blob: 86c56bf26800e273a8b244ff68299db1ea16f43e [file] [log] [blame]
/* Copyright (C) 2007-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define IN_TARGET_CODE 1
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "c-family/c-common.h"
#include "memmodel.h"
#include "tm_p.h"
#include "c-family/c-pragma.h"
#include "stringpool.h"
#include "arm-builtins.h"
#include "arm-protos.h"
tree
arm_resolve_cde_builtin (location_t loc, tree fndecl, void *arglist)
{
vec<tree, va_gc> *params = static_cast<vec<tree, va_gc> *> (arglist);
unsigned param_num = params ? params->length() : 0;
unsigned num_args = list_length (TYPE_ARG_TYPES (TREE_TYPE (fndecl))) - 1;
/* Ensure this function has the correct number of arguments.
This won't happen when using the intrinsics defined by the ACLE, since
they're exposed to the user via a wrapper in the arm_cde.h header that has
the correct number of arguments ... hence the compiler would already catch
an incorrect number of arguments there.
It is still possible to get here if the user tries to call the __bulitin_*
functions directly. We could print some error message in this function,
but instead we leave it to the rest of the code to catch this problem in
the same way that other __builtin_* functions catch it.
This does mean an odd error message, but it's consistent with the rest of
the builtins. */
if (param_num != num_args)
return NULL_TREE;
tree to_return = NULL_TREE;
/* Take the functions return type since that's the same type as the arguments
this function needs (the types of the builtin function all come from the
machine mode of the RTL pattern, and they're all the same and calculated
in the same way). */
tree pattern_type = TREE_TYPE (TREE_TYPE (fndecl));
unsigned i;
/* Hard coding the number of parameters we don't want to cast at the end of
the builtin. This is the easiest approach for the CDE intrinsics, and
introducing a parameter to store in the builtins.def macros seems overkill
when they're only relevant here. */
unsigned end_args = arm_cde_end_args (fndecl);
unsigned cast_param_end = param_num - end_args;
/* For the vcx1q patterns that don't need any casts. */
if (cast_param_end == 1)
return NULL_TREE;
/* In order to check all arguments rather than complaining on the first
invalid one we record whether *any* arguments are invalid using this
boolean variable. */
bool invalid = false;
for (i = 1; i < cast_param_end; i++)
{
tree this_param = (*params)[i];
if (TREE_CODE (this_param) == ERROR_MARK)
{
invalid = true;
continue;
}
tree param_type = TREE_TYPE (this_param);
/* Return value is cast to type that second argument originally was.
All non-constant arguments are cast to the return type calculated from
the RTL pattern.
Set the return type to an unqualified version of the type of the first
parameter. The first parameter since that is how the intrinsics are
defined -- to always return the same type as the first polymorphic
argument. Unqualified version of the type since we don't want passing
a constant parameter to mean that the return value of the builtin is
also constant. */
if (i == 1)
to_return = build_qualified_type (param_type, 0 MEM_STAT_INFO);
/* The only requirement of these intrinsics on the type of the variable
is that it's 128 bits wide. All other types are valid and we simply
VIEW_CONVERT_EXPR them to the type of the underlying builtin. */
tree type_size = TYPE_SIZE (param_type);
if (! tree_fits_shwi_p (type_size)
|| tree_to_shwi (type_size) != 128)
{
error_at (loc,
"argument %u to function %qE is of type %qT which is not "
"known to be 128 bits wide",
i + 1, fndecl, param_type);
invalid = true;
continue;
}
/* Only convert the argument if we actually need to. */
if (! check_base_type (pattern_type, param_type))
(*params)[i] = build1 (VIEW_CONVERT_EXPR, pattern_type, this_param);
}
if (invalid)
return NULL_TREE;
/* We know it's safe to call this since this builtin is here to implement an
ACLE function, and those functions are only for C/C++. */
tree call_expr = build_function_call_vec (loc, vNULL, fndecl, params,
NULL, fndecl);
gcc_assert (to_return != NULL_TREE);
if (! check_base_type (to_return, pattern_type))
return build1 (VIEW_CONVERT_EXPR, to_return, call_expr);
return call_expr;
}
/* Implement "#pragma GCC arm". */
static void
arm_pragma_arm (cpp_reader *)
{
tree x;
if (pragma_lex (&x) != CPP_STRING)
{
error ("%<#pragma GCC arm%> requires a string parameter");
return;
}
const char *name = TREE_STRING_POINTER (x);
if (strcmp (name, "arm_mve_types.h") == 0)
arm_mve::handle_arm_mve_types_h ();
else
error ("unknown %<#pragma GCC arm%> option %qs", name);
}
/* Implement TARGET_RESOLVE_OVERLOADED_BUILTIN. This is currently only
used for the MVE related builtins for the CDE extension.
