blob: 6e9d51d3b4b9a421fa510da18d45ea60c0e5af49 [file] [log] [blame]
/* Floating point range operators.
Copyright (C) 2022 Free Software Foundation, Inc.
Contributed by Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "flags.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "cfganal.h"
#include "gimple-iterator.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "wide-int.h"
#include "value-relation.h"
#include "range-op.h"
// Default definitions for floating point operators.
bool
range_operator_float::fold_range (frange &r ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
const frange &lh ATTRIBUTE_UNUSED,
const frange &rh ATTRIBUTE_UNUSED,
relation_kind rel ATTRIBUTE_UNUSED) const
{
return false;
}
bool
range_operator_float::fold_range (irange &r ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
const frange &lh ATTRIBUTE_UNUSED,
const irange &rh ATTRIBUTE_UNUSED,
relation_kind rel ATTRIBUTE_UNUSED) const
{
return false;
}
bool
range_operator_float::fold_range (irange &r ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
const frange &lh ATTRIBUTE_UNUSED,
const frange &rh ATTRIBUTE_UNUSED,
relation_kind rel ATTRIBUTE_UNUSED) const
{
return false;
}
bool
range_operator_float::op1_range (frange &r ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
const frange &lhs ATTRIBUTE_UNUSED,
const frange &op2 ATTRIBUTE_UNUSED,
relation_kind rel ATTRIBUTE_UNUSED) const
{
return false;
}
bool
range_operator_float::op1_range (frange &r ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
const irange &lhs ATTRIBUTE_UNUSED,
const frange &op2 ATTRIBUTE_UNUSED,
relation_kind rel ATTRIBUTE_UNUSED) const
{
return false;
}
bool
range_operator_float::op2_range (frange &r ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
const frange &lhs ATTRIBUTE_UNUSED,
const frange &op1 ATTRIBUTE_UNUSED,
relation_kind rel ATTRIBUTE_UNUSED) const
{
return false;
}
bool
range_operator_float::op2_range (frange &r ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
const irange &lhs ATTRIBUTE_UNUSED,
const frange &op1 ATTRIBUTE_UNUSED,
relation_kind rel ATTRIBUTE_UNUSED) const
{
return false;
}
relation_kind
range_operator_float::lhs_op1_relation (const frange &lhs ATTRIBUTE_UNUSED,
const frange &op1 ATTRIBUTE_UNUSED,
const frange &op2 ATTRIBUTE_UNUSED,
relation_kind) const
{
return VREL_VARYING;
}
relation_kind
range_operator_float::lhs_op1_relation (const irange &lhs ATTRIBUTE_UNUSED,
const frange &op1 ATTRIBUTE_UNUSED,
const frange &op2 ATTRIBUTE_UNUSED,
relation_kind) const
{
return VREL_VARYING;
}
relation_kind
range_operator_float::lhs_op2_relation (const irange &lhs ATTRIBUTE_UNUSED,
const frange &op1 ATTRIBUTE_UNUSED,
const frange &op2 ATTRIBUTE_UNUSED,
relation_kind) const
{
return VREL_VARYING;
}
relation_kind
range_operator_float::lhs_op2_relation (const frange &lhs ATTRIBUTE_UNUSED,
const frange &op1 ATTRIBUTE_UNUSED,
const frange &op2 ATTRIBUTE_UNUSED,
relation_kind) const
{
return VREL_VARYING;
}
relation_kind
range_operator_float::op1_op2_relation (const irange &lhs ATTRIBUTE_UNUSED) const
{
return VREL_VARYING;
}
// Return TRUE if OP1 is known to be free of NANs.
static inline bool
finite_operand_p (const frange &op1)
{
return flag_finite_math_only || !op1.maybe_isnan ();
}
// Return TRUE if OP1 and OP2 are known to be free of NANs.
