insert_option ins)
{
if (shared_hash_shared (*pvars))
*pvars = shared_hash_unshare (*pvars);
return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
}
static inline variable **
shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
enum insert_option ins)
{
return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
}
/* Return slot for DV, if it is already present in the hash table.
If it is not present, insert it only VARS is not shared, otherwise
return NULL. */
static inline variable **
shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
{
return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
shared_hash_shared (vars)
? NO_INSERT : INSERT);
}
static inline variable **
shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
{
return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
}
/* Return slot for DV only if it is already present in the hash table. */
static inline variable **
shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
hashval_t dvhash)
{
return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
}
static inline variable **
shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
{
return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
}
/* Return variable for DV or NULL if not already present in the hash
table. */
static inline variable *
shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
{
return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
}
static inline variable *
shared_hash_find (shared_hash *vars, decl_or_value dv)
{
return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
}
/* Return true if TVAL is better than CVAL as a canonival value. We
choose lowest-numbered VALUEs, using the RTX address as a
tie-breaker. The idea is to arrange them into a star topology,
such that all of them are at most one step away from the canonical
value, and the canonical value has backlinks to all of them, in
addition to all the actual locations. We don't enforce this
topology throughout the entire dataflow analysis, though.
*/
static inline bool
canon_value_cmp (rtx tval, rtx cval)
{
return !cval
|| CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
}
static bool dst_can_be_shared;
/* Return a copy of a variable VAR and insert it to dataflow set SET. */
static variable **
unshare_variable (dataflow_set *set, variable **slot, variable *var,
enum var_init_status initialized)
{
variable *new_var;
int i;
new_var = onepart_pool_allocate (var->onepart);
new_var->dv = var->dv;
new_var->refcount = 1;
var->refcount--;
new_var->n_var_parts = var->n_var_parts;
new_var->onepart = var->onepart;
new_var->in_changed_variables = false;
if (! flag_var_tracking_uninit)
initialized = VAR_INIT_STATUS_INITIALIZED;
for (i = 0; i < var->n_var_parts; i++)
{
location_chain *node;
location_chain **nextp;
if (i == 0 && var->onepart)
{
/* One-part auxiliary data is only used while emitting
notes, so propagate it to the new variable in the active
dataflow set. If we're not emitting notes, this will be
a no-op. */
gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
VAR_LOC_1PAUX (var) = NULL;
}
else
VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
nextp = &new_var->var_part[i].loc_chain;
for (node = var->var_part[i].loc_chain; node; node = node->next)
{
location_chain *new_lc;
new_lc = new location_chain;
new_lc->next = NULL;
if (node->init > initialized)
new_lc->init = node->init;
else
new_lc->init = initialized;
if (node->set_src && !(MEM_P (node->set_src)))
new_lc->set_src = node->set_src;
else
new_lc->set_src = NULL;
new_lc->loc = node->loc;
*nextp = new_lc;
nextp = &new_lc->next;
}
new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
}
dst_can_be_shared = false;
if (shared_hash_shared (set->vars))
slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
else if (set->traversed_vars && set->vars != set->traversed_vars)
slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
*slot = new_var;
if (var->in_changed_variables)
{
variable **cslot
= changed_variables->find_slot_with_hash (var->dv,
dv_htab_hash (var->dv),
NO_INSERT);
gcc_assert (*cslot == (void *) var);
var->in_changed_variables = false;
variable_htab_free (var);
*cslot = new_var;
new_var->in_changed_variables = true;
}
return slot;
}
/* Copy all variables from hash table SRC to hash table DST. */
static void
vars_copy (variable_table_type *dst, variable_table_type *src)
{
variable_iterator_type hi;
variable *var;
FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
{
variable **dstp;
var->refcount++;
dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
INSERT);
*dstp = var;
}
}
/* Map a decl to its main debug decl. */
static inline tree
var_debug_decl (tree decl)
