| /* Allocate registers for pseudo-registers that span basic blocks. |
| Copyright (C) 1987, 1988, 1991, 1994, 1996, 1997, 1998, |
| 1999, 2000, 2002, 2003 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to the Free |
| Software Foundation, 59 Temple Place - Suite 330, Boston, MA |
| 02111-1307, USA. */ |
| |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| |
| #include "machmode.h" |
| #include "hard-reg-set.h" |
| #include "rtl.h" |
| #include "tm_p.h" |
| #include "flags.h" |
| #include "basic-block.h" |
| #include "regs.h" |
| #include "function.h" |
| #include "insn-config.h" |
| #include "reload.h" |
| #include "output.h" |
| #include "toplev.h" |
| |
| /* This pass of the compiler performs global register allocation. |
| It assigns hard register numbers to all the pseudo registers |
| that were not handled in local_alloc. Assignments are recorded |
| in the vector reg_renumber, not by changing the rtl code. |
| (Such changes are made by final). The entry point is |
| the function global_alloc. |
| |
| After allocation is complete, the reload pass is run as a subroutine |
| of this pass, so that when a pseudo reg loses its hard reg due to |
| spilling it is possible to make a second attempt to find a hard |
| reg for it. The reload pass is independent in other respects |
| and it is run even when stupid register allocation is in use. |
| |
| 1. Assign allocation-numbers (allocnos) to the pseudo-registers |
| still needing allocations and to the pseudo-registers currently |
| allocated by local-alloc which may be spilled by reload. |
| Set up tables reg_allocno and allocno_reg to map |
| reg numbers to allocnos and vice versa. |
| max_allocno gets the number of allocnos in use. |
| |
| 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it. |
| Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix |
| for conflicts between allocnos and explicit hard register use |
| (which includes use of pseudo-registers allocated by local_alloc). |
| |
| 3. For each basic block |
| walk forward through the block, recording which |
| pseudo-registers and which hardware registers are live. |
| Build the conflict matrix between the pseudo-registers |
| and another of pseudo-registers versus hardware registers. |
| Also record the preferred hardware registers |
| for each pseudo-register. |
| |
| 4. Sort a table of the allocnos into order of |
| desirability of the variables. |
| |
| 5. Allocate the variables in that order; each if possible into |
| a preferred register, else into another register. */ |
| |
| /* Number of pseudo-registers which are candidates for allocation. */ |
| |
| static int max_allocno; |
| |
| /* Indexed by (pseudo) reg number, gives the allocno, or -1 |
| for pseudo registers which are not to be allocated. */ |
| |
| static int *reg_allocno; |
| |
| struct allocno |
| { |
| int reg; |
| /* Gives the number of consecutive hard registers needed by that |
| pseudo reg. */ |
| int size; |
| |
| /* Number of calls crossed by each allocno. */ |
| int calls_crossed; |
| |
| /* Number of refs to each allocno. */ |
| int n_refs; |
| |
| /* Frequency of uses of each allocno. */ |
| int freq; |
| |
| /* Guess at live length of each allocno. |
| This is actually the max of the live lengths of the regs. */ |
| int live_length; |
| |
| /* Set of hard regs conflicting with allocno N. */ |
| |
| HARD_REG_SET hard_reg_conflicts; |
| |
| /* Set of hard regs preferred by allocno N. |
| This is used to make allocnos go into regs that are copied to or from them, |
| when possible, to reduce register shuffling. */ |
| |
| HARD_REG_SET hard_reg_preferences; |
| |
| /* Similar, but just counts register preferences made in simple copy |
| operations, rather than arithmetic. These are given priority because |
| we can always eliminate an insn by using these, but using a register |
| in the above list won't always eliminate an insn. */ |
| |
| HARD_REG_SET hard_reg_copy_preferences; |
| |
| /* Similar to hard_reg_preferences, but includes bits for subsequent |
| registers when an allocno is multi-word. The above variable is used for |
| allocation while this is used to build reg_someone_prefers, below. */ |
| |
| HARD_REG_SET hard_reg_full_preferences; |
| |
| /* Set of hard registers that some later allocno has a preference for. */ |
| |
| HARD_REG_SET regs_someone_prefers; |
| |
| #ifdef STACK_REGS |
| /* Set to true if allocno can't be allocated in the stack register. */ |
| bool no_stack_reg; |
| #endif |
| }; |
| |
| static struct allocno *allocno; |
| |
| /* A vector of the integers from 0 to max_allocno-1, |
| sorted in the order of first-to-be-allocated first. */ |
| |
| static int *allocno_order; |
| |
| /* Indexed by (pseudo) reg number, gives the number of another |
| lower-numbered pseudo reg which can share a hard reg with this pseudo |
| *even if the two pseudos would otherwise appear to conflict*. */ |
| |
| static int *reg_may_share; |
| |
| /* Define the number of bits in each element of `conflicts' and what |
| type that element has. We use the largest integer format on the |
| host machine. */ |
| |
| #define INT_BITS HOST_BITS_PER_WIDE_INT |
| #define INT_TYPE HOST_WIDE_INT |
| |
| /* max_allocno by max_allocno array of bits, |
| recording whether two allocno's conflict (can't go in the same |
| hardware register). |
| |
| `conflicts' is symmetric after the call to mirror_conflicts. */ |
| |
| static INT_TYPE *conflicts; |
| |
| /* Number of ints require to hold max_allocno bits. |
| This is the length of a row in `conflicts'. */ |
| |
| static int allocno_row_words; |
| |
| /* Two macros to test or store 1 in an element of `conflicts'. */ |
| |
| #define CONFLICTP(I, J) \ |
| (conflicts[(I) * allocno_row_words + (unsigned) (J) / INT_BITS] \ |
| & ((INT_TYPE) 1 << ((unsigned) (J) % INT_BITS))) |
| |
| /* For any allocno set in ALLOCNO_SET, set ALLOCNO to that allocno, |
| and execute CODE. */ |
| #define EXECUTE_IF_SET_IN_ALLOCNO_SET(ALLOCNO_SET, ALLOCNO, CODE) \ |
| do { \ |
| int i_; \ |
| int allocno_; \ |
| INT_TYPE *p_ = (ALLOCNO_SET); \ |
| \ |
| for (i_ = allocno_row_words - 1, allocno_ = 0; i_ >= 0; \ |
| i_--, allocno_ += INT_BITS) \ |
| { \ |
| unsigned INT_TYPE word_ = (unsigned INT_TYPE) *p_++; \ |
| \ |
| for ((ALLOCNO) = allocno_; word_; word_ >>= 1, (ALLOCNO)++) \ |
| { \ |
| if (word_ & 1) \ |
| {CODE;} \ |
| } \ |
| } \ |
| } while (0) |
| |
| /* This doesn't work for non-GNU C due to the way CODE is macro expanded. */ |
| #if 0 |
| /* For any allocno that conflicts with IN_ALLOCNO, set OUT_ALLOCNO to |
| the conflicting allocno, and execute CODE. This macro assumes that |
| mirror_conflicts has been run. */ |
| #define EXECUTE_IF_CONFLICT(IN_ALLOCNO, OUT_ALLOCNO, CODE)\ |
| EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + (IN_ALLOCNO) * allocno_row_words,\ |
| OUT_ALLOCNO, (CODE)) |
| #endif |
| |
| /* Set of hard regs currently live (during scan of all insns). */ |
| |
| static HARD_REG_SET hard_regs_live; |
| |
| /* Set of registers that global-alloc isn't supposed to use. */ |
| |
| static HARD_REG_SET no_global_alloc_regs; |
| |
| /* Set of registers used so far. */ |
| |
| static HARD_REG_SET regs_used_so_far; |
| |
| /* Number of refs to each hard reg, as used by local alloc. |
| It is zero for a reg that contains global pseudos or is explicitly used. */ |
| |
| static int local_reg_n_refs[FIRST_PSEUDO_REGISTER]; |
| |
| /* Frequency of uses of given hard reg. */ |
| static int local_reg_freq[FIRST_PSEUDO_REGISTER]; |
| |
| /* Guess at live length of each hard reg, as used by local alloc. |
| This is actually the sum of the live lengths of the specific regs. */ |
| |
| static int local_reg_live_length[FIRST_PSEUDO_REGISTER]; |
| |
| /* Set to 1 a bit in a vector TABLE of HARD_REG_SETs, for vector |
| element I, and hard register number J. */ |
| |
