| /* Definitions of target machine for GNU compiler for Renesas / SuperH SH. |
| Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
| 2003, 2004 Free Software Foundation, Inc. |
| Contributed by Steve Chamberlain (sac@cygnus.com). |
| Improved by Jim Wilson (wilson@cygnus.com). |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to |
| the Free Software Foundation, 59 Temple Place - Suite 330, |
| Boston, MA 02111-1307, USA. */ |
| |
| #ifndef GCC_SH_H |
| #define GCC_SH_H |
| |
| #define TARGET_VERSION \ |
| fputs (" (Hitachi SH)", stderr); |
| |
| /* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't |
| include it here, because bconfig.h is also included by gencodes.c . */ |
| /* ??? No longer true. */ |
| extern int code_for_indirect_jump_scratch; |
| |
| #define TARGET_CPU_CPP_BUILTINS() \ |
| do { \ |
| builtin_define ("__sh__"); \ |
| builtin_assert ("cpu=sh"); \ |
| builtin_assert ("machine=sh"); \ |
| switch ((int) sh_cpu) \ |
| { \ |
| case PROCESSOR_SH1: \ |
| builtin_define ("__sh1__"); \ |
| break; \ |
| case PROCESSOR_SH2: \ |
| builtin_define ("__sh2__"); \ |
| break; \ |
| case PROCESSOR_SH2E: \ |
| builtin_define ("__SH2E__"); \ |
| break; \ |
| case PROCESSOR_SH3: \ |
| builtin_define ("__sh3__"); \ |
| builtin_define ("__SH3__"); \ |
| if (TARGET_HARD_SH4) \ |
| builtin_define ("__SH4_NOFPU__"); \ |
| break; \ |
| case PROCESSOR_SH3E: \ |
| builtin_define (TARGET_HARD_SH4 ? "__SH4_SINGLE_ONLY__" : "__SH3E__"); \ |
| break; \ |
| case PROCESSOR_SH4: \ |
| builtin_define (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__"); \ |
| break; \ |
| case PROCESSOR_SH5: \ |
| { \ |
| builtin_define_with_value ("__SH5__", \ |
| TARGET_SHMEDIA64 ? "64" : "32", 0); \ |
| builtin_define_with_value ("__SHMEDIA__", \ |
| TARGET_SHMEDIA ? "1" : "0", 0); \ |
| if (! TARGET_FPU_DOUBLE) \ |
| builtin_define ("__SH4_NOFPU__"); \ |
| } \ |
| } \ |
| if (TARGET_HITACHI) \ |
| builtin_define ("__HITACHI__"); \ |
| builtin_define (TARGET_LITTLE_ENDIAN \ |
| ? "__LITTLE_ENDIAN__" : "__BIG_ENDIAN__"); \ |
| if (flag_pic) \ |
| { \ |
| builtin_define ("__pic__"); \ |
| builtin_define ("__PIC__"); \ |
| } \ |
| } while (0) |
| |
| /* We can not debug without a frame pointer. */ |
| /* #define CAN_DEBUG_WITHOUT_FP */ |
| |
| #define CONDITIONAL_REGISTER_USAGE do \ |
| { \ |
| int regno; \ |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++) \ |
| if (! VALID_REGISTER_P (regno)) \ |
| fixed_regs[regno] = call_used_regs[regno] = 1; \ |
| /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. */ \ |
| if (TARGET_SH5) \ |
| call_used_regs[FIRST_GENERAL_REG + 8] \ |
| = call_used_regs[FIRST_GENERAL_REG + 9] = 1; \ |
| if (TARGET_SHMEDIA) \ |
| { \ |
| regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS; \ |
| CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]); \ |
| regno_reg_class[FIRST_FP_REG] = FP_REGS; \ |
| } \ |
| if (flag_pic) \ |
| fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ |
| /* Renesas saves and restores mac registers on call. */ \ |
| if (TARGET_HITACHI && ! TARGET_NOMACSAVE) \ |
| { \ |
| call_used_regs[MACH_REG] = 0; \ |
| call_used_regs[MACL_REG] = 0; \ |
| } \ |
| for (regno = FIRST_FP_REG + (TARGET_LITTLE_ENDIAN != 0); \ |
| regno <= LAST_FP_REG; regno += 2) \ |
| SET_HARD_REG_BIT (reg_class_contents[DF_HI_REGS], regno); \ |
| if (TARGET_SHMEDIA) \ |
| { \ |
| for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++)\ |
| if (! fixed_regs[regno] && call_used_regs[regno]) \ |
| SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \ |
| } \ |
| else \ |
| for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++) \ |
| if (! fixed_regs[regno] && call_used_regs[regno]) \ |
| SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \ |
| } while (0) |
| |
| /* ??? Need to write documentation for all SH options and add it to the |
| invoke.texi file. */ |
| |
| /* Run-time compilation parameters selecting different hardware subsets. */ |
| |
| extern int target_flags; |
| #define ISIZE_BIT (1<<1) |
| #define DALIGN_BIT (1<<6) |
| #define SH1_BIT (1<<8) |
| #define SH2_BIT (1<<9) |
| #define SH3_BIT (1<<10) |
| #define SH_E_BIT (1<<11) |
| #define HARD_SH4_BIT (1<<5) |
| #define FPU_SINGLE_BIT (1<<7) |
| #define SH4_BIT (1<<12) |
| #define FMOVD_BIT (1<<4) |
| #define SH5_BIT (1<<0) |
| #define SPACE_BIT (1<<13) |
| #define BIGTABLE_BIT (1<<14) |
| #define RELAX_BIT (1<<15) |
| #define USERMODE_BIT (1<<16) |
| #define HITACHI_BIT (1<<22) |
| #define NOMACSAVE_BIT (1<<23) |
| #define PREFERGOT_BIT (1<<24) |
| #define PADSTRUCT_BIT (1<<28) |
| #define LITTLE_ENDIAN_BIT (1<<29) |
| #define IEEE_BIT (1<<30) |
| #define SAVE_ALL_TR_BIT (1<<2) |
| |
| /* Nonzero if this is an ELF target - compile time only */ |
| #define TARGET_ELF 0 |
| |
| /* Nonzero if we should dump out instruction size info. */ |
| #define TARGET_DUMPISIZE (target_flags & ISIZE_BIT) |
| |
| /* Nonzero to align doubles on 64 bit boundaries. */ |
| #define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT) |
| |
| /* Nonzero if we should generate code using type 1 insns. */ |
| #define TARGET_SH1 (target_flags & SH1_BIT) |
| |
| /* Nonzero if we should generate code using type 2 insns. */ |
| #define TARGET_SH2 (target_flags & SH2_BIT) |
| |
| /* Nonzero if we should generate code using type 2E insns. */ |
| #define TARGET_SH2E ((target_flags & SH_E_BIT) && TARGET_SH2) |
| |
| /* Nonzero if we should generate code using type 3 insns. */ |
| #define TARGET_SH3 (target_flags & SH3_BIT) |
| |
| /* Nonzero if we should generate code using type 3E insns. */ |
| #define TARGET_SH3E ((target_flags & SH_E_BIT) && TARGET_SH3) |
| |
| /* Nonzero if the cache line size is 32. */ |
| #define TARGET_CACHE32 (target_flags & HARD_SH4_BIT || TARGET_SH5) |
| |
| /* Nonzero if we schedule for a superscalar implementation. */ |
| #define TARGET_SUPERSCALAR (target_flags & HARD_SH4_BIT) |
| |
| /* Nonzero if the target has separate instruction and data caches. */ |
| #define TARGET_HARVARD (target_flags & HARD_SH4_BIT) |
| |
| /* Nonzero if compiling for SH4 hardware (to be used for insn costs etc.) */ |
| #define TARGET_HARD_SH4 (target_flags & HARD_SH4_BIT) |
| |
| /* Nonzero if the default precision of th FPU is single */ |
| #define TARGET_FPU_SINGLE (target_flags & FPU_SINGLE_BIT) |
| |
| /* Nonzero if a double-precision FPU is available. */ |
| #define TARGET_FPU_DOUBLE (target_flags & SH4_BIT) |
| |
| /* Nonzero if an FPU is available. */ |
| #define TARGET_FPU_ANY (TARGET_SH2E || TARGET_FPU_DOUBLE) |
| |
| /* Nonzero if we should generate code using type 4 insns. */ |
| #define TARGET_SH4 ((target_flags & SH4_BIT) && (target_flags & SH1_BIT)) |
| |
| /* Nonzero if we should generate code for a SH5 CPU (either ISA). */ |
| #define TARGET_SH5 (target_flags & SH5_BIT) |
| |
| /* Nonzero if we should generate code using the SHcompact instruction |
| set and 32-bit ABI. */ |
| #define TARGET_SHCOMPACT (TARGET_SH5 && TARGET_SH1) |
| |
| /* Nonzero if we should generate code using the SHmedia instruction |
| set and ABI. */ |
| #define TARGET_SHMEDIA (TARGET_SH5 && ! TARGET_SH1) |
| |
| /* Nonzero if we should generate code using the SHmedia ISA and 32-bit |
| ABI. */ |
| #define TARGET_SHMEDIA32 (TARGET_SH5 && ! TARGET_SH1 \ |
| && (target_flags & SH_E_BIT)) |
| |
| /* Nonzero if we should generate code using the SHmedia ISA and 64-bit |
| ABI. */ |
| #define TARGET_SHMEDIA64 (TARGET_SH5 && ! TARGET_SH1 \ |
| && ! (target_flags & SH_E_BIT)) |
| |
| /* Nonzero if we should generate code using SHmedia FPU instructions. */ |
| #define TARGET_SHMEDIA_FPU (TARGET_SHMEDIA && TARGET_FPU_DOUBLE) |
| /* Nonzero if we should generate fmovd. */ |
| #define TARGET_FMOVD (target_flags & FMOVD_BIT) |
| |
| /* Nonzero if we respect NANs. */ |
| #define TARGET_IEEE (target_flags & IEEE_BIT) |
| |
| /* Nonzero if we should generate smaller code rather than faster code. */ |
| #define TARGET_SMALLCODE (target_flags & SPACE_BIT) |
| |
| /* Nonzero to use long jump tables. */ |
| #define TARGET_BIGTABLE (target_flags & BIGTABLE_BIT) |
| |
| /* Nonzero to generate pseudo-ops needed by the assembler and linker |
| to do function call relaxing. */ |
| #define TARGET_RELAX (target_flags & RELAX_BIT) |
| |
| /* Nonzero if using Renesas's calling convention. */ |
| #define TARGET_HITACHI (target_flags & HITACHI_BIT) |
| |
| /* Nonzero if not saving macl/mach when using -mhitachi */ |
| #define TARGET_NOMACSAVE (target_flags & NOMACSAVE_BIT) |
| |
| /* Nonzero if padding structures to a multiple of 4 bytes. This is |
| incompatible with Renesas's compiler, and gives unusual structure layouts |
| which confuse programmers. |
| ??? This option is not useful, but is retained in case there are people |
| who are still relying on it. It may be deleted in the future. */ |
| #define TARGET_PADSTRUCT (target_flags & PADSTRUCT_BIT) |
| |
| /* Nonzero if generating code for a little endian SH. */ |
| #define TARGET_LITTLE_ENDIAN (target_flags & LITTLE_ENDIAN_BIT) |
| |
| /* Nonzero if we should do everything in userland. */ |
| #define TARGET_USERMODE (target_flags & USERMODE_BIT) |
| |
| /* Nonzero if we should prefer @GOT calls when generating PIC. */ |
| #define TARGET_PREFERGOT (target_flags & PREFERGOT_BIT) |
| |
| #define TARGET_SAVE_ALL_TARGET_REGS (target_flags & SAVE_ALL_TR_BIT) |
| |
| #define SELECT_SH1 (SH1_BIT) |
| #define SELECT_SH2 (SH2_BIT | SELECT_SH1) |
| #define SELECT_SH2E (SH_E_BIT | SH2_BIT | SH1_BIT | FPU_SINGLE_BIT) |
| #define SELECT_SH3 (SH3_BIT | SELECT_SH2) |
| #define SELECT_SH3E (SH_E_BIT | FPU_SINGLE_BIT | SELECT_SH3) |
| #define SELECT_SH4_NOFPU (HARD_SH4_BIT | SELECT_SH3) |
| #define SELECT_SH4_SINGLE_ONLY (HARD_SH4_BIT | SELECT_SH3E) |
| #define SELECT_SH4 (SH4_BIT | SH_E_BIT | HARD_SH4_BIT | SELECT_SH3) |
| #define SELECT_SH4_SINGLE (FPU_SINGLE_BIT | SELECT_SH4) |
| #define SELECT_SH5_64 (SH5_BIT | SH4_BIT) |
| #define SELECT_SH5_64_NOFPU (SH5_BIT) |
| #define SELECT_SH5_32 (SH5_BIT | SH4_BIT | SH_E_BIT) |
| #define SELECT_SH5_32_NOFPU (SH5_BIT | SH_E_BIT) |
| #define SELECT_SH5_COMPACT (SH5_BIT | SH4_BIT | SELECT_SH3E) |
| #define SELECT_SH5_COMPACT_NOFPU (SH5_BIT | SELECT_SH3) |
| |
| /* Reset all target-selection flags. */ |
| #define TARGET_NONE -(SH1_BIT | SH2_BIT | SH3_BIT | SH_E_BIT | SH4_BIT \ |
| | HARD_SH4_BIT | FPU_SINGLE_BIT | SH5_BIT) |
| |
| #define TARGET_SWITCHES \ |
| { {"1", TARGET_NONE, "" }, \ |
| {"1", SELECT_SH1, "Generate SH1 code" }, \ |
| {"2", TARGET_NONE, "" }, \ |
| {"2", SELECT_SH2, "Generate SH2 code" }, \ |
| {"2e", TARGET_NONE, "" }, \ |
| {"2e", SELECT_SH2E, "Generate SH2e code" }, \ |
| {"3", TARGET_NONE, "" }, \ |
| {"3", SELECT_SH3, "Generate SH3 code" }, \ |
| {"3e", TARGET_NONE, "" }, \ |
| {"3e", SELECT_SH3E, "Generate SH3e code" }, \ |
| {"4-single-only", TARGET_NONE, "" }, \ |
| {"4-single-only", SELECT_SH4_SINGLE_ONLY, "Generate only single-precision SH4 code" }, \ |
| {"4-single", TARGET_NONE, "" }, \ |
| {"4-single", SELECT_SH4_SINGLE, "Generate default single-precision SH4 code" }, \ |
| {"4-nofpu", TARGET_NONE, "" }, \ |
| {"4-nofpu", SELECT_SH4_NOFPU, "Generate SH4 FPU-less code" }, \ |
| {"4", TARGET_NONE, "" }, \ |
| {"4", SELECT_SH4, "Generate SH4 code" }, \ |
| {"5-64media", TARGET_NONE, "" }, \ |
| {"5-64media", SELECT_SH5_64, "Generate 64-bit SHmedia code" }, \ |
| {"5-64media-nofpu", TARGET_NONE, "" }, \ |
| {"5-64media-nofpu", SELECT_SH5_64_NOFPU, "Generate 64-bit FPU-less SHmedia code" }, \ |
| {"5-32media", TARGET_NONE, "" }, \ |
| {"5-32media", SELECT_SH5_32, "Generate 32-bit SHmedia code" }, \ |
| {"5-32media-nofpu", TARGET_NONE, "" }, \ |
| {"5-32media-nofpu", SELECT_SH5_32_NOFPU, "Generate 32-bit FPU-less SHmedia code" }, \ |
| {"5-compact", TARGET_NONE, "" }, \ |
| {"5-compact", SELECT_SH5_COMPACT, "Generate SHcompact code" }, \ |
| {"5-compact-nofpu", TARGET_NONE, "" }, \ |
| {"5-compact-nofpu", SELECT_SH5_COMPACT_NOFPU, "Generate FPU-less SHcompact code" }, \ |
| {"b", -LITTLE_ENDIAN_BIT, "Generate code in big endian mode" }, \ |
| {"bigtable", BIGTABLE_BIT, "Generate 32-bit offsets in switch tables" }, \ |
| {"dalign", DALIGN_BIT, "Aligns doubles at 64-bit boundaries" }, \ |
| {"fmovd", FMOVD_BIT, "" }, \ |
| {"hitachi", HITACHI_BIT, "Follow Renesas (formerly Hitachi) / SuperH calling conventions" }, \ |
| {"renesas", HITACHI_BIT, "Follow Renesas (formerly Hitachi) / SuperH calling conventions" }, \ |
| {"nomacsave", NOMACSAVE_BIT, "Mark MAC register as call-clobbered" }, \ |
| {"ieee", IEEE_BIT, "Increase the IEEE compliance for floating-point code" }, \ |
| {"isize", ISIZE_BIT, "" }, \ |
| {"l", LITTLE_ENDIAN_BIT, "Generate code in little endian mode" }, \ |
| {"no-ieee", -IEEE_BIT, "" }, \ |
| {"padstruct", PADSTRUCT_BIT, "" }, \ |
| {"prefergot", PREFERGOT_BIT, "Emit function-calls using global offset table when generating PIC" }, \ |
| {"relax", RELAX_BIT, "Shorten address references during linking" }, \ |
| {"space", SPACE_BIT, "Deprecated. Use -Os instead" }, \ |
| {"usermode", USERMODE_BIT, "Generate library function call to invalidate instruction cache entries after fixing trampoline" }, \ |
| SUBTARGET_SWITCHES \ |
| {"", TARGET_DEFAULT, "" } \ |
| } |
| |
| /* This are meant to be redefined in the host dependent files */ |
| #define SUBTARGET_SWITCHES |
| |
| /* This defaults us to big-endian. */ |
| #ifndef TARGET_ENDIAN_DEFAULT |
| #define TARGET_ENDIAN_DEFAULT 0 |
| #endif |
| |
| #ifndef TARGET_CPU_DEFAULT |
| #define TARGET_CPU_DEFAULT SELECT_SH1 |
| #endif |
| |