{
if (decl && VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
{
tree debugdecl = DECL_DEBUG_EXPR (decl);
if (DECL_P (debugdecl))
decl = debugdecl;
}
return decl;
}
/* Set the register LOC to contain DV, OFFSET. */
static void
var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
enum insert_option iopt)
{
attrs *node;
bool decl_p = dv_is_decl_p (dv);
if (decl_p)
dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
for (node = set->regs[REGNO (loc)]; node; node = node->next)
if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
&& node->offset == offset)
break;
if (!node)
attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
}
/* Return true if we should track a location that is OFFSET bytes from
a variable. Store the constant offset in *OFFSET_OUT if so. */
static bool
track_offset_p (poly_int64 offset, HOST_WIDE_INT *offset_out)
{
HOST_WIDE_INT const_offset;
if (!offset.is_constant (&const_offset)
|| !IN_RANGE (const_offset, 0, MAX_VAR_PARTS - 1))
return false;
*offset_out = const_offset;
return true;
}
/* Return the offset of a register that track_offset_p says we
should track. */
static HOST_WIDE_INT
get_tracked_reg_offset (rtx loc)
{
HOST_WIDE_INT offset;
if (!track_offset_p (REG_OFFSET (loc), &offset))
gcc_unreachable ();
return offset;
}
/* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
static void
var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
rtx set_src)
{
tree decl = REG_EXPR (loc);
HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
var_reg_decl_set (set, loc, initialized,
dv_from_decl (decl), offset, set_src, INSERT);
}
static enum var_init_status
get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
{
variable *var;
int i;
enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
if (! flag_var_tracking_uninit)
return VAR_INIT_STATUS_INITIALIZED;
var = shared_hash_find (set->vars, dv);
if (var)
{
for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
{
location_chain *nextp;
for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
if (rtx_equal_p (nextp->loc, loc))
{
ret_val = nextp->init;
break;
}
}
}
return ret_val;
}
/* Delete current content of register LOC in dataflow set SET and set
the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
MODIFY is true, any other live copies of the same variable part are
also deleted from the dataflow set, otherwise the variable part is
assumed to be copied from another location holding the same
part. */
static void
var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
enum var_init_status initialized, rtx set_src)
{
tree decl = REG_EXPR (loc);
HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
attrs *node, *next;
attrs **nextp;
decl = var_debug_decl (decl);
if (initialized == VAR_INIT_STATUS_UNKNOWN)
initialized = get_init_value (set, loc, dv_from_decl (decl));
nextp = &set->regs[REGNO (loc)];
for (node = *nextp; node; node = next)
{
next = node->next;
if (dv_as_opaque (node->dv) != decl || node->offset != offset)
{
delete_variable_part (set, node->loc, node->dv, node->offset);
delete node;
*nextp = next;
}
else
{
node->loc = loc;
nextp = &node->next;
}
}
if (modify)
clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
var_reg_set (set, loc, initialized, set_src);
}
/* Delete the association of register LOC in dataflow set SET with any
variables that aren't onepart. If CLOBBER is true, also delete any
other live copies of the same variable part, and delete the
association with onepart dvs too. */
static void
var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
{
attrs **nextp = &set->regs[REGNO (loc)];
attrs *node, *next;
HOST_WIDE_INT offset;
if (clobber && track_offset_p (REG_OFFSET (loc), &offset))
{
tree decl = REG_EXPR (loc);
decl = var_debug_decl (decl);
clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
}
for (node = *nextp; node; node = next)
{
next = node->next;
if (clobber || !dv_onepart_p (node->dv))
{
delete_variable_part (set, node->loc, node->dv, node->offset);
delete node;
*nextp = next;
}
else
nextp = &node->next;
}
}
/* Delete content of register with number REGNO in dataflow set SET. */
static void
var_regno_delete (dataflow_set *set, int regno)
{
attrs **reg = &set->regs[regno];
attrs *node, *next;
for (node = *reg; node; node = next)
{
next = node->next;
delete_variable_part (set, node->loc, node->dv, node->offset);
delete node;
}
*reg = NULL;
}
/* Return true if I is the negated value of a power of two. */
static bool
negative_power_of_two_p (HOST_WIDE_INT i)
{
unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
return pow2_or_zerop (x);
}
/* Strip constant offsets and alignments off of LOC. Return the base