| #define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (allocno[I].TABLE, J) |
| |
| /* Bit mask for allocnos live at current point in the scan. */ |
| |
| static INT_TYPE *allocnos_live; |
| |
| /* Test, set or clear bit number I in allocnos_live, |
| a bit vector indexed by allocno. */ |
| |
| #define SET_ALLOCNO_LIVE(I) \ |
| (allocnos_live[(unsigned) (I) / INT_BITS] \ |
| |= ((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS))) |
| |
| #define CLEAR_ALLOCNO_LIVE(I) \ |
| (allocnos_live[(unsigned) (I) / INT_BITS] \ |
| &= ~((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS))) |
| |
| /* This is turned off because it doesn't work right for DImode. |
| (And it is only used for DImode, so the other cases are worthless.) |
| The problem is that it isn't true that there is NO possibility of conflict; |
| only that there is no conflict if the two pseudos get the exact same regs. |
| If they were allocated with a partial overlap, there would be a conflict. |
| We can't safely turn off the conflict unless we have another way to |
| prevent the partial overlap. |
| |
| Idea: change hard_reg_conflicts so that instead of recording which |
| hard regs the allocno may not overlap, it records where the allocno |
| may not start. Change both where it is used and where it is updated. |
| Then there is a way to record that (reg:DI 108) may start at 10 |
| but not at 9 or 11. There is still the question of how to record |
| this semi-conflict between two pseudos. */ |
| #if 0 |
| /* Reg pairs for which conflict after the current insn |
| is inhibited by a REG_NO_CONFLICT note. |
| If the table gets full, we ignore any other notes--that is conservative. */ |
| #define NUM_NO_CONFLICT_PAIRS 4 |
| /* Number of pairs in use in this insn. */ |
| int n_no_conflict_pairs; |
| static struct { int allocno1, allocno2;} |
| no_conflict_pairs[NUM_NO_CONFLICT_PAIRS]; |
| #endif /* 0 */ |
| |
| /* Record all regs that are set in any one insn. |
| Communication from mark_reg_{store,clobber} and global_conflicts. */ |
| |
| static rtx *regs_set; |
| static int n_regs_set; |
| |
| /* All registers that can be eliminated. */ |
| |
| static HARD_REG_SET eliminable_regset; |
| |
| static int allocno_compare (const void *, const void *); |
| static void global_conflicts (void); |
| static void mirror_conflicts (void); |
| static void expand_preferences (void); |
| static void prune_preferences (void); |
| static void find_reg (int, HARD_REG_SET, int, int, int); |
| static void record_one_conflict (int); |
| static void record_conflicts (int *, int); |
| static void mark_reg_store (rtx, rtx, void *); |
| static void mark_reg_clobber (rtx, rtx, void *); |
| static void mark_reg_conflicts (rtx); |
| static void mark_reg_death (rtx); |
| static void mark_reg_live_nc (int, enum machine_mode); |
| static void set_preference (rtx, rtx); |
| static void dump_conflicts (FILE *); |
| static void reg_becomes_live (rtx, rtx, void *); |
| static void reg_dies (int, enum machine_mode, struct insn_chain *); |
| |
| /* Perform allocation of pseudo-registers not allocated by local_alloc. |
| FILE is a file to output debugging information on, |
| or zero if such output is not desired. |
| |
| Return value is nonzero if reload failed |
| and we must not do any more for this function. */ |
| |
| int |
| global_alloc (FILE *file) |
| { |
| int retval; |
| #ifdef ELIMINABLE_REGS |
| static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS; |
| #endif |
| int need_fp |
| = (! flag_omit_frame_pointer |
| || (current_function_calls_alloca && EXIT_IGNORE_STACK) |
| || FRAME_POINTER_REQUIRED); |
| |
| size_t i; |
| rtx x; |
| |
| max_allocno = 0; |
| |
| /* A machine may have certain hard registers that |
| are safe to use only within a basic block. */ |
| |
| CLEAR_HARD_REG_SET (no_global_alloc_regs); |
| |
| /* Build the regset of all eliminable registers and show we can't use those |
| that we already know won't be eliminated. */ |
| #ifdef ELIMINABLE_REGS |
| for (i = 0; i < ARRAY_SIZE (eliminables); i++) |
| { |
| bool cannot_elim |
| = (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to) |
| || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp)); |
| |
| if (!regs_asm_clobbered[eliminables[i].from]) |
| { |
| SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from); |
| |
| if (cannot_elim) |
| SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from); |
| } |
| else if (cannot_elim) |
| error ("%s cannot be used in asm here", |
| reg_names[eliminables[i].from]); |
| else |
| regs_ever_live[eliminables[i].from] = 1; |
| } |
| #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM |
| if (!regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM]) |
| { |
| SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM); |
| if (need_fp) |
| SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM); |
| } |
| else if (need_fp) |
| error ("%s cannot be used in asm here", |
| reg_names[HARD_FRAME_POINTER_REGNUM]); |
| else |
| regs_ever_live[HARD_FRAME_POINTER_REGNUM] = 1; |
| #endif |
| |
| #else |
| if (!regs_asm_clobbered[FRAME_POINTER_REGNUM]) |
| { |
| SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM); |
| if (need_fp) |
| SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM); |
| } |
| else if (need_fp) |
| error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]); |
| else |
| regs_ever_live[FRAME_POINTER_REGNUM] = 1; |
| #endif |
| |
| /* Track which registers have already been used. Start with registers |
| explicitly in the rtl, then registers allocated by local register |
| allocation. */ |
| |
| CLEAR_HARD_REG_SET (regs_used_so_far); |
| #ifdef LEAF_REGISTERS |
| /* If we are doing the leaf function optimization, and this is a leaf |
| function, it means that the registers that take work to save are those |
| that need a register window. So prefer the ones that can be used in |
| a leaf function. */ |
| { |
| const char *cheap_regs; |
| const char *const leaf_regs = LEAF_REGISTERS; |
| |
| if (only_leaf_regs_used () && leaf_function_p ()) |
| cheap_regs = leaf_regs; |
| else |
| cheap_regs = call_used_regs; |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (regs_ever_live[i] || cheap_regs[i]) |
| SET_HARD_REG_BIT (regs_used_so_far, i); |
| } |
| #else |
| /* We consider registers that do not have to be saved over calls as if |
| they were already used since there is no cost in using them. */ |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (regs_ever_live[i] || call_used_regs[i]) |
| SET_HARD_REG_BIT (regs_used_so_far, i); |
| #endif |
| |
| for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++) |
| if (reg_renumber[i] >= 0) |
| SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]); |
| |
| /* Establish mappings from register number to allocation number |
| and vice versa. In the process, count the allocnos. */ |
| |
| reg_allocno = xmalloc (max_regno * sizeof (int)); |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| reg_allocno[i] = -1; |
| |
| /* Initialize the shared-hard-reg mapping |
| from the list of pairs that may share. */ |
| reg_may_share = xcalloc (max_regno, sizeof (int)); |
| for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1)) |
| { |
| int r1 = REGNO (XEXP (x, 0)); |
| int r2 = REGNO (XEXP (XEXP (x, 1), 0)); |
| if (r1 > r2) |
| reg_may_share[r1] = r2; |
| else |
| reg_may_share[r2] = r1; |
| } |
| |
| for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++) |
| /* Note that reg_live_length[i] < 0 indicates a "constant" reg |
| that we are supposed to refrain from putting in a hard reg. |
| -2 means do make an allocno but don't allocate it. */ |
| if (REG_N_REFS (i) != 0 && REG_LIVE_LENGTH (i) != -1 |
| /* Don't allocate pseudos that cross calls, |
| if this function receives a nonlocal goto. */ |
| && (! current_function_has_nonlocal_label |
| || REG_N_CALLS_CROSSED (i) == 0)) |