| #define TARGET_DEFAULT (TARGET_CPU_DEFAULT|TARGET_ENDIAN_DEFAULT) |
| |
| #define CPP_SPEC " %(subtarget_cpp_spec) " |
| |
| #ifndef SUBTARGET_CPP_SPEC |
| #define SUBTARGET_CPP_SPEC "" |
| #endif |
| |
| #ifndef SUBTARGET_EXTRA_SPECS |
| #define SUBTARGET_EXTRA_SPECS |
| #endif |
| |
| #define EXTRA_SPECS \ |
| { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \ |
| { "link_emul_prefix", LINK_EMUL_PREFIX }, \ |
| { "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL }, \ |
| { "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX }, \ |
| { "subtarget_link_spec", SUBTARGET_LINK_SPEC }, \ |
| { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC }, \ |
| { "subtarget_asm_relax_spec", SUBTARGET_ASM_RELAX_SPEC }, \ |
| { "subtarget_asm_isa_spec", SUBTARGET_ASM_ISA_SPEC }, \ |
| SUBTARGET_EXTRA_SPECS |
| |
| #if TARGET_CPU_DEFAULT & HARD_SH4_BIT |
| #define SUBTARGET_ASM_RELAX_SPEC "%{!m1:%{!m2:%{!m3*:%{!m5*:-isa=sh4}}}}" |
| #else |
| #define SUBTARGET_ASM_RELAX_SPEC "%{m4*:-isa=sh4}" |
| #endif |
| |
| #define SH_ASM_SPEC \ |
| "%(subtarget_asm_endian_spec) %{mrelax:-relax %(subtarget_asm_relax_spec)}\ |
| %(subtarget_asm_isa_spec)" |
| |
| #define ASM_SPEC SH_ASM_SPEC |
| |
| #ifndef SUBTARGET_ASM_ENDIAN_SPEC |
| #if TARGET_ENDIAN_DEFAULT == LITTLE_ENDIAN_BIT |
| #define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}" |
| #else |
| #define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}" |
| #endif |
| #endif |
| |
| #define SUBTARGET_ASM_ISA_SPEC "" |
| |
| #define LINK_EMUL_PREFIX "sh%{ml:l}" |
| |
| #if TARGET_CPU_DEFAULT & SH5_BIT |
| #if TARGET_CPU_DEFAULT & SH_E_BIT |
| #define LINK_DEFAULT_CPU_EMUL "32" |
| #else |
| #define LINK_DEFAULT_CPU_EMUL "64" |
| #endif /* SH_E_BIT */ |
| #else |
| #define LINK_DEFAULT_CPU_EMUL "" |
| #endif /* SH5_BIT */ |
| |
| #define SUBTARGET_LINK_EMUL_SUFFIX "" |
| #define SUBTARGET_LINK_SPEC "" |
| |
| /* svr4.h redefines LINK_SPEC inappropriately, so go via SH_LINK_SPEC, |
| so that we can undo the damage without code replication. */ |
| #define LINK_SPEC SH_LINK_SPEC |
| |
| #define SH_LINK_SPEC "\ |
| -m %(link_emul_prefix)\ |
| %{m5-compact*|m5-32media*:32}\ |
| %{m5-64media*:64}\ |
| %{!m1:%{!m2:%{!m3*:%{!m4*:%{!m5*:%(link_default_cpu_emul)}}}}}\ |
| %(subtarget_link_emul_suffix) \ |
| %{mrelax:-relax} %(subtarget_link_spec)" |
| |
| #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \ |
| do { \ |
| if (LEVEL) \ |
| flag_omit_frame_pointer = -1; \ |
| if (SIZE) \ |
| target_flags |= SPACE_BIT; \ |
| if (TARGET_SHMEDIA && LEVEL > 1) \ |
| { \ |
| flag_branch_target_load_optimize = 1; \ |
| if (! (SIZE)) \ |
| target_flags |= SAVE_ALL_TR_BIT; \ |
| } \ |
| } while (0) |
| |
| #define ASSEMBLER_DIALECT assembler_dialect |
| |
| extern int assembler_dialect; |
| |
| #define OVERRIDE_OPTIONS \ |
| do { \ |
| int regno; \ |
| \ |
| sh_cpu = CPU_SH1; \ |
| assembler_dialect = 0; \ |
| if (TARGET_SH2) \ |
| sh_cpu = CPU_SH2; \ |
| if (TARGET_SH2E) \ |
| sh_cpu = CPU_SH2E; \ |
| if (TARGET_SH3) \ |
| sh_cpu = CPU_SH3; \ |
| if (TARGET_SH3E) \ |
| sh_cpu = CPU_SH3E; \ |
| if (TARGET_SH4) \ |
| { \ |
| assembler_dialect = 1; \ |
| sh_cpu = CPU_SH4; \ |
| } \ |
| if (TARGET_SH5) \ |
| { \ |
| sh_cpu = CPU_SH5; \ |
| target_flags |= DALIGN_BIT; \ |
| if (TARGET_FPU_ANY \ |
| && ! (TARGET_SHCOMPACT && TARGET_LITTLE_ENDIAN)) \ |
| target_flags |= FMOVD_BIT; \ |
| if (TARGET_SHMEDIA) \ |
| { \ |
| /* There are no delay slots on SHmedia. */ \ |
| flag_delayed_branch = 0; \ |
| /* Relaxation isn't yet supported for SHmedia */ \ |
| target_flags &= ~RELAX_BIT; \ |
| } \ |
| /* -fprofile-arcs needs a working libgcov . In unified tree \ |
| configurations with newlib, this requires to configure with \ |
| --with-newlib --with-headers. But there is no way to check \ |
| here we have a working libgcov, so just assume that we have. */\ |
| if (profile_flag) \ |
| { \ |
| warning ("Profiling is not supported on this target."); \ |
| profile_flag = profile_arc_flag = 0; \ |
| } \ |
| } \ |
| else \ |
| { \ |
| /* Only the sh64-elf assembler fully supports .quad properly. */\ |
| targetm.asm_out.aligned_op.di = NULL; \ |
| targetm.asm_out.unaligned_op.di = NULL; \ |
| } \ |
| if (TARGET_FMOVD) \ |
| reg_class_from_letter['e' - 'a'] = NO_REGS; \ |
| \ |
| for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \ |
| if (! VALID_REGISTER_P (regno)) \ |
| sh_register_names[regno][0] = '\0'; \ |
| \ |
| for (regno = 0; regno < ADDREGNAMES_SIZE; regno++) \ |
| if (! VALID_REGISTER_P (ADDREGNAMES_REGNO (regno))) \ |
| sh_additional_register_names[regno][0] = '\0'; \ |
| \ |
| if (flag_omit_frame_pointer < 0) \ |
| { \ |
| /* The debugging information is sufficient, \ |
| but gdb doesn't implement this yet */ \ |
| if (0) \ |
| flag_omit_frame_pointer \ |
| = (PREFERRED_DEBUGGING_TYPE == DWARF_DEBUG \ |
| || PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG); \ |
| else \ |
| flag_omit_frame_pointer = 0; \ |
| } \ |
| \ |
| if (flag_pic && ! TARGET_PREFERGOT) \ |
| flag_no_function_cse = 1; \ |
| \ |
| if (SMALL_REGISTER_CLASSES) \ |
| { \ |
| /* Never run scheduling before reload, since that can \ |
| break global alloc, and generates slower code anyway due \ |
| to the pressure on R0. */ \ |
| flag_schedule_insns = 0; \ |
| } \ |
| \ |
| if (align_loops == 0) \ |
| align_loops = 1 << (TARGET_SH5 ? 3 : 2); \ |
| if (align_jumps == 0) \ |
| align_jumps = 1 << CACHE_LOG; \ |
| else if (align_jumps < (TARGET_SHMEDIA ? 4 : 2)) \ |
| align_jumps = TARGET_SHMEDIA ? 4 : 2; \ |
| \ |
| /* Allocation boundary (in *bytes*) for the code of a function. \ |
| SH1: 32 bit alignment is faster, because instructions are always \ |
| fetched as a pair from a longword boundary. \ |
| SH2 .. SH5 : align to cache line start. */ \ |
| if (align_functions == 0) \ |
| align_functions \ |
| = TARGET_SMALLCODE ? FUNCTION_BOUNDARY/8 : (1 << CACHE_LOG); \ |
| /* The linker relaxation code breaks when a function contains \ |
| alignments that are larger than that at the start of a \ |
| compilation unit. */ \ |
| if (TARGET_RELAX) \ |
| { \ |
| int min_align \ |
| = align_loops > align_jumps ? align_loops : align_jumps; \ |
| \ |
| /* Also take possible .long constants / mova tables int account. */\ |
| if (min_align < 4) \ |
| min_align = 4; \ |
| if (align_functions < min_align) \ |
| align_functions = min_align; \ |
| } \ |
| } while (0) |
| |
| /* Target machine storage layout. */ |
| |
| /* Define this if most significant bit is lowest numbered |
| in instructions that operate on numbered bit-fields. */ |
| |
| #define BITS_BIG_ENDIAN 0 |
| |
| /* Define this if most significant byte of a word is the lowest numbered. */ |
| #define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0) |
| |
| /* Define this if most significant word of a multiword number is the lowest |
| numbered. */ |
| #define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0) |
| |
| /* Define this to set the endianness to use in libgcc2.c, which can |
| not depend on target_flags. */ |
| #if defined(__LITTLE_ENDIAN__) |
| #define LIBGCC2_WORDS_BIG_ENDIAN 0 |
| #else |
| #define LIBGCC2_WORDS_BIG_ENDIAN 1 |
| #endif |
| |
| #define MAX_BITS_PER_WORD 64 |
| |
| #define MAX_LONG_TYPE_SIZE MAX_BITS_PER_WORD |
| |
| /* Width in bits of an `int'. We want just 32-bits, even if words are |
| longer. */ |
| #define INT_TYPE_SIZE 32 |
| |
| /* Width in bits of a `long'. */ |
| #define LONG_TYPE_SIZE (TARGET_SHMEDIA64 ? 64 : 32) |
| |
| /* Width in bits of a `long long'. */ |
| #define LONG_LONG_TYPE_SIZE 64 |
| |
| /* Width in bits of a `long double'. */ |
| #define LONG_DOUBLE_TYPE_SIZE 64 |
| |
| /* Width of a word, in units (bytes). */ |
| #define UNITS_PER_WORD (TARGET_SHMEDIA ? 8 : 4) |
| #define MIN_UNITS_PER_WORD 4 |
| |
| /* Scaling factor for Dwarf data offsets for CFI information. |
| The dwarf2out.c default would use -UNITS_PER_WORD, which is -8 for |
| SHmedia; however, since we do partial register saves for the registers |
| visible to SHcompact, and for target registers for SHMEDIA32, we have |
| to allow saves that are only 4-byte aligned. */ |
| #define DWARF_CIE_DATA_ALIGNMENT -4 |
| |
| /* Width in bits of a pointer. |
| See also the macro `Pmode' defined below. */ |
| #define POINTER_SIZE (TARGET_SHMEDIA64 ? 64 : 32) |
| |
| /* Allocation boundary (in *bits*) for storing arguments in argument list. */ |
| #define PARM_BOUNDARY (TARGET_SH5 ? 64 : 32) |
| |
| /* Boundary (in *bits*) on which stack pointer should be aligned. */ |
| #define STACK_BOUNDARY BIGGEST_ALIGNMENT |
| |
| /* The log (base 2) of the cache line size, in bytes. Processors prior to |
| SH2 have no actual cache, but they fetch code in chunks of 4 bytes. |
| The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */ |
| #define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2) |
| |
| /* ABI given & required minimum allocation boundary (in *bits*) for the |
| code of a function. */ |
| #define FUNCTION_BOUNDARY (16 << TARGET_SHMEDIA) |
| |
| /* On SH5, the lowest bit is used to indicate SHmedia functions, so |
| the vbit must go into the delta field of |
| pointers-to-member-functions. */ |
| #define TARGET_PTRMEMFUNC_VBIT_LOCATION \ |
| (TARGET_SH5 ? ptrmemfunc_vbit_in_delta : ptrmemfunc_vbit_in_pfn) |
| |
| /* Alignment of field after `int : 0' in a structure. */ |
| #define EMPTY_FIELD_BOUNDARY 32 |
| |
| /* No data type wants to be aligned rounder than this. */ |
| #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32) |
| |
| /* The best alignment to use in cases where we have a choice. */ |
| #define FASTEST_ALIGNMENT (TARGET_SH5 ? 64 : 32) |
| |
| /* Make strings word-aligned so strcpy from constants will be faster. */ |
| #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ |
| ((TREE_CODE (EXP) == STRING_CST \ |
| && (ALIGN) < FASTEST_ALIGNMENT) \ |
| ? FASTEST_ALIGNMENT : (ALIGN)) |
| |
| /* get_mode_alignment assumes complex values are always held in multiple |
| registers, but that is not the case on the SH; CQImode and CHImode are |
| held in a single integer register. SH5 also holds CSImode and SCmode |
| values in integer registers. This is relevant for argument passing on |
| SHcompact as we use a stack temp in order to pass CSImode by reference. */ |
| #define LOCAL_ALIGNMENT(TYPE, ALIGN) \ |
| ((GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_INT \ |
| || GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_FLOAT) \ |
| ? (unsigned) MIN (BIGGEST_ALIGNMENT, GET_MODE_BITSIZE (TYPE_MODE (TYPE))) \ |
| : (unsigned) ALIGN) |
| |
| /* Make arrays of chars word-aligned for the same reasons. */ |
| #define DATA_ALIGNMENT(TYPE, ALIGN) \ |
| (TREE_CODE (TYPE) == ARRAY_TYPE \ |
| && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ |
| && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN)) |
| |
| /* Number of bits which any structure or union's size must be a |
| multiple of. Each structure or union's size is rounded up to a |
| multiple of this. */ |
| #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8) |
| |
| /* Set this nonzero if move instructions will actually fail to work |
| when given unaligned data. */ |
| #define STRICT_ALIGNMENT 1 |
| |
| /* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */ |
| #define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \ |
| barrier_align (LABEL_AFTER_BARRIER) |
| |
| #define LOOP_ALIGN(A_LABEL) \ |
| ((! optimize || TARGET_HARVARD || TARGET_SMALLCODE) \ |
| ? 0 : sh_loop_align (A_LABEL)) |
| |
| #define LABEL_ALIGN(A_LABEL) \ |
| ( \ |
| (PREV_INSN (A_LABEL) \ |
| && GET_CODE (PREV_INSN (A_LABEL)) == INSN \ |
| && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \ |
| && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN) \ |
| /* explicit alignment insn in constant tables. */ \ |
| ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \ |
| : 0) |
| |
| /* Jump tables must be 32 bit aligned, no matter the size of the element. */ |
| #define ADDR_VEC_ALIGN(ADDR_VEC) 2 |
| |
| /* The base two logarithm of the known minimum alignment of an insn length. */ |
| #define INSN_LENGTH_ALIGNMENT(A_INSN) \ |
| (GET_CODE (A_INSN) == INSN \ |
| ? 1 << TARGET_SHMEDIA \ |
| : GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN \ |
| ? 1 << TARGET_SHMEDIA \ |
| : CACHE_LOG) |
| |
| /* Standard register usage. */ |
| |
| /* Register allocation for the Renesas calling convention: |
| |
| r0 arg return |
| r1..r3 scratch |
| r4..r7 args in |
| r8..r13 call saved |
| r14 frame pointer/call saved |
| r15 stack pointer |
| ap arg pointer (doesn't really exist, always eliminated) |
| pr subroutine return address |
| t t bit |
| mach multiply/accumulate result, high part |
| macl multiply/accumulate result, low part. |
| fpul fp/int communication register |
| rap return address pointer register |
| fr0 fp arg return |
| fr1..fr3 scratch floating point registers |
| fr4..fr11 fp args in |
| fr12..fr15 call saved floating point registers */ |
| |
| #define MAX_REGISTER_NAME_LENGTH 5 |
| extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1]; |
| |
| #define SH_REGISTER_NAMES_INITIALIZER \ |
| { \ |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \ |
| "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \ |
| "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \ |
| "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \ |
| "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \ |
| "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \ |
| "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \ |
| "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \ |
| "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \ |
| "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \ |
| "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \ |
| "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \ |
| "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \ |
| "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \ |
| "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \ |
| "xd0", "xd2", "xd4", "xd6", "xd8", "xd10", "xd12", "xd14", \ |
| "gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", \ |
| "rap" \ |
| } |
| |
| #define REGNAMES_ARR_INDEX_1(index) \ |
| (sh_register_names[index]) |
| #define REGNAMES_ARR_INDEX_2(index) \ |
| REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1) |
| #define REGNAMES_ARR_INDEX_4(index) \ |
| REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2) |
| #define REGNAMES_ARR_INDEX_8(index) \ |
| REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4) |
| #define REGNAMES_ARR_INDEX_16(index) \ |
| REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8) |
| #define REGNAMES_ARR_INDEX_32(index) \ |
| REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16) |
| #define REGNAMES_ARR_INDEX_64(index) \ |
| REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32) |
| |
| #define REGISTER_NAMES \ |
| { \ |
| REGNAMES_ARR_INDEX_64 (0), \ |
| REGNAMES_ARR_INDEX_64 (64), \ |
| REGNAMES_ARR_INDEX_8 (128), \ |
| REGNAMES_ARR_INDEX_8 (136), \ |
| REGNAMES_ARR_INDEX_8 (144), \ |
| REGNAMES_ARR_INDEX_1 (152) \ |
| } |
| |
| #define ADDREGNAMES_SIZE 32 |
| #define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4 |
| extern char sh_additional_register_names[ADDREGNAMES_SIZE] \ |
| [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1]; |
| |
| #define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER \ |
| { \ |
| "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", \ |
| "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30", \ |
| "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46", \ |
| "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62" \ |
| } |
| |
| #define ADDREGNAMES_REGNO(index) \ |
| ((index < 32) ? (FIRST_FP_REG + (index) * 2) \ |
| : (-1)) |
| |
| #define ADDREGNAMES_ARR_INDEX_1(index) \ |
| { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) } |
| #define ADDREGNAMES_ARR_INDEX_2(index) \ |
| ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1) |
| #define ADDREGNAMES_ARR_INDEX_4(index) \ |
| ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2) |
| #define ADDREGNAMES_ARR_INDEX_8(index) \ |
| ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4) |
| #define ADDREGNAMES_ARR_INDEX_16(index) \ |
| ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8) |
| #define ADDREGNAMES_ARR_INDEX_32(index) \ |
| ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16) |
| |
| #define ADDITIONAL_REGISTER_NAMES \ |
| { \ |
| ADDREGNAMES_ARR_INDEX_32 (0) \ |
| } |
| |
| /* Number of actual hardware registers. |
| The hardware registers are assigned numbers for the compiler |
| from 0 to just below FIRST_PSEUDO_REGISTER. |
| All registers that the compiler knows about must be given numbers, |
| even those that are not normally considered general registers. */ |
| |
| /* There are many other relevant definitions in sh.md's md_constants. */ |
| |
| #define FIRST_GENERAL_REG R0_REG |
| #define LAST_GENERAL_REG (FIRST_GENERAL_REG + (TARGET_SHMEDIA ? 63 : 15)) |
| #define FIRST_FP_REG DR0_REG |
| #define LAST_FP_REG (FIRST_FP_REG + \ |
| (TARGET_SHMEDIA_FPU ? 63 : TARGET_SH2E ? 15 : -1)) |
| #define FIRST_XD_REG XD0_REG |
| #define LAST_XD_REG (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1)) |
| #define FIRST_TARGET_REG TR0_REG |
| #define LAST_TARGET_REG (FIRST_TARGET_REG + (TARGET_SHMEDIA ? 7 : -1)) |
| |
| #define GENERAL_REGISTER_P(REGNO) \ |
| IN_RANGE ((REGNO), \ |
| (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \ |
| (unsigned HOST_WIDE_INT) LAST_GENERAL_REG) |
| |
| #define GENERAL_OR_AP_REGISTER_P(REGNO) \ |
| (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG)) |
| |
| #define FP_REGISTER_P(REGNO) \ |
| ((int) (REGNO) >= FIRST_FP_REG && (int) (REGNO) <= LAST_FP_REG) |
| |
| #define XD_REGISTER_P(REGNO) \ |
| ((int) (REGNO) >= FIRST_XD_REG && (int) (REGNO) <= LAST_XD_REG) |
| |
| #define FP_OR_XD_REGISTER_P(REGNO) \ |
| (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO)) |
| |
| #define FP_ANY_REGISTER_P(REGNO) \ |
| (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG) |
| |
| #define SPECIAL_REGISTER_P(REGNO) \ |
| ((REGNO) == GBR_REG || (REGNO) == T_REG \ |
| || (REGNO) == MACH_REG || (REGNO) == MACL_REG) |
| |
| #define TARGET_REGISTER_P(REGNO) \ |
| ((int) (REGNO) >= FIRST_TARGET_REG && (int) (REGNO) <= LAST_TARGET_REG) |
| |
| #define SHMEDIA_REGISTER_P(REGNO) \ |
| (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \ |
| || TARGET_REGISTER_P (REGNO)) |
| |
| /* This is to be used in CONDITIONAL_REGISTER_USAGE, to mark registers |
| that should be fixed. */ |
| #define VALID_REGISTER_P(REGNO) \ |
| (SHMEDIA_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) \ |
| || (REGNO) == AP_REG || (REGNO) == RAP_REG \ |
| || (TARGET_SH1 && (SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \ |
| || (TARGET_SH2E && (REGNO) == FPUL_REG)) |
| |
| /* The mode that should be generally used to store a register by |
| itself in the stack, or to load it back. */ |
| #define REGISTER_NATURAL_MODE(REGNO) \ |
| (FP_REGISTER_P (REGNO) ? SFmode \ |
| : XD_REGISTER_P (REGNO) ? DFmode \ |
| : TARGET_SHMEDIA && ! HARD_REGNO_CALL_PART_CLOBBERED ((REGNO), DImode) \ |
| ? DImode \ |
| : SImode) |
| |
| #define FIRST_PSEUDO_REGISTER 153 |
| |
| /* 1 for registers that have pervasive standard uses |
| and are not available for the register allocator. |
| |
| Mach register is fixed 'cause it's only 10 bits wide for SH1. |
| It is 32 bits wide for SH2. */ |
| |
| #define FIXED_REGISTERS \ |
| { \ |
| /* Regular registers. */ \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 1, \ |
| /* r16 is reserved, r18 is the former pr. */ \ |
| 1, 0, 0, 0, 0, 0, 0, 0, \ |
| /* r24 is reserved for the OS; r25, for the assembler or linker. */ \ |
| /* r26 is a global variable data pointer; r27 is for constants. */ \ |
| 1, 1, 1, 1, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 1, \ |
| /* FP registers. */ \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| /* Branch target registers. */ \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| /* XD registers. */ \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \ |
| 1, 1, 1, 1, 1, 1, 0, 1, \ |
| /*"rap" */ \ |
| 1, \ |
| } |
| |
| /* 1 for registers not available across function calls. |
| These must include the FIXED_REGISTERS and also any |
| registers that can be used without being saved. |
| The latter must include the registers where values are returned |
| and the register where structure-value addresses are passed. |
| Aside from that, you can include as many other registers as you like. */ |
| |
| #define CALL_USED_REGISTERS \ |
| { \ |
| /* Regular registers. */ \ |
| 1, 1, 1, 1, 1, 1, 1, 1, \ |
| /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \ |
| Only the lower 32bits of R10-R14 are guaranteed to be preserved \ |
| across SH5 function calls. */ \ |
| 0, 0, 0, 0, 0, 0, 0, 1, \ |
| 1, 1, 1, 1, 1, 1, 1, 1, \ |
| 1, 1, 1, 1, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 1, 1, 1, 1, \ |
| 1, 1, 1, 1, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 1, 1, 1, 1, \ |
| /* FP registers. */ \ |
| 1, 1, 1, 1, 1, 1, 1, 1, \ |
| 1, 1, 1, 1, 0, 0, 0, 0, \ |
| 1, 1, 1, 1, 1, 1, 1, 1, \ |
| 1, 1, 1, 1, 1, 1, 1, 1, \ |
| 1, 1, 1, 1, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, \ |
| /* Branch target registers. */ \ |
| 1, 1, 1, 1, 1, 0, 0, 0, \ |
| /* XD registers. */ \ |
| 1, 1, 1, 1, 1, 1, 0, 0, \ |
| /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \ |
| 1, 1, 1, 1, 1, 1, 1, 1, \ |
| /*"rap" */ \ |
| 1, \ |
| } |
| |
| /* Only the lower 32-bits of R10-R14 are guaranteed to be preserved |
| across SHcompact function calls. We can't tell whether a called |
| function is SHmedia or SHcompact, so we assume it may be when |
| compiling SHmedia code with the 32-bit ABI, since that's the only |
| ABI that can be linked with SHcompact code. */ |
| #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO,MODE) \ |
| (TARGET_SHMEDIA32 \ |
| && GET_MODE_SIZE (MODE) > 4 \ |
| && (((REGNO) >= FIRST_GENERAL_REG + 10 \ |
| && (REGNO) <= FIRST_GENERAL_REG + 15) \ |
| || TARGET_REGISTER_P (REGNO) \ |
| || (REGNO) == PR_MEDIA_REG)) |
| |
| /* Return number of consecutive hard regs needed starting at reg REGNO |
| to hold something of mode MODE. |
| This is ordinarily the length in words of a value of mode MODE |
| but can be less for certain modes in special long registers. |
| |
| On the SH all but the XD regs are UNITS_PER_WORD bits wide. */ |
| |
| #define HARD_REGNO_NREGS(REGNO, MODE) \ |
| (XD_REGISTER_P (REGNO) \ |
| ? ((GET_MODE_SIZE (MODE) + (2*UNITS_PER_WORD - 1)) / (2*UNITS_PER_WORD)) \ |
| : (TARGET_SHMEDIA && FP_REGISTER_P (REGNO)) \ |
| ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2)) \ |
| : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) |
| |
| /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. |
| We can allow any mode in any general register. The special registers |
| only allow SImode. Don't allow any mode in the PR. */ |
| |
| /* We cannot hold DCmode values in the XD registers because alter_reg |
| handles subregs of them incorrectly. We could work around this by |
| spacing the XD registers like the DR registers, but this would require |
| additional memory in every compilation to hold larger register vectors. |
| We could hold SFmode / SCmode values in XD registers, but that |
| would require a tertiary reload when reloading from / to memory, |
| and a secondary reload to reload from / to general regs; that |
| seems to be a loosing proposition. */ |
| /* We want to allow TImode FP regs so that when V4SFmode is loaded as TImode, |
| it won't be ferried through GP registers first. */ |
| #define HARD_REGNO_MODE_OK(REGNO, MODE) \ |
| (SPECIAL_REGISTER_P (REGNO) ? (MODE) == SImode \ |
| : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \ |
| : FP_REGISTER_P (REGNO) && (MODE) == SFmode \ |
| ? 1 \ |
| : (MODE) == V2SFmode \ |
| ? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 2 == 0) \ |
| || GENERAL_REGISTER_P (REGNO)) \ |
| : (MODE) == V4SFmode \ |
| ? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 4 == 0) \ |
| || (! TARGET_SHMEDIA && GENERAL_REGISTER_P (REGNO))) \ |
| : (MODE) == V16SFmode \ |
| ? (TARGET_SHMEDIA \ |
| ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 16 == 0) \ |
| : (REGNO) == FIRST_XD_REG) \ |
| : FP_REGISTER_P (REGNO) \ |
| ? ((MODE) == SFmode || (MODE) == SImode \ |
| || ((TARGET_SH2E || TARGET_SHMEDIA) && (MODE) == SCmode) \ |
| || (((TARGET_SH4 && (MODE) == DFmode) || (MODE) == DCmode \ |
| || (TARGET_SHMEDIA && ((MODE) == DFmode || (MODE) == DImode \ |
| || (MODE) == V2SFmode || (MODE) == TImode))) \ |
| && (((REGNO) - FIRST_FP_REG) & 1) == 0)) \ |
| : XD_REGISTER_P (REGNO) \ |
| ? (MODE) == DFmode \ |
| : TARGET_REGISTER_P (REGNO) \ |
| ? ((MODE) == DImode || (MODE) == SImode) \ |
| : (REGNO) == PR_REG ? (MODE) == SImode \ |
| : (REGNO) == FPSCR_REG ? (MODE) == PSImode \ |
| : 1) |
| |
| /* Value is 1 if MODE is a supported vector mode. */ |
| #define VECTOR_MODE_SUPPORTED_P(MODE) \ |
| ((TARGET_FPU_ANY \ |
| && ((MODE) == V2SFmode || (MODE) == V4SFmode || (MODE) == V16SFmode)) \ |
| || (TARGET_SHMEDIA \ |
| && ((MODE) == V8QImode || (MODE) == V2HImode || (MODE) == V4HImode \ |
| || (MODE) == V2SImode))) |
| |
| /* Value is 1 if it is a good idea to tie two pseudo registers |
| when one has mode MODE1 and one has mode MODE2. |
| If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, |
| for any hard reg, then this must be 0 for correct output. |
| That's the case for xd registers: we don't hold SFmode values in |
| them, so we can't tie an SFmode pseudos with one in another |
| floating-point mode. */ |
| |
| #define MODES_TIEABLE_P(MODE1, MODE2) \ |
| ((MODE1) == (MODE2) \ |
| || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \ |
| && (TARGET_SHMEDIA ? ((GET_MODE_SIZE (MODE1) <= 4) \ |
| && (GET_MODE_SIZE (MODE2) <= 4)) \ |
| : ((MODE1) != SFmode && (MODE2) != SFmode)))) |
| |
| /* A C expression that is nonzero if hard register NEW_REG can be |
| considered for use as a rename register for OLD_REG register */ |
| |
| #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \ |
| sh_hard_regno_rename_ok (OLD_REG, NEW_REG) |
| |
| /* Specify the registers used for certain standard purposes. |
| The values of these macros are register numbers. */ |
| |
| /* Define this if the program counter is overloaded on a register. */ |
| /* #define PC_REGNUM 15*/ |
| |
| /* Register to use for pushing function arguments. */ |
| #define STACK_POINTER_REGNUM SP_REG |
| |
| /* Base register for access to local variables of the function. */ |
| #define FRAME_POINTER_REGNUM FP_REG |
| |
| /* Fake register that holds the address on the stack of the |
| current function's return address. */ |
| #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG |
| |
| /* Register to hold the addressing base for position independent |
| code access to data items. */ |
| #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REG : INVALID_REGNUM) |