expression. */
static rtx
vt_get_canonicalize_base (rtx loc)
{
while ((GET_CODE (loc) == PLUS
|| GET_CODE (loc) == AND)
&& GET_CODE (XEXP (loc, 1)) == CONST_INT
&& (GET_CODE (loc) != AND
|| negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
loc = XEXP (loc, 0);
return loc;
}
/* This caches canonicalized addresses for VALUEs, computed using
information in the global cselib table. */
static hash_map<rtx, rtx> *global_get_addr_cache;
/* This caches canonicalized addresses for VALUEs, computed using
information from the global cache and information pertaining to a
basic block being analyzed. */
static hash_map<rtx, rtx> *local_get_addr_cache;
static rtx vt_canonicalize_addr (dataflow_set *, rtx);
/* Return the canonical address for LOC, that must be a VALUE, using a
cached global equivalence or computing it and storing it in the
global cache. */
static rtx
get_addr_from_global_cache (rtx const loc)
{
rtx x;
gcc_checking_assert (GET_CODE (loc) == VALUE);
bool existed;
rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
if (existed)
return *slot;
x = canon_rtx (get_addr (loc));
/* Tentative, avoiding infinite recursion. */
*slot = x;
if (x != loc)
{
rtx nx = vt_canonicalize_addr (NULL, x);
if (nx != x)
{
/* The table may have moved during recursion, recompute
SLOT. */
*global_get_addr_cache->get (loc) = x = nx;
}
}
return x;
}
/* Return the canonical address for LOC, that must be a VALUE, using a
cached local equivalence or computing it and storing it in the
local cache. */
static rtx
get_addr_from_local_cache (dataflow_set *set, rtx const loc)
{
rtx x;
decl_or_value dv;
variable *var;
location_chain *l;
gcc_checking_assert (GET_CODE (loc) == VALUE);
bool existed;
rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
if (existed)
return *slot;
x = get_addr_from_global_cache (loc);
/* Tentative, avoiding infinite recursion. */
*slot = x;
/* Recurse to cache local expansion of X, or if we need to search
for a VALUE in the expansion. */
if (x != loc)
{
rtx nx = vt_canonicalize_addr (set, x);
if (nx != x)
{
slot = local_get_addr_cache->get (loc);
*slot = x = nx;
}
return x;
}
dv = dv_from_rtx (x);
var = shared_hash_find (set->vars, dv);
if (!var)
return x;
/* Look for an improved equivalent expression. */
for (l = var->var_part[0].loc_chain; l; l = l->next)
{
rtx base = vt_get_canonicalize_base (l->loc);
if (GET_CODE (base) == VALUE
&& canon_value_cmp (base, loc))
{
rtx nx = vt_canonicalize_addr (set, l->loc);
if (x != nx)
{
slot = local_get_addr_cache->get (loc);
*slot = x = nx;
}
break;
}
}
return x;
}
/* Canonicalize LOC using equivalences from SET in addition to those
in the cselib static table. It expects a VALUE-based expression,
and it will only substitute VALUEs with other VALUEs or
function-global equivalences, so that, if two addresses have base
VALUEs that are locally or globally related in ways that
memrefs_conflict_p cares about, they will both canonicalize to
expressions that have the same base VALUE.
The use of VALUEs as canonical base addresses enables the canonical
RTXs to remain unchanged globally, if they resolve to a constant,
or throughout a basic block otherwise, so that they can be cached
and the cache needs not be invalidated when REGs, MEMs or such
change. */
static rtx
vt_canonicalize_addr (dataflow_set *set, rtx oloc)
{
poly_int64 ofst = 0, term;
machine_mode mode = GET_MODE (oloc);
rtx loc = oloc;
rtx x;
bool retry = true;
while (retry)
{
while (GET_CODE (loc) == PLUS
&& poly_int_rtx_p (XEXP (loc, 1), &term))
{
ofst += term;
loc = XEXP (loc, 0);
}
/* Alignment operations can't normally be combined, so just
canonicalize the base and we're done. We'll normally have
only one stack alignment anyway. */
if (GET_CODE (loc) == AND
&& GET_CODE (XEXP (loc, 1)) == CONST_INT
&& negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
{
x = vt_canonicalize_addr (set, XEXP (loc, 0));
if (x != XEXP (loc, 0))
loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
retry = false;
}
if (GET_CODE (loc) == VALUE)
{
if (set)
loc = get_addr_from_local_cache (set, loc);
else
loc = get_addr_from_global_cache (loc);
/* Consolidate plus_constants. */
while (maybe_ne (ofst, 0)
&& GET_CODE (loc) == PLUS
&& poly_int_rtx_p (XEXP (loc, 1), &term))
{
ofst += term;
loc = XEXP (loc, 0);
}
retry = false;
}
else
{
x = canon_rtx (loc);
if (retry)
retry = (x != loc);
loc = x;
}
}
/* Add OFST back in. */
if (maybe_ne (ofst, 0))
{
/* Don't build new RTL if we can help it. */
if (strip_offset (oloc, &term) == loc && known_eq (term, ofst))
return oloc;
loc = plus_constant (mode, loc, ofst);
}
return loc;
}
/* Return true iff there's a true dependence between MLOC and LOC.