Here we ensure the type of arguments is such that the size is correct, and
then return a tree that describes the same function call but with the
relevant types cast as necessary. */
tree
arm_resolve_overloaded_builtin (location_t loc, tree fndecl, void *arglist)
{
if (arm_describe_resolver (fndecl) == arm_cde_resolver)
return arm_resolve_cde_builtin (loc, fndecl, arglist);
return NULL_TREE;
}
/* Output C specific EABI object attributes. These cannot be done in
arm.cc because they require information from the C frontend. */
static void
arm_output_c_attributes (void)
{
int wchar_size = (int)(TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT);
arm_emit_eabi_attribute ("Tag_ABI_PCS_wchar_t", 18, wchar_size);
}
/* Setup so that common code calls arm_output_c_attributes. */
void
arm_lang_object_attributes_init (void)
{
arm_lang_output_object_attributes_hook = arm_output_c_attributes;
}
#define builtin_define(TXT) cpp_define (pfile, TXT)
#define builtin_assert(TXT) cpp_assert (pfile, TXT)
/* Define or undefine macros based on the current target. If the user does
#pragma GCC target, we need to adjust the macros dynamically. */
static void
def_or_undef_macro(struct cpp_reader* pfile, const char *name, bool def_p)
{
if (def_p)
cpp_define (pfile, name);
else
cpp_undef (pfile, name);
}
static void
arm_cpu_builtins (struct cpp_reader* pfile)
{
def_or_undef_macro (pfile, "__ARM_FEATURE_DSP", TARGET_DSP_MULTIPLY);
def_or_undef_macro (pfile, "__ARM_FEATURE_QBIT", TARGET_ARM_QBIT);
def_or_undef_macro (pfile, "__ARM_FEATURE_SAT", TARGET_ARM_SAT);
def_or_undef_macro (pfile, "__ARM_FEATURE_CRYPTO", TARGET_CRYPTO);
def_or_undef_macro (pfile, "__ARM_FEATURE_AES", TARGET_CRYPTO);
def_or_undef_macro (pfile, "__ARM_FEATURE_SHA2", TARGET_CRYPTO);
def_or_undef_macro (pfile, "__ARM_FEATURE_UNALIGNED", unaligned_access);
def_or_undef_macro (pfile, "__ARM_FEATURE_QRDMX", TARGET_NEON_RDMA);
def_or_undef_macro (pfile, "__ARM_FEATURE_CRC32", TARGET_CRC32);
def_or_undef_macro (pfile, "__ARM_FEATURE_DOTPROD", TARGET_DOTPROD);
def_or_undef_macro (pfile, "__ARM_FEATURE_COMPLEX", TARGET_COMPLEX);
def_or_undef_macro (pfile, "__ARM_32BIT_STATE", TARGET_32BIT);
cpp_undef (pfile, "__ARM_FEATURE_MVE");
if (TARGET_HAVE_MVE && TARGET_HAVE_MVE_FLOAT)
{
builtin_define_with_int_value ("__ARM_FEATURE_MVE", 3);
}
else if (TARGET_HAVE_MVE)
{
builtin_define_with_int_value ("__ARM_FEATURE_MVE", 1);
}
cpp_undef (pfile, "__ARM_FEATURE_CMSE");
if (arm_arch8 && !arm_arch_notm)
{
if (arm_arch_cmse && use_cmse)
builtin_define_with_int_value ("__ARM_FEATURE_CMSE", 3);
else
builtin_define ("__ARM_FEATURE_CMSE");
}
cpp_undef (pfile, "__ARM_FEATURE_LDREX");
if (TARGET_ARM_FEATURE_LDREX)
builtin_define_with_int_value ("__ARM_FEATURE_LDREX",