| |
| #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_" |
| |
| /* Value should be nonzero if functions must have frame pointers. |
| Zero means the frame pointer need not be set up (and parms may be accessed |
| via the stack pointer) in functions that seem suitable. */ |
| |
| #define FRAME_POINTER_REQUIRED 0 |
| |
| /* Definitions for register eliminations. |
| |
| We have three registers that can be eliminated on the SH. First, the |
| frame pointer register can often be eliminated in favor of the stack |
| pointer register. Secondly, the argument pointer register can always be |
| eliminated; it is replaced with either the stack or frame pointer. |
| Third, there is the return address pointer, which can also be replaced |
| with either the stack or the frame pointer. */ |
| |
| /* This is an array of structures. Each structure initializes one pair |
| of eliminable registers. The "from" register number is given first, |
| followed by "to". Eliminations of the same "from" register are listed |
| in order of preference. */ |
| |
| /* If you add any registers here that are not actually hard registers, |
| and that have any alternative of elimination that doesn't always |
| apply, you need to amend calc_live_regs to exclude it, because |
| reload spills all eliminable registers where it sees an |
| can_eliminate == 0 entry, thus making them 'live' . |
| If you add any hard registers that can be eliminated in different |
| ways, you have to patch reload to spill them only when all alternatives |
| of elimination fail. */ |
| |
| #define ELIMINABLE_REGS \ |
| {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ |
| { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ |
| { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ |
| { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ |
| { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},} |
| |
| /* Given FROM and TO register numbers, say whether this elimination |
| is allowed. */ |
| #define CAN_ELIMINATE(FROM, TO) \ |
| (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)) |
| |
| /* Define the offset between two registers, one to be eliminated, and the other |
| its replacement, at the start of a routine. */ |
| |
| #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ |
| OFFSET = initial_elimination_offset ((FROM), (TO)) |
| |
| /* Base register for access to arguments of the function. */ |
| #define ARG_POINTER_REGNUM AP_REG |
| |
| /* Register in which the static-chain is passed to a function. */ |
| #define STATIC_CHAIN_REGNUM (TARGET_SH5 ? 1 : 3) |
| |
| /* Don't default to pcc-struct-return, because we have already specified |
| exactly how to return structures in the RETURN_IN_MEMORY macro. */ |
| |
| #define DEFAULT_PCC_STRUCT_RETURN 0 |
| |
| #define SHMEDIA_REGS_STACK_ADJUST() \ |
| (TARGET_SHCOMPACT && current_function_has_nonlocal_label \ |
| ? (8 * (/* r28-r35 */ 8 + /* r44-r59 */ 16 + /* tr5-tr7 */ 3) \ |
| + (TARGET_FPU_ANY ? 4 * (/* fr36 - fr63 */ 28) : 0)) \ |
| : 0) |
| |
| |
| /* Define the classes of registers for register constraints in the |
| machine description. Also define ranges of constants. |
| |
| One of the classes must always be named ALL_REGS and include all hard regs. |
| If there is more than one class, another class must be named NO_REGS |
| and contain no registers. |
| |
| The name GENERAL_REGS must be the name of a class (or an alias for |
| another name such as ALL_REGS). This is the class of registers |
| that is allowed by "g" or "r" in a register constraint. |
| Also, registers outside this class are allocated only when |
| instructions express preferences for them. |
| |
| The classes must be numbered in nondecreasing order; that is, |
| a larger-numbered class must never be contained completely |
| in a smaller-numbered class. |
| |
| For any two classes, it is very desirable that there be another |
| class that represents their union. */ |
| |
| /* The SH has two sorts of general registers, R0 and the rest. R0 can |
| be used as the destination of some of the arithmetic ops. There are |
| also some special purpose registers; the T bit register, the |
| Procedure Return Register and the Multiply Accumulate Registers. */ |
| /* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by |
| reg_class_subunion. We don't want to have an actual union class |
| of these, because it would only be used when both classes are calculated |
| to give the same cost, but there is only one FPUL register. |
| Besides, regclass fails to notice the different REGISTER_MOVE_COSTS |
| applying to the actual instruction alternative considered. E.g., the |
| y/r alternative of movsi_ie is considered to have no more cost that |
| the r/r alternative, which is patently untrue. */ |
| |
| enum reg_class |
| { |
| NO_REGS, |
| R0_REGS, |
| PR_REGS, |
| T_REGS, |
| MAC_REGS, |
| FPUL_REGS, |
| SIBCALL_REGS, |
| GENERAL_REGS, |
| FP0_REGS, |
| FP_REGS, |
| DF_HI_REGS, |
| DF_REGS, |
| FPSCR_REGS, |
| GENERAL_FP_REGS, |
| TARGET_REGS, |
| ALL_REGS, |
| LIM_REG_CLASSES |
| }; |
| |
| #define N_REG_CLASSES (int) LIM_REG_CLASSES |
| |
| /* Give names of register classes as strings for dump file. */ |
| #define REG_CLASS_NAMES \ |
| { \ |
| "NO_REGS", \ |
| "R0_REGS", \ |
| "PR_REGS", \ |
| "T_REGS", \ |
| "MAC_REGS", \ |
| "FPUL_REGS", \ |
| "SIBCALL_REGS", \ |
| "GENERAL_REGS", \ |
| "FP0_REGS", \ |
| "FP_REGS", \ |
| "DF_HI_REGS", \ |
| "DF_REGS", \ |
| "FPSCR_REGS", \ |
| "GENERAL_FP_REGS", \ |
| "TARGET_REGS", \ |
| "ALL_REGS", \ |
| } |
| |
| /* Define which registers fit in which classes. |
| This is an initializer for a vector of HARD_REG_SET |
| of length N_REG_CLASSES. */ |
| |
| #define REG_CLASS_CONTENTS \ |
| { \ |
| /* NO_REGS: */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \ |
| /* R0_REGS: */ \ |
| { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \ |
| /* PR_REGS: */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, \ |
| /* T_REGS: */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 }, \ |
| /* MAC_REGS: */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 }, \ |
| /* FPUL_REGS: */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0x00400000 }, \ |
| /* SIBCALL_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \ |
| /* GENERAL_REGS: */ \ |
| { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x01020000 }, \ |
| /* FP0_REGS: */ \ |
| { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 }, \ |
| /* FP_REGS: */ \ |
| { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \ |
| /* DF_HI_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \ |
| { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \ |
| /* DF_REGS: */ \ |
| { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \ |
| /* FPSCR_REGS: */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 }, \ |
| /* GENERAL_FP_REGS: */ \ |
| { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0102ff00 }, \ |
| /* TARGET_REGS: */ \ |
| { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff }, \ |
| /* ALL_REGS: */ \ |
| { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x01ffffff }, \ |
| } |
| |
| /* The same information, inverted: |
| Return the class number of the smallest class containing |
| reg number REGNO. This could be a conditional expression |
| or could index an array. */ |
| |
| extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER]; |
| #define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)] |
| |
| /* When defined, the compiler allows registers explicitly used in the |
| rtl to be used as spill registers but prevents the compiler from |
| extending the lifetime of these registers. */ |
| |
| #define SMALL_REGISTER_CLASSES (! TARGET_SHMEDIA) |
| |
| /* The order in which register should be allocated. */ |
| /* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo, |
| and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be |
| spilled or used otherwise, we better have the FP_REGS allocated first. */ |
| #define REG_ALLOC_ORDER \ |
| {/* Caller-saved FPRs */ \ |
| 65, 66, 67, 68, 69, 70, 71, 64, \ |
| 72, 73, 74, 75, 80, 81, 82, 83, \ |
| 84, 85, 86, 87, 88, 89, 90, 91, \ |
| 92, 93, 94, 95, 96, 97, 98, 99, \ |
| /* Callee-saved FPRs */ \ |
| 76, 77, 78, 79,100,101,102,103, \ |
| 104,105,106,107,108,109,110,111, \ |
| 112,113,114,115,116,117,118,119, \ |
| 120,121,122,123,124,125,126,127, \ |
| 136,137,138,139,140,141,142,143, \ |
| /* FPSCR */ 151, \ |
| /* Caller-saved GPRs (except 8/9 on SH1-4) */ \ |
| 1, 2, 3, 7, 6, 5, 4, 0, \ |
| 8, 9, 17, 19, 20, 21, 22, 23, \ |
| 36, 37, 38, 39, 40, 41, 42, 43, \ |
| 60, 61, 62, \ |
| /* SH1-4 callee-saved saved GPRs / SH5 partially-saved GPRs */ \ |
| 10, 11, 12, 13, 14, 18, \ |
| /* SH5 callee-saved GPRs */ \ |
| 28, 29, 30, 31, 32, 33, 34, 35, \ |
| 44, 45, 46, 47, 48, 49, 50, 51, \ |
| 52, 53, 54, 55, 56, 57, 58, 59, \ |
| /* FPUL */ 150, \ |
| /* SH5 branch target registers */ \ |
| 128,129,130,131,132,133,134,135, \ |
| /* Fixed registers */ \ |
| 15, 16, 24, 25, 26, 27, 63,144, \ |
| 145,146,147,148,149,152 } |
| |
| /* The class value for index registers, and the one for base regs. */ |
| #define INDEX_REG_CLASS (TARGET_SHMEDIA ? GENERAL_REGS : R0_REGS) |
| #define BASE_REG_CLASS GENERAL_REGS |
| |
| /* Get reg_class from a letter such as appears in the machine |
| description. */ |
| extern enum reg_class reg_class_from_letter[]; |
| |
| /* We might use 'Rxx' constraints in the future for exotic reg classes.*/ |
| #define REG_CLASS_FROM_CONSTRAINT(C, STR) \ |
| (ISLOWER (C) ? reg_class_from_letter[(C)-'a'] : NO_REGS ) |
| |
| /* Overview of uppercase letter constraints: |
| A: Addresses (constraint len == 3) |
| Ac4: sh4 cache operations |
| Ac5: sh5 cache operations |
| Bxx: miscellaneous constraints |
| Bsc: SCRATCH - for the scratch register in movsi_ie in the |
| fldi0 / fldi0 cases |
| C: Constants other than only CONST_INT (constraint len == 3) |
| C16: 16 bit constant, literal or symbolic |
| Csy: label or symbol |
| Cpg: non-explicit constants that can be directly loaded into a general |
| purpose register in PIC code. like 's' except we don't allow |
| PIC_DIRECT_ADDR_P |
| IJKLMNOP: CONT_INT constants |
| Ixx: signed xx bit |
| J16: 0xffffffff00000000 | 0x00000000ffffffff |
| Kxx: unsigned xx bit |
| M: 1 |
| N: 0 |
| P27: 1 | 2 | 8 | 16 |
| Q: pc relative load operand |
| Rxx: reserved for exotic register classes. |
| S: extra memory (storage) constraints (constraint len == 3) |
| Sua: unaligned memory operations |
| W: vector |
| Z: zero in any mode |
| |
| unused CONST_INT constraint letters: LO |
| unused EXTRA_CONSTRAINT letters: D T U Y */ |
| |
| #if 1 /* check that the transition went well. */ |
| #define CONSTRAINT_LEN(C,STR) \ |
| (((C) == 'L' || (C) == 'O' || (C) == 'D' || (C) == 'T' || (C) == 'U' \ |
| || (C) == 'Y' \ |
| || ((C) == 'I' \ |
| && (((STR)[1] != '0' && (STR)[1] != '1') \ |
| || (STR)[2] < '0' || (STR)[2] > '9')) \ |
| || ((C) == 'B' && ((STR)[1] != 's' || (STR)[2] != 'c')) \ |
| || ((C) == 'J' && ((STR)[1] != '1' || (STR)[2] != '6')) \ |
| || ((C) == 'K' && ((STR)[1] != '0' || (STR)[2] != '8')) \ |
| || ((C) == 'P' && ((STR)[1] != '2' || (STR)[2] != '7'))) \ |
| ? -1 \ |
| : ((C) == 'A' || (C) == 'B' || (C) == 'C' \ |
| || (C) == 'I' || (C) == 'J' || (C) == 'K' || (C) == 'P' \ |
| || (C) == 'R' || (C) == 'S') \ |
| ? 3 \ |
| : DEFAULT_CONSTRAINT_LEN ((C), (STR))) |
| #else |
| #define CONSTRAINT_LEN(C,STR) \ |
| (((C) == 'A' || (C) == 'B' || (C) == 'C' \ |
| || (C) == 'I' || (C) == 'J' || (C) == 'K' || (C) == 'P' \ |
| || (C) == 'R' || (C) == 'S') \ |
| ? 3 : DEFAULT_CONSTRAINT_LEN ((C), (STR))) |
| #endif |
| |
| /* The letters I, J, K, L and M in a register constraint string |
| can be used to stand for particular ranges of immediate operands. |
| This macro defines what the ranges are. |
| C is the letter, and VALUE is a constant value. |
| Return 1 if VALUE is in the range specified by C. |
| I08: arithmetic operand -127..128, as used in add, sub, etc |
| I16: arithmetic operand -32768..32767, as used in SHmedia movi and shori |
| P27: shift operand 1,2,8 or 16 |
| K08: logical operand 0..255, as used in and, or, etc. |
| M: constant 1 |
| N: constant 0 |
| I06: arithmetic operand -32..31, as used in SHmedia beqi, bnei and xori |
| I10: arithmetic operand -512..511, as used in SHmedia andi, ori |
| */ |
| |
| #define CONST_OK_FOR_I06(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32 \ |
| && ((HOST_WIDE_INT)(VALUE)) <= 31) |
| #define CONST_OK_FOR_I08(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \ |
| && ((HOST_WIDE_INT)(VALUE)) <= 127) |
| #define CONST_OK_FOR_I10(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -512 \ |
| && ((HOST_WIDE_INT)(VALUE)) <= 511) |
| #define CONST_OK_FOR_I16(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32768 \ |
| && ((HOST_WIDE_INT)(VALUE)) <= 32767) |
| #define CONST_OK_FOR_I(VALUE, STR) \ |
| ((STR)[1] == '0' && (STR)[2] == 6 ? CONST_OK_FOR_I06 (VALUE) \ |
| : (STR)[1] == '0' && (STR)[2] == '8' ? CONST_OK_FOR_I08 (VALUE) \ |
| : (STR)[1] == '1' && (STR)[2] == '0' ? CONST_OK_FOR_I10 (VALUE) \ |
| : (STR)[1] == '1' && (STR)[2] == '6' ? CONST_OK_FOR_I16 (VALUE) \ |
| : 0) |
| |
| #define CONST_OK_FOR_J16(VALUE) \ |
| (HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) 0xffffffff \ |
| || (HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) -1 << 32)) |
| #define CONST_OK_FOR_J(VALUE, STR) \ |
| ((STR)[1] == '1' && (STR)[2] == '6' ? CONST_OK_FOR_J16 (VALUE) \ |
| : 0) |
