| /* Save and restore call-clobbered registers which are live across a call. |
| Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998, |
| 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to the Free |
| Software Foundation, 59 Temple Place - Suite 330, Boston, MA |
| 02111-1307, USA. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "rtl.h" |
| #include "insn-config.h" |
| #include "flags.h" |
| #include "regs.h" |
| #include "hard-reg-set.h" |
| #include "recog.h" |
| #include "basic-block.h" |
| #include "reload.h" |
| #include "function.h" |
| #include "expr.h" |
| #include "toplev.h" |
| #include "tm_p.h" |
| |
| #ifndef MAX_MOVE_MAX |
| #define MAX_MOVE_MAX MOVE_MAX |
| #endif |
| |
| #ifndef MIN_UNITS_PER_WORD |
| #define MIN_UNITS_PER_WORD UNITS_PER_WORD |
| #endif |
| |
| #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD) |
| |
| /* Modes for each hard register that we can save. The smallest mode is wide |
| enough to save the entire contents of the register. When saving the |
| register because it is live we first try to save in multi-register modes. |
| If that is not possible the save is done one register at a time. */ |
| |
| static enum machine_mode |
| regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1]; |
| |
| /* For each hard register, a place on the stack where it can be saved, |
| if needed. */ |
| |
| static rtx |
| regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1]; |
| |
| /* We will only make a register eligible for caller-save if it can be |
| saved in its widest mode with a simple SET insn as long as the memory |
| address is valid. We record the INSN_CODE is those insns here since |
| when we emit them, the addresses might not be valid, so they might not |
| be recognized. */ |
| |
| static int |
| reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE]; |
| static int |
| reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE]; |
| |
| /* Set of hard regs currently residing in save area (during insn scan). */ |
| |
| static HARD_REG_SET hard_regs_saved; |
| |
| /* Number of registers currently in hard_regs_saved. */ |
| |
| static int n_regs_saved; |
| |
| /* Computed by mark_referenced_regs, all regs referenced in a given |
| insn. */ |
| static HARD_REG_SET referenced_regs; |
| |
| /* Computed in mark_set_regs, holds all registers set by the current |
| instruction. */ |
| static HARD_REG_SET this_insn_sets; |
| |
| |
| static void mark_set_regs (rtx, rtx, void *); |
| static void mark_referenced_regs (rtx); |
| static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *, |
| enum machine_mode *); |
| static int insert_restore (struct insn_chain *, int, int, int, |
| enum machine_mode *); |
| static struct insn_chain *insert_one_insn (struct insn_chain *, int, int, |
| rtx); |
| static void add_stored_regs (rtx, rtx, void *); |
| |
| /* Initialize for caller-save. |
| |
| Look at all the hard registers that are used by a call and for which |
| regclass.c has not already excluded from being used across a call. |
| |
| Ensure that we can find a mode to save the register and that there is a |
| simple insn to save and restore the register. This latter check avoids |
| problems that would occur if we tried to save the MQ register of some |
| machines directly into memory. */ |
| |
| void |
| init_caller_save (void) |
| { |
| rtx addr_reg; |
| int offset; |
| rtx address; |
| int i, j; |
| enum machine_mode mode; |
| rtx savepat, restpat; |
| rtx test_reg, test_mem; |
| rtx saveinsn, restinsn; |
| |
| /* First find all the registers that we need to deal with and all |
| the modes that they can have. If we can't find a mode to use, |
| we can't have the register live over calls. */ |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| { |
| if (call_used_regs[i] && ! call_fixed_regs[i]) |
| { |
| for (j = 1; j <= MOVE_MAX_WORDS; j++) |
| { |
| regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j, |
| VOIDmode); |
| if (regno_save_mode[i][j] == VOIDmode && j == 1) |
| { |
| call_fixed_regs[i] = 1; |
| SET_HARD_REG_BIT (call_fixed_reg_set, i); |
| } |
| } |
| } |
| else |
| regno_save_mode[i][1] = VOIDmode; |
| } |
| |
| /* The following code tries to approximate the conditions under which |
| we can easily save and restore a register without scratch registers or |
| other complexities. It will usually work, except under conditions where |
| the validity of an insn operand is dependent on the address offset. |
| No such cases are currently known. |
| |
| We first find a typical offset from some BASE_REG_CLASS register. |
| This address is chosen by finding the first register in the class |
| and by finding the smallest power of two that is a valid offset from |
| that register in every mode we will use to save registers. */ |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (TEST_HARD_REG_BIT |
| (reg_class_contents |
| [(int) MODE_BASE_REG_CLASS (regno_save_mode [i][1])], i)) |
| break; |
| |
| if (i == FIRST_PSEUDO_REGISTER) |
| abort (); |
| |
| addr_reg = gen_rtx_REG (Pmode, i); |
| |
| for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1) |
| { |
| address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset)); |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (regno_save_mode[i][1] != VOIDmode |
| && ! strict_memory_address_p (regno_save_mode[i][1], address)) |
| break; |
| |
| if (i == FIRST_PSEUDO_REGISTER) |
| break; |
| } |
| |
| /* If we didn't find a valid address, we must use register indirect. */ |
| if (offset == 0) |
| address = addr_reg; |
| |
| /* Next we try to form an insn to save and restore the register. We |
| see if such an insn is recognized and meets its constraints. |
| |
| To avoid lots of unnecessary RTL allocation, we construct all the RTL |
| once, then modify the memory and register operands in-place. */ |
| |
| test_reg = gen_rtx_REG (VOIDmode, 0); |
| test_mem = gen_rtx_MEM (VOIDmode, address); |
| savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg); |
| restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem); |
| |
| saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, savepat, -1, 0, 0); |
| restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, restpat, -1, 0, 0); |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| for (mode = 0 ; mode < MAX_MACHINE_MODE; mode++) |
| if (HARD_REGNO_MODE_OK (i, mode)) |
| { |
| int ok; |
| |
| /* Update the register number and modes of the register |
| and memory operand. */ |
| REGNO (test_reg) = i; |
| PUT_MODE (test_reg, mode); |
| PUT_MODE (test_mem, mode); |
| |
| /* Force re-recognition of the modified insns. */ |
| INSN_CODE (saveinsn) = -1; |
| INSN_CODE (restinsn) = -1; |
| |
| reg_save_code[i][mode] = recog_memoized (saveinsn); |
| reg_restore_code[i][mode] = recog_memoized (restinsn); |
| |
| /* Now extract both insns and see if we can meet their |
| constraints. */ |
| ok = (reg_save_code[i][mode] != -1 |
| && reg_restore_code[i][mode] != -1); |
| if (ok) |
| { |
| extract_insn (saveinsn); |
| ok = constrain_operands (1); |
| extract_insn (restinsn); |
| ok &= constrain_operands (1); |
| } |
| |
| if (! ok) |
| { |
| reg_save_code[i][mode] = -1; |
| reg_restore_code[i][mode] = -1; |
| } |
| } |
| else |
| { |
| reg_save_code[i][mode] = -1; |
| reg_restore_code[i][mode] = -1; |
| } |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| for (j = 1; j <= MOVE_MAX_WORDS; j++) |
| if (reg_save_code [i][regno_save_mode[i][j]] == -1) |
| { |
| regno_save_mode[i][j] = VOIDmode; |
| if (j == 1) |
| { |
| call_fixed_regs[i] = 1; |
| SET_HARD_REG_BIT (call_fixed_reg_set, i); |
| } |
| } |
| } |
| |
| /* Initialize save areas by showing that we haven't allocated any yet. */ |
| |
| void |
| init_save_areas (void) |
| { |