MADDR must be a canonicalized version of MLOC's address. */
static inline bool
vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
{
if (GET_CODE (loc) != MEM)
return false;
rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
return false;
return true;
}
/* Hold parameters for the hashtab traversal function
drop_overlapping_mem_locs, see below. */
struct overlapping_mems
{
dataflow_set *set;
rtx loc, addr;
};
/* Remove all MEMs that overlap with COMS->LOC from the location list
of a hash table entry for a onepart variable. COMS->ADDR must be a
canonicalized form of COMS->LOC's address, and COMS->LOC must be
canonicalized itself. */
int
drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
{
dataflow_set *set = coms->set;
rtx mloc = coms->loc, addr = coms->addr;
variable *var = *slot;
if (var->onepart != NOT_ONEPART)
{
location_chain *loc, **locp;
bool changed = false;
rtx cur_loc;
gcc_assert (var->n_var_parts == 1);
if (shared_var_p (var, set->vars))
{
for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
if (vt_canon_true_dep (set, mloc, addr, loc->loc))
break;
if (!loc)
return 1;
slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
var = *slot;
gcc_assert (var->n_var_parts == 1);
}
if (VAR_LOC_1PAUX (var))
cur_loc = VAR_LOC_FROM (var);
else
cur_loc = var->var_part[0].cur_loc;
for (locp = &var->var_part[0].loc_chain, loc = *locp;
loc; loc = *locp)
{
if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
{
locp = &loc->next;
continue;
}
*locp = loc->next;
/* If we have deleted the location which was last emitted
we have to emit new location so add the variable to set
of changed variables. */
if (cur_loc == loc->loc)
{
changed = true;
var->var_part[0].cur_loc = NULL;
if (VAR_LOC_1PAUX (var))
VAR_LOC_FROM (var) = NULL;
}
delete loc;
}
if (!var->var_part[0].loc_chain)
{
var->n_var_parts--;
changed = true;
}
if (changed)
variable_was_changed (var, set);
}
return 1;
}
/* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
static void
clobber_overlapping_mems (dataflow_set *set, rtx loc)
{
struct overlapping_mems coms;
gcc_checking_assert (GET_CODE (loc) == MEM);
coms.set = set;
coms.loc = canon_rtx (loc);
coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
set->traversed_vars = set->vars;
shared_hash_htab (set->vars)
->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
set->traversed_vars = NULL;
}
/* Set the location of DV, OFFSET as the MEM LOC. */
static void
var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
enum insert_option iopt)
{
if (dv_is_decl_p (dv))
dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
}
/* Set the location part of variable MEM_EXPR (LOC) in dataflow set
SET to LOC.
Adjust the address first if it is stack pointer based. */
static void
var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
rtx set_src)
{
tree decl = MEM_EXPR (loc);
HOST_WIDE_INT offset = int_mem_offset (loc);
var_mem_decl_set (set, loc, initialized,
dv_from_decl (decl), offset, set_src, INSERT);
}
/* Delete and set the location part of variable MEM_EXPR (LOC) in
dataflow set SET to LOC. If MODIFY is true, any other live copies
of the same variable part are also deleted from the dataflow set,
otherwise the variable part is assumed to be copied from another
location holding the same part.
Adjust the address first if it is stack pointer based. */
static void
var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
enum var_init_status initialized, rtx set_src)
{
tree decl = MEM_EXPR (loc);
HOST_WIDE_INT offset = int_mem_offset (loc);
clobber_overlapping_mems (set, loc);
decl = var_debug_decl (decl);
if (initialized == VAR_INIT_STATUS_UNKNOWN)
initialized = get_init_value (set, loc, dv_from_decl (decl));
if (modify)
clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
var_mem_set (set, loc, initialized, set_src);
}
/* Delete the location part LOC from dataflow set SET. If CLOBBER is
true, also delete any other live copies of the same variable part.