| |
| #define CONST_OK_FOR_K08(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \ |
| && ((HOST_WIDE_INT)(VALUE)) <= 255) |
| #define CONST_OK_FOR_K(VALUE, STR) \ |
| ((STR)[1] == '0' && (STR)[2] == '8' ? CONST_OK_FOR_K08 (VALUE) \ |
| : 0) |
| #define CONST_OK_FOR_P27(VALUE) \ |
| ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16) |
| #define CONST_OK_FOR_P(VALUE, STR) \ |
| ((STR)[1] == '2' && (STR)[2] == '7' ? CONST_OK_FOR_P27 (VALUE) \ |
| : 0) |
| #define CONST_OK_FOR_M(VALUE) ((VALUE)==1) |
| #define CONST_OK_FOR_N(VALUE) ((VALUE)==0) |
| #define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \ |
| ((C) == 'I' ? CONST_OK_FOR_I ((VALUE), (STR)) \ |
| : (C) == 'J' ? CONST_OK_FOR_J ((VALUE), (STR)) \ |
| : (C) == 'K' ? CONST_OK_FOR_K ((VALUE), (STR)) \ |
| : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \ |
| : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \ |
| : (C) == 'P' ? CONST_OK_FOR_P ((VALUE), (STR)) \ |
| : 0) |
| |
| /* Similar, but for floating constants, and defining letters G and H. |
| Here VALUE is the CONST_DOUBLE rtx itself. */ |
| |
| #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ |
| ((C) == 'G' ? (fp_zero_operand (VALUE) && fldi_ok ()) \ |
| : (C) == 'H' ? (fp_one_operand (VALUE) && fldi_ok ()) \ |
| : (C) == 'F') |
| |
| /* Given an rtx X being reloaded into a reg required to be |
| in class CLASS, return the class of reg to actually use. |
| In general this is just CLASS; but on some machines |
| in some cases it is preferable to use a more restrictive class. */ |
| |
| #define PREFERRED_RELOAD_CLASS(X, CLASS) \ |
| ((CLASS) == NO_REGS && TARGET_SHMEDIA \ |
| && (GET_CODE (X) == CONST_DOUBLE \ |
| || GET_CODE (X) == SYMBOL_REF) \ |
| ? GENERAL_REGS \ |
| : (CLASS)) \ |
| |
| #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \ |
| ((((REGCLASS_HAS_FP_REG (CLASS) \ |
| && (GET_CODE (X) == REG \ |
| && (GENERAL_OR_AP_REGISTER_P (REGNO (X)) \ |
| || (FP_REGISTER_P (REGNO (X)) && (MODE) == SImode \ |
| && TARGET_FMOVD)))) \ |
| || (REGCLASS_HAS_GENERAL_REG (CLASS) \ |
| && GET_CODE (X) == REG \ |
| && FP_REGISTER_P (REGNO (X)))) \ |
| && ! TARGET_SHMEDIA \ |
| && ((MODE) == SFmode || (MODE) == SImode)) \ |
| ? FPUL_REGS \ |
| : (((CLASS) == FPUL_REGS \ |
| || (REGCLASS_HAS_FP_REG (CLASS) \ |
| && ! TARGET_SHMEDIA && MODE == SImode)) \ |
| && (GET_CODE (X) == MEM \ |
| || (GET_CODE (X) == REG \ |
| && (REGNO (X) >= FIRST_PSEUDO_REGISTER \ |
| || REGNO (X) == T_REG \ |
| || system_reg_operand (X, VOIDmode))))) \ |
| ? GENERAL_REGS \ |
| : ((CLASS) == TARGET_REGS \ |
| || (TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS)) \ |
| ? ((target_operand ((X), (MODE)) \ |
| && ! target_reg_operand ((X), (MODE))) \ |
| ? NO_REGS : GENERAL_REGS) \ |
| : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS) \ |
| && GET_CODE (X) == REG && ! GENERAL_REGISTER_P (REGNO (X)) \ |
| && (CLASS) != REGNO_REG_CLASS (REGNO (X))) \ |
| ? GENERAL_REGS \ |
| : ((CLASS) != GENERAL_REGS && GET_CODE (X) == REG \ |
| && TARGET_REGISTER_P (REGNO (X))) \ |
| ? GENERAL_REGS : NO_REGS) |
| |
| #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \ |
| ((REGCLASS_HAS_FP_REG (CLASS) \ |
| && ! TARGET_SHMEDIA \ |
| && immediate_operand ((X), (MODE)) \ |
| && ! ((fp_zero_operand (X) || fp_one_operand (X)) \ |
| && (MODE) == SFmode && fldi_ok ())) \ |
| ? R0_REGS \ |
| : (CLASS == FPUL_REGS \ |
| && ((GET_CODE (X) == REG \ |
| && (REGNO (X) == MACL_REG || REGNO (X) == MACH_REG \ |
| || REGNO (X) == T_REG)) \ |
| || GET_CODE (X) == PLUS)) \ |
| ? GENERAL_REGS \ |
| : CLASS == FPUL_REGS && immediate_operand ((X), (MODE)) \ |
| ? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I08 (INTVAL (X)) \ |
| ? GENERAL_REGS \ |
| : R0_REGS) \ |
| : (CLASS == FPSCR_REGS \ |
| && ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER) \ |
| || (GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)))\ |
| ? GENERAL_REGS \ |
| : (REGCLASS_HAS_FP_REG (CLASS) \ |
| && TARGET_SHMEDIA \ |
| && immediate_operand ((X), (MODE)) \ |
| && (X) != CONST0_RTX (GET_MODE (X)) \ |
| && GET_MODE (X) != V4SFmode) \ |
| ? GENERAL_REGS \ |
| : SECONDARY_OUTPUT_RELOAD_CLASS((CLASS),(MODE),(X))) |
| |
| /* Return the maximum number of consecutive registers |
| needed to represent mode MODE in a register of class CLASS. |
| |
| If TARGET_SHMEDIA, we need two FP registers per word. |
| Otherwise we will need at most one register per word. */ |
| #define CLASS_MAX_NREGS(CLASS, MODE) \ |
| (TARGET_SHMEDIA \ |
| && TEST_HARD_REG_BIT (reg_class_contents[CLASS], FIRST_FP_REG) \ |
| ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2) \ |
| : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) |
| |
| /* If defined, gives a class of registers that cannot be used as the |
| operand of a SUBREG that changes the mode of the object illegally. */ |
| /* ??? We need to renumber the internal numbers for the frnn registers |
| when in little endian in order to allow mode size changes. */ |
| |
| #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ |
| sh_cannot_change_mode_class (FROM, TO, CLASS) |
| |
| /* Stack layout; function entry, exit and calling. */ |
| |
| /* Define the number of registers that can hold parameters. |
| These macros are used only in other macro definitions below. */ |
| |
| #define NPARM_REGS(MODE) \ |
| (TARGET_FPU_ANY && (MODE) == SFmode \ |
| ? (TARGET_SH5 ? 12 : 8) \ |
| : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \ |
| || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \ |
| ? (TARGET_SH5 ? 12 : 8) \ |
| : (TARGET_SH5 ? 8 : 4)) |
| |
| #define FIRST_PARM_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 4)) |
| #define FIRST_RET_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 0)) |
| |
| #define FIRST_FP_PARM_REG (FIRST_FP_REG + (TARGET_SH5 ? 0 : 4)) |
| #define FIRST_FP_RET_REG FIRST_FP_REG |
| |
| /* Define this if pushing a word on the stack |
| makes the stack pointer a smaller address. */ |
| #define STACK_GROWS_DOWNWARD |
| |
| /* Define this macro if the addresses of local variable slots are at |
| negative offsets from the frame pointer. |
| |
| The SH only has positive indexes, so grow the frame up. */ |
| /* #define FRAME_GROWS_DOWNWARD */ |
| |
| /* Offset from the frame pointer to the first local variable slot to |
| be allocated. */ |
| #define STARTING_FRAME_OFFSET 0 |
| |
| /* If we generate an insn to push BYTES bytes, |
| this says how many the stack pointer really advances by. */ |
| /* Don't define PUSH_ROUNDING, since the hardware doesn't do this. |
| When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to |
| do correct alignment. */ |
| #if 0 |
| #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3) |
| #endif |
| |
| /* Offset of first parameter from the argument pointer register value. */ |
| #define FIRST_PARM_OFFSET(FNDECL) 0 |
| |
| /* Value is the number of byte of arguments automatically |
| popped when returning from a subroutine call. |
| FUNDECL is the declaration node of the function (as a tree), |
| FUNTYPE is the data type of the function (as a tree), |
| or for a library call it is an identifier node for the subroutine name. |
| SIZE is the number of bytes of arguments passed on the stack. |
| |
| On the SH, the caller does not pop any of its arguments that were passed |
| on the stack. */ |
| #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 |
| |
| /* Value is the number of bytes of arguments automatically popped when |
| calling a subroutine. |
| CUM is the accumulated argument list. |
| |
| On SHcompact, the call trampoline pops arguments off the stack. */ |
| #define CALL_POPS_ARGS(CUM) (TARGET_SHCOMPACT ? (CUM).stack_regs * 8 : 0) |
| |
| /* Nonzero if we do not know how to pass TYPE solely in registers. |
| Values that come in registers with inconvenient padding are stored |
| to memory at the function start. */ |
| |
| #define MUST_PASS_IN_STACK(MODE,TYPE) \ |
| ((TYPE) != 0 \ |
| && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \ |
| || TREE_ADDRESSABLE (TYPE))) |
| /* Some subroutine macros specific to this machine. */ |
| |
| #define BASE_RETURN_VALUE_REG(MODE) \ |
| ((TARGET_FPU_ANY && ((MODE) == SFmode)) \ |
| ? FIRST_FP_RET_REG \ |
| : TARGET_FPU_ANY && (MODE) == SCmode \ |
| ? FIRST_FP_RET_REG \ |
| : (TARGET_FPU_DOUBLE \ |
| && ((MODE) == DFmode || (MODE) == SFmode \ |
| || (MODE) == DCmode || (MODE) == SCmode )) \ |
| ? FIRST_FP_RET_REG \ |
| : FIRST_RET_REG) |
| |
| #define BASE_ARG_REG(MODE) \ |
| ((TARGET_SH2E && ((MODE) == SFmode)) \ |
| ? FIRST_FP_PARM_REG \ |
| : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \ |
| || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\ |
| ? FIRST_FP_PARM_REG \ |
| : FIRST_PARM_REG) |
| |
| /* Define how to find the value returned by a function. |
| VALTYPE is the data type of the value (as a tree). |
| If the precise function being called is known, FUNC is its FUNCTION_DECL; |
| otherwise, FUNC is 0. |
| For the SH, this is like LIBCALL_VALUE, except that we must change the |
| mode like PROMOTE_MODE does. |
| ??? PROMOTE_MODE is ignored for non-scalar types. The set of types |
| tested here has to be kept in sync with the one in explow.c:promote_mode. */ |
| |
| #define FUNCTION_VALUE(VALTYPE, FUNC) \ |
| gen_rtx (REG, \ |
| ((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT \ |
| && GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < UNITS_PER_WORD \ |
| && (TREE_CODE (VALTYPE) == INTEGER_TYPE \ |
| || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \ |
| || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \ |
| || TREE_CODE (VALTYPE) == CHAR_TYPE \ |
| || TREE_CODE (VALTYPE) == REAL_TYPE \ |
| || TREE_CODE (VALTYPE) == OFFSET_TYPE)) \ |
| && sh_promote_prototypes (VALTYPE) \ |
| ? (TARGET_SHMEDIA ? DImode : SImode) : TYPE_MODE (VALTYPE)), \ |
| BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE))) |
| |
| /* Define how to find the value returned by a library function |
| assuming the value has mode MODE. */ |
| #define LIBCALL_VALUE(MODE) \ |
| gen_rtx_REG ((MODE), BASE_RETURN_VALUE_REG (MODE)); |
| |
| /* 1 if N is a possible register number for a function value. */ |
| #define FUNCTION_VALUE_REGNO_P(REGNO) \ |
| ((REGNO) == FIRST_RET_REG || (TARGET_SH2E && (REGNO) == FIRST_FP_RET_REG) \ |
| || (TARGET_SHMEDIA_FPU && (REGNO) == FIRST_FP_RET_REG)) |
| |
| /* 1 if N is a possible register number for function argument passing. */ |
| /* ??? There are some callers that pass REGNO as int, and others that pass |
| it as unsigned. We get warnings unless we do casts everywhere. */ |
| #define FUNCTION_ARG_REGNO_P(REGNO) \ |
| (((unsigned) (REGNO) >= (unsigned) FIRST_PARM_REG \ |
| && (unsigned) (REGNO) < (unsigned) (FIRST_PARM_REG + NPARM_REGS (SImode)))\ |
| || (TARGET_FPU_ANY \ |
| && (unsigned) (REGNO) >= (unsigned) FIRST_FP_PARM_REG \ |
| && (unsigned) (REGNO) < (unsigned) (FIRST_FP_PARM_REG \ |
| + NPARM_REGS (SFmode)))) |
| |
| /* Define a data type for recording info about an argument list |
| during the scan of that argument list. This data type should |
| hold all necessary information about the function itself |
| and about the args processed so far, enough to enable macros |
| such as FUNCTION_ARG to determine where the next arg should go. |
| |
| On SH, this is a single integer, which is a number of words |
| of arguments scanned so far (including the invisible argument, |
| if any, which holds the structure-value-address). |
| Thus NARGREGS or more means all following args should go on the stack. */ |
| |
| enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 }; |
| struct sh_args { |
| int arg_count[2]; |
| int force_mem; |
| /* Nonzero if a prototype is available for the function. */ |
| int prototype_p; |
| /* The number of an odd floating-point register, that should be used |
| for the next argument of type float. */ |
| int free_single_fp_reg; |
| /* Whether we're processing an outgoing function call. */ |
| int outgoing; |
| /* The number of general-purpose registers that should have been |
| used to pass partial arguments, that are passed totally on the |
| stack. On SHcompact, a call trampoline will pop them off the |
| stack before calling the actual function, and, if the called |
| function is implemented in SHcompact mode, the incoming arguments |
| decoder will push such arguments back onto the stack. For |
| incoming arguments, STACK_REGS also takes into account other |
| arguments passed by reference, that the decoder will also push |
| onto the stack. */ |
| int stack_regs; |
| /* The number of general-purpose registers that should have been |
| used to pass arguments, if the arguments didn't have to be passed |
| by reference. */ |
| int byref_regs; |
| /* Set by SHCOMPACT_BYREF if the current argument is to be passed by |
| reference. */ |
| int byref; |
| |
| /* call_cookie is a bitmask used by call expanders, as well as |
| function prologue and epilogues, to allow SHcompact to comply |
| with the SH5 32-bit ABI, that requires 64-bit registers to be |
| used even though only the lower 32-bit half is visible in |
| SHcompact mode. The strategy is to call SHmedia trampolines. |
| |
| The alternatives for each of the argument-passing registers are |
| (a) leave it unchanged; (b) pop it off the stack; (c) load its |
| contents from the address in it; (d) add 8 to it, storing the |
| result in the next register, then (c); (e) copy it from some |
| floating-point register, |
| |
| Regarding copies from floating-point registers, r2 may only be |