static inline bool
finite_operands_p (const frange &op1, const frange &op2)
{
return flag_finite_math_only || (!op1.maybe_isnan () && !op2.maybe_isnan ());
}
// Floating version of relop_early_resolve that takes into account NAN
// and -ffinite-math-only.
inline bool
frelop_early_resolve (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel, relation_kind my_rel)
{
// If either operand is undefined, return VARYING.
if (empty_range_varying (r, type, op1, op2))
return true;
// We can fold relations from the oracle when we know both operands
// are free of NANs, or when -ffinite-math-only.
return (finite_operands_p (op1, op2)
&& relop_early_resolve (r, type, op1, op2, rel, my_rel));
}
// Crop R to [-INF, MAX] where MAX is the maximum representable number
// for TYPE.
static inline void
frange_drop_inf (frange &r, tree type)
{
REAL_VALUE_TYPE max = real_max_representable (type);
frange tmp (type, r.lower_bound (), max);
r.intersect (tmp);
}
// Crop R to [MIN, +INF] where MIN is the minimum representable number
// for TYPE.
static inline void
frange_drop_ninf (frange &r, tree type)
{
REAL_VALUE_TYPE min = real_min_representable (type);
frange tmp (type, min, r.upper_bound ());
r.intersect (tmp);
}
// If zero is in R, make sure both -0.0 and +0.0 are in the range.
static inline void
frange_add_zeros (frange &r, tree type)
{
if (r.undefined_p () || r.known_isnan ())
return;
if (HONOR_SIGNED_ZEROS (type)
&& (real_iszero (&r.lower_bound ()) || real_iszero (&r.upper_bound ())))
{
frange zero;
zero.set_zero (type);
r.union_ (zero);
}
}
// Build a range that is <= VAL and store it in R.
static bool
build_le (frange &r, tree type, const frange &val)
{
gcc_checking_assert (!val.known_isnan ());
REAL_VALUE_TYPE ninf = frange_val_min (type);
r.set (type, ninf, val.upper_bound ());
// Add both zeros if there's the possibility of zero equality.
frange_add_zeros (r, type);
return true;
}
// Build a range that is < VAL and store it in R.
static bool
build_lt (frange &r, tree type, const frange &val)
{
gcc_checking_assert (!val.known_isnan ());
// < -INF is outside the range.
if (real_isinf (&val.upper_bound (), 1))
{
if (HONOR_NANS (type))
r.set_nan (type);
else
r.set_undefined ();
return false;
}
// We only support closed intervals.
REAL_VALUE_TYPE ninf = frange_val_min (type);
r.set (type, ninf, val.upper_bound ());
return true;
}
// Build a range that is >= VAL and store it in R.
static bool
build_ge (frange &r, tree type, const frange &val)
{
gcc_checking_assert (!val.known_isnan ());
REAL_VALUE_TYPE inf = frange_val_max (type);
r.set (type, val.lower_bound (), inf);
// Add both zeros if there's the possibility of zero equality.
frange_add_zeros (r, type);
return true;
}
// Build a range that is > VAL and store it in R.
static bool
build_gt (frange &r, tree type, const frange &val)
{
gcc_checking_assert (!val.known_isnan ());
// > +INF is outside the range.
if (real_isinf (&val.lower_bound (), 0))
{
if (HONOR_NANS (type))
r.set_nan (type);
else
r.set_undefined ();
return false;
}
// We only support closed intervals.