| int i, j; |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| for (j = 1; j <= MOVE_MAX_WORDS; j++) |
| regno_save_mem[i][j] = 0; |
| } |
| |
| /* Allocate save areas for any hard registers that might need saving. |
| We take a conservative approach here and look for call-clobbered hard |
| registers that are assigned to pseudos that cross calls. This may |
| overestimate slightly (especially if some of these registers are later |
| used as spill registers), but it should not be significant. |
| |
| Future work: |
| |
| In the fallback case we should iterate backwards across all possible |
| modes for the save, choosing the largest available one instead of |
| falling back to the smallest mode immediately. (eg TF -> DF -> SF). |
| |
| We do not try to use "move multiple" instructions that exist |
| on some machines (such as the 68k moveml). It could be a win to try |
| and use them when possible. The hard part is doing it in a way that is |
| machine independent since they might be saving non-consecutive |
| registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */ |
| |
| void |
| setup_save_areas (void) |
| { |
| int i, j, k; |
| unsigned int r; |
| HARD_REG_SET hard_regs_used; |
| |
| /* Allocate space in the save area for the largest multi-register |
| pseudos first, then work backwards to single register |
| pseudos. */ |
| |
| /* Find and record all call-used hard-registers in this function. */ |
| CLEAR_HARD_REG_SET (hard_regs_used); |
| for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) |
| if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0) |
| { |
| unsigned int regno = reg_renumber[i]; |
| unsigned int endregno |
| = regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i])); |
| |
| for (r = regno; r < endregno; r++) |
| if (call_used_regs[r]) |
| SET_HARD_REG_BIT (hard_regs_used, r); |
| } |
| |
| /* Now run through all the call-used hard-registers and allocate |
| space for them in the caller-save area. Try to allocate space |
| in a manner which allows multi-register saves/restores to be done. */ |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| for (j = MOVE_MAX_WORDS; j > 0; j--) |
| { |
| int do_save = 1; |
| |
| /* If no mode exists for this size, try another. Also break out |
| if we have already saved this hard register. */ |
| if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0) |
| continue; |
| |
| /* See if any register in this group has been saved. */ |
| for (k = 0; k < j; k++) |
| if (regno_save_mem[i + k][1]) |
| { |
| do_save = 0; |
| break; |
| } |
| if (! do_save) |
| continue; |
| |
| for (k = 0; k < j; k++) |
| if (! TEST_HARD_REG_BIT (hard_regs_used, i + k)) |
| { |
| do_save = 0; |
| break; |
| } |
| if (! do_save) |
| continue; |
| |
| /* We have found an acceptable mode to store in. */ |
| regno_save_mem[i][j] |
| = assign_stack_local (regno_save_mode[i][j], |
| GET_MODE_SIZE (regno_save_mode[i][j]), 0); |
| |
| /* Setup single word save area just in case... */ |
| for (k = 0; k < j; k++) |
| /* This should not depend on WORDS_BIG_ENDIAN. |
| The order of words in regs is the same as in memory. */ |
| regno_save_mem[i + k][1] |
| = adjust_address_nv (regno_save_mem[i][j], |
| regno_save_mode[i + k][1], |
| k * UNITS_PER_WORD); |
| } |
| |
| /* Now loop again and set the alias set of any save areas we made to |
| the alias set used to represent frame objects. */ |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| for (j = MOVE_MAX_WORDS; j > 0; j--) |
| if (regno_save_mem[i][j] != 0) |
| set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ()); |
| } |
| |
| /* Find the places where hard regs are live across calls and save them. */ |
| |
| void |
| save_call_clobbered_regs (void) |
| { |
| struct insn_chain *chain, *next; |
| enum machine_mode save_mode [FIRST_PSEUDO_REGISTER]; |
| |
| CLEAR_HARD_REG_SET (hard_regs_saved); |
| n_regs_saved = 0; |
| |