| copied from dr0. r3 may be copied from dr0 or dr2. r4 maybe |
| copied from dr0, dr2 or dr4. r5 maybe copied from dr0, dr2, |
| dr4 or dr6. r6 may be copied from dr0, dr2, dr4, dr6 or dr8. |
| r7 through to r9 may be copied from dr0, dr2, dr4, dr8, dr8 or |
| dr10. |
| |
| The bit mask is structured as follows: |
| |
| - 1 bit to tell whether to set up a return trampoline. |
| |
| - 3 bits to count the number consecutive registers to pop off the |
| stack. |
| |
| - 4 bits for each of r9, r8, r7 and r6. |
| |
| - 3 bits for each of r5, r4, r3 and r2. |
| |
| - 3 bits set to 0 (the most significant ones) |
| |
| 3 2 1 0 |
| 1098 7654 3210 9876 5432 1098 7654 3210 |
| FLPF LPFL PFLP FFLP FFLP FFLP FFLP SSST |
| 2223 3344 4555 6666 7777 8888 9999 SSS- |
| |
| - If F is set, the register must be copied from an FP register, |
| whose number is encoded in the remaining bits. |
| |
| - Else, if L is set, the register must be loaded from the address |
| contained in it. If the P bit is *not* set, the address of the |
| following dword should be computed first, and stored in the |
| following register. |
| |
| - Else, if P is set, the register alone should be popped off the |
| stack. |
| |
| - After all this processing, the number of registers represented |
| in SSS will be popped off the stack. This is an optimization |
| for pushing/popping consecutive registers, typically used for |
| varargs and large arguments partially passed in registers. |
| |
| - If T is set, a return trampoline will be set up for 64-bit |
| return values to be split into 2 32-bit registers. */ |
| #define CALL_COOKIE_RET_TRAMP_SHIFT 0 |
| #define CALL_COOKIE_RET_TRAMP(VAL) ((VAL) << CALL_COOKIE_RET_TRAMP_SHIFT) |
| #define CALL_COOKIE_STACKSEQ_SHIFT 1 |
| #define CALL_COOKIE_STACKSEQ(VAL) ((VAL) << CALL_COOKIE_STACKSEQ_SHIFT) |
| #define CALL_COOKIE_STACKSEQ_GET(COOKIE) \ |
| (((COOKIE) >> CALL_COOKIE_STACKSEQ_SHIFT) & 7) |
| #define CALL_COOKIE_INT_REG_SHIFT(REG) \ |
| (4 * (7 - (REG)) + (((REG) <= 2) ? ((REG) - 2) : 1) + 3) |
| #define CALL_COOKIE_INT_REG(REG, VAL) \ |
| ((VAL) << CALL_COOKIE_INT_REG_SHIFT (REG)) |
| #define CALL_COOKIE_INT_REG_GET(COOKIE, REG) \ |
| (((COOKIE) >> CALL_COOKIE_INT_REG_SHIFT (REG)) & ((REG) < 4 ? 7 : 15)) |
| long call_cookie; |
| |
| /* This is set to nonzero when the call in question must use the Renesas ABI, |
| even without the -mrenesas option. */ |
| int renesas_abi; |
| }; |
| |
| #define CUMULATIVE_ARGS struct sh_args |
| |
| #define GET_SH_ARG_CLASS(MODE) \ |
| ((TARGET_FPU_ANY && (MODE) == SFmode) \ |
| ? SH_ARG_FLOAT \ |
| /* There's no mention of complex float types in the SH5 ABI, so we |
| should presumably handle them as aggregate types. */ \ |
| : TARGET_SH5 && GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \ |
| ? SH_ARG_INT \ |
| : TARGET_FPU_DOUBLE && (GET_MODE_CLASS (MODE) == MODE_FLOAT \ |
| || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \ |
| ? SH_ARG_FLOAT : SH_ARG_INT) |
| |
| #define ROUND_ADVANCE(SIZE) \ |
| (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) |
| |
| /* Round a register number up to a proper boundary for an arg of mode |
| MODE. |
| |
| The SH doesn't care about double alignment, so we only |
| round doubles to even regs when asked to explicitly. */ |
| |
| #define ROUND_REG(CUM, MODE) \ |
| (((TARGET_ALIGN_DOUBLE \ |
| || (TARGET_SH4 && ((MODE) == DFmode || (MODE) == DCmode) \ |
| && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\ |
| && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \ |
| ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \ |
| + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1)) \ |
| : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)]) |
| |
| /* Initialize a variable CUM of type CUMULATIVE_ARGS |
| for a call to a function whose data type is FNTYPE. |
| For a library call, FNTYPE is 0. |
| |
| On SH, the offset always starts at 0: the first parm reg is always |
| the same reg for a given argument class. |
| |
| For TARGET_HITACHI, the structure value pointer is passed in memory. */ |
| |
| #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ |
| do { \ |
| (CUM).arg_count[(int) SH_ARG_INT] = 0; \ |
| (CUM).arg_count[(int) SH_ARG_FLOAT] = 0; \ |
| (CUM).renesas_abi = sh_attr_renesas_p (FNTYPE) ? 1 : 0; \ |
| (CUM).force_mem \ |
| = ((TARGET_HITACHI || (CUM).renesas_abi) && (FNTYPE) \ |
| && aggregate_value_p (TREE_TYPE (FNTYPE), (FNDECL))); \ |
| (CUM).prototype_p = (FNTYPE) && TYPE_ARG_TYPES (FNTYPE); \ |
| (CUM).arg_count[(int) SH_ARG_INT] \ |
| = (TARGET_SH5 && (FNTYPE) \ |
| && aggregate_value_p (TREE_TYPE (FNTYPE), (FNDECL))); \ |
| (CUM).free_single_fp_reg = 0; \ |
| (CUM).outgoing = 1; \ |
| (CUM).stack_regs = 0; \ |
| (CUM).byref_regs = 0; \ |
| (CUM).byref = 0; \ |
| (CUM).call_cookie \ |
| = (CALL_COOKIE_RET_TRAMP \ |
| (TARGET_SHCOMPACT && (FNTYPE) \ |
| && (CUM).arg_count[(int) SH_ARG_INT] == 0 \ |
| && (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \ |
| ? int_size_in_bytes (TREE_TYPE (FNTYPE)) \ |
| : GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (FNTYPE)))) > 4 \ |
| && (BASE_RETURN_VALUE_REG (TYPE_MODE (TREE_TYPE \ |
| (FNTYPE))) \ |
| == FIRST_RET_REG))); \ |
| } while (0) |
| |
| #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \ |
| do { \ |
| INIT_CUMULATIVE_ARGS ((CUM), NULL_TREE, (LIBNAME), 0, 0); \ |
| (CUM).call_cookie \ |
| = (CALL_COOKIE_RET_TRAMP \ |
| (TARGET_SHCOMPACT && GET_MODE_SIZE (MODE) > 4 \ |
| && BASE_RETURN_VALUE_REG (MODE) == FIRST_RET_REG)); \ |
| } while (0) |
| |
| #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \ |
| do { \ |
| INIT_CUMULATIVE_ARGS ((CUM), (FNTYPE), (LIBNAME), 0, 0); \ |
| (CUM).outgoing = 0; \ |
| } while (0) |
| |
| #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ |
| sh_function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED)) |
| #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ |
| sh_function_arg (&(CUM), (MODE), (TYPE), (NAMED)) |
| |
| /* Return boolean indicating arg of mode MODE will be passed in a reg. |
| This macro is only used in this file. */ |
| |
| #define PASS_IN_REG_P(CUM, MODE, TYPE) \ |
| (((TYPE) == 0 \ |
| || (! TREE_ADDRESSABLE ((tree)(TYPE)) \ |
| && (! (TARGET_HITACHI || (CUM).renesas_abi) \ |
| || ! (AGGREGATE_TYPE_P (TYPE) \ |
| || (!TARGET_FPU_ANY \ |
| && (GET_MODE_CLASS (MODE) == MODE_FLOAT \ |
| && GET_MODE_SIZE (MODE) > GET_MODE_SIZE (SFmode))))))) \ |
| && ! (CUM).force_mem \ |
| && (TARGET_SH2E \ |
| ? ((MODE) == BLKmode \ |
| ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \ |
| + int_size_in_bytes (TYPE)) \ |
| <= NPARM_REGS (SImode) * UNITS_PER_WORD) \ |
| : ((ROUND_REG((CUM), (MODE)) \ |
| + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \ |
| <= NPARM_REGS (MODE))) \ |
| : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE))) |
| |
| /* By accident we got stuck with passing SCmode on SH4 little endian |
| in two registers that are nominally successive - which is different from |
| two single SFmode values, where we take endianness translation into |
| account. That does not work at all if an odd number of registers is |
| already in use, so that got fixed, but library functions are still more |
| likely to use complex numbers without mixing them with SFmode arguments |
| (which in C would have to be structures), so for the sake of ABI |
| compatibility the way SCmode values are passed when an even number of |
| FP registers is in use remains different from a pair of SFmode values for |
| now. |
| I.e.: |
| foo (double); a: fr5,fr4 |
| foo (float a, float b); a: fr5 b: fr4 |
| foo (__complex float a); a.real fr4 a.imag: fr5 - for consistency, |
| this should be the other way round... |
| foo (float a, __complex float b); a: fr5 b.real: fr4 b.imag: fr7 */ |
| #define FUNCTION_ARG_SCmode_WART 1 |
| |
| /* Whether an argument must be passed by reference. On SHcompact, we |
| pretend arguments wider than 32-bits that would have been passed in |
| registers are passed by reference, so that an SHmedia trampoline |
| loads them into the full 64-bits registers. */ |
| #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM,MODE,TYPE,NAMED) \ |
| (MUST_PASS_IN_STACK ((MODE), (TYPE)) \ |
| || SHCOMPACT_BYREF ((CUM), (MODE), (TYPE), (NAMED))) |
| |
| #define SHCOMPACT_BYREF(CUM, MODE, TYPE, NAMED) \ |
| ((CUM).byref \ |
| = (TARGET_SHCOMPACT \ |
| && (CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \ |
| && (! (NAMED) || GET_SH_ARG_CLASS (MODE) == SH_ARG_INT \ |
| || (GET_SH_ARG_CLASS (MODE) == SH_ARG_FLOAT \ |
| && ((CUM).arg_count[(int) SH_ARG_FLOAT] \ |
| >= NPARM_REGS (SFmode)))) \ |
| && ((MODE) == BLKmode ? int_size_in_bytes (TYPE) \ |
| : GET_MODE_SIZE (MODE)) > 4 \ |
| && ! SHCOMPACT_FORCE_ON_STACK ((MODE), (TYPE)) \ |
| && ! SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE), \ |
| (TYPE), (NAMED))) \ |
| ? ((MODE) == BLKmode ? int_size_in_bytes (TYPE) \ |
| : GET_MODE_SIZE (MODE)) \ |
| : 0) |
| |
| /* If an argument of size 5, 6 or 7 bytes is to be passed in a 64-bit |
| register in SHcompact mode, it must be padded in the most |
| significant end. This means that passing it by reference wouldn't |
| pad properly on a big-endian machine. In this particular case, we |
| pass this argument on the stack, in a way that the call trampoline |
| will load its value into the appropriate register. */ |
| #define SHCOMPACT_FORCE_ON_STACK(MODE,TYPE) \ |
| ((MODE) == BLKmode \ |
| && TARGET_SHCOMPACT \ |
| && ! TARGET_LITTLE_ENDIAN \ |
| && int_size_in_bytes (TYPE) > 4 \ |
| && int_size_in_bytes (TYPE) < 8) |
| |
| /* Minimum alignment for an argument to be passed by callee-copy |
| reference. We need such arguments to be aligned to 8 byte |
| boundaries, because they'll be loaded using quad loads. */ |
| #define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT) |
| |
| #define FUNCTION_ARG_CALLEE_COPIES(CUM,MODE,TYPE,NAMED) \ |
| ((CUM).outgoing \ |
| && (((MODE) == BLKmode ? TYPE_ALIGN (TYPE) \ |
| : GET_MODE_ALIGNMENT (MODE)) \ |
| % SH_MIN_ALIGN_FOR_CALLEE_COPY == 0)) |
| |
| /* The SH5 ABI requires floating-point arguments to be passed to |
| functions without a prototype in both an FP register and a regular |
| register or the stack. When passing the argument in both FP and |
| general-purpose registers, list the FP register first. */ |
| #define SH5_PROTOTYPELESS_FLOAT_ARG(CUM,MODE) \ |
| (gen_rtx_PARALLEL \ |
| ((MODE), \ |
| gen_rtvec (2, \ |
| gen_rtx_EXPR_LIST \ |
| (VOIDmode, \ |
| ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \ |
| ? gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \ |
| + (CUM).arg_count[(int) SH_ARG_FLOAT]) \ |
| : NULL_RTX), \ |
| const0_rtx), \ |
| gen_rtx_EXPR_LIST \ |
| (VOIDmode, \ |
| ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \ |
| ? gen_rtx_REG ((MODE), FIRST_PARM_REG \ |
| + (CUM).arg_count[(int) SH_ARG_INT]) \ |
| : gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \ |
| + (CUM).arg_count[(int) SH_ARG_FLOAT])), \ |
| const0_rtx)))) |
| |
| /* The SH5 ABI requires regular registers or stack slots to be |
| reserved for floating-point arguments. Registers are taken care of |
| in FUNCTION_ARG_ADVANCE, but stack slots must be reserved here. |
| Unfortunately, there's no way to just reserve a stack slot, so |
| we'll end up needlessly storing a copy of the argument in the |
| stack. For incoming arguments, however, the PARALLEL will be |
| optimized to the register-only form, and the value in the stack |
| slot won't be used at all. */ |
| #define SH5_PROTOTYPED_FLOAT_ARG(CUM,MODE,REG) \ |
| ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \ |
| ? gen_rtx_REG ((MODE), (REG)) \ |
| : gen_rtx_PARALLEL ((MODE), \ |
| gen_rtvec (2, \ |
| gen_rtx_EXPR_LIST \ |
| (VOIDmode, NULL_RTX, \ |
| const0_rtx), \ |
| gen_rtx_EXPR_LIST \ |
| (VOIDmode, gen_rtx_REG ((MODE), \ |
| (REG)), \ |
| const0_rtx)))) |
| |
| /* For an arg passed partly in registers and partly in memory, |
| this is the number of registers used. |
| For args passed entirely in registers or entirely in memory, zero. |
| |
| We sometimes split args. */ |
| |
| #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ |
| ((! TARGET_SH5 \ |
| && PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \ |
| && ! TARGET_SH4 \ |
| && (ROUND_REG ((CUM), (MODE)) \ |
| + ((MODE) != BLKmode \ |
| ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \ |
| : ROUND_ADVANCE (int_size_in_bytes (TYPE))) \ |
| > NPARM_REGS (MODE))) \ |
| ? NPARM_REGS (MODE) - ROUND_REG ((CUM), (MODE)) \ |
| : (SH5_WOULD_BE_PARTIAL_NREGS ((CUM), (MODE), (TYPE), (NAMED)) \ |
| && ! TARGET_SHCOMPACT) \ |
| ? NPARM_REGS (SImode) - (CUM).arg_count[(int) SH_ARG_INT] \ |
| : 0) |
| |
| #define SH5_WOULD_BE_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ |
| (TARGET_SH5 \ |
| && ((MODE) == BLKmode || (MODE) == TImode || (MODE) == CDImode \ |
| || (MODE) == DCmode) \ |
| && ((CUM).arg_count[(int) SH_ARG_INT] \ |
| + (int_size_in_bytes (TYPE) + 7) / 8) > NPARM_REGS (SImode)) |
| |
| /* Perform any needed actions needed for a function that is receiving a |
| variable number of arguments. */ |
| |
| /* Implement `va_start' for varargs and stdarg. */ |
| #define EXPAND_BUILTIN_VA_START(valist, nextarg) \ |
| sh_va_start (valist, nextarg) |
| |
| /* Implement `va_arg'. */ |
| #define EXPAND_BUILTIN_VA_ARG(valist, type) \ |
| sh_va_arg (valist, type) |
| |
| /* Call the function profiler with a given profile label. |
| We use two .aligns, so as to make sure that both the .long is aligned |