| { |
| if (reg_renumber[i] < 0 && reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0) |
| reg_allocno[i] = reg_allocno[reg_may_share[i]]; |
| else |
| reg_allocno[i] = max_allocno++; |
| if (REG_LIVE_LENGTH (i) == 0) |
| abort (); |
| } |
| else |
| reg_allocno[i] = -1; |
| |
| allocno = xcalloc (max_allocno, sizeof (struct allocno)); |
| |
| for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++) |
| if (reg_allocno[i] >= 0) |
| { |
| int num = reg_allocno[i]; |
| allocno[num].reg = i; |
| allocno[num].size = PSEUDO_REGNO_SIZE (i); |
| allocno[num].calls_crossed += REG_N_CALLS_CROSSED (i); |
| allocno[num].n_refs += REG_N_REFS (i); |
| allocno[num].freq += REG_FREQ (i); |
| if (allocno[num].live_length < REG_LIVE_LENGTH (i)) |
| allocno[num].live_length = REG_LIVE_LENGTH (i); |
| } |
| |
| /* Calculate amount of usage of each hard reg by pseudos |
| allocated by local-alloc. This is to see if we want to |
| override it. */ |
| memset (local_reg_live_length, 0, sizeof local_reg_live_length); |
| memset (local_reg_n_refs, 0, sizeof local_reg_n_refs); |
| memset (local_reg_freq, 0, sizeof local_reg_freq); |
| for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++) |
| if (reg_renumber[i] >= 0) |
| { |
| int regno = reg_renumber[i]; |
| int endregno = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i)); |
| int j; |
| |
| for (j = regno; j < endregno; j++) |
| { |
| local_reg_n_refs[j] += REG_N_REFS (i); |
| local_reg_freq[j] += REG_FREQ (i); |
| local_reg_live_length[j] += REG_LIVE_LENGTH (i); |
| } |
| } |
| |
| /* We can't override local-alloc for a reg used not just by local-alloc. */ |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (regs_ever_live[i]) |
| local_reg_n_refs[i] = 0, local_reg_freq[i] = 0; |
| |
| allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS; |
| |
| /* We used to use alloca here, but the size of what it would try to |
| allocate would occasionally cause it to exceed the stack limit and |
| cause unpredictable core dumps. Some examples were > 2Mb in size. */ |
| conflicts = xcalloc (max_allocno * allocno_row_words, sizeof (INT_TYPE)); |
| |
| allocnos_live = xmalloc (allocno_row_words * sizeof (INT_TYPE)); |
| |
| /* If there is work to be done (at least one reg to allocate), |
| perform global conflict analysis and allocate the regs. */ |
| |
| if (max_allocno > 0) |
| { |
| /* Scan all the insns and compute the conflicts among allocnos |
| and between allocnos and hard regs. */ |
| |
| global_conflicts (); |
| |
| mirror_conflicts (); |
| |
| /* Eliminate conflicts between pseudos and eliminable registers. If |
| the register is not eliminated, the pseudo won't really be able to |
| live in the eliminable register, so the conflict doesn't matter. |
| If we do eliminate the register, the conflict will no longer exist. |
| So in either case, we can ignore the conflict. Likewise for |
| preferences. */ |
| |
| for (i = 0; i < (size_t) max_allocno; i++) |
| { |
| AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_conflicts, |
| eliminable_regset); |
| AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_copy_preferences, |
| eliminable_regset); |
| AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_preferences, |
| eliminable_regset); |
| } |
| |
| /* Try to expand the preferences by merging them between allocnos. */ |
| |
| expand_preferences (); |
| |
| /* Determine the order to allocate the remaining pseudo registers. */ |
| |
| allocno_order = xmalloc (max_allocno * sizeof (int)); |
| for (i = 0; i < (size_t) max_allocno; i++) |
| allocno_order[i] = i; |
| |
| /* Default the size to 1, since allocno_compare uses it to divide by. |
| Also convert allocno_live_length of zero to -1. A length of zero |
| can occur when all the registers for that allocno have reg_live_length |
| equal to -2. In this case, we want to make an allocno, but not |
| allocate it. So avoid the divide-by-zero and set it to a low |
| priority. */ |
| |
| for (i = 0; i < (size_t) max_allocno; i++) |
| { |
| if (allocno[i].size == 0) |
| allocno[i].size = 1; |
| if (allocno[i].live_length == 0) |
| allocno[i].live_length = -1; |
| } |
| |
| qsort (allocno_order, max_allocno, sizeof (int), allocno_compare); |
| |
| prune_preferences (); |
| |
| if (file) |
| dump_conflicts (file); |
| |
| /* Try allocating them, one by one, in that order, |
| except for parameters marked with reg_live_length[regno] == -2. */ |
| |
| for (i = 0; i < (size_t) max_allocno; i++) |
| if (reg_renumber[allocno[allocno_order[i]].reg] < 0 |
| && REG_LIVE_LENGTH (allocno[allocno_order[i]].reg) >= 0) |
| { |
| /* If we have more than one register class, |
| first try allocating in the class that is cheapest |
| for this pseudo-reg. If that fails, try any reg. */ |
| if (N_REG_CLASSES > 1) |
| { |
| find_reg (allocno_order[i], 0, 0, 0, 0); |
| if (reg_renumber[allocno[allocno_order[i]].reg] >= 0) |
| continue; |
| } |
| if (reg_alternate_class (allocno[allocno_order[i]].reg) != NO_REGS) |
| find_reg (allocno_order[i], 0, 1, 0, 0); |
| } |
| |
| free (allocno_order); |
| } |
| |
| /* Do the reloads now while the allocno data still exist, so that we can |
| try to assign new hard regs to any pseudo regs that are spilled. */ |
| |
| #if 0 /* We need to eliminate regs even if there is no rtl code, |
| for the sake of debugging information. */ |
| if (n_basic_blocks > 0) |
| #endif |
| { |
| build_insn_chain (get_insns ()); |
| retval = reload (get_insns (), 1); |
| } |
| |
| /* Clean up. */ |
| free (reg_allocno); |
| free (reg_may_share); |
| free (allocno); |
| free (conflicts); |
| free (allocnos_live); |
| |
| return retval; |
| } |
| |
| /* Sort predicate for ordering the allocnos. |
| Returns -1 (1) if *v1 should be allocated before (after) *v2. */ |
| |
| static int |
| allocno_compare (const void *v1p, const void *v2p) |
| { |
| int v1 = *(const int *)v1p, v2 = *(const int *)v2p; |
| /* Note that the quotient will never be bigger than |
| the value of floor_log2 times the maximum number of |
| times a register can occur in one insn (surely less than 100) |
| weighted by the frequency (maximally REG_FREQ_MAX). |
| Multiplying this by 10000/REG_FREQ_MAX can't overflow. */ |
| int pri1 |
| = (((double) (floor_log2 (allocno[v1].n_refs) * allocno[v1].freq) |
| / allocno[v1].live_length) |
| * (10000 / REG_FREQ_MAX) * allocno[v1].size); |
| int pri2 |
| = (((double) (floor_log2 (allocno[v2].n_refs) * allocno[v2].freq) |
| / allocno[v2].live_length) |
| * (10000 / REG_FREQ_MAX) * allocno[v2].size); |
| if (pri2 - pri1) |
| return pri2 - pri1; |
| |
| /* If regs are equally good, sort by allocno, |
| so that the results of qsort leave nothing to chance. */ |
| return v1 - v2; |
| } |
| |
| /* Scan the rtl code and record all conflicts and register preferences in the |
| conflict matrices and preference tables. */ |
| |
| static void |
| global_conflicts (void) |
| { |
| int i; |
| basic_block b; |
| rtx insn; |
| int *block_start_allocnos; |
| |
| /* Make a vector that mark_reg_{store,clobber} will store in. */ |
| regs_set = xmalloc (max_parallel * sizeof (rtx) * 2); |
| |
| block_start_allocnos = xmalloc (max_allocno * sizeof (int)); |
| |
| FOR_EACH_BB (b) |
| { |
| memset (allocnos_live, 0, allocno_row_words * sizeof (INT_TYPE)); |
| |
| /* Initialize table of registers currently live |
| to the state at the beginning of this basic block. |
| This also marks the conflicts among hard registers |
| and any allocnos that are live. |
| |
| For pseudo-regs, there is only one bit for each one |
| no matter how many hard regs it occupies. |
| This is ok; we know the size from PSEUDO_REGNO_SIZE. |
| For explicit hard regs, we cannot know the size that way |
| since one hard reg can be used with various sizes. |
| Therefore, we must require that all the hard regs |
| implicitly live as part of a multi-word hard reg |