TARGET_ARM_FEATURE_LDREX);
def_or_undef_macro (pfile, "__ARM_FEATURE_CLZ",
((TARGET_ARM_ARCH >= 5 && !TARGET_THUMB)
|| TARGET_ARM_ARCH_ISA_THUMB >=2));
def_or_undef_macro (pfile, "__ARM_FEATURE_NUMERIC_MAXMIN",
TARGET_ARM_ARCH >= 8 && TARGET_NEON && TARGET_VFP5);
def_or_undef_macro (pfile, "__ARM_FEATURE_SIMD32", TARGET_INT_SIMD);
builtin_define_with_int_value ("__ARM_SIZEOF_MINIMAL_ENUM",
flag_short_enums ? 1 : 4);
builtin_define_type_sizeof ("__ARM_SIZEOF_WCHAR_T", wchar_type_node);
cpp_undef (pfile, "__ARM_ARCH_PROFILE");
if (TARGET_ARM_ARCH_PROFILE)
builtin_define_with_int_value ("__ARM_ARCH_PROFILE",
TARGET_ARM_ARCH_PROFILE);
/* Define __arm__ even when in thumb mode, for
consistency with armcc. */
builtin_define ("__arm__");
if (TARGET_ARM_ARCH)
{
cpp_undef (pfile, "__ARM_ARCH");
builtin_define_with_int_value ("__ARM_ARCH", TARGET_ARM_ARCH);
}
if (arm_arch_notm)
builtin_define ("__ARM_ARCH_ISA_ARM");
builtin_define ("__APCS_32__");
def_or_undef_macro (pfile, "__GCC_ASM_FLAG_OUTPUTS__", !TARGET_THUMB1);
def_or_undef_macro (pfile, "__thumb__", TARGET_THUMB);
def_or_undef_macro (pfile, "__thumb2__", TARGET_THUMB2);
if (TARGET_BIG_END)
def_or_undef_macro (pfile, "__THUMBEB__", TARGET_THUMB);
else
def_or_undef_macro (pfile, "__THUMBEL__", TARGET_THUMB);
cpp_undef (pfile, "__ARM_ARCH_ISA_THUMB");
if (TARGET_ARM_ARCH_ISA_THUMB)
builtin_define_with_int_value ("__ARM_ARCH_ISA_THUMB",
TARGET_ARM_ARCH_ISA_THUMB);
if (TARGET_BIG_END)
{
builtin_define ("__ARMEB__");
builtin_define ("__ARM_BIG_ENDIAN");
}
else
{
builtin_define ("__ARMEL__");
}
if (TARGET_SOFT_FLOAT)
builtin_define ("__SOFTFP__");
builtin_define ("__VFP_FP__");
cpp_undef (pfile, "__ARM_FP");
if (TARGET_ARM_FP)
builtin_define_with_int_value ("__ARM_FP", TARGET_ARM_FP);
def_or_undef_macro (pfile, "__ARM_FP16_FORMAT_IEEE",
arm_fp16_format == ARM_FP16_FORMAT_IEEE);
def_or_undef_macro (pfile, "__ARM_FP16_FORMAT_ALTERNATIVE",
arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE);
def_or_undef_macro (pfile, "__ARM_FP16_ARGS",
arm_fp16_format != ARM_FP16_FORMAT_NONE);
def_or_undef_macro (pfile, "__ARM_FEATURE_FP16_SCALAR_ARITHMETIC",
TARGET_VFP_FP16INST);
def_or_undef_macro (pfile, "__ARM_FEATURE_FP16_VECTOR_ARITHMETIC",
TARGET_NEON_FP16INST);
def_or_undef_macro (pfile, "__ARM_FEATURE_FP16_FML", TARGET_FP16FML);
def_or_undef_macro (pfile, "__ARM_FEATURE_FMA", TARGET_FMA);
def_or_undef_macro (pfile, "__ARM_NEON__", TARGET_NEON);
def_or_undef_macro (pfile, "__ARM_NEON", TARGET_NEON);
cpp_undef (pfile, "__ARM_NEON_FP");
if (TARGET_NEON_FP)
builtin_define_with_int_value ("__ARM_NEON_FP", TARGET_NEON_FP);
/* Add a define for interworking. Needed when building libgcc.a. */
if (arm_cpp_interwork)