REAL_VALUE_TYPE inf = frange_val_max (type);
r.set (type, val.lower_bound (), inf);
return true;
}
class foperator_identity : public range_operator_float
{
using range_operator_float::fold_range;
using range_operator_float::op1_range;
bool fold_range (frange &r, tree type ATTRIBUTE_UNUSED,
const frange &op1, const frange &op2 ATTRIBUTE_UNUSED,
relation_kind) const final override
{
r = op1;
return true;
}
bool op1_range (frange &r, tree type ATTRIBUTE_UNUSED,
const frange &lhs, const frange &op2 ATTRIBUTE_UNUSED,
relation_kind) const final override
{
r = lhs;
return true;
}
public:
} fop_identity;
class foperator_equal : public range_operator_float
{
using range_operator_float::fold_range;
using range_operator_float::op1_range;
using range_operator_float::op2_range;
bool fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const final override;
relation_kind op1_op2_relation (const irange &lhs) const final override
{
return equal_op1_op2_relation (lhs);
}
bool op1_range (frange &r, tree type,
const irange &lhs, const frange &op2,
relation_kind rel) const final override;
bool op2_range (frange &r, tree type,
const irange &lhs, const frange &op1,
relation_kind rel) const final override
{
return op1_range (r, type, lhs, op1, rel);
}
} fop_equal;
bool
foperator_equal::fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const
{
if (frelop_early_resolve (r, type, op1, op2, rel, VREL_EQ))
return true;
if (op1.known_isnan () || op2.known_isnan ())
r = range_false (type);
// We can be sure the values are always equal or not if both ranges
// consist of a single value, and then compare them.
else if (op1.singleton_p () && op2.singleton_p ())
{
if (op1 == op2)
r = range_true (type);
else
r = range_false (type);
}
else if (finite_operands_p (op1, op2))
{
// If ranges do not intersect, we know the range is not equal,
// otherwise we don't know anything for sure.
frange tmp = op1;
tmp.intersect (op2);
if (tmp.undefined_p ())
r = range_false (type);
else
r = range_true_and_false (type);
}
else
r = range_true_and_false (type);
return true;
}
bool
foperator_equal::op1_range (frange &r, tree type,
const irange &lhs,
const frange &op2,
relation_kind rel) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// The TRUE side of x == NAN is unreachable.
if (op2.known_isnan ())
r.set_undefined ();
else
{
// If it's true, the result is the same as OP2.
r = op2;
// Add both zeros if there's the possibility of zero equality.
frange_add_zeros (r, type);
// The TRUE side of op1 == op2 implies op1 is !NAN.
r.clear_nan ();
}
break;
case BRS_FALSE:
// The FALSE side of op1 == op1 implies op1 is a NAN.
if (rel == VREL_EQ)
r.set_nan (type);
// On the FALSE side of x == NAN, we know nothing about x.
else if (op2.known_isnan ())
r.set_varying (type);
// If the result is false, the only time we know anything is
// if OP2 is a constant.
else if (op2.singleton_p ()
|| (finite_operand_p (op2) && op2.zero_p ()))
{
REAL_VALUE_TYPE tmp = op2.lower_bound ();
r.set (type, tmp, tmp, VR_ANTI_RANGE);
}
else
r.set_varying (type);
break;
default:
break;
}
return true;
}
class foperator_not_equal : public range_operator_float
{
using range_operator_float::fold_range;
using range_operator_float::op1_range;
bool fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const final override;
relation_kind op1_op2_relation (const irange &lhs) const final override
{
return not_equal_op1_op2_relation (lhs);
}
bool op1_range (frange &r, tree type,
const irange &lhs, const frange &op2,
relation_kind rel) const final override;
} fop_not_equal;
bool
foperator_not_equal::fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const
{
if (frelop_early_resolve (r, type, op1, op2, rel, VREL_NE))
return true;
// x != NAN is always TRUE.
if (op1.known_isnan () || op2.known_isnan ())
r = range_true (type);
// We can be sure the values are always equal or not if both ranges
// consist of a single value, and then compare them.
else if (op1.singleton_p () && op2.singleton_p ())
{
if (op1 != op2)
r = range_true (type);
else
r = range_false (type);
}
else if (finite_operands_p (op1, op2))
{
// If ranges do not intersect, we know the range is not equal,
// otherwise we don't know anything for sure.
frange tmp = op1;
tmp.intersect (op2);
if (tmp.undefined_p ())
r = range_true (type);
else
r = range_true_and_false (type);
}
else
r = range_true_and_false (type);
return true;
}
bool
foperator_not_equal::op1_range (frange &r, tree type,
const irange &lhs,
const frange &op2,
relation_kind) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// If the result is true, the only time we know anything is if
// OP2 is a constant.
if (op2.singleton_p ())
{
// This is correct even if op1 is NAN, because the following
// range would be ~[tmp, tmp] with the NAN property set to
// maybe (VARYING).