| are explicitly marked in basic_block_live_at_start. */ |
| |
| { |
| regset old = b->global_live_at_start; |
| int ax = 0; |
| |
| REG_SET_TO_HARD_REG_SET (hard_regs_live, old); |
| EXECUTE_IF_SET_IN_REG_SET (old, FIRST_PSEUDO_REGISTER, i, |
| { |
| int a = reg_allocno[i]; |
| if (a >= 0) |
| { |
| SET_ALLOCNO_LIVE (a); |
| block_start_allocnos[ax++] = a; |
| } |
| else if ((a = reg_renumber[i]) >= 0) |
| mark_reg_live_nc |
| (a, PSEUDO_REGNO_MODE (i)); |
| }); |
| |
| /* Record that each allocno now live conflicts with each hard reg |
| now live. |
| |
| It is not necessary to mark any conflicts between pseudos as |
| this point, even for pseudos which are live at the start of |
| the basic block. |
| |
| Given two pseudos X and Y and any point in the CFG P. |
| |
| On any path to point P where X and Y are live one of the |
| following conditions must be true: |
| |
| 1. X is live at some instruction on the path that |
| evaluates Y. |
| |
| 2. Y is live at some instruction on the path that |
| evaluates X. |
| |
| 3. Either X or Y is not evaluated on the path to P |
| (ie it is used uninitialized) and thus the |
| conflict can be ignored. |
| |
| In cases #1 and #2 the conflict will be recorded when we |
| scan the instruction that makes either X or Y become live. */ |
| record_conflicts (block_start_allocnos, ax); |
| |
| /* Pseudos can't go in stack regs at the start of a basic block that |
| is reached by an abnormal edge. Likewise for call clobbered regs, |
| because because caller-save, fixup_abnormal_edges, and possibly |
| the table driven EH machinery are not quite ready to handle such |
| regs live across such edges. */ |
| { |
| edge e; |
| |
| for (e = b->pred; e ; e = e->pred_next) |
| if (e->flags & EDGE_ABNORMAL) |
| break; |
| |
| if (e != NULL) |
| { |
| #ifdef STACK_REGS |
| EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, ax, |
| { |
| allocno[ax].no_stack_reg = 1; |
| }); |
| for (ax = FIRST_STACK_REG; ax <= LAST_STACK_REG; ax++) |
| record_one_conflict (ax); |
| #endif |
| |
| /* No need to record conflicts for call clobbered regs if we have |
| nonlocal labels around, as we don't ever try to allocate such |
| regs in this case. */ |
| if (! current_function_has_nonlocal_label) |
| for (ax = 0; ax < FIRST_PSEUDO_REGISTER; ax++) |
| if (call_used_regs [ax]) |
| record_one_conflict (ax); |
| } |
| } |
| } |
| |
| insn = BB_HEAD (b); |
| |
| /* Scan the code of this basic block, noting which allocnos |
| and hard regs are born or die. When one is born, |
| record a conflict with all others currently live. */ |
| |
| while (1) |
| { |
| RTX_CODE code = GET_CODE (insn); |
| rtx link; |
| |
| /* Make regs_set an empty set. */ |
| |
| n_regs_set = 0; |
| |
| if (code == INSN || code == CALL_INSN || code == JUMP_INSN) |
| { |
| |
| #if 0 |
| int i = 0; |
| for (link = REG_NOTES (insn); |
| link && i < NUM_NO_CONFLICT_PAIRS; |
| link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_NO_CONFLICT) |
| { |
| no_conflict_pairs[i].allocno1 |
| = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))]; |
| no_conflict_pairs[i].allocno2 |
| = reg_allocno[REGNO (XEXP (link, 0))]; |
| i++; |
| } |
| #endif /* 0 */ |
| |
| /* Mark any registers clobbered by INSN as live, |
| so they conflict with the inputs. */ |
| |
| note_stores (PATTERN (insn), mark_reg_clobber, NULL); |
| |
| /* Mark any registers dead after INSN as dead now. */ |
| |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_DEAD) |
| mark_reg_death (XEXP (link, 0)); |
| |
| /* Mark any registers set in INSN as live, |
| and mark them as conflicting with all other live regs. |
| Clobbers are processed again, so they conflict with |
| the registers that are set. */ |
| |
| note_stores (PATTERN (insn), mark_reg_store, NULL); |
| |
| #ifdef AUTO_INC_DEC |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_INC) |
| mark_reg_store (XEXP (link, 0), NULL_RTX, NULL); |
| #endif |
| |
| /* If INSN has multiple outputs, then any reg that dies here |
| and is used inside of an output |
| must conflict with the other outputs. |
| |
| It is unsafe to use !single_set here since it will ignore an |
| unused output. Just because an output is unused does not mean |
| the compiler can assume the side effect will not occur. |
| Consider if REG appears in the address of an output and we |
| reload the output. If we allocate REG to the same hard |
| register as an unused output we could set the hard register |
| before the output reload insn. */ |
| if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn)) |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_DEAD) |
| { |
| int used_in_output = 0; |
| int i; |
| rtx reg = XEXP (link, 0); |
| |
| for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--) |
| { |
| rtx set = XVECEXP (PATTERN (insn), 0, i); |
| if (GET_CODE (set) == SET |
| && GET_CODE (SET_DEST (set)) != REG |
| && !rtx_equal_p (reg, SET_DEST (set)) |
| && reg_overlap_mentioned_p (reg, SET_DEST (set))) |
| used_in_output = 1; |
| } |
| if (used_in_output) |
| mark_reg_conflicts (reg); |
| } |
| |
| /* Mark any registers set in INSN and then never used. */ |
| |
| while (n_regs_set-- > 0) |
| { |
| rtx note = find_regno_note (insn, REG_UNUSED, |
| REGNO (regs_set[n_regs_set])); |
| if (note) |
| mark_reg_death (XEXP (note, 0)); |
| } |
| } |
| |
| if (insn == BB_END (b)) |
| break; |
| insn = NEXT_INSN (insn); |
| } |
| } |
| |
| /* Clean up. */ |
| free (block_start_allocnos); |
| free (regs_set); |
| } |
| /* Expand the preference information by looking for cases where one allocno |
| dies in an insn that sets an allocno. If those two allocnos don't conflict, |
| merge any preferences between those allocnos. */ |
| |
| static void |
| expand_preferences (void) |
| { |
| rtx insn; |
| rtx link; |
| rtx set; |
| |
| /* We only try to handle the most common cases here. Most of the cases |
| where this wins are reg-reg copies. */ |
| |
| for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) |
| if (INSN_P (insn) |
| && (set = single_set (insn)) != 0 |
| && GET_CODE (SET_DEST (set)) == REG |
| && reg_allocno[REGNO (SET_DEST (set))] >= 0) |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_DEAD |
| && GET_CODE (XEXP (link, 0)) == REG |
| && reg_allocno[REGNO (XEXP (link, 0))] >= 0 |
| && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))], |
| reg_allocno[REGNO (XEXP (link, 0))])) |
| { |
| int a1 = reg_allocno[REGNO (SET_DEST (set))]; |
| int a2 = reg_allocno[REGNO (XEXP (link, 0))]; |
| |
| if (XEXP (link, 0) == SET_SRC (set)) |
| { |
| IOR_HARD_REG_SET (allocno[a1].hard_reg_copy_preferences, |
| allocno[a2].hard_reg_copy_preferences); |
| IOR_HARD_REG_SET (allocno[a2].hard_reg_copy_preferences, |
| allocno[a1].hard_reg_copy_preferences); |
| } |
| |
| IOR_HARD_REG_SET (allocno[a1].hard_reg_preferences, |
| allocno[a2].hard_reg_preferences); |
| IOR_HARD_REG_SET (allocno[a2].hard_reg_preferences, |
| allocno[a1].hard_reg_preferences); |
| IOR_HARD_REG_SET (allocno[a1].hard_reg_full_preferences, |
| allocno[a2].hard_reg_full_preferences); |
| IOR_HARD_REG_SET (allocno[a2].hard_reg_full_preferences, |
| allocno[a1].hard_reg_full_preferences); |
| } |
| } |
| |
| /* Prune the preferences for global registers to exclude registers that cannot |
| be used. |
| |
| Compute `regs_someone_prefers', which is a bitmask of the hard registers |
| that are preferred by conflicting registers of lower priority. If possible, |
| we will avoid using these registers. */ |
| |
| static void |
| prune_preferences (void) |
| { |
| int i; |
| int num; |
| int *allocno_to_order = xmalloc (max_allocno * sizeof (int)); |
| |
| /* Scan least most important to most important. |
| For each allocno, remove from preferences registers that cannot be used, |
| either because of conflicts or register type. Then compute all registers |