builtin_define ("__THUMB_INTERWORK__");
builtin_define (arm_arch_name);
if (arm_arch_xscale)
builtin_define ("__XSCALE__");
if (arm_arch_iwmmxt)
{
builtin_define ("__IWMMXT__");
builtin_define ("__ARM_WMMX");
}
if (arm_arch_iwmmxt2)
builtin_define ("__IWMMXT2__");
/* ARMv6KZ was originally identified as the misspelled __ARM_ARCH_6ZK__. To
preserve the existing behavior, the misspelled feature macro must still be
defined. */
if (arm_arch6kz)
builtin_define ("__ARM_ARCH_6ZK__");
if (TARGET_AAPCS_BASED)
{
if (arm_pcs_default == ARM_PCS_AAPCS_VFP)
builtin_define ("__ARM_PCS_VFP");
else if (arm_pcs_default == ARM_PCS_AAPCS)
builtin_define ("__ARM_PCS");
builtin_define ("__ARM_EABI__");
}
def_or_undef_macro (pfile, "__FDPIC__", TARGET_FDPIC);
def_or_undef_macro (pfile, "__ARM_ARCH_EXT_IDIV__", TARGET_IDIV);
def_or_undef_macro (pfile, "__ARM_FEATURE_IDIV", TARGET_IDIV);
def_or_undef_macro (pfile, "__ARM_ASM_SYNTAX_UNIFIED__", inline_asm_unified);
cpp_undef (pfile, "__ARM_FEATURE_COPROC");
if (TARGET_32BIT && arm_arch4 && !(arm_arch8 && arm_arch_notm))
{
int coproc_level = 0x1;
if (arm_arch5t)
coproc_level |= 0x2;
if (arm_arch5te)
coproc_level |= 0x4;
if (arm_arch6)
coproc_level |= 0x8;
builtin_define_with_int_value ("__ARM_FEATURE_COPROC", coproc_level);
}
def_or_undef_macro (pfile, "__ARM_FEATURE_CDE", TARGET_CDE);
cpp_undef (pfile, "__ARM_FEATURE_CDE_COPROC");
if (TARGET_CDE)
builtin_define_with_int_value ("__ARM_FEATURE_CDE_COPROC",
arm_arch_cde_coproc);
def_or_undef_macro (pfile, "__ARM_FEATURE_MATMUL_INT8", TARGET_I8MM);
def_or_undef_macro (pfile, "__ARM_FEATURE_BF16_SCALAR_ARITHMETIC",
TARGET_BF16_FP);
def_or_undef_macro (pfile, "__ARM_FEATURE_BF16_VECTOR_ARITHMETIC",
TARGET_BF16_SIMD);
def_or_undef_macro (pfile, "__ARM_BF16_FORMAT_ALTERNATIVE",
TARGET_BF16_FP || TARGET_BF16_SIMD);
}
void
arm_cpu_cpp_builtins (struct cpp_reader * pfile)
{
builtin_assert ("cpu=arm");
builtin_assert ("machine=arm");
arm_cpu_builtins (pfile);
}
/* Hook to validate the current #pragma GCC target and set the arch custom
mode state. If ARGS is NULL, then POP_TARGET is used to reset
the options. */
static bool
arm_pragma_target_parse (tree args, tree pop_target)
{
tree prev_tree = target_option_current_node;
tree cur_tree;
struct cl_target_option *prev_opt;
struct cl_target_option *cur_opt;
if (! args)
{
cur_tree = ((pop_target) ? pop_target : target_option_default_node);
cl_target_option_restore (&global_options, &global_options_set,
TREE_TARGET_OPTION (cur_tree));
}
else
{
cur_tree = arm_valid_target_attribute_tree (args, &global_options,
&global_options_set);
if (cur_tree == NULL_TREE)
{
cl_target_option_restore (&global_options, &global_options_set,
TREE_TARGET_OPTION (prev_tree));
return false;