| for (chain = reload_insn_chain; chain != 0; chain = next) |
| { |
| rtx insn = chain->insn; |
| enum rtx_code code = GET_CODE (insn); |
| |
| next = chain->next; |
| |
| if (chain->is_caller_save_insn) |
| abort (); |
| |
| if (GET_RTX_CLASS (code) == 'i') |
| { |
| /* If some registers have been saved, see if INSN references |
| any of them. We must restore them before the insn if so. */ |
| |
| if (n_regs_saved) |
| { |
| int regno; |
| |
| if (code == JUMP_INSN) |
| /* Restore all registers if this is a JUMP_INSN. */ |
| COPY_HARD_REG_SET (referenced_regs, hard_regs_saved); |
| else |
| { |
| CLEAR_HARD_REG_SET (referenced_regs); |
| mark_referenced_regs (PATTERN (insn)); |
| AND_HARD_REG_SET (referenced_regs, hard_regs_saved); |
| } |
| |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if (TEST_HARD_REG_BIT (referenced_regs, regno)) |
| regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS, save_mode); |
| } |
| |
| if (code == CALL_INSN && ! find_reg_note (insn, REG_NORETURN, NULL)) |
| { |
| int regno; |
| HARD_REG_SET hard_regs_to_save; |
| |
| /* Use the register life information in CHAIN to compute which |
| regs are live during the call. */ |
| REG_SET_TO_HARD_REG_SET (hard_regs_to_save, |
| &chain->live_throughout); |
| /* Save hard registers always in the widest mode available. */ |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if (TEST_HARD_REG_BIT (hard_regs_to_save, regno)) |
| save_mode [regno] = regno_save_mode [regno][1]; |
| else |
| save_mode [regno] = VOIDmode; |
| |
| /* Look through all live pseudos, mark their hard registers |
| and choose proper mode for saving. */ |
| EXECUTE_IF_SET_IN_REG_SET |
| (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, |
| { |
| int r = reg_renumber[regno]; |
| int nregs; |
| |
| if (r >= 0) |
| { |
| enum machine_mode mode; |
| |
| nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno)); |
| mode = HARD_REGNO_CALLER_SAVE_MODE |
| (r, nregs, PSEUDO_REGNO_MODE (regno)); |
| if (GET_MODE_BITSIZE (mode) |
| > GET_MODE_BITSIZE (save_mode[r])) |
| save_mode[r] = mode; |
| while (nregs-- > 0) |
| SET_HARD_REG_BIT (hard_regs_to_save, r + nregs); |
| } |
| else |
| abort (); |
| }); |
| |
| /* Record all registers set in this call insn. These don't need |
| to be saved. N.B. the call insn might set a subreg of a |
| multi-hard-reg pseudo; then the pseudo is considered live |
| during the call, but the subreg that is set isn't. */ |
| CLEAR_HARD_REG_SET (this_insn_sets); |
| note_stores (PATTERN (insn), mark_set_regs, NULL); |
| |
| /* Compute which hard regs must be saved before this call. */ |
| AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set); |
| AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets); |
| AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved); |
| AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set); |
| |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if (TEST_HARD_REG_BIT (hard_regs_to_save, regno)) |
| regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode); |
| |
| /* Must recompute n_regs_saved. */ |
| n_regs_saved = 0; |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if (TEST_HARD_REG_BIT (hard_regs_saved, regno)) |
| n_regs_saved++; |
| } |
| } |
| |
| if (chain->next == 0 || chain->next->block > chain->block) |
| { |
| int regno; |
| /* At the end of the basic block, we must restore any registers that |
| remain saved. If the last insn in the block is a JUMP_INSN, put |
| the restore before the insn, otherwise, put it after the insn. */ |
| |
| if (n_regs_saved) |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) |
| if (TEST_HARD_REG_BIT (hard_regs_saved, regno)) |
| regno += insert_restore (chain, GET_CODE (insn) == JUMP_INSN, |
| regno, MOVE_MAX_WORDS, save_mode); |
| } |
| } |
| } |
| |
| /* Here from note_stores when an insn stores a value in a register. |