| preferred by each lower-priority register that conflicts. */ |
| |
| for (i = max_allocno - 1; i >= 0; i--) |
| { |
| HARD_REG_SET temp; |
| |
| num = allocno_order[i]; |
| allocno_to_order[num] = i; |
| COPY_HARD_REG_SET (temp, allocno[num].hard_reg_conflicts); |
| |
| if (allocno[num].calls_crossed == 0) |
| IOR_HARD_REG_SET (temp, fixed_reg_set); |
| else |
| IOR_HARD_REG_SET (temp, call_used_reg_set); |
| |
| IOR_COMPL_HARD_REG_SET |
| (temp, |
| reg_class_contents[(int) reg_preferred_class (allocno[num].reg)]); |
| |
| AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, temp); |
| AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, temp); |
| AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_full_preferences, temp); |
| } |
| |
| for (i = max_allocno - 1; i >= 0; i--) |
| { |
| /* Merge in the preferences of lower-priority registers (they have |
| already been pruned). If we also prefer some of those registers, |
| don't exclude them unless we are of a smaller size (in which case |
| we want to give the lower-priority allocno the first chance for |
| these registers). */ |
| HARD_REG_SET temp, temp2; |
| int allocno2; |
| |
| num = allocno_order[i]; |
| |
| CLEAR_HARD_REG_SET (temp); |
| CLEAR_HARD_REG_SET (temp2); |
| |
| EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + num * allocno_row_words, |
| allocno2, |
| { |
| if (allocno_to_order[allocno2] > i) |
| { |
| if (allocno[allocno2].size <= allocno[num].size) |
| IOR_HARD_REG_SET (temp, |
| allocno[allocno2].hard_reg_full_preferences); |
| else |
| IOR_HARD_REG_SET (temp2, |
| allocno[allocno2].hard_reg_full_preferences); |
| } |
| }); |
| |
| AND_COMPL_HARD_REG_SET (temp, allocno[num].hard_reg_full_preferences); |
| IOR_HARD_REG_SET (temp, temp2); |
| COPY_HARD_REG_SET (allocno[num].regs_someone_prefers, temp); |
| } |
| free (allocno_to_order); |
| } |
| |
| /* Assign a hard register to allocno NUM; look for one that is the beginning |
| of a long enough stretch of hard regs none of which conflicts with ALLOCNO. |
| The registers marked in PREFREGS are tried first. |
| |
| LOSERS, if nonzero, is a HARD_REG_SET indicating registers that cannot |
| be used for this allocation. |
| |
| If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg. |
| Otherwise ignore that preferred class and use the alternate class. |
| |
| If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that |
| will have to be saved and restored at calls. |
| |
| RETRYING is nonzero if this is called from retry_global_alloc. |
| |
| If we find one, record it in reg_renumber. |
| If not, do nothing. */ |
| |
| static void |
| find_reg (int num, HARD_REG_SET losers, int alt_regs_p, int accept_call_clobbered, int retrying) |
| { |
| int i, best_reg, pass; |
| HARD_REG_SET used, used1, used2; |
| |
| enum reg_class class = (alt_regs_p |
| ? reg_alternate_class (allocno[num].reg) |
| : reg_preferred_class (allocno[num].reg)); |
| enum machine_mode mode = PSEUDO_REGNO_MODE (allocno[num].reg); |
| |
| if (accept_call_clobbered) |
| COPY_HARD_REG_SET (used1, call_fixed_reg_set); |
| else if (allocno[num].calls_crossed == 0) |
| COPY_HARD_REG_SET (used1, fixed_reg_set); |
| else |
| COPY_HARD_REG_SET (used1, call_used_reg_set); |
| |
| /* Some registers should not be allocated in global-alloc. */ |
| IOR_HARD_REG_SET (used1, no_global_alloc_regs); |
| if (losers) |
| IOR_HARD_REG_SET (used1, losers); |
| |
| IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]); |
| COPY_HARD_REG_SET (used2, used1); |
| |
| IOR_HARD_REG_SET (used1, allocno[num].hard_reg_conflicts); |
| |
| #ifdef CANNOT_CHANGE_MODE_CLASS |
| cannot_change_mode_set_regs (&used1, mode, allocno[num].reg); |
| #endif |
| |
| /* Try each hard reg to see if it fits. Do this in two passes. |
| In the first pass, skip registers that are preferred by some other pseudo |
| to give it a better chance of getting one of those registers. Only if |
| we can't get a register when excluding those do we take one of them. |
| However, we never allocate a register for the first time in pass 0. */ |
| |
| COPY_HARD_REG_SET (used, used1); |
| IOR_COMPL_HARD_REG_SET (used, regs_used_so_far); |
| IOR_HARD_REG_SET (used, allocno[num].regs_someone_prefers); |
| |
| best_reg = -1; |
| for (i = FIRST_PSEUDO_REGISTER, pass = 0; |
| pass <= 1 && i >= FIRST_PSEUDO_REGISTER; |
| pass++) |
| { |
| if (pass == 1) |
| COPY_HARD_REG_SET (used, used1); |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| { |
| #ifdef REG_ALLOC_ORDER |
| int regno = reg_alloc_order[i]; |
| #else |
| int regno = i; |
| #endif |
| if (! TEST_HARD_REG_BIT (used, regno) |
| && HARD_REGNO_MODE_OK (regno, mode) |
| && (allocno[num].calls_crossed == 0 |
| || accept_call_clobbered |
| || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))) |
| { |
| int j; |
| int lim = regno + HARD_REGNO_NREGS (regno, mode); |
| for (j = regno + 1; |
| (j < lim |
| && ! TEST_HARD_REG_BIT (used, j)); |
| j++); |
| if (j == lim) |
| { |
| best_reg = regno; |
| break; |
| } |
| #ifndef REG_ALLOC_ORDER |
| i = j; /* Skip starting points we know will lose */ |
| #endif |
| } |
| } |
| } |
| |
| /* See if there is a preferred register with the same class as the register |
| we allocated above. Making this restriction prevents register |
| preferencing from creating worse register allocation. |
| |
| Remove from the preferred registers and conflicting registers. Note that |
| additional conflicts may have been added after `prune_preferences' was |
| called. |
| |
| First do this for those register with copy preferences, then all |
| preferred registers. */ |
| |
| AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, used); |
| GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_copy_preferences, |
| reg_class_contents[(int) NO_REGS], no_copy_prefs); |
| |
| if (best_reg >= 0) |
| { |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (TEST_HARD_REG_BIT (allocno[num].hard_reg_copy_preferences, i) |
| && HARD_REGNO_MODE_OK (i, mode) |
| && (allocno[num].calls_crossed == 0 |
| || accept_call_clobbered |
| || ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode)) |
| && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg) |
| || reg_class_subset_p (REGNO_REG_CLASS (i), |
| REGNO_REG_CLASS (best_reg)) |
| || reg_class_subset_p (REGNO_REG_CLASS (best_reg), |
| REGNO_REG_CLASS (i)))) |
| { |
| int j; |
| int lim = i + HARD_REGNO_NREGS (i, mode); |
| for (j = i + 1; |
| (j < lim |
| && ! TEST_HARD_REG_BIT (used, j) |
| && (REGNO_REG_CLASS (j) |
| == REGNO_REG_CLASS (best_reg + (j - i)) |
| || reg_class_subset_p (REGNO_REG_CLASS (j), |
| REGNO_REG_CLASS (best_reg + (j - i))) |
| || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)), |
| REGNO_REG_CLASS (j)))); |
| j++); |
| if (j == lim) |
| { |
| best_reg = i; |
| goto no_prefs; |
| } |
| } |
| } |
| no_copy_prefs: |
| |
| AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, used); |
| GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_preferences, |
| reg_class_contents[(int) NO_REGS], no_prefs); |
| |
| if (best_reg >= 0) |
| { |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (TEST_HARD_REG_BIT (allocno[num].hard_reg_preferences, i) |
| && HARD_REGNO_MODE_OK (i, mode) |
| && (allocno[num].calls_crossed == 0 |
| || accept_call_clobbered |
| || ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode)) |
| && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg) |
| || reg_class_subset_p (REGNO_REG_CLASS (i), |
| REGNO_REG_CLASS (best_reg)) |
| || reg_class_subset_p (REGNO_REG_CLASS (best_reg), |
| REGNO_REG_CLASS (i)))) |
| { |
| int j; |
| int lim = i + HARD_REGNO_NREGS (i, mode); |
| for (j = i + 1; |
| (j < lim |
| && ! TEST_HARD_REG_BIT (used, j) |
| && (REGNO_REG_CLASS (j) |
| == REGNO_REG_CLASS (best_reg + (j - i)) |
| || reg_class_subset_p (REGNO_REG_CLASS (j), |
| REGNO_REG_CLASS (best_reg + (j - i))) |
| || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)), |
| REGNO_REG_CLASS (j)))); |
| j++); |
| if (j == lim) |
| { |
| best_reg = i; |
| break; |
| } |
| } |
| } |
| no_prefs: |
| |
| /* If we haven't succeeded yet, try with caller-saves. |
| We need not check to see if the current function has nonlocal |
| labels because we don't put any pseudos that are live over calls in |
| registers in that case. */ |
| |
| if (flag_caller_saves && best_reg < 0) |
| { |
| /* Did not find a register. If it would be profitable to |
| allocate a call-clobbered register and save and restore it |
| around calls, do that. */ |
| if (! accept_call_clobbered |
| && allocno[num].calls_crossed != 0 |
| && CALLER_SAVE_PROFITABLE (allocno[num].n_refs, |
| allocno[num].calls_crossed)) |
| { |
| HARD_REG_SET new_losers; |
| if (! losers) |
| CLEAR_HARD_REG_SET (new_losers); |
| else |
| COPY_HARD_REG_SET (new_losers, losers); |
| |
| IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set); |
| find_reg (num, new_losers, alt_regs_p, 1, retrying); |
| if (reg_renumber[allocno[num].reg] >= 0) |
| { |
| caller_save_needed = 1; |
| return; |
| } |
| } |
| } |
| |
| /* If we haven't succeeded yet, |
| see if some hard reg that conflicts with us |
| was utilized poorly by local-alloc. |
| If so, kick out the regs that were put there by local-alloc |
| so we can use it instead. */ |
| if (best_reg < 0 && !retrying |
| /* Let's not bother with multi-reg allocnos. */ |
| && allocno[num].size == 1) |
| { |
| /* Count from the end, to find the least-used ones first. */ |
| for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--) |
| { |
| #ifdef REG_ALLOC_ORDER |
| int regno = reg_alloc_order[i]; |
| #else |
| int regno = i; |
| #endif |
| |
| if (local_reg_n_refs[regno] != 0 |
| /* Don't use a reg no good for this pseudo. */ |
| && ! TEST_HARD_REG_BIT (used2, regno) |
| && HARD_REGNO_MODE_OK (regno, mode) |
| /* The code below assumes that we need only a single |
| register, but the check of allocno[num].size above |
| was not enough. Sometimes we need more than one |
| register for a single-word value. */ |
| && HARD_REGNO_NREGS (regno, mode) == 1 |
| && (allocno[num].calls_crossed == 0 |
| || accept_call_clobbered |
| || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)) |
| #ifdef CANNOT_CHANGE_MODE_CLASS |
| && ! invalid_mode_change_p (regno, REGNO_REG_CLASS (regno), |
| mode) |
| #endif |
| #ifdef STACK_REGS |
| && (!allocno[num].no_stack_reg |
| || regno < FIRST_STACK_REG || regno > LAST_STACK_REG) |
| #endif |
| ) |
| { |
| /* We explicitly evaluate the divide results into temporary |
| variables so as to avoid excess precision problems that occur |
| on an i386-unknown-sysv4.2 (unixware) host. */ |
| |
| double tmp1 = ((double) local_reg_freq[regno] |
| / local_reg_live_length[regno]); |
| double tmp2 = ((double) allocno[num].freq |
| / allocno[num].live_length); |
| |
| if (tmp1 < tmp2) |
| { |
| /* Hard reg REGNO was used less in total by local regs |
| than it would be used by this one allocno! */ |
| int k; |
| for (k = 0; k < max_regno; k++) |
| if (reg_renumber[k] >= 0) |
| { |
| int r = reg_renumber[k]; |
| int endregno |
| = r + HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (k)); |
| |
| if (regno >= r && regno < endregno) |
| reg_renumber[k] = -1; |
| } |
| |
| best_reg = regno; |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Did we find a register? */ |
| |
| if (best_reg >= 0) |
| { |
| int lim, j; |
| HARD_REG_SET this_reg; |
| |
| /* Yes. Record it as the hard register of this pseudo-reg. */ |
| reg_renumber[allocno[num].reg] = best_reg; |
| /* Also of any pseudo-regs that share with it. */ |
| if (reg_may_share[allocno[num].reg]) |
| for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++) |
| if (reg_allocno[j] == num) |
| reg_renumber[j] = best_reg; |
| |
| /* Make a set of the hard regs being allocated. */ |
| CLEAR_HARD_REG_SET (this_reg); |
| lim = best_reg + HARD_REGNO_NREGS (best_reg, mode); |
| for (j = best_reg; j < lim; j++) |
| { |
| SET_HARD_REG_BIT (this_reg, j); |
| SET_HARD_REG_BIT (regs_used_so_far, j); |
| /* This is no longer a reg used just by local regs. */ |
| local_reg_n_refs[j] = 0; |
| local_reg_freq[j] = 0; |
| } |
| /* For each other pseudo-reg conflicting with this one, |
| mark it as conflicting with the hard regs this one occupies. */ |
| lim = num; |
| EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + lim * allocno_row_words, j, |
| { |
| IOR_HARD_REG_SET (allocno[j].hard_reg_conflicts, this_reg); |
| }); |
| } |
| } |
| |
| /* Called from `reload' to look for a hard reg to put pseudo reg REGNO in. |
| Perhaps it had previously seemed not worth a hard reg, |
| or perhaps its old hard reg has been commandeered for reloads. |
| FORBIDDEN_REGS indicates certain hard regs that may not be used, even if |
| they do not appear to be allocated. |
| If FORBIDDEN_REGS is zero, no regs are forbidden. */ |
| |
| void |
| retry_global_alloc (int regno, HARD_REG_SET forbidden_regs) |
| { |
| int alloc_no = reg_allocno[regno]; |
| if (alloc_no >= 0) |
| { |
| /* If we have more than one register class, |
| first try allocating in the class that is cheapest |
| for this pseudo-reg. If that fails, try any reg. */ |
| if (N_REG_CLASSES > 1) |
| find_reg (alloc_no, forbidden_regs, 0, 0, 1); |
| if (reg_renumber[regno] < 0 |
| && reg_alternate_class (regno) != NO_REGS) |
| find_reg (alloc_no, forbidden_regs, 1, 0, 1); |
| |
| /* If we found a register, modify the RTL for the register to |
| show the hard register, and mark that register live. */ |
| if (reg_renumber[regno] >= 0) |
| { |
| REGNO (regno_reg_rtx[regno]) = reg_renumber[regno]; |
| mark_home_live (regno); |
| } |
| } |
| } |
| |
| /* Record a conflict between register REGNO |
| and everything currently live. |
| REGNO must not be a pseudo reg that was allocated |
| by local_alloc; such numbers must be translated through |
| reg_renumber before calling here. */ |
| |
| static void |
| record_one_conflict (int regno) |
| { |
| int j; |
| |
| if (regno < FIRST_PSEUDO_REGISTER) |
| /* When a hard register becomes live, |
| record conflicts with live pseudo regs. */ |
| EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, j, |
| { |
| SET_HARD_REG_BIT (allocno[j].hard_reg_conflicts, regno); |
| }); |
| else |
| /* When a pseudo-register becomes live, |
| record conflicts first with hard regs, |
| then with other pseudo regs. */ |
| { |
| int ialloc = reg_allocno[regno]; |
| int ialloc_prod = ialloc * allocno_row_words; |
| |
| IOR_HARD_REG_SET (allocno[ialloc].hard_reg_conflicts, hard_regs_live); |
| for (j = allocno_row_words - 1; j >= 0; j--) |
| { |
| #if 0 |
| int k; |
| for (k = 0; k < n_no_conflict_pairs; k++) |
| if (! ((j == no_conflict_pairs[k].allocno1 |
| && ialloc == no_conflict_pairs[k].allocno2) |
| || |
| (j == no_conflict_pairs[k].allocno2 |
| && ialloc == no_conflict_pairs[k].allocno1))) |
| #endif /* 0 */ |
| conflicts[ialloc_prod + j] |= allocnos_live[j]; |
| } |
| } |
| } |
| |
| /* Record all allocnos currently live as conflicting |
| with all hard regs currently live. |
| |
| ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that |
| are currently live. Their bits are also flagged in allocnos_live. */ |
| |
| static void |
| record_conflicts (int *allocno_vec, int len) |
| { |
| while (--len >= 0) |
| IOR_HARD_REG_SET (allocno[allocno_vec[len]].hard_reg_conflicts, |
| hard_regs_live); |
| } |
| |
| /* If CONFLICTP (i, j) is true, make sure CONFLICTP (j, i) is also true. */ |
| static void |
| mirror_conflicts (void) |
| { |
| int i, j; |
| int rw = allocno_row_words; |
| int rwb = rw * INT_BITS; |
| INT_TYPE *p = conflicts; |
| INT_TYPE *q0 = conflicts, *q1, *q2; |
| unsigned INT_TYPE mask; |
| |
| for (i = max_allocno - 1, mask = 1; i >= 0; i--, mask <<= 1) |
| { |
| if (! mask) |
| { |
| mask = 1; |