REAL_VALUE_TYPE tmp = op2.lower_bound ();
r.set (type, tmp, tmp, VR_ANTI_RANGE);
}
else
r.set_varying (type);
break;
case BRS_FALSE:
// The FALSE side of x != NAN is impossible.
if (op2.known_isnan ())
r.set_undefined ();
else
{
// If it's false, the result is the same as OP2.
r = op2;
// Add both zeros if there's the possibility of zero equality.
frange_add_zeros (r, type);
// The FALSE side of op1 != op2 implies op1 is !NAN.
r.clear_nan ();
}
break;
default:
break;
}
return true;
}
class foperator_lt : public range_operator_float
{
using range_operator_float::fold_range;
using range_operator_float::op1_range;
using range_operator_float::op2_range;
bool fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const final override;
relation_kind op1_op2_relation (const irange &lhs) const final override
{
return lt_op1_op2_relation (lhs);
}
bool op1_range (frange &r, tree type,
const irange &lhs, const frange &op2,
relation_kind rel) const final override;
bool op2_range (frange &r, tree type,
const irange &lhs, const frange &op1,
relation_kind rel) const final override;
} fop_lt;
bool
foperator_lt::fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const
{
if (frelop_early_resolve (r, type, op1, op2, rel, VREL_LT))
return true;
if (op1.known_isnan () || op2.known_isnan ())
r = range_false (type);
else if (finite_operands_p (op1, op2))
{
if (real_less (&op1.upper_bound (), &op2.lower_bound ()))
r = range_true (type);
else if (finite_operands_p (op1, op2)
&& !real_less (&op1.lower_bound (), &op2.upper_bound ()))
r = range_false (type);
else
r = range_true_and_false (type);
}
else
r = range_true_and_false (type);
return true;
}
bool
foperator_lt::op1_range (frange &r,
tree type,
const irange &lhs,
const frange &op2,
relation_kind) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// The TRUE side of x < NAN is unreachable.
if (op2.known_isnan ())
r.set_undefined ();
else if (build_lt (r, type, op2))
{
r.clear_nan ();
// x < y implies x is not +INF.
frange_drop_inf (r, type);
}
break;
case BRS_FALSE:
// On the FALSE side of x < NAN, we know nothing about x.
if (op2.known_isnan ())
r.set_varying (type);
else
build_ge (r, type, op2);
break;
default:
break;
}
return true;
}
bool
foperator_lt::op2_range (frange &r,
tree type,
const irange &lhs,
const frange &op1,
relation_kind) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// The TRUE side of NAN < x is unreachable.
if (op1.known_isnan ())
r.set_undefined ();
else if (build_gt (r, type, op1))
{
r.clear_nan ();
// x < y implies y is not -INF.
frange_drop_ninf (r, type);
}
break;
case BRS_FALSE:
// On the FALSE side of NAN < x, we know nothing about x.