Adjust the address first if it is stack pointer based. */
static void
var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
{
tree decl = MEM_EXPR (loc);
HOST_WIDE_INT offset = int_mem_offset (loc);
clobber_overlapping_mems (set, loc);
decl = var_debug_decl (decl);
if (clobber)
clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
delete_variable_part (set, loc, dv_from_decl (decl), offset);
}
/* Return true if LOC should not be expanded for location expressions,
or used in them. */
static inline bool
unsuitable_loc (rtx loc)
{
switch (GET_CODE (loc))
{
case PC:
case SCRATCH:
case CC0:
case ASM_INPUT:
case ASM_OPERANDS:
return true;
default:
return false;
}
}
/* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
bound to it. */
static inline void
val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
{
if (REG_P (loc))
{
if (modified)
var_regno_delete (set, REGNO (loc));
var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
dv_from_value (val), 0, NULL_RTX, INSERT);
}
else if (MEM_P (loc))
{
struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
if (modified)
clobber_overlapping_mems (set, loc);
if (l && GET_CODE (l->loc) == VALUE)
l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
/* If this MEM is a global constant, we don't need it in the
dynamic tables. ??? We should test this before emitting the
micro-op in the first place. */
while (l)
if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
break;
else
l = l->next;
if (!l)
var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
dv_from_value (val), 0, NULL_RTX, INSERT);
}
else
{
/* Other kinds of equivalences are necessarily static, at least
so long as we do not perform substitutions while merging
expressions. */
gcc_unreachable ();
set_variable_part (set, loc, dv_from_value (val), 0,
VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
}
}
/* Bind a value to a location it was just stored in. If MODIFIED
holds, assume the location was modified, detaching it from any
values bound to it. */
static void
val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
bool modified)
{
cselib_val *v = CSELIB_VAL_PTR (val);
gcc_assert (cselib_preserved_value_p (v));
if (dump_file)
{
fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
print_inline_rtx (dump_file, loc, 0);
fprintf (dump_file, " evaluates to ");
print_inline_rtx (dump_file, val, 0);
if (v->locs)
{
struct elt_loc_list *l;
for (l = v->locs; l; l = l->next)
{
fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
print_inline_rtx (dump_file, l->loc, 0);
}
}
fprintf (dump_file, "\n");
}
gcc_checking_assert (!unsuitable_loc (loc));
val_bind (set, val, loc, modified);
}
/* Clear (canonical address) slots that reference X. */
bool
local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
{
if (vt_get_canonicalize_base (*slot) == x)
*slot = NULL;
return true;
}
/* Reset this node, detaching all its equivalences. Return the slot
in the variable hash table that holds dv, if there is one. */
static void
val_reset (dataflow_set *set, decl_or_value dv)
{
variable *var = shared_hash_find (set->vars, dv) ;
location_chain *node;
rtx cval;
if (!var || !var->n_var_parts)
return;
gcc_assert (var->n_var_parts == 1);
if (var->onepart == ONEPART_VALUE)
{
rtx x = dv_as_value (dv);
/* Relationships in the global cache don't change, so reset the
local cache entry only. */
rtx *slot = local_get_addr_cache->get (x);
if (slot)
{
/* If the value resolved back to itself, odds are that other
values may have cached it too. These entries now refer
to the old X, so detach them too. Entries that used the
old X but resolved to something else remain ok as long as
that something else isn't also reset. */
if (*slot == x)
local_get_addr_cache
->traverse<rtx, local_get_addr_clear_given_value> (x);
*slot = NULL;
}
}
cval = NULL;
for (node = var->var_part[0].loc_chain; node; node = node->next)
if (GET_CODE (node->loc) == VALUE
&& canon_value_cmp (node->loc, cval))
cval = node->loc;
for (node = var->var_part[0].loc_chain; node; node = node->next)
if (GET_CODE (node->loc) == VALUE && cval != node->loc)
{
/* Redirect the equivalence link to the new canonical
value, or simply remove it if it would point at
itself. */
if (cval)
set_variable_part (set, cval, dv_from_value (node->loc),
0, node->init, node->set_src, NO_INSERT);
delete_variable_part (set, dv_as_value (dv),
dv_from_value (node->loc), 0);