| q0++; |
| } |
| for (j = allocno_row_words - 1, q1 = q0; j >= 0; j--, q1 += rwb) |
| { |
| unsigned INT_TYPE word; |
| |
| for (word = (unsigned INT_TYPE) *p++, q2 = q1; word; |
| word >>= 1, q2 += rw) |
| { |
| if (word & 1) |
| *q2 |= mask; |
| } |
| } |
| } |
| } |
| |
| /* Handle the case where REG is set by the insn being scanned, |
| during the forward scan to accumulate conflicts. |
| Store a 1 in regs_live or allocnos_live for this register, record how many |
| consecutive hardware registers it actually needs, |
| and record a conflict with all other registers already live. |
| |
| Note that even if REG does not remain alive after this insn, |
| we must mark it here as live, to ensure a conflict between |
| REG and any other regs set in this insn that really do live. |
| This is because those other regs could be considered after this. |
| |
| REG might actually be something other than a register; |
| if so, we do nothing. |
| |
| SETTER is 0 if this register was modified by an auto-increment (i.e., |
| a REG_INC note was found for it). */ |
| |
| static void |
| mark_reg_store (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED) |
| { |
| int regno; |
| |
| if (GET_CODE (reg) == SUBREG) |
| reg = SUBREG_REG (reg); |
| |
| if (GET_CODE (reg) != REG) |
| return; |
| |
| regs_set[n_regs_set++] = reg; |
| |
| if (setter && GET_CODE (setter) != CLOBBER) |
| set_preference (reg, SET_SRC (setter)); |
| |
| regno = REGNO (reg); |
| |
| /* Either this is one of the max_allocno pseudo regs not allocated, |
| or it is or has a hardware reg. First handle the pseudo-regs. */ |
| if (regno >= FIRST_PSEUDO_REGISTER) |
| { |
| if (reg_allocno[regno] >= 0) |
| { |
| SET_ALLOCNO_LIVE (reg_allocno[regno]); |
| record_one_conflict (regno); |
| } |
| } |
| |
| if (reg_renumber[regno] >= 0) |
| regno = reg_renumber[regno]; |
| |
| /* Handle hardware regs (and pseudos allocated to hard regs). */ |
| if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno]) |
| { |
| int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg)); |
| while (regno < last) |
| { |
| record_one_conflict (regno); |
| SET_HARD_REG_BIT (hard_regs_live, regno); |
| regno++; |
| } |
| } |
| } |
| |
| /* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */ |
| |
| static void |
| mark_reg_clobber (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED) |
| { |
| if (GET_CODE (setter) == CLOBBER) |
| mark_reg_store (reg, setter, data); |
| } |
| |
| /* Record that REG has conflicts with all the regs currently live. |
| Do not mark REG itself as live. */ |
| |
| static void |
| mark_reg_conflicts (rtx reg) |
| { |
| int regno; |
| |
| if (GET_CODE (reg) == SUBREG) |
| reg = SUBREG_REG (reg); |
| |
| if (GET_CODE (reg) != REG) |
| return; |
| |
| regno = REGNO (reg); |
| |
| /* Either this is one of the max_allocno pseudo regs not allocated, |
| or it is or has a hardware reg. First handle the pseudo-regs. */ |
| if (regno >= FIRST_PSEUDO_REGISTER) |
| { |
| if (reg_allocno[regno] >= 0) |
| record_one_conflict (regno); |
| } |
| |
| if (reg_renumber[regno] >= 0) |
| regno = reg_renumber[regno]; |
| |
| /* Handle hardware regs (and pseudos allocated to hard regs). */ |
| if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno]) |
| { |
| int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg)); |
| while (regno < last) |
| { |
| record_one_conflict (regno); |
| regno++; |
| } |
| } |
| } |
| |
| /* Mark REG as being dead (following the insn being scanned now). |
| Store a 0 in regs_live or allocnos_live for this register. */ |
| |
| static void |
| mark_reg_death (rtx reg) |
| { |
| int regno = REGNO (reg); |
| |
| /* Either this is one of the max_allocno pseudo regs not allocated, |
| or it is a hardware reg. First handle the pseudo-regs. */ |
| if (regno >= FIRST_PSEUDO_REGISTER) |
| { |
| if (reg_allocno[regno] >= 0) |
| CLEAR_ALLOCNO_LIVE (reg_allocno[regno]); |
| } |
| |
| /* For pseudo reg, see if it has been assigned a hardware reg. */ |
| if (reg_renumber[regno] >= 0) |
| regno = reg_renumber[regno]; |
| |
| /* Handle hardware regs (and pseudos allocated to hard regs). */ |
| if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno]) |
| { |
| /* Pseudo regs already assigned hardware regs are treated |
| almost the same as explicit hardware regs. */ |
| int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg)); |
| while (regno < last) |
| { |
| CLEAR_HARD_REG_BIT (hard_regs_live, regno); |
| regno++; |
| } |
| } |
| } |
| |
| /* Mark hard reg REGNO as currently live, assuming machine mode MODE |
| for the value stored in it. MODE determines how many consecutive |
| registers are actually in use. Do not record conflicts; |
| it is assumed that the caller will do that. */ |
| |
| static void |
| mark_reg_live_nc (int regno, enum machine_mode mode) |
| { |
| int last = regno + HARD_REGNO_NREGS (regno, mode); |
| while (regno < last) |
| { |
| SET_HARD_REG_BIT (hard_regs_live, regno); |
| regno++; |
| } |
| } |
| |
| /* Try to set a preference for an allocno to a hard register. |
| We are passed DEST and SRC which are the operands of a SET. It is known |
| that SRC is a register. If SRC or the first operand of SRC is a register, |
| try to set a preference. If one of the two is a hard register and the other |
| is a pseudo-register, mark the preference. |
| |
| Note that we are not as aggressive as local-alloc in trying to tie a |
| pseudo-register to a hard register. */ |
| |
| static void |
| set_preference (rtx dest, rtx src) |
| { |
| unsigned int src_regno, dest_regno; |
| /* Amount to add to the hard regno for SRC, or subtract from that for DEST, |
| to compensate for subregs in SRC or DEST. */ |
| int offset = 0; |
| unsigned int i; |
| int copy = 1; |
| |
| if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e') |
| src = XEXP (src, 0), copy = 0; |
| |
| /* Get the reg number for both SRC and DEST. |
| If neither is a reg, give up. */ |
| |
| if (GET_CODE (src) == REG) |
| src_regno = REGNO (src); |
| else if (GET_CODE (src) == SUBREG && GET_CODE (SUBREG_REG (src)) == REG) |
| { |
| src_regno = REGNO (SUBREG_REG (src)); |
| |
| if (REGNO (SUBREG_REG (src)) < FIRST_PSEUDO_REGISTER) |
| offset += subreg_regno_offset (REGNO (SUBREG_REG (src)), |
| GET_MODE (SUBREG_REG (src)), |
| SUBREG_BYTE (src), |
| GET_MODE (src)); |
| else |
| offset += (SUBREG_BYTE (src) |
| / REGMODE_NATURAL_SIZE (GET_MODE (src))); |
| } |
| else |
| return; |
| |
| if (GET_CODE (dest) == REG) |
| dest_regno = REGNO (dest); |
| else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG) |
| { |
| dest_regno = REGNO (SUBREG_REG (dest)); |
| |
| if (REGNO (SUBREG_REG (dest)) < FIRST_PSEUDO_REGISTER) |
| offset -= subreg_regno_offset (REGNO (SUBREG_REG (dest)), |
| GET_MODE (SUBREG_REG (dest)), |
| SUBREG_BYTE (dest), |
| GET_MODE (dest)); |
| else |
| offset -= (SUBREG_BYTE (dest) |
| / REGMODE_NATURAL_SIZE (GET_MODE (dest))); |
| } |
| else |
| return; |
| |
| /* Convert either or both to hard reg numbers. */ |
| |
| if (reg_renumber[src_regno] >= 0) |
| src_regno = reg_renumber[src_regno]; |
| |
| if (reg_renumber[dest_regno] >= 0) |
| dest_regno = reg_renumber[dest_regno]; |
| |
| /* Now if one is a hard reg and the other is a global pseudo |
| then give the other a preference. */ |
| |
| if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER |
| && reg_allocno[src_regno] >= 0) |
| { |
| dest_regno -= offset; |
| if (dest_regno < FIRST_PSEUDO_REGISTER) |
| { |
| if (copy) |
| SET_REGBIT (hard_reg_copy_preferences, |
| reg_allocno[src_regno], dest_regno); |
| |
| SET_REGBIT (hard_reg_preferences, |
| reg_allocno[src_regno], dest_regno); |
| for (i = dest_regno; |
| i < dest_regno + HARD_REGNO_NREGS (dest_regno, GET_MODE (dest)); |
| i++) |
| SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i); |
| } |
| } |
| |