if (op1.known_isnan ())
r.set_varying (type);
else
build_le (r, type, op1);
break;
default:
break;
}
return true;
}
class foperator_le : public range_operator_float
{
using range_operator_float::fold_range;
using range_operator_float::op1_range;
using range_operator_float::op2_range;
bool fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const final override;
relation_kind op1_op2_relation (const irange &lhs) const final override
{
return le_op1_op2_relation (lhs);
}
bool op1_range (frange &r, tree type,
const irange &lhs, const frange &op2,
relation_kind rel) const final override;
bool op2_range (frange &r, tree type,
const irange &lhs, const frange &op1,
relation_kind rel) const final override;
} fop_le;
bool
foperator_le::fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const
{
if (frelop_early_resolve (r, type, op1, op2, rel, VREL_LE))
return true;
if (op1.known_isnan () || op2.known_isnan ())
r = range_false (type);
else if (finite_operands_p (op1, op2))
{
if (real_compare (LE_EXPR, &op1.upper_bound (), &op2.lower_bound ()))
r = range_true (type);
else if (finite_operands_p (op1, op2)
&& !real_compare (LE_EXPR, &op1.lower_bound (), &op2.upper_bound ()))
r = range_false (type);
else
r = range_true_and_false (type);
}
else
r = range_true_and_false (type);
return true;
}
bool
foperator_le::op1_range (frange &r,
tree type,
const irange &lhs,
const frange &op2,
relation_kind) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// The TRUE side of x <= NAN is unreachable.
if (op2.known_isnan ())
r.set_undefined ();
else if (build_le (r, type, op2))
r.clear_nan ();
break;
case BRS_FALSE:
// On the FALSE side of x <= NAN, we know nothing about x.
if (op2.known_isnan ())
r.set_varying (type);
else
build_gt (r, type, op2);
break;
default:
break;
}
return true;
}
bool
foperator_le::op2_range (frange &r,
tree type,
const irange &lhs,
const frange &op1,
relation_kind) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// The TRUE side of NAN <= x is unreachable.
if (op1.known_isnan ())
r.set_undefined ();
else if (build_ge (r, type, op1))
r.clear_nan ();
break;
case BRS_FALSE:
// On the FALSE side of NAN <= x, we know nothing about x.
if (op1.known_isnan ())
r.set_varying (type);
else
build_lt (r, type, op1);
break;
default:
break;
}
return true;
}
class foperator_gt : public range_operator_float
{
using range_operator_float::fold_range;
using range_operator_float::op1_range;
using range_operator_float::op2_range;
bool fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const final override;
relation_kind op1_op2_relation (const irange &lhs) const final override
{
return gt_op1_op2_relation (lhs);
}
bool op1_range (frange &r, tree type,
const irange &lhs, const frange &op2,
relation_kind rel) const final override;
bool op2_range (frange &r, tree type,
const irange &lhs, const frange &op1,
relation_kind rel) const final override;
} fop_gt;
bool
foperator_gt::fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const
{
if (frelop_early_resolve (r, type, op1, op2, rel, VREL_GT))
return true;
if (op1.known_isnan () || op2.known_isnan ())
r = range_false (type);
else if (finite_operands_p (op1, op2))
{
if (real_compare (GT_EXPR, &op1.lower_bound (), &op2.upper_bound ()))
r = range_true (type);
else if (finite_operands_p (op1, op2)
&& !real_compare (GT_EXPR, &op1.upper_bound (), &op2.lower_bound ()))
r = range_false (type);
else
r = range_true_and_false (type);
}
else
r = range_true_and_false (type);
return true;
}
bool
foperator_gt::op1_range (frange &r,
tree type,
const irange &lhs,
const frange &op2,
relation_kind) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// The TRUE side of x > NAN is unreachable.
if (op2.known_isnan ())
r.set_undefined ();
else if (build_gt (r, type, op2))
{
r.clear_nan ();
// x > y implies x is not -INF.
frange_drop_ninf (r, type);
}
break;
case BRS_FALSE:
// On the FALSE side of x > NAN, we know nothing about x.
if (op2.known_isnan ())
r.set_varying (type);
else
build_le (r, type, op2);
break;
default:
break;
}
return true;
}
bool
foperator_gt::op2_range (frange &r,
tree type,
const irange &lhs,
const frange &op1,
relation_kind) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// The TRUE side of NAN > x is unreachable.
if (op1.known_isnan ())
r.set_undefined ();
else if (build_lt (r, type, op1))
{
r.clear_nan ();
// x > y implies y is not +INF.