| on a 4 byte boundary, and that the .long is a fixed distance (2 bytes) |
| from the trapa instruction. */ |
| |
| #define FUNCTION_PROFILER(STREAM,LABELNO) \ |
| { \ |
| fprintf((STREAM), "\t.align\t2\n"); \ |
| fprintf((STREAM), "\ttrapa\t#33\n"); \ |
| fprintf((STREAM), "\t.align\t2\n"); \ |
| asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \ |
| } |
| |
| /* Define this macro if the code for function profiling should come |
| before the function prologue. Normally, the profiling code comes |
| after. */ |
| |
| #define PROFILE_BEFORE_PROLOGUE |
| |
| /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, |
| the stack pointer does not matter. The value is tested only in |
| functions that have frame pointers. |
| No definition is equivalent to always zero. */ |
| |
| #define EXIT_IGNORE_STACK 1 |
| |
| /* |
| On the SH, the trampoline looks like |
| 2 0002 D202 mov.l l2,r2 |
| 1 0000 D301 mov.l l1,r3 |
| 3 0004 422B jmp @r2 |
| 4 0006 0009 nop |
| 5 0008 00000000 l1: .long area |
| 6 000c 00000000 l2: .long function */ |
| |
| /* Length in units of the trampoline for entering a nested function. */ |
| #define TRAMPOLINE_SIZE (TARGET_SHMEDIA64 ? 40 : TARGET_SH5 ? 24 : 16) |
| |
| /* Alignment required for a trampoline in bits . */ |
| #define TRAMPOLINE_ALIGNMENT \ |
| ((CACHE_LOG < 3 || (TARGET_SMALLCODE && ! TARGET_HARVARD)) ? 32 \ |
| : TARGET_SHMEDIA ? 256 : 64) |
| |
| /* Emit RTL insns to initialize the variable parts of a trampoline. |
| FNADDR is an RTX for the address of the function's pure code. |
| CXT is an RTX for the static chain value for the function. */ |
| |
| #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ |
| sh_initialize_trampoline ((TRAMP), (FNADDR), (CXT)) |
| |
| /* On SH5, trampolines are SHmedia code, so add 1 to the address. */ |
| |
| #define TRAMPOLINE_ADJUST_ADDRESS(TRAMP) do \ |
| { \ |
| if (TARGET_SHMEDIA) \ |
| (TRAMP) = expand_simple_binop (Pmode, PLUS, (TRAMP), GEN_INT (1), \ |
| gen_reg_rtx (Pmode), 0, \ |
| OPTAB_LIB_WIDEN); \ |
| } while (0) |
| |
| /* A C expression whose value is RTL representing the value of the return |
| address for the frame COUNT steps up from the current frame. |
| FRAMEADDR is already the frame pointer of the COUNT frame, so we |
| can ignore COUNT. */ |
| |
| #define RETURN_ADDR_RTX(COUNT, FRAME) \ |
| (((COUNT) == 0) ? sh_get_pr_initial_val () : (rtx) 0) |
| |
| /* A C expression whose value is RTL representing the location of the |
| incoming return address at the beginning of any function, before the |
| prologue. This RTL is either a REG, indicating that the return |
| value is saved in REG, or a MEM representing a location in |
| the stack. */ |
| #define INCOMING_RETURN_ADDR_RTX \ |
| gen_rtx_REG (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG) |
| |
| /* Addressing modes, and classification of registers for them. */ |
| #define HAVE_POST_INCREMENT TARGET_SH1 |
| #define HAVE_PRE_DECREMENT TARGET_SH1 |
| |
| #define USE_LOAD_POST_INCREMENT(mode) ((mode == SImode || mode == DImode) \ |
| ? 0 : TARGET_SH1) |
| #define USE_LOAD_PRE_DECREMENT(mode) 0 |
| #define USE_STORE_POST_INCREMENT(mode) 0 |
| #define USE_STORE_PRE_DECREMENT(mode) ((mode == SImode || mode == DImode) \ |
| ? 0 : TARGET_SH1) |
| |
| #define MOVE_BY_PIECES_P(SIZE, ALIGN) (move_by_pieces_ninsns (SIZE, ALIGN) \ |
| < (TARGET_SMALLCODE ? 2 : \ |
| ((ALIGN >= 32) ? 16 : 2))) |
| |
| /* Macros to check register numbers against specific register classes. */ |
| |
| /* These assume that REGNO is a hard or pseudo reg number. |
| They give nonzero only if REGNO is a hard reg of the suitable class |
| or a pseudo reg currently allocated to a suitable hard reg. |
| Since they use reg_renumber, they are safe only once reg_renumber |
| has been allocated, which happens in local-alloc.c. */ |
| |
| #define REGNO_OK_FOR_BASE_P(REGNO) \ |
| (GENERAL_OR_AP_REGISTER_P (REGNO) \ |
| || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)])) |
| #define REGNO_OK_FOR_INDEX_P(REGNO) \ |
| (TARGET_SHMEDIA \ |
| ? (GENERAL_REGISTER_P (REGNO) \ |
| || GENERAL_REGISTER_P ((unsigned) reg_renumber[(REGNO)])) \ |
| : (REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG) |
| |
| /* Maximum number of registers that can appear in a valid memory |
| address. */ |
| |
| #define MAX_REGS_PER_ADDRESS 2 |
| |
| /* Recognize any constant value that is a valid address. */ |
| |
| #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF) |
| |
| /* Nonzero if the constant value X is a legitimate general operand. */ |
| |
| #define LEGITIMATE_CONSTANT_P(X) \ |
| (TARGET_SHMEDIA \ |
| ? ((GET_MODE (X) != DFmode \ |
| && GET_MODE_CLASS (GET_MODE (X)) != MODE_VECTOR_FLOAT) \ |
| || (X) == CONST0_RTX (GET_MODE (X)) \ |
| || ! TARGET_SHMEDIA_FPU \ |
| || TARGET_SHMEDIA64) \ |
| : (GET_CODE (X) != CONST_DOUBLE \ |
| || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode \ |
| || (TARGET_SH2E && (fp_zero_operand (X) || fp_one_operand (X))))) |
| |
| /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx |
| and check its validity for a certain class. |
| We have two alternate definitions for each of them. |
| The usual definition accepts all pseudo regs; the other rejects |
| them unless they have been allocated suitable hard regs. |
| The symbol REG_OK_STRICT causes the latter definition to be used. */ |
| |
| #ifndef REG_OK_STRICT |
| |
| /* Nonzero if X is a hard reg that can be used as a base reg |
| or if it is a pseudo reg. */ |
| #define REG_OK_FOR_BASE_P(X) \ |
| (GENERAL_OR_AP_REGISTER_P (REGNO (X)) || REGNO (X) >= FIRST_PSEUDO_REGISTER) |
| |
| /* Nonzero if X is a hard reg that can be used as an index |
| or if it is a pseudo reg. */ |
| #define REG_OK_FOR_INDEX_P(X) \ |
| ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \ |
| : REGNO (X) == R0_REG) || REGNO (X) >= FIRST_PSEUDO_REGISTER) |
| |
| /* Nonzero if X/OFFSET is a hard reg that can be used as an index |
| or if X is a pseudo reg. */ |
| #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \ |
| ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \ |
| : REGNO (X) == R0_REG && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER) |
| |
| #else |
| |
| /* Nonzero if X is a hard reg that can be used as a base reg. */ |
| #define REG_OK_FOR_BASE_P(X) \ |
| REGNO_OK_FOR_BASE_P (REGNO (X)) |
| |
| /* Nonzero if X is a hard reg that can be used as an index. */ |
| #define REG_OK_FOR_INDEX_P(X) \ |
| REGNO_OK_FOR_INDEX_P (REGNO (X)) |
| |
| /* Nonzero if X/OFFSET is a hard reg that can be used as an index. */ |
| #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \ |
| (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0) |
| |
| #endif |
| |
| /* The 'Q' constraint is a pc relative load operand. */ |
| #define EXTRA_CONSTRAINT_Q(OP) \ |
| (GET_CODE (OP) == MEM \ |
| && ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF) \ |
| || (GET_CODE (XEXP ((OP), 0)) == CONST \ |
| && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS \ |
| && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \ |
| && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT))) |
| |
| /* Extra address constraints. */ |
| #define EXTRA_CONSTRAINT_A(OP, STR) 0 |
| |
| /* Constraint for selecting FLDI0 or FLDI1 instruction. If the clobber |
| operand is not SCRATCH (i.e. REG) then R0 is probably being |
| used, hence mova is being used, hence do not select this pattern */ |
| #define EXTRA_CONSTRAINT_Bsc(OP) (GET_CODE(OP) == SCRATCH) |
| #define EXTRA_CONSTRAINT_B(OP, STR) \ |
| ((STR)[1] == 's' && (STR)[2] == 'c' ? EXTRA_CONSTRAINT_Bsc (OP) \ |
| : 0) |
| |
| /* The `C16' constraint is a 16-bit constant, literal or symbolic. */ |
| #define EXTRA_CONSTRAINT_C16(OP) \ |
| (GET_CODE (OP) == CONST \ |
| && GET_CODE (XEXP ((OP), 0)) == SIGN_EXTEND \ |
| && GET_MODE (XEXP ((OP), 0)) == DImode \ |
| && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == TRUNCATE \ |
| && GET_MODE (XEXP (XEXP ((OP), 0), 0)) == HImode \ |
| && (MOVI_SHORI_BASE_OPERAND_P (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) \ |
| || (GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == ASHIFTRT \ |
| && (MOVI_SHORI_BASE_OPERAND_P \ |
| (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), 0))) \ |
| && GET_CODE (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), \ |
| 1)) == CONST_INT))) |
| |
| /* Check whether OP is a datalabel unspec. */ |
| #define DATALABEL_REF_NO_CONST_P(OP) \ |
| (GET_CODE (OP) == UNSPEC \ |
| && XINT ((OP), 1) == UNSPEC_DATALABEL \ |
| && XVECLEN ((OP), 0) == 1 \ |
| && (GET_CODE (XVECEXP ((OP), 0, 0)) == SYMBOL_REF \ |
| || GET_CODE (XVECEXP ((OP), 0, 0)) == LABEL_REF)) |
| |
| /* Check whether OP is a datalabel unspec, possibly enclosed within a |
| CONST. */ |
| #define DATALABEL_REF_P(OP) \ |
| ((GET_CODE (OP) == CONST && DATALABEL_REF_NO_CONST_P (XEXP ((OP), 0))) \ |
| || DATALABEL_REF_NO_CONST_P (OP)) |
| |
| #define GOT_ENTRY_P(OP) \ |
| (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \ |
| && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT) |
| |
| #define GOTPLT_ENTRY_P(OP) \ |
| (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \ |
| && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT) |
| |
| #define UNSPEC_GOTOFF_P(OP) \ |
| (GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF) |
| |
| #define GOTOFF_P(OP) \ |
| (GET_CODE (OP) == CONST \ |
| && (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \ |
| || (GET_CODE (XEXP ((OP), 0)) == PLUS \ |
| && UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \ |
| && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT))) |
| |
| #define PIC_ADDR_P(OP) \ |
| (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \ |
| && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC) |
| |
| #define PIC_OFFSET_P(OP) \ |
| (PIC_ADDR_P (OP) \ |
| && GET_CODE (XVECEXP (XEXP ((OP), 0), 0, 0)) == MINUS \ |
| && reg_mentioned_p (pc_rtx, XEXP (XVECEXP (XEXP ((OP), 0), 0, 0), 1))) |
| |
| #define PIC_DIRECT_ADDR_P(OP) \ |
| (PIC_ADDR_P (OP) && GET_CODE (XVECEXP (XEXP ((OP), 0), 0, 0)) != MINUS) |
| |
| #define NON_PIC_REFERENCE_P(OP) \ |
| (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \ |
| || DATALABEL_REF_P (OP) \ |
| || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \ |
| && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \ |
| || DATALABEL_REF_P (XEXP (XEXP ((OP), 0), 0))) \ |
| && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT)) |
| |
| #define PIC_REFERENCE_P(OP) \ |
| (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \ |
| || GOTOFF_P (OP) || PIC_ADDR_P (OP)) |
| |
| #define MOVI_SHORI_BASE_OPERAND_P(OP) \ |
| (flag_pic \ |
| ? (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) || GOTOFF_P (OP) \ |
| || PIC_OFFSET_P (OP)) \ |
| : NON_PIC_REFERENCE_P (OP)) |
| |
| /* The `Csy' constraint is a label or a symbol. */ |
| #define EXTRA_CONSTRAINT_Csy(OP) \ |
| (NON_PIC_REFERENCE_P (OP) || PIC_DIRECT_ADDR_P (OP)) |
| |
| /* A zero in any shape or form. */ |
| #define EXTRA_CONSTRAINT_Z(OP) \ |
| ((OP) == CONST0_RTX (GET_MODE (OP))) |
| |
| /* Any vector constant we can handle. */ |
| #define EXTRA_CONSTRAINT_W(OP) \ |
| (GET_CODE (OP) == CONST_VECTOR \ |
| && (sh_rep_vec ((OP), VOIDmode) \ |
| || (HOST_BITS_PER_WIDE_INT >= 64 \ |
| ? sh_const_vec ((OP), VOIDmode) \ |
| : sh_1el_vec ((OP), VOIDmode)))) |
| |
| /* A non-explicit constant that can be loaded directly into a general purpose |
| register. This is like 's' except we don't allow PIC_DIRECT_ADDR_P. */ |
| #define EXTRA_CONSTRAINT_Cpg(OP) \ |
| (CONSTANT_P (OP) \ |
| && GET_CODE (OP) != CONST_INT \ |
| && GET_CODE (OP) != CONST_DOUBLE \ |
| && (!flag_pic \ |
| || (LEGITIMATE_PIC_OPERAND_P (OP) \ |
| && (! PIC_ADDR_P (OP) || PIC_OFFSET_P (OP)) \ |
| && GET_CODE (OP) != LABEL_REF))) |
| #define EXTRA_CONSTRAINT_C(OP, STR) \ |
| ((STR)[1] == '1' && (STR)[2] == '6' ? EXTRA_CONSTRAINT_C16 (OP) \ |
| : (STR)[1] == 's' && (STR)[2] == 'y' ? EXTRA_CONSTRAINT_Csy (OP) \ |
| : (STR)[1] == 'p' && (STR)[2] == 'g' ? EXTRA_CONSTRAINT_Cpg (OP) \ |
| : 0) |
| |
| #define EXTRA_MEMORY_CONSTRAINT(C,STR) ((C) == 'S') |
| #define EXTRA_CONSTRAINT_Sr0(OP) \ |
| (memory_operand((OP), GET_MODE (OP)) \ |
| && ! refers_to_regno_p (R0_REG, R0_REG + 1, OP, (rtx *)0)) |
| #define EXTRA_CONSTRAINT_S(OP, STR) \ |
| ((STR)[1] == 'r' && (STR)[2] == '0' ? EXTRA_CONSTRAINT_Sr0 (OP) \ |
| : 0) |
| |
| #define EXTRA_CONSTRAINT_STR(OP, C, STR) \ |
| ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \ |
| : (C) == 'A' ? EXTRA_CONSTRAINT_A ((OP), (STR)) \ |
| : (C) == 'B' ? EXTRA_CONSTRAINT_B ((OP), (STR)) \ |
| : (C) == 'C' ? EXTRA_CONSTRAINT_C ((OP), (STR)) \ |
| : (C) == 'S' ? EXTRA_CONSTRAINT_S ((OP), (STR)) \ |
| : (C) == 'W' ? EXTRA_CONSTRAINT_W (OP) \ |
| : (C) == 'Z' ? EXTRA_CONSTRAINT_Z (OP) \ |
| : 0) |
| |
| /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression |
| that is a valid memory address for an instruction. |
| The MODE argument is the machine mode for the MEM expression |
| that wants to use this address. */ |
| |
| #define MODE_DISP_OK_4(X,MODE) \ |
| (GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \ |
| && ! (INTVAL (X) & 3) && ! (TARGET_SH2E && (MODE) == SFmode)) |
| |
| #define MODE_DISP_OK_8(X,MODE) \ |
| ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \ |
| && ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode)) |
| |
| #define BASE_REGISTER_RTX_P(X) \ |
| ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ |
| || (GET_CODE (X) == SUBREG \ |
| && GET_CODE (SUBREG_REG (X)) == REG \ |