}
/* handle_pragma_pop_options and handle_pragma_reset_options will set
target_option_current_node, but not handle_pragma_target. */
target_option_current_node = cur_tree;
arm_configure_build_target (&arm_active_target,
TREE_TARGET_OPTION (cur_tree), false);
arm_option_reconfigure_globals ();
}
/* Update macros if target_node changes. The global state will be restored
by arm_set_current_function. */
prev_opt = TREE_TARGET_OPTION (prev_tree);
cur_opt = TREE_TARGET_OPTION (cur_tree);
gcc_assert (prev_opt);
gcc_assert (cur_opt);
if (cur_opt != prev_opt)
{
/* For the definitions, ensure all newly defined macros are considered
as used for -Wunused-macros. There is no point warning about the
compiler predefined macros. */
cpp_options *cpp_opts = cpp_get_options (parse_in);
unsigned char saved_warn_unused_macros = cpp_opts->warn_unused_macros;
cpp_opts->warn_unused_macros = 0;
/* Update macros. */
gcc_assert (cur_opt->x_target_flags == target_flags);
/* Don't warn for macros that have context sensitive values depending on
other attributes.
See warn_of_redefinition, reset after cpp_create_definition. */
tree acond_macro = get_identifier ("__ARM_NEON_FP");
C_CPP_HASHNODE (acond_macro)->flags |= NODE_CONDITIONAL ;
acond_macro = get_identifier ("__ARM_FP");
C_CPP_HASHNODE (acond_macro)->flags |= NODE_CONDITIONAL;
acond_macro = get_identifier ("__ARM_FEATURE_LDREX");
C_CPP_HASHNODE (acond_macro)->flags |= NODE_CONDITIONAL;
cpp_force_token_locations (parse_in, BUILTINS_LOCATION);
arm_cpu_builtins (parse_in);
cpp_stop_forcing_token_locations (parse_in);
cpp_opts->warn_unused_macros = saved_warn_unused_macros;
/* Make sure that target_reinit is called for next function, since
TREE_TARGET_OPTION might change with the #pragma even if there is
no target attribute attached to the function. */
arm_reset_previous_fndecl ();
/* If going to the default mode, we restore the initial states.
if cur_tree is a new target, states will be saved/restored on a per
function basis in arm_set_current_function. */
if (cur_tree == target_option_default_node)
save_restore_target_globals (cur_tree);
}
return true;
}
/* Register target pragmas. We need to add the hook for parsing #pragma GCC
option here rather than in arm.cc since it will pull in various preprocessor
functions, and those are not present in languages like fortran without a
preprocessor. */
void
arm_register_target_pragmas (void)
{
/* Update pragma hook to allow parsing #pragma GCC target. */
targetm.target_option.pragma_parse = arm_pragma_target_parse;
targetm.resolve_overloaded_builtin = arm_resolve_overloaded_builtin;
c_register_pragma ("GCC", "arm", arm_pragma_arm);
#ifdef REGISTER_SUBTARGET_PRAGMAS
REGISTER_SUBTARGET_PRAGMAS ();
#endif
}