frange_drop_inf (r, type);
}
break;
case BRS_FALSE:
// On The FALSE side of NAN > x, we know nothing about x.
if (op1.known_isnan ())
r.set_varying (type);
else
build_ge (r, type, op1);
break;
default:
break;
}
return true;
}
class foperator_ge : public range_operator_float
{
using range_operator_float::fold_range;
using range_operator_float::op1_range;
using range_operator_float::op2_range;
bool fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const final override;
relation_kind op1_op2_relation (const irange &lhs) const final override
{
return ge_op1_op2_relation (lhs);
}
bool op1_range (frange &r, tree type,
const irange &lhs, const frange &op2,
relation_kind rel) const final override;
bool op2_range (frange &r, tree type,
const irange &lhs, const frange &op1,
relation_kind rel) const final override;
} fop_ge;
bool
foperator_ge::fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const
{
if (frelop_early_resolve (r, type, op1, op2, rel, VREL_GE))
return true;
if (op1.known_isnan () || op2.known_isnan ())
r = range_false (type);
else if (finite_operands_p (op1, op2))
{
if (real_compare (GE_EXPR, &op1.lower_bound (), &op2.upper_bound ()))
r = range_true (type);
else if (finite_operands_p (op1, op2)
&& !real_compare (GE_EXPR, &op1.upper_bound (), &op2.lower_bound ()))
r = range_false (type);
else
r = range_true_and_false (type);
}
else
r = range_true_and_false (type);
return true;
}
bool
foperator_ge::op1_range (frange &r,
tree type,
const irange &lhs,
const frange &op2,
relation_kind) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// The TRUE side of x >= NAN is unreachable.
if (op2.known_isnan ())
r.set_undefined ();
else if (build_ge (r, type, op2))
r.clear_nan ();
break;
case BRS_FALSE:
// On the FALSE side of x >= NAN, we know nothing about x.
if (op2.known_isnan ())
r.set_varying (type);
else
build_lt (r, type, op2);
break;
default:
break;
}
return true;
}
bool
foperator_ge::op2_range (frange &r, tree type,
const irange &lhs,
const frange &op1,
relation_kind) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// The TRUE side of NAN >= x is unreachable.
if (op1.known_isnan ())
r.set_undefined ();
else
{
build_le (r, type, op1);
r.clear_nan ();
}
break;
case BRS_FALSE:
// On the FALSE side of NAN >= x, we know nothing about x.
if (op1.known_isnan ())
r.set_varying (type);
else
build_gt (r, type, op1);
break;
default:
break;
}
return true;
}
// UNORDERED_EXPR comparison.
class foperator_unordered : public range_operator_float
{
using range_operator_float::fold_range;
using range_operator_float::op1_range;
using range_operator_float::op2_range;
public:
bool fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const final override;
bool op1_range (frange &r, tree type,
const irange &lhs, const frange &op2,
relation_kind rel) const final override;
bool op2_range (frange &r, tree type,
const irange &lhs, const frange &op1,
relation_kind rel) const final override
{
return op1_range (r, type, lhs, op1, rel);
}
} fop_unordered;
bool
foperator_unordered::fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind) const
{
// UNORDERED is TRUE if either operand is a NAN.
if (op1.known_isnan () || op2.known_isnan ())
r = range_true (type);
// UNORDERED is FALSE if neither operand is a NAN.
else if (!op1.maybe_isnan () && !op2.maybe_isnan ())
r = range_false (type);
else
r = range_true_and_false (type);
return true;
}
bool
foperator_unordered::op1_range (frange &r, tree type,
const irange &lhs,
const frange &op2,
relation_kind) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// Since at least one operand must be NAN, if one of them is
// not, the other must be.
if (!op2.maybe_isnan ())
r.set_nan (type);
else
r.set_varying (type);
break;
case BRS_FALSE:
// A false UNORDERED means both operands are !NAN, so it's
// impossible for op2 to be a NAN.