| Set the proper bit or bits in this_insn_sets. All pseudos that have |
| been assigned hard regs have had their register number changed already, |
| so we can ignore pseudos. */ |
| static void |
| mark_set_regs (rtx reg, rtx setter ATTRIBUTE_UNUSED, |
| void *data ATTRIBUTE_UNUSED) |
| { |
| int regno, endregno, i; |
| enum machine_mode mode = GET_MODE (reg); |
| |
| if (GET_CODE (reg) == SUBREG) |
| { |
| rtx inner = SUBREG_REG (reg); |
| if (GET_CODE (inner) != REG || REGNO (inner) >= FIRST_PSEUDO_REGISTER) |
| return; |
| |
| regno = subreg_hard_regno (reg, 1); |
| } |
| else if (GET_CODE (reg) == REG |
| && REGNO (reg) < FIRST_PSEUDO_REGISTER) |
| regno = REGNO (reg); |
| else |
| return; |
| |
| endregno = regno + HARD_REGNO_NREGS (regno, mode); |
| |
| for (i = regno; i < endregno; i++) |
| SET_HARD_REG_BIT (this_insn_sets, i); |
| } |
| |
| /* Here from note_stores when an insn stores a value in a register. |
| Set the proper bit or bits in the passed regset. All pseudos that have |
| been assigned hard regs have had their register number changed already, |
| so we can ignore pseudos. */ |
| static void |
| add_stored_regs (rtx reg, rtx setter, void *data) |
| { |
| int regno, endregno, i; |
| enum machine_mode mode = GET_MODE (reg); |
| int offset = 0; |
| |
| if (GET_CODE (setter) == CLOBBER) |
| return; |
| |
| if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG) |
| { |
| offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)), |
| GET_MODE (SUBREG_REG (reg)), |
| SUBREG_BYTE (reg), |
| GET_MODE (reg)); |
| reg = SUBREG_REG (reg); |
| } |
| |
| if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER) |
| return; |
| |
| regno = REGNO (reg) + offset; |
| endregno = regno + HARD_REGNO_NREGS (regno, mode); |
| |
| for (i = regno; i < endregno; i++) |
| SET_REGNO_REG_SET ((regset) data, i); |
| } |
| |
| /* Walk X and record all referenced registers in REFERENCED_REGS. */ |
| static void |
| mark_referenced_regs (rtx x) |
| { |
| enum rtx_code code = GET_CODE (x); |
| const char *fmt; |
| int i, j; |
| |
| if (code == SET) |
| mark_referenced_regs (SET_SRC (x)); |
| if (code == SET || code == CLOBBER) |
| { |
| x = SET_DEST (x); |
| code = GET_CODE (x); |
| if ((code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER) |
| || code == PC || code == CC0 |
| || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG |
| && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER |
| /* If we're setting only part of a multi-word register, |
| we shall mark it as referenced, because the words |
| that are not being set should be restored. */ |
| && ((GET_MODE_SIZE (GET_MODE (x)) |
| >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))) |
| || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) |
| <= UNITS_PER_WORD)))) |
| return; |
| } |
| if (code == MEM || code == SUBREG) |
| { |
| x = XEXP (x, 0); |
| code = GET_CODE (x); |
| } |
| |
| if (code == REG) |
| { |
| int regno = REGNO (x); |
| int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno |
| : reg_renumber[regno]); |
| |
| if (hardregno >= 0) |
| { |
| int nregs = HARD_REGNO_NREGS (hardregno, GET_MODE (x)); |
| while (nregs-- > 0) |
| SET_HARD_REG_BIT (referenced_regs, hardregno + nregs); |
| } |
| /* If this is a pseudo that did not get a hard register, scan its |
| memory location, since it might involve the use of another |
| register, which might be saved. */ |
| else if (reg_equiv_mem[regno] != 0) |
| mark_referenced_regs (XEXP (reg_equiv_mem[regno], 0)); |
| else if (reg_equiv_address[regno] != 0) |
| mark_referenced_regs (reg_equiv_address[regno]); |
| return; |
| } |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| mark_referenced_regs (XEXP (x, i)); |
| else if (fmt[i] == 'E') |
| for (j = XVECLEN (x, i) - 1; j >= 0; j--) |
| mark_referenced_regs (XVECEXP (x, i, j)); |
| } |
| } |
| |
| /* Insert a sequence of insns to restore. Place these insns in front of |
| CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is |
| the maximum number of registers which should be restored during this call. |
| It should never be less than 1 since we only work with entire registers. |
| |
| Note that we have verified in init_caller_save that we can do this |
| with a simple SET, so use it. Set INSN_CODE to what we save there |
| since the address might not be valid so the insn might not be recognized. |
| These insns will be reloaded and have register elimination done by |
| find_reload, so we need not worry about that here. |
| |
| Return the extra number of registers saved. */ |
| |
| static int |
| insert_restore (struct insn_chain *chain, int before_p, int regno, |
| int maxrestore, enum machine_mode *save_mode) |
| { |
| int i, k; |
| rtx pat = NULL_RTX; |
| int code; |
| unsigned int numregs = 0; |
| struct insn_chain *new; |
| rtx mem; |
| |
| /* A common failure mode if register status is not correct in the RTL |
| is for this routine to be called with a REGNO we didn't expect to |
| save. That will cause us to write an insn with a (nil) SET_DEST |
| or SET_SRC. Instead of doing so and causing a crash later, check |
| for this common case and abort here instead. This will remove one |
| step in debugging such problems. */ |
| |
| if (regno_save_mem[regno][1] == 0) |
| abort (); |
| |
| /* Get the pattern to emit and update our status. |
| |
| See if we can restore `maxrestore' registers at once. Work |
| backwards to the single register case. */ |
| for (i = maxrestore; i > 0; i--) |
| { |
| int j; |
| int ok = 1; |
| |
| if (regno_save_mem[regno][i] == 0) |
| continue; |
| |
| for (j = 0; j < i; j++) |
| if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j)) |
| { |
| ok = 0; |
| break; |
| } |
| /* Must do this one restore at a time. */ |
| if (! ok) |
| continue; |
| |
| numregs = i; |
| break; |
| } |
| |
| mem = regno_save_mem [regno][numregs]; |
| if (save_mode [regno] != VOIDmode |
| && save_mode [regno] != GET_MODE (mem) |
| && numregs == (unsigned int) HARD_REGNO_NREGS (regno, save_mode [regno])) |
| mem = adjust_address (mem, save_mode[regno], 0); |
| pat = gen_rtx_SET (VOIDmode, |
| gen_rtx_REG (GET_MODE (mem), |
| regno), mem); |
| code = reg_restore_code[regno][GET_MODE (mem)]; |
| new = insert_one_insn (chain, before_p, code, pat); |
| |
| /* Clear status for all registers we restored. */ |
| for (k = 0; k < i; k++) |
| { |
| CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k); |
| SET_REGNO_REG_SET (&new->dead_or_set, regno + k); |
| n_regs_saved--; |
| } |
| |
| /* Tell our callers how many extra registers we saved/restored. */ |
| return numregs - 1; |
| } |
| |
| /* Like insert_restore above, but save registers instead. */ |
| |
| static int |
| insert_save (struct insn_chain *chain, int before_p, int regno, |
| HARD_REG_SET (*to_save), enum machine_mode *save_mode) |
| { |
| int i; |
| unsigned int k; |
| rtx pat = NULL_RTX; |
| int code; |
| unsigned int numregs = 0; |
| struct insn_chain *new; |
| rtx mem; |
| |
| /* A common failure mode if register status is not correct in the RTL |
| is for this routine to be called with a REGNO we didn't expect to |
| save. That will cause us to write an insn with a (nil) SET_DEST |
| or SET_SRC. Instead of doing so and causing a crash later, check |
| for this common case and abort here instead. This will remove one |
| step in debugging such problems. */ |
| |
| if (regno_save_mem[regno][1] == 0) |
| abort (); |
| |
| /* Get the pattern to emit and update our status. |
| |
| See if we can save several registers with a single instruction. |
| Work backwards to the single register case. */ |
| for (i = MOVE_MAX_WORDS; i > 0; i--) |
| { |
| int j; |
| int ok = 1; |
| if (regno_save_mem[regno][i] == 0) |
| continue; |
| |
| for (j = 0; j < i; j++) |
| if (! TEST_HARD_REG_BIT (*to_save, regno + j)) |
