blob: f3ef91afdf6a6cc3d3378ade49d0b9ad73fdc562 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUNTIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . D I S C R E T E _ R A N D O M --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2003 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Calendar;
with Interfaces; use Interfaces;
package body Ada.Numerics.Discrete_Random is
-------------------------
-- Implementation Note --
-------------------------
-- The design of this spec is very awkward, as a result of Ada 95 not
-- permitting in-out parameters for function formals (most naturally
-- Generator values would be passed this way). In pure Ada 95, the only
-- solution is to use the heap and pointers, and, to avoid memory leaks,
-- controlled types.
-- This is awfully heavy, so what we do is to use Unrestricted_Access to
-- get a pointer to the state in the passed Generator. This works because
-- Generator is a limited type and will thus always be passed by reference.
type Pointer is access all State;
Need_64 : constant Boolean := Rst'Pos (Rst'Last) > Int'Last;
-- Set if we need more than 32 bits in the result. In practice we will
-- only use the meaningful 48 bits of any 64 bit number generated, since
-- if more than 48 bits are required, we split the computation into two
-- separate parts, since the algorithm does not behave above 48 bits.
-----------------------
-- Local Subprograms --
-----------------------
function Square_Mod_N (X, N : Int) return Int;
pragma Inline (Square_Mod_N);
-- Computes X**2 mod N avoiding intermediate overflow
-----------
-- Image --
-----------
function Image (Of_State : State) return String is
begin
return Int'Image (Of_State.X1) &
',' &
Int'Image (Of_State.X2) &
',' &
Int'Image (Of_State.Q);
end Image;
------------
-- Random --
------------
function Random (Gen : Generator) return Rst is
Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
Temp : Int;
TF : Flt;
begin
-- Check for flat range here, since we are typically run with checks
-- off, note that in practice, this condition will usually be static
-- so we will not actually generate any code for the normal case.
if Rst'Last < Rst'First then
raise Constraint_Error;
end if;
-- Continue with computation if non-flat range
Genp.X1 := Square_Mod_N (Genp.X1, Genp.P);
Genp.X2 := Square_Mod_N (Genp.X2, Genp.Q);
Temp := Genp.X2 - Genp.X1;
-- Following duplication is not an error, it is a loop unwinding!
if Temp < 0 then
Temp := Temp + Genp.Q;
end if;
if Temp < 0 then
Temp := Temp + Genp.Q;
end if;
TF := Offs + (Flt (Temp) * Flt (Genp.P) + Flt (Genp.X1)) * Genp.Scl;
-- Pathological, but there do exist cases where the rounding implicit
-- in calculating the scale factor will cause rounding to 'Last + 1.
-- In those cases, returning 'First results in the least bias.
if TF >= Flt (Rst'Pos (Rst'Last)) + 0.5 then
return Rst'First;
elsif Need_64 then
return Rst'Val (Interfaces.Integer_64 (TF));
else
return Rst'Val (Int (TF));
end if;
end Random;
-----------
-- Reset --
-----------
procedure Reset (Gen : Generator; Initiator : Integer) is
Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
X1, X2 : Int;
begin
X1 := 2 + Int (Initiator) mod (K1 - 3);
X2 := 2 + Int (Initiator) mod (K2 - 3);
for J in 1 .. 5 loop
X1 := Square_Mod_N (X1, K1);
X2 := Square_Mod_N (X2, K2);
end loop;
-- Eliminate effects of small Initiators
Genp.all :=
(X1 => X1,
X2 => X2,
P => K1,
Q => K2,
FP => K1F,
Scl => Scal);
end Reset;
-----------
-- Reset --
-----------
procedure Reset (Gen : Generator) is
Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
Now : constant Calendar.Time := Calendar.Clock;
X1 : Int;
X2 : Int;
begin
X1 := Int (Calendar.Year (Now)) * 12 * 31 +
Int (Calendar.Month (Now) * 31) +
Int (Calendar.Day (Now));
X2 := Int (Calendar.Seconds (Now) * Duration (1000.0));
X1 := 2 + X1 mod (K1 - 3);
X2 := 2 + X2 mod (K2 - 3);
-- Eliminate visible effects of same day starts
for J in 1 .. 5 loop
X1 := Square_Mod_N (X1, K1);
X2 := Square_Mod_N (X2, K2);
end loop;
Genp.all :=
(X1 => X1,
X2 => X2,
P => K1,
Q => K2,
FP => K1F,
Scl => Scal);
end Reset;
-----------
-- Reset --
-----------
procedure Reset (Gen : Generator; From_State : State) is
Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
begin
Genp.all := From_State;
end Reset;
----------
-- Save --
----------
procedure Save (Gen : Generator; To_State : out State) is
begin
To_State := Gen.Gen_State;
end Save;
------------------
-- Square_Mod_N --
------------------
function Square_Mod_N (X, N : Int) return Int is
begin
return Int ((Integer_64 (X) ** 2) mod (Integer_64 (N)));
end Square_Mod_N;
-----------
-- Value --
-----------
function Value (Coded_State : String) return State is
Start : Positive := Coded_State'First;
Stop : Positive := Coded_State'First;
Outs : State;
begin
while Coded_State (Stop) /= ',' loop
Stop := Stop + 1;
end loop;
Outs.X1 := Int'Value (Coded_State (Start .. Stop - 1));
Start := Stop + 1;
loop
Stop := Stop + 1;
exit when Coded_State (Stop) = ',';
end loop;
Outs.X2 := Int'Value (Coded_State (Start .. Stop - 1));
Outs.Q := Int'Value (Coded_State (Stop + 1 .. Coded_State'Last));
Outs.P := Outs.Q * 2 + 1;
Outs.FP := Flt (Outs.P);
Outs.Scl := (RstL - RstF + 1.0) / (Flt (Outs.P) * Flt (Outs.Q));
-- Now do *some* sanity checks.
if Outs.Q < 31
or else Outs.X1 not in 2 .. Outs.P - 1
or else Outs.X2 not in 2 .. Outs.Q - 1
then
raise Constraint_Error;
end if;
return Outs;
end Value;
end Ada.Numerics.Discrete_Random;