if (op2.known_isnan ())
r.set_undefined ();
else
{
r.set_varying (type);
r.clear_nan ();
}
break;
default:
break;
}
return true;
}
// ORDERED_EXPR comparison.
class foperator_ordered : public range_operator_float
{
using range_operator_float::fold_range;
using range_operator_float::op1_range;
using range_operator_float::op2_range;
public:
bool fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind rel) const final override;
bool op1_range (frange &r, tree type,
const irange &lhs, const frange &op2,
relation_kind rel) const final override;
bool op2_range (frange &r, tree type,
const irange &lhs, const frange &op1,
relation_kind rel) const final override
{
return op1_range (r, type, lhs, op1, rel);
}
} fop_ordered;
bool
foperator_ordered::fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind) const
{
if (op1.known_isnan () || op2.known_isnan ())
r = range_false (type);
else if (!op1.maybe_isnan () && !op2.maybe_isnan ())
r = range_true (type);
else
r = range_true_and_false (type);
return true;
}
bool
foperator_ordered::op1_range (frange &r, tree type,
const irange &lhs,
const frange &op2,
relation_kind rel) const
{
switch (get_bool_state (r, lhs, type))
{
case BRS_TRUE:
// The TRUE side of ORDERED means both operands are !NAN, so
// it's impossible for op2 to be a NAN.
if (op2.known_isnan ())
r.set_undefined ();
else
{
r.set_varying (type);
r.clear_nan ();
}
break;
case BRS_FALSE:
r.set_varying (type);
// The FALSE side of op1 ORDERED op1 implies op1 is !NAN.
if (rel == VREL_EQ)
r.clear_nan ();
break;
default:
break;
}
return true;
}
// Placeholder for unimplemented relational operators.
class foperator_relop_unknown : public range_operator_float
{
using range_operator_float::fold_range;
public:
bool fold_range (irange &r, tree type,
const frange &op1, const frange &op2,
relation_kind) const final override
{
if (op1.known_isnan () || op2.known_isnan ())
r = range_true (type);
else
r.set_varying (type);
return true;
}
} fop_unordered_relop_unknown;
// Instantiate a range_op_table for floating point operations.
static floating_op_table global_floating_table;
// Pointer to the float table so the dispatch code can access it.
floating_op_table *floating_tree_table = &global_floating_table;
floating_op_table::floating_op_table ()
{
set (SSA_NAME, fop_identity);
set (PAREN_EXPR, fop_identity);
set (OBJ_TYPE_REF, fop_identity);
set (REAL_CST, fop_identity);
// All the relational operators are expected to work, because the
// calculation of ranges on outgoing edges expect the handlers to be
// present.
set (EQ_EXPR, fop_equal);
set (NE_EXPR, fop_not_equal);
set (LT_EXPR, fop_lt);
set (LE_EXPR, fop_le);
set (GT_EXPR, fop_gt);
set (GE_EXPR, fop_ge);
set (UNLE_EXPR, fop_unordered_relop_unknown);
set (UNLT_EXPR, fop_unordered_relop_unknown);
set (UNGE_EXPR, fop_unordered_relop_unknown);
set (UNGT_EXPR, fop_unordered_relop_unknown);
set (UNEQ_EXPR, fop_unordered_relop_unknown);
set (ORDERED_EXPR, fop_ordered);
set (UNORDERED_EXPR, fop_unordered);
}
// Return a pointer to the range_operator_float instance, if there is
// one associated with tree_code CODE.
range_operator_float *
floating_op_table::operator[] (enum tree_code code)
{
return m_range_tree[code];
}
// Add OP to the handler table for CODE.
void
floating_op_table::set (enum tree_code code, range_operator_float &op)
{
gcc_checking_assert (m_range_tree[code] == NULL);
m_range_tree[code] = &op;
}