}
if (cval)
{
decl_or_value cdv = dv_from_value (cval);
/* Keep the remaining values connected, accumulating links
in the canonical value. */
for (node = var->var_part[0].loc_chain; node; node = node->next)
{
if (node->loc == cval)
continue;
else if (GET_CODE (node->loc) == REG)
var_reg_decl_set (set, node->loc, node->init, cdv, 0,
node->set_src, NO_INSERT);
else if (GET_CODE (node->loc) == MEM)
var_mem_decl_set (set, node->loc, node->init, cdv, 0,
node->set_src, NO_INSERT);
else
set_variable_part (set, node->loc, cdv, 0,
node->init, node->set_src, NO_INSERT);
}
}
/* We remove this last, to make sure that the canonical value is not
removed to the point of requiring reinsertion. */
if (cval)
delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
clobber_variable_part (set, NULL, dv, 0, NULL);
}
/* Find the values in a given location and map the val to another
value, if it is unique, or add the location as one holding the
value. */
static void
val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
{
decl_or_value dv = dv_from_value (val);
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (insn)
fprintf (dump_file, "%i: ", INSN_UID (insn));
else
fprintf (dump_file, "head: ");
print_inline_rtx (dump_file, val, 0);
fputs (" is at ", dump_file);
print_inline_rtx (dump_file, loc, 0);
fputc ('\n', dump_file);
}
val_reset (set, dv);
gcc_checking_assert (!unsuitable_loc (loc));
if (REG_P (loc))
{
attrs *node, *found = NULL;
for (node = set->regs[REGNO (loc)]; node; node = node->next)
if (dv_is_value_p (node->dv)
&& GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
{
found = node;
/* Map incoming equivalences. ??? Wouldn't it be nice if
we just started sharing the location lists? Maybe a
circular list ending at the value itself or some
such. */
set_variable_part (set, dv_as_value (node->dv),
dv_from_value (val), node->offset,
VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
set_variable_part (set, val, node->dv, node->offset,
VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
}
/* If we didn't find any equivalence, we need to remember that
this value is held in the named register. */
if (found)
return;
}
/* ??? Attempt to find and merge equivalent MEMs or other
expressions too. */
val_bind (set, val, loc, false);
}
/* Initialize dataflow set SET to be empty.
VARS_SIZE is the initial size of hash table VARS. */
static void
dataflow_set_init (dataflow_set *set)
{
init_attrs_list_set (set->regs);
set->vars = shared_hash_copy (empty_shared_hash);
set->stack_adjust = 0;
set->traversed_vars = NULL;
}
/* Delete the contents of dataflow set SET. */
static void
dataflow_set_clear (dataflow_set *set)
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
attrs_list_clear (&set->regs[i]);
shared_hash_destroy (set->vars);
set->vars = shared_hash_copy (empty_shared_hash);
}
/* Copy the contents of dataflow set SRC to DST. */
static void
dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
attrs_list_copy (&dst->regs[i], src->regs[i]);
shared_hash_destroy (dst->vars);
dst->vars = shared_hash_copy (src->vars);
dst->stack_adjust = src->stack_adjust;
}
/* Information for merging lists of locations for a given offset of variable.
*/
struct variable_union_info
{
/* Node of the location chain. */
location_chain *lc;
/* The sum of positions in the input chains. */
int pos;
/* The position in the chain of DST dataflow set. */
int pos_dst;
};
/* Buffer for location list sorting and its allocated size. */
static struct variable_union_info *vui_vec;
static int vui_allocated;
/* Compare function for qsort, order the structures by POS element. */
static int
variable_union_info_cmp_pos (const void *n1, const void *n2)
{
const struct variable_union_info *const i1 =
(const struct variable_union_info *) n1;
const struct variable_union_info *const i2 =
( const struct variable_union_info *) n2;
if (i1->pos != i2->pos)
return i1->pos - i2->pos;
return (i1->pos_dst - i2->pos_dst);
}
/* Compute union of location parts of variable *SLOT and the same variable
from hash table DATA. Compute "sorted" union of the location chains
for common offsets, i.e. the locations of a variable part are sorted by
a priority where the priority is the sum of the positions in the 2 chains
(if a location is only in one list the position in the second list is
defined to be larger than the length of the chains).