| && REG_OK_FOR_BASE_P (SUBREG_REG (X)))) |
| |
| /* Since this must be r0, which is a single register class, we must check |
| SUBREGs more carefully, to be sure that we don't accept one that extends |
| outside the class. */ |
| #define INDEX_REGISTER_RTX_P(X) \ |
| ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \ |
| || (GET_CODE (X) == SUBREG \ |
| && GET_CODE (SUBREG_REG (X)) == REG \ |
| && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X)))) |
| |
| /* Jump to LABEL if X is a valid address RTX. This must also take |
| REG_OK_STRICT into account when deciding about valid registers, but it uses |
| the above macros so we are in luck. |
| |
| Allow REG |
| REG+disp |
| REG+r0 |
| REG++ |
| --REG */ |
| |
| /* ??? The SH2e does not have the REG+disp addressing mode when loading values |
| into the FRx registers. We implement this by setting the maximum offset |
| to zero when the value is SFmode. This also restricts loading of SFmode |
| values into the integer registers, but that can't be helped. */ |
| |
| /* The SH allows a displacement in a QI or HI amode, but only when the |
| other operand is R0. GCC doesn't handle this very well, so we forgo |
| all of that. |
| |
| A legitimate index for a QI or HI is 0, SI can be any number 0..63, |
| DI can be any number 0..60. */ |
| |
| #define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL) \ |
| do { \ |
| if (GET_CODE (OP) == CONST_INT) \ |
| { \ |
| if (TARGET_SHMEDIA) \ |
| { \ |
| int MODE_SIZE = GET_MODE_SIZE (MODE); \ |
| if (! (INTVAL (OP) & (MODE_SIZE - 1)) \ |
| && INTVAL (OP) >= -512 * MODE_SIZE \ |
| && INTVAL (OP) < 512 * MODE_SIZE) \ |
| goto LABEL; \ |
| else \ |
| break; \ |
| } \ |
| if (MODE_DISP_OK_4 ((OP), (MODE))) goto LABEL; \ |
| if (MODE_DISP_OK_8 ((OP), (MODE))) goto LABEL; \ |
| } \ |
| } while(0) |
| |
| #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \ |
| { \ |
| if (BASE_REGISTER_RTX_P (X)) \ |
| goto LABEL; \ |
| else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \ |
| && ! TARGET_SHMEDIA \ |
| && BASE_REGISTER_RTX_P (XEXP ((X), 0))) \ |
| goto LABEL; \ |
| else if (GET_CODE (X) == PLUS \ |
| && ((MODE) != PSImode || reload_completed)) \ |
| { \ |
| rtx xop0 = XEXP ((X), 0); \ |
| rtx xop1 = XEXP ((X), 1); \ |
| if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \ |
| GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL); \ |
| if (GET_MODE_SIZE (MODE) <= 4 \ |
| || (TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 8) \ |
| || (TARGET_SH4 && TARGET_FMOVD && MODE == DFmode)) \ |
| { \ |
| if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\ |
| goto LABEL; \ |
| if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\ |
| goto LABEL; \ |
| } \ |
| } \ |
| } |
| |
| /* Try machine-dependent ways of modifying an illegitimate address |
| to be legitimate. If we find one, return the new, valid address. |
| This macro is used in only one place: `memory_address' in explow.c. |
| |
| OLDX is the address as it was before break_out_memory_refs was called. |
| In some cases it is useful to look at this to decide what needs to be done. |
| |
| MODE and WIN are passed so that this macro can use |
| GO_IF_LEGITIMATE_ADDRESS. |
| |
| It is always safe for this macro to do nothing. It exists to recognize |
| opportunities to optimize the output. |
| |
| For the SH, if X is almost suitable for indexing, but the offset is |
| out of range, convert it into a normal form so that cse has a chance |
| of reducing the number of address registers used. */ |
| |
| #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ |
| { \ |
| if (flag_pic) \ |
| (X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \ |
| if (GET_CODE (X) == PLUS \ |
| && (GET_MODE_SIZE (MODE) == 4 \ |
| || GET_MODE_SIZE (MODE) == 8) \ |
| && GET_CODE (XEXP ((X), 1)) == CONST_INT \ |
| && BASE_REGISTER_RTX_P (XEXP ((X), 0)) \ |
| && ! TARGET_SHMEDIA \ |
| && ! (TARGET_SH4 && (MODE) == DFmode) \ |
| && ! (TARGET_SH2E && (MODE) == SFmode)) \ |
| { \ |
| rtx index_rtx = XEXP ((X), 1); \ |
| HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \ |
| rtx sum; \ |
| \ |
| GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN); \ |
| /* On rare occasions, we might get an unaligned pointer \ |
| that is indexed in a way to give an aligned address. \ |
| Therefore, keep the lower two bits in offset_base. */ \ |
| /* Instead of offset_base 128..131 use 124..127, so that \ |
| simple add suffices. */ \ |
| if (offset > 127) \ |
| { \ |
| offset_base = ((offset + 4) & ~60) - 4; \ |
| } \ |
| else \ |
| offset_base = offset & ~60; \ |
| /* Sometimes the normal form does not suit DImode. We \ |
| could avoid that by using smaller ranges, but that \ |
| would give less optimized code when SImode is \ |
| prevalent. */ \ |
| if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \ |
| { \ |
| sum = expand_binop (Pmode, add_optab, XEXP ((X), 0), \ |
| GEN_INT (offset_base), NULL_RTX, 0, \ |
| OPTAB_LIB_WIDEN); \ |
| \ |
| (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); \ |
| goto WIN; \ |
| } \ |
| } \ |
| } |
| |
| /* A C compound statement that attempts to replace X, which is an address |
| that needs reloading, with a valid memory address for an operand of |
| mode MODE. WIN is a C statement label elsewhere in the code. |
| |
| Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form |
| of the address. That will allow inheritance of the address reloads. */ |
| |
| #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \ |
| { \ |
| if (GET_CODE (X) == PLUS \ |
| && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \ |
| && GET_CODE (XEXP (X, 1)) == CONST_INT \ |
| && BASE_REGISTER_RTX_P (XEXP (X, 0)) \ |
| && ! TARGET_SHMEDIA \ |
| && ! (TARGET_SH4 && (MODE) == DFmode) \ |
| && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS)) \ |
| { \ |
| rtx index_rtx = XEXP (X, 1); \ |
| HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \ |
| rtx sum; \ |
| \ |
| if (TARGET_SH2E && MODE == SFmode) \ |
| { \ |
| X = copy_rtx (X); \ |
| push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL, \ |
| INDEX_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \ |
| (TYPE)); \ |
| goto WIN; \ |
| } \ |
| /* Instead of offset_base 128..131 use 124..127, so that \ |
| simple add suffices. */ \ |
| if (offset > 127) \ |
| { \ |
| offset_base = ((offset + 4) & ~60) - 4; \ |
| } \ |
| else \ |
| offset_base = offset & ~60; \ |
| /* Sometimes the normal form does not suit DImode. We \ |
| could avoid that by using smaller ranges, but that \ |
| would give less optimized code when SImode is \ |
| prevalent. */ \ |
| if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \ |
| { \ |
| sum = gen_rtx (PLUS, Pmode, XEXP (X, 0), \ |
| GEN_INT (offset_base)); \ |
| X = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base));\ |
| push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL, \ |
| BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \ |
| (TYPE)); \ |
| goto WIN; \ |
| } \ |
| } \ |
| /* We must re-recognize what we created before. */ \ |
| else if (GET_CODE (X) == PLUS \ |
| && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \ |
| && GET_CODE (XEXP (X, 0)) == PLUS \ |
| && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \ |
| && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0)) \ |
| && GET_CODE (XEXP (X, 1)) == CONST_INT \ |
| && ! TARGET_SHMEDIA \ |
| && ! (TARGET_SH2E && MODE == SFmode)) \ |
| { \ |
| /* Because this address is so complex, we know it must have \ |
| been created by LEGITIMIZE_RELOAD_ADDRESS before; thus, \ |
| it is already unshared, and needs no further unsharing. */ \ |
| push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL, \ |
| BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\ |
| goto WIN; \ |
| } \ |
| } |
| |
| /* Go to LABEL if ADDR (a legitimate address expression) |
| has an effect that depends on the machine mode it is used for. |
| |
| ??? Strictly speaking, we should also include all indexed addressing, |
| because the index scale factor is the length of the operand. |
| However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to |
| high if we did that. So we rely on reload to fix things up. */ |
| |
| #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ |
| { \ |
| if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC) \ |
| goto LABEL; \ |
| } |
| |
| /* Specify the machine mode that this machine uses |
| for the index in the tablejump instruction. */ |
| #define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode) |
| |
| #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \ |
| ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \ |
| ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \ |
| : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \ |
| ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \ |
| : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \ |
| : SImode) |
| |
| /* Define as C expression which evaluates to nonzero if the tablejump |
| instruction expects the table to contain offsets from the address of the |
| table. |
| Do not define this if the table should contain absolute addresses. */ |
| #define CASE_VECTOR_PC_RELATIVE 1 |
| |
| /* Define it here, so that it doesn't get bumped to 64-bits on SHmedia. */ |
| #define FLOAT_TYPE_SIZE 32 |
| |
| /* Since the SH2e has only `float' support, it is desirable to make all |
| floating point types equivalent to `float'. */ |
| #define DOUBLE_TYPE_SIZE ((TARGET_SH2E && ! TARGET_SH4) ? 32 : 64) |
| |
| /* 'char' is signed by default. */ |
| #define DEFAULT_SIGNED_CHAR 1 |
| |
| /* The type of size_t unsigned int. */ |
| #define SIZE_TYPE (TARGET_SH5 ? "long unsigned int" : "unsigned int") |
| |
| #undef PTRDIFF_TYPE |
| #define PTRDIFF_TYPE (TARGET_SH5 ? "long int" : "int") |
| |
| #define WCHAR_TYPE "short unsigned int" |
| #define WCHAR_TYPE_SIZE 16 |
| |
| #define SH_ELF_WCHAR_TYPE "long int" |
| |
| /* Don't cse the address of the function being compiled. */ |
| /*#define NO_RECURSIVE_FUNCTION_CSE 1*/ |
| |
| /* Max number of bytes we can move from memory to memory |
| in one reasonably fast instruction. */ |
| #define MOVE_MAX (TARGET_SHMEDIA ? 8 : 4) |
| |
| /* Maximum value possibly taken by MOVE_MAX. Must be defined whenever |
| MOVE_MAX is not a compile-time constant. */ |
| #define MAX_MOVE_MAX 8 |
| |
| /* Max number of bytes we want move_by_pieces to be able to copy |
| efficiently. */ |
| #define MOVE_MAX_PIECES (TARGET_SH4 || TARGET_SHMEDIA ? 8 : 4) |
| |
| /* Define if operations between registers always perform the operation |
| on the full register even if a narrower mode is specified. */ |
| #define WORD_REGISTER_OPERATIONS |
| |
| /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD |
| will either zero-extend or sign-extend. The value of this macro should |
| be the code that says which one of the two operations is implicitly |
| done, NIL if none. */ |
| /* For SHmedia, we can truncate to QImode easier using zero extension. */ |
| /* FP registers can load SImode values, but don't implicitly sign-extend |
| them to DImode. */ |
| #define LOAD_EXTEND_OP(MODE) \ |
| (((MODE) == QImode && TARGET_SHMEDIA) ? ZERO_EXTEND \ |
| : (MODE) != SImode ? SIGN_EXTEND : NIL) |
| |
| /* Define if loading short immediate values into registers sign extends. */ |
| #define SHORT_IMMEDIATES_SIGN_EXTEND |
| |
| /* Nonzero if access to memory by bytes is no faster than for words. */ |
| #define SLOW_BYTE_ACCESS 1 |
| |
| /* Immediate shift counts are truncated by the output routines (or was it |
| the assembler?). Shift counts in a register are truncated by SH. Note |
| that the native compiler puts too large (> 32) immediate shift counts |
| into a register and shifts by the register, letting the SH decide what |
| to do instead of doing that itself. */ |
| /* ??? The library routines in lib1funcs.asm truncate the shift count. |
| However, the SH3 has hardware shifts that do not truncate exactly as gcc |
| expects - the sign bit is significant - so it appears that we need to |
| leave this zero for correct SH3 code. */ |
| #define SHIFT_COUNT_TRUNCATED (! TARGET_SH3) |
| |
| /* All integers have the same format so truncation is easy. */ |
| #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1 |
| |
| /* Define this if addresses of constant functions |
| shouldn't be put through pseudo regs where they can be cse'd. |
| Desirable on machines where ordinary constants are expensive |
| but a CALL with constant address is cheap. */ |
| /*#define NO_FUNCTION_CSE 1*/ |
| |
| /* The machine modes of pointers and functions. */ |
| #define Pmode (TARGET_SHMEDIA64 ? DImode : SImode) |
| #define FUNCTION_MODE Pmode |
| |
| /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2 |
| are actually function calls with some special constraints on arguments |
| and register usage. |
| |
| These macros tell reorg that the references to arguments and |
| register clobbers for insns of type sfunc do not appear to happen |
| until after the millicode call. This allows reorg to put insns |
| which set the argument registers into the delay slot of the millicode |
| call -- thus they act more like traditional CALL_INSNs. |
| |
| get_attr_is_sfunc will try to recognize the given insn, so make sure to |
| filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns |
| in particular. */ |
| |
| #define INSN_SETS_ARE_DELAYED(X) \ |
| ((GET_CODE (X) == INSN \ |
| && GET_CODE (PATTERN (X)) != SEQUENCE \ |
| && GET_CODE (PATTERN (X)) != USE \ |
| && GET_CODE (PATTE
|