blob: ac4de0e22dc67f800004a09689604ec72151f560 [file] [log] [blame]
/* A class for building vector tree constants.
Copyright (C) 2017-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_TREE_VECTOR_BUILDER_H
#define GCC_TREE_VECTOR_BUILDER_H
#include "vector-builder.h"
/* This class is used to build VECTOR_CSTs from a sequence of elements.
See vector_builder for more details. */
class tree_vector_builder : public vector_builder<tree, tree,
tree_vector_builder>
{
typedef vector_builder<tree, tree, tree_vector_builder> parent;
friend class vector_builder<tree, tree, tree_vector_builder>;
public:
tree_vector_builder () : m_type (0) {}
tree_vector_builder (tree, unsigned int, unsigned int);
tree build ();
tree type () const { return m_type; }
void new_vector (tree, unsigned int, unsigned int);
private:
bool equal_p (const_tree, const_tree) const;
bool allow_steps_p () const;
bool integral_p (const_tree) const;
wide_int step (const_tree, const_tree) const;
tree apply_step (tree, unsigned int, const wide_int &) const;
bool can_elide_p (const_tree) const;
void note_representative (tree *, tree);
static poly_uint64 shape_nelts (const_tree t)
{ return TYPE_VECTOR_SUBPARTS (t); }
static poly_uint64 nelts_of (const_tree t)
{ return VECTOR_CST_NELTS (t); }
static unsigned int npatterns_of (const_tree t)
{ return VECTOR_CST_NPATTERNS (t); }
static unsigned int nelts_per_pattern_of (const_tree t)
{ return VECTOR_CST_NELTS_PER_PATTERN (t); }
tree m_type;
};
/* Create a new builder for a vector of type TYPE. Initially encode the
value as NPATTERNS interleaved patterns with NELTS_PER_PATTERN elements
each. */
inline
tree_vector_builder::tree_vector_builder (tree type, unsigned int npatterns,
unsigned int nelts_per_pattern)
{
new_vector (type, npatterns, nelts_per_pattern);
}
/* Start building a new vector of type TYPE. Initially encode the value
as NPATTERNS interleaved patterns with NELTS_PER_PATTERN elements each. */
inline void
tree_vector_builder::new_vector (tree type, unsigned int npatterns,
unsigned int nelts_per_pattern)
{
m_type = type;
parent::new_vector (TYPE_VECTOR_SUBPARTS (type), npatterns,
nelts_per_pattern);
}
/* Return true if elements I1 and I2 are equal. */
inline bool
tree_vector_builder::equal_p (const_tree elt1, const_tree elt2) const
{
return operand_equal_p (elt1, elt2, OEP_BITWISE);
}
/* Return true if a stepped representation is OK. We don't allow
linear series for anything other than integers, to avoid problems
with rounding. */
inline bool
tree_vector_builder::allow_steps_p () const
{
return INTEGRAL_TYPE_P (TREE_TYPE (m_type));
}
/* Return true if ELT can be interpreted as an integer. */
inline bool
tree_vector_builder::integral_p (const_tree elt) const
{
return TREE_CODE (elt) == INTEGER_CST;
}
/* Return the value of element ELT2 minus the value of element ELT1.
Both elements are known to be INTEGER_CSTs. */
inline wide_int
tree_vector_builder::step (const_tree elt1, const_tree elt2) const
{
return wi::to_wide (elt2) - wi::to_wide (elt1);
}
/* Return true if we can drop element ELT, even if the retained elements
are different. Return false if this would mean losing overflow
information. */
inline bool
tree_vector_builder::can_elide_p (const_tree elt) const
{
return !CONSTANT_CLASS_P (elt) || !TREE_OVERFLOW (elt);
}
/* Record that ELT2 is being elided, given that ELT1_PTR points to the last
encoded element for the containing pattern. */
inline void
tree_vector_builder::note_representative (tree *elt1_ptr, tree elt2)
{
if (CONSTANT_CLASS_P (elt2) && TREE_OVERFLOW (elt2))
{
gcc_assert (operand_equal_p (*elt1_ptr, elt2, 0));
if (!TREE_OVERFLOW (elt2))
*elt1_ptr = elt2;
}
}
#endif