When we are updating the location parts the newest location is in the
beginning of the chain, so when we do the described "sorted" union
we keep the newest locations in the beginning. */
static int
variable_union (variable *src, dataflow_set *set)
{
variable *dst;
variable **dstp;
int i, j, k;
dstp = shared_hash_find_slot (set->vars, src->dv);
if (!dstp || !*dstp)
{
src->refcount++;
dst_can_be_shared = false;
if (!dstp)
dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
*dstp = src;
/* Continue traversing the hash table. */
return 1;
}
else
dst = *dstp;
gcc_assert (src->n_var_parts);
gcc_checking_assert (src->onepart == dst->onepart);
/* We can combine one-part variables very efficiently, because their
entries are in canonical order. */
if (src->onepart)
{
location_chain **nodep, *dnode, *snode;
gcc_assert (src->n_var_parts == 1
&& dst->n_var_parts == 1);
snode = src->var_part[0].loc_chain;
gcc_assert (snode);
restart_onepart_unshared:
nodep = &dst->var_part[0].loc_chain;
dnode = *nodep;
gcc_assert (dnode);
while (snode)
{
int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
if (r > 0)
{
location_chain *nnode;
if (shared_var_p (dst, set->vars))
{
dstp = unshare_variable (set, dstp, dst,
VAR_INIT_STATUS_INITIALIZED);
dst = *dstp;
goto restart_onepart_unshared;
}
*nodep = nnode = new location_chain;
nnode->loc = snode->loc;
nnode->init = snode->init;
if (!snode->set_src || MEM_P (snode->set_src))
nnode->set_src = NULL;
else
nnode->set_src = snode->set_src;
nnode->next = dnode;
dnode = nnode;
}
else if (r == 0)
gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
if (r >= 0)
snode = snode->next;
nodep = &dnode->next;
dnode = *nodep;
}
return 1;
}
gcc_checking_assert (!src->onepart);
/* Count the number of location parts, result is K. */
for (i = 0, j = 0, k = 0;
i < src->n_var_parts && j < dst->n_var_parts; k++)
{
if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
{
i++;
j++;
}
else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
i++;
else
j++;
}
k += src->n_var_parts - i;
k += dst->n_var_parts - j;
/* We track only variables whose size is <= MAX_VAR_PARTS bytes
thus there are at most MAX_VAR_PARTS different offsets. */
gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
{
dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
dst = *dstp;
}
i = src->n_var_parts - 1;
j = dst->n_var_parts - 1;
dst->n_var_parts = k;
for (k--; k >= 0; k--)
{
location_chain *node, *node2;
if (i >= 0 && j >= 0
&& VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
{
/* Compute the "sorted" union of the chains, i.e. the locations which
are in both chains go first, they are sorted by the sum of
positions in the chains. */
int dst_l, src_l;
int ii, jj, n;
struct variable_union_info *vui;
/* If DST is shared compare the location chains.
If they are different we will modify the chain in DST with
high probability so make a copy of DST. */
if (shared_var_p (dst, set->vars))
{
for (node = src->var_part[i].loc_chain,
node2 = dst->var_part[j].loc_chain; node && node2;
node = node->next, node2 = node2->next)
{
if (!((REG_P (node2->loc)
&& REG_P (node->loc)
&& REGNO (node2->loc) == REGNO (node->loc))
|| rtx_equal_p (node2->loc, node->loc)))
{
if (node2->init < node->init)
node2->init = node->init;
break;
}
}
if (node || node2)
{
dstp = unshare_variable (set, dstp, dst,
VAR_INIT_STATUS_UNKNOWN);
dst = (variable *)*dstp;
}
}
src_l = 0;
for (node = src->var_part[i].loc_chain; node; node = node->next)
src_l++;
dst_l = 0;
for (node = dst->var_part[j].loc_chain; node; node = node->next)
dst_l++;
if (dst_l == 1)
{
/* The most common case, much simpler, no qsort is needed. */
location_chain *dstnode = dst->var_part[j].loc_chain;
dst->var_part[k].loc_chain = dstnode;
VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
node2 = dstnode;
for (node = src->var_part[i].loc_chain; node; node = node->next)
if (!((REG_P (dstnode->loc)
&& REG_P (node->loc)
&& REGNO (dstnode->loc) == REGNO (node->loc))
|| rtx_equal_p (dstnode->loc, node->loc)))
{
location_chain *new_node;
/* Copy the location from SRC. */
new_node = new location_chain;
new_node->loc = node->loc;
new_node->init = node->init;
if (!node->set_src || MEM_P (node->set_src))