| if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER |
| && reg_allocno[dest_regno] >= 0) |
| { |
| src_regno += offset; |
| if (src_regno < FIRST_PSEUDO_REGISTER) |
| { |
| if (copy) |
| SET_REGBIT (hard_reg_copy_preferences, |
| reg_allocno[dest_regno], src_regno); |
| |
| SET_REGBIT (hard_reg_preferences, |
| reg_allocno[dest_regno], src_regno); |
| for (i = src_regno; |
| i < src_regno + HARD_REGNO_NREGS (src_regno, GET_MODE (src)); |
| i++) |
| SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i); |
| } |
| } |
| } |
| |
| /* Indicate that hard register number FROM was eliminated and replaced with |
| an offset from hard register number TO. The status of hard registers live |
| at the start of a basic block is updated by replacing a use of FROM with |
| a use of TO. */ |
| |
| void |
| mark_elimination (int from, int to) |
| { |
| basic_block bb; |
| |
| FOR_EACH_BB (bb) |
| { |
| regset r = bb->global_live_at_start; |
| if (REGNO_REG_SET_P (r, from)) |
| { |
| CLEAR_REGNO_REG_SET (r, from); |
| SET_REGNO_REG_SET (r, to); |
| } |
| } |
| } |
| |
| /* Used for communication between the following functions. Holds the |
| current life information. */ |
| static regset live_relevant_regs; |
| |
| /* Record in live_relevant_regs and REGS_SET that register REG became live. |
| This is called via note_stores. */ |
| static void |
| reg_becomes_live (rtx reg, rtx setter ATTRIBUTE_UNUSED, void *regs_set) |
| { |
| int regno; |
| |
| if (GET_CODE (reg) == SUBREG) |
| reg = SUBREG_REG (reg); |
| |
| if (GET_CODE (reg) != REG) |
| return; |
| |
| regno = REGNO (reg); |
| if (regno < FIRST_PSEUDO_REGISTER) |
| { |
| int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg)); |
| while (nregs-- > 0) |
| { |
| SET_REGNO_REG_SET (live_relevant_regs, regno); |
| if (! fixed_regs[regno]) |
| SET_REGNO_REG_SET ((regset) regs_set, regno); |
| regno++; |
| } |
| } |
| else if (reg_renumber[regno] >= 0) |
| { |
| SET_REGNO_REG_SET (live_relevant_regs, regno); |
| SET_REGNO_REG_SET ((regset) regs_set, regno); |
| } |
| } |
| |
| /* Record in live_relevant_regs that register REGNO died. */ |
| static void |
| reg_dies (int regno, enum machine_mode mode, struct insn_chain *chain) |
| { |
| if (regno < FIRST_PSEUDO_REGISTER) |
| { |
| int nregs = HARD_REGNO_NREGS (regno, mode); |
| while (nregs-- > 0) |
| { |
| CLEAR_REGNO_REG_SET (live_relevant_regs, regno); |
| if (! fixed_regs[regno]) |
| SET_REGNO_REG_SET (&chain->dead_or_set, regno); |
| regno++; |
| } |
| } |
| else |
| { |
| CLEAR_REGNO_REG_SET (live_relevant_regs, regno); |
| if (reg_renumber[regno] >= 0) |
| SET_REGNO_REG_SET (&chain->dead_or_set, regno); |
| } |
| } |
| |
| /* Walk the insns of the current function and build reload_insn_chain, |
| and record register life information. */ |
| void |
| build_insn_chain (rtx first) |
| { |
| struct insn_chain **p = &reload_insn_chain; |
| struct insn_chain *prev = 0; |
| basic_block b = ENTRY_BLOCK_PTR->next_bb; |
| regset_head live_relevant_regs_head; |
| |
| live_relevant_regs = INITIALIZE_REG_SET (live_relevant_regs_head); |
| |
| for (; first; first = NEXT_INSN (first)) |
| { |
| struct insn_chain *c; |
| |
| if (first == BB_HEAD (b)) |
| { |
| int i; |
| |
| CLEAR_REG_SET (live_relevant_regs); |
| |
| EXECUTE_IF_SET_IN_BITMAP |
| (b->global_live_at_start, 0, i, |
| { |
| if (i < FIRST_PSEUDO_REGISTER |
| ? ! TEST_HARD_REG_BIT (eliminable_regset, i) |
| : reg_renumber[i] >= 0) |
| SET_REGNO_REG_SET (live_relevant_regs, i); |
| }); |
| } |
| |
| if (GET_CODE (first) != NOTE && GET_CODE (first) != BARRIER) |
| { |
| c = new_insn_chain (); |
| c->prev = prev; |
| prev = c; |
| *p = c; |
| p = &c->next; |
| c->insn = first; |
| c->block = b->index; |
| |
| if (INSN_P (first)) |
| { |
| rtx link; |
| |
| /* Mark the death of everything that dies in this instruction. */ |
| |
| for (link = REG_NOTES (first); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_DEAD |
| && GET_CODE (XEXP (link, 0)) == REG) |
| reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)), |
| c); |
| |
| COPY_REG_SET (&c->live_throughout, live_relevant_regs); |
| |
| /* Mark everything born in this instruction as live. */ |
| |
| note_stores (PATTERN (first), reg_becomes_live, |
| &c->dead_or_set); |
| } |
| else |
| COPY_REG_SET (&c->live_throughout, live_relevant_regs); |
| |
| if (INSN_P (first)) |
| { |
| rtx link; |
| |
| /* Mark anything that is set in this insn and then unused as dying. */ |
| |
| for (link = REG_NOTES (first); link; link = XEXP (link, 1)) |
| if (REG_NOTE_KIND (link) == REG_UNUSED |
| && GET_CODE (XEXP (link, 0)) == REG) |
| reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)), |
| c); |
| } |
| } |
| |
| if (first == BB_END (b)) |
| b = b->next_bb; |
| |
| /* Stop after we pass the end of the last basic block. Verify that |
| no real insns are after the end of the last basic block. |
| |
| We may want to reorganize the loop somewhat since this test should |
| always be the right exit test. Allow an ADDR_VEC or ADDR_DIF_VEC if |
| the previous real insn is a JUMP_INSN. */ |
| if (b == EXIT_BLOCK_PTR) |
| { |
| for (first = NEXT_INSN (first) ; first; first = NEXT_INSN (first)) |
| if (INSN_P (first) |
| && GET_CODE (PATTERN (first)) != USE |
| && ! ((GET_CODE (PATTERN (first)) == ADDR_VEC |
| || GET_CODE (PATTERN (first)) == ADDR_DIFF_VEC) |
| && prev_real_insn (first) != 0 |
| && GET_CODE (prev_real_insn (first)) == JUMP_INSN)) |
| abort (); |
| break; |
| } |
| } |
| FREE_REG_SET (live_relevant_regs); |
| *p = 0; |
| } |
| |
| /* Print debugging trace information if -dg switch is given, |
| showing the information on which the allocation decisions are based. */ |
| |
| static void |
| dump_conflicts (FILE *file) |
| { |
| int i; |
| int has_preferences; |
| int nregs; |
| nregs = 0; |
| for (i = 0; i < max_allocno; i++) |
| { |
| if (reg_renumber[allocno[allocno_order[i]].reg] >= 0) |
| continue; |
| nregs++; |
| } |
| fprintf (file, ";; %d regs to allocate:", nregs); |
| for (i = 0; i < max_allocno; i++) |
| { |
| int j; |
| if (reg_renumber[allocno[allocno_order[i]].reg] >= 0) |
| continue; |
| fprintf (file, " %d", allocno[allocno_order[i]].reg); |
| for (j = 0; j < max_regno; j++) |
| if (reg_allocno[j] == allocno_order[i] |
| && j != allocno[allocno_order[i]].reg) |
| fprintf (file, "+%d", j); |
| if (allocno[allocno_order[i]].size != 1) |
| fprintf (file, " (%d)", allocno[allocno_order[i]].size); |
| } |
| fprintf (file, "\n"); |
| |
| for (i = 0; i < max_allocno; i++) |
| { |
| int j; |
| fprintf (file, ";; %d conflicts:", allocno[i].reg); |
| for (j = 0; j < max_allocno; j++) |
| if (CONFLICTP (j, i)) |
| fprintf (file, " %d", allocno[j].reg); |
| for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) |
| if (TEST_HARD_REG_BIT (allocno[i].hard_reg_conflicts, j)) |
| fprintf (file, " %d", j); |
| fprintf (file, "\n"); |
| |
| has_preferences = 0; |
| for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) |
| if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j)) |
| has_preferences = 1; |
| |
| if (! has_preferences) |
| continue; |
| fprintf (file, ";; %d preferences:", allocno[i].reg); |
| for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) |
| if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j)) |
| fprintf (file, " %d", j); |
| fprintf (file, "\n"); |
| } |
| fprintf (file, "\n"); |
| } |
| |
| void |
| dump_global_regs (FILE *file) |
| { |
| int i, j; |
| |
| fprintf (file, ";; Register dispositions:\n"); |
| for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++) |
| if (reg_renumber[i] >= 0) |
| { |
| fprintf (file, "%d in %d ", i, reg_renumber[i]); |
| if (++j % 6 == 0) |
| fprintf (file, "\n"); |
| } |
| |
| fprintf (file, "\n\n;; Hard regs used: "); |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (regs_ever_live[i]) |
| fprintf (file, " %d", i); |
| fprintf (file, "\n\n"); |
| } |