| { |
| ok = 0; |
| break; |
| } |
| /* Must do this one save at a time. */ |
| if (! ok) |
| continue; |
| |
| numregs = i; |
| break; |
| } |
| |
| mem = regno_save_mem [regno][numregs]; |
| if (save_mode [regno] != VOIDmode |
| && save_mode [regno] != GET_MODE (mem) |
| && numregs == (unsigned int) HARD_REGNO_NREGS (regno, save_mode [regno])) |
| mem = adjust_address (mem, save_mode[regno], 0); |
| pat = gen_rtx_SET (VOIDmode, mem, |
| gen_rtx_REG (GET_MODE (mem), |
| regno)); |
| code = reg_save_code[regno][GET_MODE (mem)]; |
| new = insert_one_insn (chain, before_p, code, pat); |
| |
| /* Set hard_regs_saved and dead_or_set for all the registers we saved. */ |
| for (k = 0; k < numregs; k++) |
| { |
| SET_HARD_REG_BIT (hard_regs_saved, regno + k); |
| SET_REGNO_REG_SET (&new->dead_or_set, regno + k); |
| n_regs_saved++; |
| } |
| |
| /* Tell our callers how many extra registers we saved/restored. */ |
| return numregs - 1; |
| } |
| |
| /* Emit a new caller-save insn and set the code. */ |
| static struct insn_chain * |
| insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat) |
| { |
| rtx insn = chain->insn; |
| struct insn_chain *new; |
| |
| #ifdef HAVE_cc0 |
| /* If INSN references CC0, put our insns in front of the insn that sets |
| CC0. This is always safe, since the only way we could be passed an |
| insn that references CC0 is for a restore, and doing a restore earlier |
| isn't a problem. We do, however, assume here that CALL_INSNs don't |
| reference CC0. Guard against non-INSN's like CODE_LABEL. */ |
| |
| if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN) |
| && before_p |
| && reg_referenced_p (cc0_rtx, PATTERN (insn))) |
| chain = chain->prev, insn = chain->insn; |
| #endif |
| |
| new = new_insn_chain (); |
| if (before_p) |
| { |
| rtx link; |
| |
| new->prev = chain->prev; |
| if (new->prev != 0) |
| new->prev->next = new; |
| else |
| reload_insn_chain = new; |
| |
| chain->prev = new; |
| new->next = chain; |
| new->insn = emit_insn_before (pat, insn); |
| /* ??? It would be nice if we could exclude the already / still saved |
| registers from the live sets. */ |
| COPY_REG_SET (&new->live_throughout, &chain->live_throughout); |
| /* Registers that die in CHAIN->INSN still live in the new insn. */ |
| for (link = REG_NOTES (chain->insn); link; link = XEXP (link, 1)) |
| { |
| if (REG_NOTE_KIND (link) == REG_DEAD) |
| { |
| rtx reg = XEXP (link, 0); |
| int regno, i; |
| |
| if (GET_CODE (reg) != REG) |
| abort (); |
| |
| regno = REGNO (reg); |
| if (regno >= FIRST_PSEUDO_REGISTER) |
| regno = reg_renumber[regno]; |
| if (regno < 0) |
| continue; |
| for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; |
| i >= 0; i--) |
| SET_REGNO_REG_SET (&new->live_throughout, regno + i); |
| } |
| } |
| CLEAR_REG_SET (&new->dead_or_set); |
| if (chain->insn == BB_HEAD (BASIC_BLOCK (chain->block))) |
| BB_HEAD (BASIC_BLOCK (chain->block)) = new->insn; |
| } |
| else |
| { |
| new->next = chain->next; |
| if (new->next != 0) |
| new->next->prev = new; |
| chain->next = new; |
| new->prev = chain; |
| new->insn = emit_insn_after (pat, insn); |
| /* ??? It would be nice if we could exclude the already / still saved |
| registers from the live sets, and observe REG_UNUSED notes. */ |
| COPY_REG_SET (&new->live_throughout, &chain->live_throughout); |
| /* Registers that are set in CHAIN->INSN live in the new insn. |
| (Unless there is a REG_UNUSED note for them, but we don't |
| look for them here.) */ |
| note_stores (PATTERN (chain->insn), add_stored_regs, |
| &new->live_throughout); |
| CLEAR_REG_SET (&new->dead_or_set); |
| if (chain->insn == BB_END (BASIC_BLOCK (chain->block))) |
| BB_END (BASIC_BLOCK (chain->block)) = new->insn; |
| } |
| new->block = chain->block; |
| new->is_caller_save_insn = 1; |
| |
| INSN_CODE (new->insn) = code; |
| return new; |
| } |