new_node->set_src = NULL;
else
new_node->set_src = node->set_src;
node2->next = new_node;
node2 = new_node;
}
node2->next = NULL;
}
else
{
if (src_l + dst_l > vui_allocated)
{
vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
vui_allocated);
}
vui = vui_vec;
/* Fill in the locations from DST. */
for (node = dst->var_part[j].loc_chain, jj = 0; node;
node = node->next, jj++)
{
vui[jj].lc = node;
vui[jj].pos_dst = jj;
/* Pos plus value larger than a sum of 2 valid positions. */
vui[jj].pos = jj + src_l + dst_l;
}
/* Fill in the locations from SRC. */
n = dst_l;
for (node = src->var_part[i].loc_chain, ii = 0; node;
node = node->next, ii++)
{
/* Find location from NODE. */
for (jj = 0; jj < dst_l; jj++)
{
if ((REG_P (vui[jj].lc->loc)
&& REG_P (node->loc)
&& REGNO (vui[jj].lc->loc) == REGNO (node->loc))
|| rtx_equal_p (vui[jj].lc->loc, node->loc))
{
vui[jj].pos = jj + ii;
break;
}
}
if (jj >= dst_l) /* The location has not been found. */
{
location_chain *new_node;
/* Copy the location from SRC. */
new_node = new location_chain;
new_node->loc = node->loc;
new_node->init = node->init;
if (!node->set_src || MEM_P (node->set_src))
new_node->set_src = NULL;
else
new_node->set_src = node->set_src;
vui[n].lc = new_node;
vui[n].pos_dst = src_l + dst_l;
vui[n].pos = ii + src_l + dst_l;
n++;
}
}
if (dst_l == 2)
{
/* Special case still very common case. For dst_l == 2
all entries dst_l ... n-1 are sorted, with for i >= dst_l
vui[i].pos == i + src_l + dst_l. */
if (vui[0].pos > vui[1].pos)
{
/* Order should be 1, 0, 2... */
dst->var_part[k].loc_chain = vui[1].lc;
vui[1].lc->next = vui[0].lc;
if (n >= 3)
{
vui[0].lc->next = vui[2].lc;
vui[n - 1].lc->next = NULL;
}
else
vui[0].lc->next = NULL;
ii = 3;
}
else
{
dst->var_part[k].loc_chain = vui[0].lc;
if (n >= 3 && vui[2].pos < vui[1].pos)
{
/* Order should be 0, 2, 1, 3... */
vui[0].lc->next = vui[2].lc;
vui[2].lc->next = vui[1].lc;
if (n >= 4)
{
vui[1].lc->next = vui[3].lc;
vui[n - 1].lc->next = NULL;
}
else
vui[1].lc->next = NULL;
ii = 4;
}
else
{
/* Order should be 0, 1, 2... */
ii = 1;
vui[n - 1].lc->next = NULL;
}
}
for (; ii < n; ii++)
vui[ii - 1].lc->next = vui[ii].lc;
}
else
{
qsort (vui, n, sizeof (struct variable_union_info),
variable_union_info_cmp_pos);
/* Reconnect the nodes in sorted order. */
for (ii = 1; ii < n; ii++)
vui[ii - 1].lc->next = vui[ii].lc;
vui[n - 1].lc->next = NULL;
dst->var_part[k].loc_chain = vui[0].lc;
}
VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
}
i--;
j--;
}
else if ((i >= 0 && j >= 0
&& VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
|| i < 0)
{
dst->var_part[k] = dst->var_part[j];
j--;
}
else if ((i >= 0 && j >= 0
&& VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
|| j < 0)
{
location_chain **nextp;
/* Copy the chain from SRC. */
nextp = &dst->var_part[k].loc_chain;
for (node = src->var_part[i].loc_chain; node; node = node->next)
{
location_chain *new_lc;
new_lc = new location_chain;
new_lc->next = NULL;
new_lc->init = node->init;
if (!node->set_src || MEM_P (node->set_src))
new_lc->set_src = NULL;
else
new_lc->set_src = node->set_src;
new_lc->loc = node->loc;
*nextp = new_lc;
nextp = &new_lc->next;
}
VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
i--;
}
dst->var_part[k].cur_loc = NULL;
}
if (flag_var_tracking_uninit)
for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
{
location_chain *node, *node2;
for (node = src->var_part[i].loc_chain; node; node = node->next)
for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
if (rtx_equal_p (node->loc, node2->loc))
{
if (node->init > node2->init)
node2->init = node->init;
}
}
/* Continue traversing the hash table. */
return 1;
}
/* Compute union of dataflow sets SRC and DST and store it to DST. */
static void
dataflow_set_union (dataflow_set *dst, dataflow_set *src)
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
attrs_list_union (&dst->regs[i], src->regs[i]);
if (dst->vars == empty_shared_hash)
{
shared_hash_destroy (dst->vars);
dst->vars = shared_hash_copy (src->vars);
}
else
{
variable_iterator_type hi;
variable *var;
FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
var, variable, hi)
variable_union (var, dst);
}